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np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct
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I. INTRODUCTION

This article presents the effective range expansions and
relativistic deuteron wave functions that accompany the recent
high-precision fits to the 2007 world np data (containing
3788 data) below 350 MeV [1]. These fits, obtained using
the covariant spectator theory (CST) [2,3], resulted in two
new one-boson-exchange models of the np interaction, both
of which also reproduce the experimental triton binding en-
ergy without introducing additional irreducible three-nucleon
forces [4]. One model (WJC-1) has 27 parameters and fits
with a χ2/Ndata = 1.06. The other model (WJC-2) has only
15 parameters and fits with a χ2/Ndata = 1.12.

The main body of the article is divided into three sections.
In Sec. II the sixth-order effective range expansions for the
1S0 and 3S1 phase shifts are given; it is shown that these
expansions provide an excellent description of the phase shifts
up to 50 MeV laboratory kinetic energy. Then, in Sec. III,
the relativistic deuteron wave functions that automatically
emerge from these fits are discussed. The deuteron binding
energy was constrained during the fits, so both models have
the correct binding energy.

Section III begins with a review of the definitions of the
wave functions and a description of how they are related to the
relativistic dnp vertex functions defined in the CST. It is shown
how the CST wave functions are decomposed into four inde-
pendent amplitudes and how these can be identified with the fa-
miliar u (S state) and w (D state) components, plus two P-state
components of purely relativistic origin [5,6]. Because these
P states are associated with the virtual antinucleon degrees
of freedom they have positive parity. One P-wave component
has a symmetric total spin triplet structure (denoted vt ) and the
other an antisymmetric total spin singlet structure (denoted vs).
The antisymmetric vs wave function would be zero if both nu-
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cleons had the same energy, but because one is on-shell and the
other off-shell, the relative energy is Ep − 1

2Md (where Ep is
the total relativistic energy of a nucleon with three-momentum
p and Md is the deuteron mass), allowing for the existence of
this odd state. The normalization of the wave functions is
discussed [7]. It turns out that the probability of the WJC-1
P -state components is only about 0.3% while the WJC-2
P -state components are much smaller (with a combined
probability of less than 0.02%). These components are retained
because they are required by the manifest covariance of the
CST and are comparable to the larger wave functions in the
momentum region of 400 to 600 MeV. Even though they
are not present in some other relativistic approaches [8],
they have been found previously [9] to make surprisingly
important contributions to the deuteron form factors. The
wave functions are expanded in a series of analytic functions
that can be conveniently Fourier-transformed to coordinate
space, giving analytical wave functions in both momentum
and coordinate space convenient to use in any application. The
section concludes with a discussion of the asymptotic D/S

ratio. Calculations of the magnetic and quadrupole moments
require the evaluation of interaction currents, which is beyond
the scope of this article and is deferred to future work.

Our results are summarized in the conclusion, Sec. IV.
There are also three appendices. Appendix A gives details
of the construction and evaluation of the kernels omitted from
Ref. I [1]. Appendix B discusses the method used to evaluate
the angular integrals, complicated by the presence of a cusp
in the region of integration. Finally, Appendix C gives more
details about the definitions, extraction, and normalization of
deuteron wave functions.

II. EFFECTIVE RANGE EXPANSIONS

The four-term effective range expansion for the 1S0 and
3S1 phases that we use is

k cot δ = −1

a
+ r0k

2

{
1

2
+ (r0k)2[P + Q(r0k)2]

}
, (2.1)
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TABLE I. The effective range parameters defined in Eq. (2.1) and
the fractional errors � at 1 and 5 MeV for each model. The fractional
error is defined to be � = (cot δ − cot δeff )/ cot δ, where δeff is the
phase predicted by Eq. (2.1) and δ the phase emerging from solutions
of the scattering equation.

Parameter 1S0
3S1

WJC-1 WJC-2 WJC-1 WJC-2

a (fm) −23.7494 −23.7496 5.4295 5.4342
r0 (fm) 2.6261 2.6623 1.7601 1.7666
P 0.0007 −0.0005 0.0172 0.0206
Q 0.0033 0.0032 0.0060 0.0058
� (1 MeV) 0.0044 0.0038 −0.0011 −0.0009
� (5 MeV) 0.0033 0.0030 −0.0012 −0.0012

where a is the scattering length, r0 the effective range, and P

and Q the dimensionless third- and fourth-order parameters.
Here

k2 = 1
2mElab, (2.2)

where k is the magnitude of the center-of-mass momentum
of the nucleons and Elab the laboratory kinetic energy and
we used an average nucleon mass m = 938.9 MeV and
h̄c = 197.3288 MeV fm = 1. Recall that Eq. (2.2) holds for
both relativistic and nonrelativistic kinematics, allowing us to
compare our results directly with nonrelativistic calculations.

To fix these parameters we evaluated the phase shifts at
four energies: 0.0001, 10, 25, and 50 MeV. The first energy
of 0.0001 MeV is so low that it effectively fixes the scattering
length (and hence the total cross section at the np threshold).
The use of these four energies resulted in a small error between
the phases calculated at 1 and 5 MeV, and those predicted
using (2.1). The effective range parameters and the errors at 1
and 5 MeV are summarized in Table I.

The effective range expansion is surprisingly accurate over
a wide energy range. As shown in Fig. 1, the expansions are
qualitatively accurate up to Elab of about 150 MeV (the small
errors shown in Table I are completely invisible on the figure).
In the fitting we used the expansions instead of the phase
shifts to calculate the S-wave contributions to the observables
of all energies below 50 MeV. In doing the final minimizations
we constrained both the deuteron binding energy and the 1S0

phase shift at 0.0001 MeV (which we fixed at δ = 1.4937◦).
This was a very effective way to maintain an accurate fit to the
low-energy cross-section data.

III. DEUTERON WAVE FUNCTIONS

The CST deuteron wave functions have been developed and
defined in a number of references. The earliest reference is the
work of Buck and Gross [5]; more recent references include
Ref. [10] (referred to as Ref. II) and Ref. [11], where many
practical details for how to use the wave functions in practical
calculations are developed. While all of these references use
the same basic definitions, details of how to interpret and use
the wave functions have improved with time. In this section we
first present a brief review of the necessary definitions (relating
them to the earlier references) and then present the numerical
results for the wave functions of models WJC-1 and WJC-2.
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FIG. 1. (Color online) The effective range expansions for the S
waves (smooth line) compared to calculated phase shifts (solid dots).
The phases are in degrees.

A. Definitions of the vertex function and the covariant
wave function

The equation satisfied by the np-scattering amplitude is [in
the notation of Eq. (2.3) of Ref. I]

M12(p, p′; P ) = V 12(p, p′; P )

−
∫

k1

V 12(p, k; P )G2(k2)M12(k, p′; P ),

(3.1)

where P is the conserved total four-momentum, and p, p′, and
k are relative four-momenta related to the momenta of particles
1 and 2 by p1 = 1

2P + p, p2 = 1
2P − p. Ek1 = √

m2 + k2
1 is

the energy of the on-shell particle 1, and the covariant integral
is ∫

k

≡
∫

d3k

(2π )3

m

Ek

. (3.2)
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Note that these covariant operators can be written either in
terms of the independent momenta {P, p, p′} or {P, p1, p

′
1}.

The scattering amplitude,

M12(p, p′; P ) ≡ Mλ1λ
′
1,ββ ′ (p, p′; P )

= ūα(p1, λ1)Mαα′,ββ ′ (p, p′; P )uα′ (p′
1, λ

′
1)

(3.3)

is the matrix element of the Feynman scattering amplitude
M between positive-energy Dirac spinors of particle 1. The
definition of the nucleon spinors u(p1, λ1) (with λ1 the helicity
of the nucleon) is given in Eq. (A3); the on-shell spinor has
four-momentum p1 with three-momentum component p1, and
p2

1 = m2. The propagator for the off-shell particle 2 is

G2(k2) ≡ G
ββ′ (k2) = (m+ � k2)

ββ′

m2 − k2
2 − iε

h2(k2) (3.4)

with k2 = P − k1, k2
1 = m2, and h(k2) [denoted H (k2) in

Ref. I] the form factor of the off-shell nucleon (related to
its self-energy), normalized to unity when k2

2 = m2

h(k2) =
[ (

	2
N − m2

)2(
	2

N − m2
)2 + (

m2 − k2
2

)2

]2

. (3.5)

See Appendix C for further discussion of the nucleon form
factor h and the role it plays in the deuteron wave functions.

Just below threshold, the np scattering amplitude has a pole
at the deuteron mass, P 2 = M2

d . Near the pole this amplitude,
in the CST, can be written

Mλ1λ
′
1,ββ ′ (p, p′; P ) = Rλ1λ

′
1,ββ ′ (p, p′; P )

−
∑
λd

Gλ1β(p, P, λd ) Ḡλ′
1β

′ (p′, P , λd )

M2
d − P 2 − iε

,

(3.6)

where λ1, λ
′
1 are the helicities of the outgoing and incoming

on-shell particle 1, β, β ′ are the Dirac indices of the off-shell
particle 2, λd is the helicity of the deuteron, G is the contracted
dnp vertex functions describing the coupling of the deuteron
to the neutron and proton, and R is a remainder function finite
at the pole. The equation for G can be found by substituting
(3.6) into the scattering Eq. (3.1) and demanding that it hold
at the pole (see Refs. [3,7] and II), giving

Gλ1β(p, P, λd )

= −
∫

k1

V λ1λ
′
1,βα(p, k; P )Gαβ ′ (k2)Gλ′

1β
′(k, P, λd ). (3.7)

The contracted vertex function is a Lorentz scalar product
of a Dirac matrix element and the covariant polarization vector
of the deuteron, ξµ(λd ):

Gλ1β(p, P, λd ) ≡ Oµ
λ1β

(p, P )ξµ(λd ), (3.8)

where O is the “uncontracted” dnp vertex function for particle
2 off-shell [cf. Eq. (2.27) of Ref. II]

Oµ
λ1β

(p, P ) ≡ [�µ(p, P )C]ββ ′ ūT
β ′ (p1, λ1), (3.9)

with C the Dirac charge conjugation matrix. To simplify
the language, G will always be called the contracted vertex

P

p1

p2

FIG. 2. (Color online) Diagrammatic representation of the vertex
function (3.8). The on-shell particle is labeled by the ×, so p2

1 = m2,
and the relative four-momentum is p = 1

2 (p1 − p2). The deuteron is
also on-shell, with P 2 = M2

d .

function, and the functionsO (or sometimes �) will be referred
to simply as the “vertex function.” The contracted vertex
function is illustrated diagramatically in Fig. 2.

The relativistic deuteron wave functions were defined
previously in Eq. (2.32) of Ref. II and Eq. (2.29) of Ref. [11]:

ψλ1β,λd
(p, P ) = NdGββ ′(p2)Gλ1β ′(p, P, λd ). (3.10)

Here Nd is a normalization constant, chosen to be

Nd = 1√
(2π )3 2Md

. (3.11)

As discussed in Ref. [11], it is the vertex function that enters
directly into any Feynman diagram involving an incoming
or outgoing deuteron state, so if a Feynman amplitude is
expressed in terms of the wave function instead of the vertex
function, one must be careful to divide by the normalization
constant (3.11). The reason for this choice of normalization
constant will be discussed further below.

The normalization of the wave function (3.10) is discussed
in detail in Refs. [3,7], II, and Appendix C. The exact result,
in the notation of Eq. (3.7), is

δλdλ′
d

= 1

2MdN
2
d

{∫
p1

ψ
†
λ1β,λd

(p, P )γ 0
ββ ′ψλ1β ′,λ′

d
(p, P )

−
∫

p1

∫
p′

1

ψ
†
λ1β,λd

(p, P )�V λ1λ
′
1,ββ ′ (p, p′; P )

× ψλ1β,λ′
d
(p′, P )

}
, (3.12)

where summation over repeated indices is implied and

�V λ1λ
′
1,ββ ′ (p, p′; P ) = ∂

∂Md

V λ1λ
′
1,ββ ′ (p, p′; P ), (3.13)

with the partial derivative holding p1 and p′
1 constant. This

normalization integral will be simplified and related to the
usual nonrelativistic normalization in Appendix C 3 below.

While it is often convenient to use the fully covariant
expression (3.10), the physical content of the wave function
can be displayed if we expand the off-shell propagator into
positive- and negative-energy pieces. (Note that an alternative
expansion given in Eq. (A21) of Ref. [11] is sometimes
more convenient for applications.) Working in the rest frame,
where we choose p1 = −p2 = p, the propagator can be
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decomposed

Gαβ(p2)

= m

Ep

∑
λ2

{
uα(−p, λ2)ūβ(−p, λ2)

2Ep − Md

− vα(p, λ2)v̄β(p, λ2)

Md

}
,

= m

Ep

∑
λ2ρ2

Gρ2 (p)uρ2
α (−p, λ2)ūρ2

β (−p, λ2), (3.14)

where ρ2 is the ρ spin of the off-shell particle 2 [ρ spin is a
shorthand notation for positive-energy (ρ = +) or negative-
energy (ρ = −) Dirac subspaces; see Eq. (A3)]. The ρ-spin
propagators Gρ(p) = G±(p) are

G+(p) = 1

2Ep − Md

G−(p) = − 1

Md

, (3.15)

and u and v are the positive- and negative-energy spinors
of particle 2, with uρ = u± and u+(−p, λ2) = u(−p, λ2) and
u−(−p, λ2) = v(p, λ2) [see Eq. (A3)]. Using this notation the
wave function can be conveniently written

ψλ1α,λd
(p, P ) =

∑
ρ2λ2

ψ
ρ2
λ1λ2,λd

(p)uρ2
α (−p, λ2), (3.16)

where the wave functions ψρ2 are

ψ
ρ2
λ1λ2,λd

(p) = Nd

m

Ep

Gρ2 (p)�ρ2
λ1λ2,λd

(p). (3.17)

Suppressing the Dirac indices in the matrix elements gives

�
ρ2
λ1λ2,λd

(p) = ū
ρ2
β (−p, λ2)Gλ1β(p, P, λd )

= ūρ2 (−p, λ2)�µ(p, P )CūT (p, λ1)ξµ(λd ).

(3.18)

These definitions agree with Eq. (2.67) of Ref. II. Note that
�

ρ2
λ1λ2,λd

(p) contains no additional factors of m/E; these are
written explicitly in (3.17), and will be identified whenever
they appear below.

B. Partial-wave CST equations for the deuteron
vertex functions

Equation (3.1), and the companion Eq. (3.7) for the bound
state are solved by expanding the amplitudes into partial waves.
The connection between the wave functions in momentum
space and their partial waves will be briefly outlined in this
subsection; for further details see Appendix E of Ref. I and,
for the deuteron channel, Appendix A.

The first step is to extract the J = 1 partial waves from the
momentum-space amplitudes �

ρ2
λ1λ2,λd

(p) defined in Eq. (3.18).
These amplitudes have a simple angular dependence. If
p = p{sin θ cos φ, sin θ sin φ, cos θ} (where, from here up to
Sec. III G below and again in Appendix C, we will use
the notation p = |p| in order to avoid confusion with the
four-momentum p), the form of these functions is

�
ρ2
λ1λ2,λd

(p) =
√

3

4π
D1∗

λdλ(φ, θ, 0)�ρ2
λ1λ2,λd

(p), (3.19)

where λ = λ1 − λ2, λd = MJ is the polarization of the
deuteron, and D1 are the J = 1 rotation matrices. [This
can be obtained from Eq. (E29) of Ref. I by recalling that

the scattering amplitude at the deuteron pole is proportional
to the product of vertex functions for the incoming and
outgoing nucleons.] In order to keep our notation succinct,
we suppress the usual index J on the partial-wave vertex
function �

Jρ2
λ1λ2,λd

(p). An argument p instead of p identifies it
unambiguously as a partial-wave vertex function. If we choose
p to lie in the xz plane (φ = 0), we can use (3.19) to find
the connection between �

ρ2
λ1λ2,λd

(p) and �
ρ2
λ1λ2,λd

(p). Using the
normalization condition for the dJ ’s

1 = 1

2
(2J + 1)

∫ ∞

0
sin θdθ

[
dJ

λ′λ(θ )
]2

, (3.20)

the relation is

�
ρ2
λ1λ2,λd

(p) =
√

3π

∫ π

0
sin θdθ d1

λd ,λ(θ )�ρ2
λ1λ2,λd

(p), (3.21)

and the deuteron wave functions corresponding to (3.17) are

ψ
ρ2
λ1λ2,λd

(p) = Nd

m

Ep

Gρ2 (p)�ρ2
λ1λ2,λd

(p). (3.22)

The next step is to use the properties of the partial-wave
amplitudes under parity and particle interchange (derived in
Refs. I and II) to show that there are only four independent
vertex functions. We begin by restoring reference to the ρ

spin of particle 1 and the relative energy p0 = (p10 − p20)/2
(previously suppressed for convenience), which transforms the
partial-wave vertex functions (3.21) into

�
ρ2
λ1λ2,λd

(p) → �
+ρ2
λ1λ2,λd

(p, p0), (3.23)

where, in the center-of-mass frame with particle 1 on shell,
p0 = Ep − Md/2 > 0. Under parity (P) and particle inter-
change (P12), it was shown in Appendix E of Ref. I that these
partial-wave amplitudes (for J = 1) satisfy the transformation
properties

P�
+ρ2
λ1λ2,λd

(p, p0) = ρ2�
+ρ2
−λ1−λ2,λd

(p, p0)
(3.24)

P12�
+ρ2
λ1λ2,λd

(p, p0) = �
ρ2+
λ2λ1,λd

(p,−p0).

The parity relation shows that only two (of the four possible)
helicity states are independent (which we chose to be λ1 = +;
the states with λ1 = − can be obtained using parity) and
the exchange relation shows that the exchange amplitudes
(with particle 2 on-shell and negative relative energy) can be
obtained from the direct amplitudes (with particle 1 on-shell
and positive relative energy). The detailed construction of the
deuteron bound-state equation is reviewed in Appendix C 1,
where it is shown how these symmetry properties are derived
and used to reduce the initial set of coupled equations to only
four independent ones.

Using these results, the vertex functions (3.21) can be
organized into the column vector

|�λd
(p)〉 = Nd

m

Ep

⎛
⎜⎜⎜⎝

�+
++,λd

(p)

�−
++,λd

(p)

�+
+−,λd

(p)

�−
+−,λd

(p)

⎞
⎟⎟⎟⎠ , (3.25)

where, in the matrix representations, we return to the notation p

to represent the momentum dependence of the vertex function.
With this notation, the original Eq. (3.7) can now be written

034004-4



COVARIANT SPECTATOR THEORY OF np . . . PHYSICAL REVIEW C 82, 034004 (2010)

as four independent equations for these vertex functions. In a
convenient matrix form the equations are

|�λd
(p)〉 = −

∫ ∞

0
k2dk Vd(p, k) g(k) |�λd

(k)〉, (3.26)

where Vd(p, k) (the kernel at the deuteron pole) and g(k)
are 4 × 4 matrices. The equations are independent of the
projection of the total angular momentum, which for the
deuteron is its helicity (mJ = λd ). With the factors of m/E

explicitly included in the definition of the column vector (3.25)
and in the kernel Vd(p, k), the propagator is the 4 × 4 diagonal
matrix:

g(k) =

⎛
⎜⎜⎜⎝

G+(k) 0 0 0

0 G−(k) 0 0

0 0 G+(k) 0

0 0 0 G−(k)

⎞
⎟⎟⎟⎠ , (3.27)

with Gρ(k) defined in Eq. (3.15), and the kernel is the 4 × 4
matrix

Vd(p, k) =

⎛
⎜⎜⎜⎜⎜⎝

v++
9 v+−

1 v++
11 v+−

3

v−+
9 v−−

1 v−+
11 v−−

3

v++
12 v+−

8 v++
10 v+−

6

v−+
16 v−−

4 v−+
14 v−−

2

⎞
⎟⎟⎟⎟⎟⎠ , (3.28)

where the v
ρ1ρ2
i were previously defined in Eq. (E45) of Ref. I

and also in Eq. (C6).

C. Decomposition into the S, D, and P states

The Dirac operator �µ [from Eq. (3.9)] can be expanded
in terms of four scalar invariant functions, F,G,H, and I as
given in Eq. (33) of Ref. [5] and Eq. (2.28) of Ref. II,

�µ(p, P ) = Fγ µ + G

m
pµ − (m− �p)

m

(
Hγ µ + I

m
pµ

)
.

(3.29)

These functions differ by some factors of 2 from those
originally introduced by Blankenbecler and Cook [6]. Since
the deuteron is on mass-shell, so P 2 = W 2 = M2

d , they are
functions of p2 only.

Using the explicit definition of the spinors given in
Appendix A and substituting the expansion (3.29) into the
Dirac matrix elements (3.18), the wave functions (3.17) can
be reduced to two-component matrix elements, with four
independent scalar wave functions u, w, vt , and vs written
as linear combinations of the four invariant functions F , G,
H , and I [5]:

ψ+
λ1λ2,λd

(p) = 1√
4π

χ †
−λ2

[
u(p)σ · ξ

λd
+ w(p)√

2

× (
3 p̂ · ξ

λd
σ · p̂ − σ · ξ

λd

)] iσ2√
2
χ

λ1

(3.30)

ψ−
λ1λ2,λd

(p) =
√

3

4π
χ †

−λ2

[
vs(p) p̂ · ξ

λd
− vt (p)√

2

× (
σ · p̂ σ · ξ

λd
− p̂ · ξ

λd

)] iσ2√
2
χ

λ1
.

For explicit formulas connecting the F , G, H , and I to
u, w, vt , and vs , see Eqs. (45) and (46) of Ref. [5] [note
that the normalization factor (3.11) sets the scale of the
connection]. Here p̂ = {sin θ, 0, cos θ} lies in the xz plane. For
a deuteron at rest with its polarization vector defined along the
z direction, the three-vector components of the polarization
are

ξ0 =
⎛
⎝0

0
1

⎞
⎠ , ξ± = ∓ 1√

2

⎛
⎝ 1

±i

0

⎞
⎠ . (3.31)

The nucleon spinors can be either helicity spinors, or spinors
with spin projections along the (fixed) z direction. In the latter
case, we must replace λ1 → s1 and −λ2 → s2 (since, when
θ = 0, the helicity and spin projection of particle 2 are in
opposite directions). In either case (by inspection) the wave
functions are real.

The wave functions u,w, vt , and vs have a convenient
physical interpretation that follows from the structure of the
two-component matrix elements that multiply them. This
follows most directly if the nucleon spin projections are fixed
in the z direction. In this case the ρ = + wave functions is
symmetric in the spins,(

ψ+
s1s2,λd

(p)
)∗ = ψ+

s1s2,λd
(p) = ψ+

s2s1,λd
(p), (3.32)

showing that the spin state is a spin-one triplet. The
ρ = −term includes a symmetric piece (the spin triplet vt )
and an antisymmetric piece (corresponding to a spin singlet
state, denoted by the s subscript on vs).

In the CST, wave functions in coordinate space are defined
to be the Fourier transforms of the momentum-space wave
functions (3.30) [5]

ψ
ρ
s1s2,λd

(r) = 1

(2π )3/2

∫
d3p eip·rψρ

s1s2,λd
(p). (3.33)

Using the expansion of the plane wave

eip·r = 4π
∑

�

�∑
m=−�

i�j�(pr)Y ∗
�m(p̂)Y�m(r̂) (3.34)

and noting that the coefficient of w(p) involves a linear
combination of the Y2m spherical harmonics

3 p̂i p̂j − δij =
∑
m

cij
m Y2m(p̂) (3.35)

(where the cij are constants), it follows that the coordinate
space spin representation of the deuteron wave functions is

rψ+
s1s2,λd

(r) = 1√
4π

χ †
s2

[
u(r)σ · ξ

λd
− w(r)√

2

× (
3 r̂ · ξ

λd
σ · r̂ − σ · ξ

λd

)] iσ2√
2
χ

s1

(3.36)

rψ−
s1s2,λd

(r) = i

√
3

4π
χ †

s2

[
vs(r) r̂ · ξ

λd
− vt (r)√

2

× (
σ · r̂ σ · ξ

λd
− r̂ · ξ

λd

)] iσ2√
2
χ

s1
,
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where, denoting the typical wave function by z� (so that z0 = u,
z2 = w, and z1 = vt or vs), the momentum- and position-space
wave functions are related by the spherical Bessel transforms

z�(p) =
√

2

π

∫ ∞

0
rdrj�(pr)z�(r)

(3.37)
z�(r)

r
=

√
2

π

∫ ∞

0
p2dpj�(pr)z�(p),

where j� is the spherical Bessel function of order � with the
convenient recursion relation

j�(z) = z�

(
−1

z

d

dz

)� sin z

z
. (3.38)

Note the appearance of the minus sign multiplying w(r) and
the factor of i multiplying both of the P-state terms. These
come from the factor of i� in the plane-wave expansion and
can be easily overlooked.

D. Normalization of the wave functions

In Appendix C 3 the normalization condition (3.12) is
reduced to the following simple form

1 =
∫ ∞

0
p2dp

[
u2(p) + w2(p) + v2

t (p) + v2
s (p)

]+
〈

dV

dMd

〉
.

(3.39)

The derivative term is negative and of the order of a few
percentages (see Table II).

The origin of the derivative term can be understood in two
rather different ways. First, it can be derived from the require-
ment that a nonlinear version of the equation, used to derive
the unitarity relation for positive energies, also holds at the
deuteron pole [3,7]. From this point of view, the normalization
condition ensures that the strength of the pole is not altered by
repeated interactions near the pole and shows that the normal-
ization is a consequence of the equation itself. But the normal-
ization condition also follows from the requirement of current
conservation, where it is seen to give precisely the correct
factor to ensure that the conservation of charge is an automatic
consequence of the correct normalization of the deuteron wave
functions [7].

The second interpretation shows, indirectly, that interaction
current contributions to the deuteron charge (which give

TABLE II. The deuteron probabilities (in percentages). Both the
exact and scaled probabilities are shown.

Probability WJC-1 WJC-2

Exact Scaled Exact Scaled

Ps 97.3876 92.3330 95.7607 93.5985
Pd 7.7452 7.3432 6.5301 6.3827
Pvt

0.1180 0.1119 0.0103 0.0101
Pvs

0.2234 0.2118 0.0090 0.0088∑
P 105.4743 100.0000 102.3101 100.0000

〈V ′〉 −5.4743 – −2.3101 –

Total 100.0000 – 100.0000 –

rise to the derivative term) are necessarily of the order of
a few percentages. Hence, the calculation of any electro-
magnetic property of the deuteron (including the magnetic
and quadrupole moments) that does not include interaction
currents can be expected ab initio to be in error by a few
percentages. Since the famous discrepancy in the quadrupole
moment is about 5%, it is quite possible that a careful CST
calculation (including interaction currents) could explain it,
but this calculation is, unfortunately, beyond the scope of this
article. For this reason, we will not report deuteron moments
here.

If these wave functions are used in any calculation that
neglects interaction currents, it is probably a better approxi-
mation to use what we will refer to as the scaled normalization
condition

1 =
∫ ∞

0
p2dp

[
u2(p) + w2(p) + v2

t (p) + v2
s (p)

]
. (3.40)

This is the normalization condition used in the earliest
treatments of the CST deuteron wave functions [5], and is
also appropriate for electromagnetic calculations using the
relativistic impulse approximation (RIA) [9,11].

E. Asymptotic behavior of the wave functions

Using the CST equations for the bound state it is possible
to predict the asymptotic behavior of the wave functions. The
derivation and discussion are given in Appendix C. The result
is:

u(p) → 1

p5
w(p) → 1

p5
vt (p) → 1

p4
vs(p) → 1

p4
.

(3.41)

Before the convergence of the angular integrals was improved
(as discussed in Appendix B) the numerical solutions had
power law behaviors which differed from the integers predicted
in (3.41) by about 0.1 to 0.2. With the newly converged
angular integrals, the actual solutions exhibit the correct
behavior.

The odd powers for u and w (and even powers for the v’s)
require special consideration when analytic representations
of the wave functions are constructed in the following
sections.

F. Numerical results for the wave functions

The solutions for the wave functions are tabulated in
Tables III and IV, with the high-momentum behavior shown
graphically in Fig. 3. The figure shows that the asymptotic
estimates (3.41) hold for momenta larger than about 10 GeV
and that in this large-momentum region the small P-state wave
functions are larger than the dominant S- and D-state wave
functions. The wave functions of model WJC-1 satisfy the
approximate relations u � w, and the D-state wave functions
of the two models are also comparable, but the S-state wave
function of model WJC-2 has a zero at large momentum and
is considerably smaller than its counterpart. The P-state wave
functions for both models are comparable to within a factor
of 2, with vt ∼ −vs .
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TABLE III. Model WJC-1 momentum-space wave functions z�(p), defined in Eq. (3.30). The momenta are in GeV and the wave functions
are in units of (GeV)−3/2. These wave functions are normalized to 105.4743%. The original value of w at the lowest momentum point
(−0.690 345 × 10−2), which resulted from the imprecise cancellation of two very large terms, can be replaced by the number in bold obtained
using p2 scaling. In this and the following table we use the notation 0.527313(−03) = 0.527313 × 10−3.

p u w vt vs

0.527313 (−03) 0.146227 (+03) 0.495991 (−03) −0.623843 (−03) −0.358658 (−03)
0.277683 (−02) 0.145699 (+03) 0.137542 (−01) −0.326777 (−02) −0.192465 (−02)
0.681763 (−02) 0.142975 (+03) 0.813298 (−01) −0.802292 (−02) −0.471289 (−02)
0.126402 (−01) 0.135554 (+03) 0.264888 −0.148513 (−01) −0.871988 (−02)
0.202305 (−01) 0.121587 (+03) 0.607884 (+00) −0.236810 (−01) −0.139049 (−01)
0.295712 (−01) 0.101834 (+03) 0.108549 (+01) −0.343738 (−01) −0.201942 (−01)
0.406428 (−01) 0.798054 (+02) 0.160146 (+01) −0.466979 (−01) −0.274694 (−01)
0.534249 (−01) 0.594035 (+02) 0.204959 (+01) −0.603055 (−01) −0.355616 (−01)
0.678972 (−01) 0.428005 (+02) 0.236963 (+01) −0.747258 (−01) −0.442522 (−01)
0.840413 (−01) 0.303155 (+02) 0.255133 (+01) −0.893826 (−01) −0.532839 (−01)
0.101842 0.213130 (+02) 0.261197 (+01) −0.103638 −0.623822 (−01)
0.121288 0.149401 (+02) 0.257733 (+01) −0.116855 −0.712774 (−01)
0.142375 0.104515 (+02) 0.247282 (+01) −0.128471 −0.796948 (−01)
0.165107 0.728541 (+01) 0.232096 (+01) −0.137990 −0.876522 (−01)
0.189495 0.504321 (+01) 0.213982 (+01) −0.145164 −0.948577 (−01)
0.215565 0.344843 (+01) 0.194353 (+01) −0.149827 −0.101215
0.243352 0.231128 (+01) 0.174361 (+01) −0.151964 −0.106954
0.272908 0.149976 (+01) 0.154713 (+01) −0.151653 −0.111870
0.304301 0.922698 0.135976 (+01) −0.149087 −0.115989
0.337619 0.515394 0.118496 (+01) −0.144410 −0.119420
0.372971 0.231152 0.102511 (+01) −0.137607 −0.122164
0.410488 0.350502 (−01) 0.881942 −0.128414 −0.123858
0.450334 −0.994438 (−01) 0.755982 −0.116562 −0.124047
0.492699 −0.189481 0.645099 −0.102598 −0.121827
0.537814 −0.242417 0.544069 −0.878148 (−01) −0.116934
0.585950 −0.262050 0.448848 −0.732091 (−01) −0.109318
0.637426 −0.255246 0.360144 −0.592921 (−01) −0.995041 (−01)
0.692620 −0.230996 0.280430 −0.465163 (−01) −0.878985 (−01)
0.751979 −0.196819 0.211737 −0.352080 (−01) −0.752255 (−01)
0.816027 −0.159320 0.154625 −0.255953 (−01) −0.621228 (−01)
0.885387 −0.122585 0.109110 −0.177552 (−01) −0.494042 (−01)
0.960798 −0.900194 (−01) 0.742130 (−01) −0.116628 (−01) −0.377210 (−01)
0.104314 (+01) −0.631224 (−01) 0.485750 (−01) −0.718102 (−02) −0.276183 (−01)
0.113346 (+01) −0.421787 (−01) 0.305968 (−01) −0.408644 (−02) −0.193771 (−01)
0.123304 (+01) −0.270876 (−01) 0.185189 (−01) −0.208407 (−02) −0.130319 (−01)
0.134340 (+01) −0.166413 (−01) 0.107639 (−01) −0.902849 (−03) −0.841563 (−02)
0.146641 (+01) −0.978419 (−02) 0.600927 (−02) −0.275271 (−03) −0.522831 (−02)
0.160437 (+01) −0.557178 (−02) 0.322545 (−02) 0.208268 (−04) −0.313370 (−02)
0.176010 (+01) −0.306684 (−02) 0.165657 (−02) 0.125739 (−03) −0.181763 (−02)
0.193715 (+01) −0.161854 (−02) 0.809542 (−03) 0.135471 (−03) −0.102257 (−02)
0.213998 (+01) −0.824465 (−03) 0.375303 (−03) 0.110722 (−03) −0.559203 (−03)
0.237429 (+01) −0.413458 (−03) 0.166244 (−03) 0.808655 (−04) −0.297772 (−03)
0.264741 (+01) −0.199638 (−03) 0.674221 (−04) 0.532186 (−04) −0.154652 (−03)
0.296895 (+01) −0.923325 (−04) 0.240784 (−04) 0.325043 (−04) −0.783631 (−04)
0.335166 (+01) −0.410173 (−04) 0.695348 (−05) 0.187892 (−04) −0.386958 (−04)
0.381276 (+01) −0.175134 (−04) 0.111592 (−05) 0.103540 (−04) −0.185709 (−04)
0.437596 (+01) −0.741984 (−05) −0.231960 (−06) 0.551835 (−05) −0.861492 (−05)
0.507462 (+01) −0.295514 (−05) −0.452993 (−06) 0.276257 (−05) −0.386774 (−05)
0.595690 (+01) −0.110492 (−05) −0.326876 (−06) 0.131169 (−05) −0.167290 (−05)
0.709434 (+01 −0.387509 (−06) −0.173383 (−06) 0.590317 (−06) −0.691226 (−06)
0.859696 (+01) −0.126207 (−06) −0.755500 (−07) 0.249574 (−06) −0.269811 (−06)
0.106411 (+02) −0.375810 (−07) −0.277414 (−07) 0.976773 (−07) −0.979770 (−07)
0.135237 (+02) −0.999262 (−08) −0.854233 (−08) 0.346150 (−07) −0.323958 (−07)
0.177768 (+02) −0.228855 (−08) −0.215203 (−08) 0.107312 (−07) −0.945155 (−08)
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TABLE III. (Continued.)

p u w vt vs

0.244325 (+02) −0.428701 (−09) −0.419613 (−09) 0.272700 (−08) −0.230841 (−08)
0.357133 (+02) −0.637757 (−10) −0.539018 (−10) 0.510267 (−09) −0.433381 (−09)
0.571587 (+02) −0.579367 (−11) −0.486092 (−11) 0.700683 (−10) −0.590489 (−10)
0.105975 (+03) −0.256335 (−12) −0.211897 (−12) 0.562191 (−11) −0.463011 (−11)
0.260189 (+03) −0.281688 (−14) −0.229780 (−14) 0.150575 (−12) −0.121213 (−12)
0.137016 (+04) −0.682890 (−18) −0.553955 (−18) 0.193220 (−15) −0.153367 (−15)

The probabilities for each of the components of the wave
function are summarized in Table II. This table reports both the
exact probabilities (3.39) and the renormalized probabilities
(3.40).

G. Fitted wave functions

It is convenient to fit the deuteron wave functions to a series
of simple functions that can be analytically integrated to obtain
the wave functions in r space and to interpolate for any value
of the momentum. This subsection will describe in detail how
this is done.

1. Scaling the wave functions

The first step in the fitting process is to scale out the rapid
dependence of each wave function on the momentum, so it
may be studied on a linear plot. Constructing these scaling
functions took some care, but in the end we found that the

functions

uscale(p) = N(
m2

s1 + p2
)3/2

[
1(

α2
0 + p2

) + R(
m2

s1 + p2
)
]

wscale(p) = Np2(
m2

s1 + p2
)5/2

[
1(

α2
0 + p2

) + R(
m2

s1 + p2
)
]

vscale(p) = Np

[
1(

m2
s0 + p2

)5/2
+ R(

m2
s1 + p2

)5/2

]
(3.42)

(where the functional form of vscale is used to scale both vt and
vs , and we return to denoting the magnitude of the three-
momentum by p [instead of p, as we did in the previous
sections]) work very well. Note that these scaling functions
have the desired (and observed) p� behavior at small p and
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FIG. 3. (Color online) Log-log plot of the momentum-space wave functions z�(p), defined in Eq. (3.30). (Left) WJC-1 wave functions
tabulated in Table III, compared to the asymptotic limits given in Eq. (3.41). Solid circles: u0; solid diamonds: w2; open squares: vt ; open
circles: vs . The solid lines are proportional to p−5 and p−4. (Right) WJC-2 wave functions tabulated in Table IV. The solid lines are proportional
to p−5 and p−4, and are the same as those shown in the left panel.
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TABLE IV. Model WJC-2 momentum-space wave functions z�(p), defined in Eq. (3.30). The momenta are in GeV and the wave functions
are in units of (GeV)−3/2. These wave functions are normalized to 102.3101%. The original value of w at the lowest momentum point
(−0.743127 × 10−2), which resulted from the imprecise cancellation of two very large terms, can be replaced by the number in bold obtained
using p2 scaling. As in Table III, we use numbers in parentheses to denote power-of-10 factors.

p u w vt vs

0.527313 (−03) 0.146161 (+03) 0.497127 (−03) 0.673653 (−04) 0.139978 (−04)
0.277683 (−02) 0.145632 (+03) 0.137857 (−01) 0.372102 (−03) 0.368387 (−04)
0.681763 (−02) 0.142908 (+03) 0.815168 (−01) 0.908775 (−03) 0.100679 (−03)
0.126402 (−01) 0.135483 (+03) 0.265495 0.168223 (−02) 0.192525 (−03)
0.202305 (−01) 0.121510 (+03) 0.609254 0.268867 (−02) 0.316519 (−03)
0.295712 (−01) 0.101747 (+03) 0.108784 (+01) 0.392312 (−02) 0.478611 (−03)
0.406428 (−01) 0.797033 (+02) 0.160461 (+01) 0.537988 (−02) 0.685611 (−03)
0.534249 (−01) 0.592857 (+02) 0.205290 (+01) 0.705316 (−02) 0.942644 (−03)
0.678972 (−01) 0.426693 (+02) 0.237212 (+01) 0.893675 (−02) 0.125069 (−02)
0.840413 (−01) 0.301750 (+02) 0.255185 (+01) 0.110216 (−01) 0.160505 (−02)
0.101842 0.211677 (+02) 0.260934 (+01) 0.132917 (−01) 0.199444 (−02)
0.121288 0.147943 (+02) 0.257044 (+01) 0.157173 (−01) 0.240633 (−02)
0.142375 0.103090 (+02) 0.246071 (+01) 0.182443 (−01) 0.286055 (−02)
0.165107 0.714947 (+01) 0.230262 (+01) 0.208563 (−01) 0.313824 (−02)
0.189495 0.491677 (+01) 0.211456 (+01) 0.234179 (−01) 0.337366 (−02)
0.215565 0.333407 (+01) 0.191087 (+01) 0.258522 (−01) 0.353615 (−02)
0.243352 0.221125 (+01) 0.170294 (+01) 0.280836 (−01) 0.333024 (−02)
0.272908 0.141604 (+01) 0.149824 (+01) 0.300543 (−01) 0.284267 (−02)
0.304301 0.856967 0.130257 (+01) 0.317477 (−01) 0.198415 (−02)
0.337619 0.468983 0.111930 (+01) 0.332767 (−01) 0.574512 (−03)
0.372971 0.205168 0.950678 0.348229 (−01) −0.146236 (−02)
0.410488 0.303889 (−01) 0.798954 0.363889 (−01) −0.389499 (−02)
0.450334 −0.828321 (−01) 0.665687 0.373820 (−01) −0.658983 (−02)
0.492699 −0.154049 0.551266 0.364870 (−01) −0.910693 (−02)
0.537814 −0.193834 0.452057 0.328528 (−01) −0.113767 (−01)
0.585950 −0.206848 0.363715 0.273257 (−01) −0.131172 (−01)
0.637426 −0.198813 0.284931 0.211844 (−01) −0.143788 (−01)
0.692620 −0.177269 0.216739 0.152062 (−01) −0.150297 (−01)
0.751979 −0.148546 0.159772 0.980525 (−02) −0.151078 (−01)
0.816027 −0.118123 0.113878 0.537109 (−02) −0.145747 (−01)
0.885387 −0.890513 (−01) 0.783167 (−01) 0.202329 (−02) −0.134838 (−01)
0.960798 −0.639660 (−01) 0.518825 (−01) −0.137523 (−03) −0.119400 (−01)
0.104314 (+01) −0.437558 (−01) 0.329899 (−01) −0.128366 (−02) −0.101160 (−01)
0.113346 (+01) −0.283328 (−01) 0.201385 (−01) −0.167665 (−02) −0.815911 (−02)
0.123304 (+01) −0.176467 (−01) 0.117937 (−01) −0.152450 (−02) −0.629427 (−02)
0.134340 (+01) −0.104205 (−01) 0.658279 (−02) −0.117834 (−02) −0.462869 (−02)
0.146641 (+01) −0.581003 (−02) 0.349531 (−02) −0.802520 (−03) −0.324538 (−02)
0.160437 (+01) −0.315563 (−02) 0.176854 (−02) −0.460812 (−03) −0.218651 (−02)
0.176010 (+01) −0.164951 (−02) 0.831201 (−03) −0.227186 (−03) −0.141637 (−02)
0.193715 (+01) −0.800130 (−03) 0.349702 (−03) −0.970097 (−04) −0.879905 (−03)
0.213998 (+01) −0.366387 (−03) 0.123929 (−03) −0.288285 (−04) −0.527587 (−03)
0.237429 (+01) −0.175371 (−03) 0.333862 (−04) 0.684399 (−05) −0.308052 (−03)
0.264741 (+01) −0.775657 (−04) −0.229350 (−05) 0.151418 (−04) −0.173993 (−03)
0.296895 (+01) −0.303299 (−04) −0.119914 (−04) 0.132282 (−04) −0.949967 (−04)
0.335166 (+01) −0.104213 (−04) −0.111922 (−04) 0.932916 (−05) −0.502335 (−04)
0.381276 (+01) −0.309564 (−05) −0.763178 (−05) 0.592149 (−05) −0.257338 (−04)
0.437596 (+01) −0.144689 (−05) −0.413223 (−05) 0.374297 (−05) −0.128285 (−04)
0.507462 (+01) −0.488220 (−06) −0.212835 (−05) 0.203145 (−05) −0.613856 (−05)
0.595690 (+01) −0.107614 (−06) −0.100778 (−05) 0.101279 (−05) −0.280394 (−05)
0.709434 (+01) −0.588336 (−08) −0.430027 (−06) 0.476792 (−06) −0.121466 (−05)
0.859696 (+01) 0.931326 (−08) −0.163878 (−06) 0.211653 (−06) −0.493916 (−06)
0.106411 (+02) 0.613471 (−08) −0.550345 (−07) 0.873897 (−07) −0.185900 (−06)
0.135237 (+02) 0.246297 (−08) −0.159505 (−07) 0.327267 (−07) −0.635345 (−07)
0.177768 (+02) 0.718045 (−09) −0.386029 (−08) 0.106738 (−07) −0.191935 (−07)
0.244325 (+02) 0.135807 (−09) −0.732832 (−09) 0.281290 (−08) −0.493279 (−08)
0.357133 (+02) 0.340558 (−12) −0.932273 (−10) 0.532783 (−09) −0.101591 (−08)
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TABLE IV. (Continued.)

p u w vt vs

0.571587 (+02) −0.140690 (−12) −0.832796 (−11) 0.721192 (−10) −0.146914 (−09)
0.105975 (+03) −0.105532 (−13) −0.362792 (−12) 0.579471 (−11) −0.119175 (−10)
0.260189 (+03) −0.149527 (−15) −0.394161 (−14) 0.157413 (−12) −0.317980 (−12)
0.137016 (+04) −0.319205 (−19) −0.952160 (−18) 0.204258 (−15) −0.406280 (−15)

the correct asymptotic p dependence for all the states. The
parameter α0 is determined from the asymptotic relation

2
√

m2 + α2
0 − 2m = ε, (3.43)

where ε = 2.2246 MeV is the deuteron binding energy. This
gives

α0 =
√

mε + 1
4ε2 = 45.7159 MeV, (3.44)

which differs slightly from the nonrelativistic α0 = √
mε, as

has been emphasized in the literature [8]. This parameter is
fixed by the deuteron binding energy, but since the P states
vanish outside of the range of the potential, their leading mass,
ms0 is treated as a free parameter. This and the other parameters
used in the scale functions are given in Tables V and VI.

2. Fitting the momentum-space wave functions

In order to obtain simple and accurate fits to the wave
functions, we found it convenient to use two types of expansion
functions. For all but the high-momentum tail, we use functions
that go asymptotically like an even power of p for the S and
D states (in practice, p−6), and an odd power of p for the P
states (p−5). These functions go to zero precisely one power
of p faster than the observed asymptotic behavior and are very
conveniently transformed to coordinate space giving a super-
position of simple exponentials. However, the asymptotic tail
cannot be accurately described by such functions, and it is best
to use one special function with the correct asymptotic behav-
ior in order to describe the wave functions at very large p. This
function has a Fourier transform that can be written in terms
of the modified Bessel functions of the second kind, Kn(z).

For the first set of functions we choose

Gi
�(p) =

√
2

π

p�m2
i M

2n�−�
i(

m2
i + p2

)(
M2

i + p2
)n�

, (3.45)

where the factor of
√

2/π is introduced for convenience, � is
the angular momentum of the state, n� = 2 for the S and P
states, and n� = 3 for the D state. Note that, near p = 0, the

TABLE V. The parameters used in the scaling functions (3.42)
for model WJC-1.

N (GeV2) R ms1 (GeV) ms0 (GeV)

u 0.4775 −0.9856 1.160 –
w 0.5131 −0.9942 0.685 –
vt −0.03024 −0.9772 1.600 0.488
vs −0.1038 −0.9942 0.840 0.633

expansion functions have the normalization

Gi
�(0) →

√
2

π

(
p

Mi

)�

. (3.46)

The tail wave function, chosen to have the correct falloff as
p → ∞ and the same normalization at p = 0, is

Gn
� (p) =

√
2

π

p�M2n�+1−�
n(

M2
n + p2

)n�+ 1
2

. (3.47)

Denoting the typical wave function by z� (as we did above)
the full momentum-space wave functions are expanded in
terms of G�

z�(p) =
n∑

i=1

bz
i G

i
�(p). (3.48)

As this notation implies, the last function in the sum (when
i = n) is the “tail” function (3.47), while the first n − 1 are
of the type (3.45). Since all of the functions have the same
normalization at p = 0, the relative size of the expansion
coefficients is a measure of the relative size of each function
(at least at small momenta).

The masses mi and Mi (for i = 1 to n − 1) used in each of
the wave functions (3.45) were defined by the relations

mi = α� + (i − 1)mx Mi = mi + mx (3.49)

where the “step” mass mx was chosen to depend on the number
of functions n used in the expansion, so

mx = M0

n − 1
. (3.50)

Hence, as n increases, mx decreases, giving a finer “grid” of
mass scales. It was found that the precise value of M0 was not
critical, except that fitting the complicated structure of u(2) at
large p [to save writing in this section, we will sometimes use
the notation z(i) to denote the generic wave function for model
WJC-i, with i = 1, 2] required a large value of M0 which we
chose to be 10 GeV. For all other wave functions we chose
M0 = 1.2 GeV. The leading mass α� determines the asymptotic
behavior of the wave function at large distances in coordinate

TABLE VI. The parameters used in the scaling functions (3.42)
for model WJC-2.

N (GeV2) R ms1 (GeV) ms0 (GeV)

u 0.3060 −0.9978 1.000 –
w 0.3474 −0.9805 0.632 –
vt 0.02700 −0.9610 0.700 0.551
vs −0.2356 −0.9671 1.054 0.977
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FIG. 4. (Color online) Ratio of the raw wave functions for model WJC-1 (taken from Table III with the probabilities “scaled” to 100% as
outlined in Table II) to the scale functions from Eq. (3.42). In each panel the dots are the tabulated wave functions for 60 Gauss points, the
solid curve the fit, and the dashed curve the fit without the tail wave function of Eq. (3.47).

space, and was therefore chosen to be α0 of Eq. (3.44) for the
S and D states and ms0 from Tables V and VI for the P states.
The mass Mn used in the tail wave functions was fixed at 2 GeV
for all zi except u(2), where it was fixed at 11 GeV. Using these
choices, excellent fits to the momentum-space wave functions
were found. These are shown in Figs. 4 and 5. The expansion
parameters are given in Tables VII and VIII.

Note that the coefficients of the tail wave functions are very
small. The tail makes a negligible contribution at low momenta
but is very important for the description of the high-momentum
components (for p � 3 GeV). Remember that the figures show
ratios; the actual values of the wave functions are quite small
above p � 3 GeV, as already shown in Fig. 3. In any case it
will be possible to study the sensitivity of any observable to

the very high momentum components simply by setting this
last coefficient to zero.

The components z(i) are compared in Fig. 6, which shows
the wave functions for momenta up to 1 GeV, and in Fig. 7,
which gives an exploded view of the wave functions from
500 MeV to 1 GeV, a region where all of the components
might be important, depending on whether the larger u and w

components interfere in a given matrix element.
In general we observe that the P-state components are very

small, particularly so for WJC-2. However, in the region shown
in Fig. 7 all of the WJC-1 components are larger than the WJC-
2 ones, and it is possible that, in some observables, P-state
components might compensate for the differences between
the larger S- and D-state components.

034004-11



FRANZ GROSS AND ALFRED STADLER PHYSICAL REVIEW C 82, 034004 (2010)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0.001 0.01 0.1 1 10 100 1000

u 
(s

ca
le

d)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0.001 0.01 0.1 1 10 100 1000

w
 (

sc
al

ed
)

-1.0

-0.5

0.0

0.5

1.0

0.001 0.01 0.1 1 10 100 1000

v t (
sc

al
ed

)

p (GeV)

-0.5

0.0

0.5

1.0

1.5

0.001 0.01 0.1 1 10 100 1000

v s (
sc

al
ed

)

p (GeV)

FIG. 5. (Color online) Ratio of the raw wave functions for model WJC-2 (taken from Table IV with the probabilities “scaled” to 100% as
outlined in Table II) to the scale functions from Eq. (3.42). In each panel the dots are the tabulated wave functions for 60 Gauss points, the
solid curve the fit, and the dashed curve the fit without the tail wave function of Eq. (3.47). The origin of the many small wiggles in u is not
clear, but u is very small in this region, as illustrated in Fig. 3. The first vs point is probably inaccurate because of numerical cancellations.

3. Transformations to coordinate space

The coordinate space wave functions are constructed from
the spherical Bessel transforms (3.37). The details are given in
Appendix C 4. The coordinate space expansion functions for
the terms i < n are

Gi
0(r) = Ai

{
e−zi − e−Zi

[
1 + 1

2
Zi

(
1 − R2

i

)]}

Gi
1(r) = Ai

{
Rie

−zi

[
1 + 1

zi

]

− e−Zi

[
1 + 1

Zi

+ 1

2
Zi

(
1 − R2

i

)]}
,

Gi
2(r) = Bi

{
R2

i e
−zi

[
1 + 3

zi

+ 3

z2
i

]
− e−Zi

[
1 + 3

Zi

+ 3

Z2
1

+ 1

2

(
1 − R2

i

)
(1 + Zi) + 1

8
Z2

i

(
1 − R2

i

)2
]}

, (3.51)

where

zi = mir, Zi = Mir, Ri = mi

Mi

,

(3.52)

Ai = m2
i M

4
i(

M2
i − m2

i

)2 , Bi = Ai

M2
i

M2
i − m2

i

.
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TABLE VII. The expansion parameters for model WJC-1 wave
functions. First line is the total number of terms n in the sum (3.48),
second is the step mass mx (in MeV), the next lines are the coefficients
bz

i , {i = 1, n − 1}, with the last line the coefficient bz
n, written in the

notation 125.(−6) = 125 × 10−6, all in units of GeV−3/2. The “tail”
mass Mn = 2 GeV in all cases. We have given the bz

i coefficients to
three decimal places, sufficient to reproduce the fits to better than 1%
accuracy; if greater accuracy is needed use the routine supplied by
the authors.

u w vt vs

17 16 12 12
75.00 80.00 109.09 109.09

134.963 23.813 −27.120 −78.763
52.871 32.709 233.155 688.895

−217.709 −111.381 −998.893 −2910.298
1876.699 844.861 2679.013 7690.084

−11369.449 −4376.965 −4894.348 −13861.596
49427.176 16489.297 6277.553 17571.825

−156695.247 −45122.587 −5674.481 −15720.926
369322.468 91061.493 3550.952 9747.293

−655367.189 −136672.748 −1467.429 −3994.747
879178.453 152411.033 360.796 975.086

−887103.150 −124633.670 −40.010 −107.489
662786.733 72617.712 0.000 0.000

−355720.583 −28549.974 0.000 0.000
129738.381 6790.953 0.000 0.000
−28805.739 −738.436 0.000 0.000

2939.797 0.000 0.000 0.000
−125.0(−6) −100.0(−6) 498.0(−7) −394.0(−7)
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FIG. 6. (Color online) Momentum-space wave functions for both
models. The largest two wave functions are u (off-scale at small
momenta) and w (zero at small momenta), with WJC-1 wave
functions solid and WJC-2 dotted. The P-state wave functions are
very small, with both vt wave functions solid (vt (1) is negative and
vt (2) positive) and both vs wave functions dotted (with vs(1) negative
and vs(2) very near zero). Note that the S-state wave function has
a zero around 400 MeV and that above this momentum the P-state
wave functions for WJC-1 are no longer completely negligible, as
illustrated in Fig. 7.

TABLE VIII. The expansion parameters for each of the model
WJC-2 wave functions. For an explanation, see the caption to
Table VII. Here the “tail” mass Mn = 11 GeV for u and 2 GeV
for all other wave functions.

u w vt vs

30 18 21 18
344.83 70.59 60.00 70.59

181.569 19.228 33002.947 −74492.403
−0.817 30.600 −580810.178 1001357.141
11.779 −107.606 4678729.666 −6147239.139

−64.782 897.969 −22669425.846 22510592.546
247.517 −5434.481 72755203.760 −53617329.732

−772.915 25662.551 −159377601.760 83750225.006
1948.950 −93771.705 232305154.041 −77842609.919

−3813.276 265664.025 −193963168.786 20071103.929
5397.722 −582644.240 15154785.470 48069105.480

−4637.491 986160.259 160238368.984 −61037252.628
533.832 −1280768.137 −139567635.494 8837981.631

3806.187 1262888.436 −52643827.848 50533251.186
−3119.875 −927821.391 170318699.570 −65739754.705
−2058.321 491712.394 −69098137.722 43130588.287

3773.554 −177560.697 −117233319.092 −16799889.802
1092.507 39095.262 192985378.690 3717624.361

−3919.342 −3959.947 −138452165.069 −363261.256
−736.912 0.000 56855870.564 0.000
4018.336 0.000 −13049893.573 0.000

612.635 0.000 1310791.818 0.000
−4213.343 0.000 0.000 0.000
−260.753 0.000 0.000 0.000
4581.603 0.000 0.000 0.000

−1171.113 0.000 0.000 0.000
−4559.802 0.000 0.000 0.000

5566.714 0.000 0.000 0.000
−2984.961 0.000 0.000 0.000

814.407 0.000 0.000 0.000
−92.509 0.000 0.000 0.000

−118.0(−11) −172.0(−6) 514.0(−7) −110.0(−6)

The last terms with i = n are

Gn
0(r) = 2

3π
M2

nZ2
nK1(Zn)

Gn
1(r) = 2

3π
M2

nZ2
nK0(Zn) (3.53)

Gn
2(r) = 2

15π
M2

nZ3
nK0(Zn),

where Kn(z) are the modified Bessel functions of the second
kind (see Appendix C).

At large r the functions Gi
�(i < n) have the asymptotic

behavior expected for solutions of the Schrödinger equation
with orbital angular momentum �. The tail functions fall off
like exponentials multiplied by a fractional power of r but,
because of their large mass (short range), do not contribute
to the overall asymptotic behavior of the wave functions in
coordinate space. At small r the functions Gi

�(i < n) have the
expected r�+1 ∼ Z�+1

i behavior. However, the tail functions
contribute some nonanalytic logarithmic behavior at small r ,
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FIG. 7. (Color online) Enlarged view of the momentum-space
wave functions for both models. The curves are labeled as in Fig. 6,
with a dashed zero reference line. The large positive states are w; the
large negative ones u, with WJC-1 (solid) and WJC-2 (dotted). Both of
the vt wave functions are solid, and both vs wave functions are dotted,
with WJC-1 negative in both cases and WJC-2 both close to zero.

as described in Appendix C. As it turns out, this behavior is
too small to be seen at the level of 1%.

4. Wave functions in coordinate space

The coordinate-space wave functions are shown in Figs. 8
and 9. Note that the P-state wave functions vanish beyond
2 fm and that they are larger for WJC-1, as already seen in
momentum space. Particularly notable is the zero in u(1) near
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FIG. 8. (Color online) The coordinate space wave functions for
both models. The curves are labeled as in Fig. 6. The largest two wave
functions are the familiar u and w wave functions, with WJC-1 solid
and WJC-2 dotted. The vt wave functions are both solid, with WJC-1
negative and WJC-2 small and positive. The vs wave functions are
both dotted, with WJC-1 negative and WJC-2 close to zero.
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FIG. 9. (Color online) Expanded view of the coordinate space
wave functions for both models at small r . The curves are labeled as
in Fig. 6.

0.35 fm, leading to a dip at very small r . This dip is not
an artifact of the fits; it is related to the deeper dip in the
momentum space u(1) near 600 MeV, clearly seen in Figs. 6
and 7. A similar (but much smaller and not visible in the
figures) dip is also present in u(2) inside of 0.15 fm. The fact
that the dip in WJC-1 is larger may be a consequence of its
larger P-state components.

Before any physical conclusions can be drawn from the dif-
ferences in the wave functions for WJC-1 and WJC-2, observ-
ables must be calculated from these models. Electromagnetic
observables (such as the quadrupole moment) will be sensitive
to interaction currents, which will differ in each case, and
might very well compensate for any difference arising from
the wave functions. However, these calculations, which will be
a subject for a future article, are beyond the scope of this work.

5. Asymptotic normalization and the D/S ratio

One observable that can be calculated immediately is
the ratio of the asymptotic normalization constants for the
S- and D-state wave functions. The results for the two
models, together with the asymptotic normalization As , are
summarized in Table IX. These quantities can be extracted
from the expansions (3.51):

As = bu
1A1, Ad = bw

1 B1R
2
1, η = Ad/As. (3.54)

Note that η is more accurately determined than As and that the
values of η predicted by the two models are in agreement with
each other (within errors) and also agree (to less than 2 standard
deviations) with the results of Ref. [12]. The agreement is even
better with most other experimental and theoretical results for η

quoted in Ref. [12], which are all situated in the range between
0.0259 and 0.0272.

IV. CONCLUSIONS

In this article we present (Table I) effective range expan-
sions for the 1S0 and 3S1 phase shifts and relativistic deuteron
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TABLE IX. The asymptotic normalization As and D/S ratio η

for the two models. Results are shown for variations of n around the
central (best) values of 17 and 16 for WJC-1 and 30 and 18 for WJC-2,
with errors based on the fluctuations. These may be compared to the
recently determined η = 0.0256(4) [12].

n WJC-1 WJC-2

η As η As

n0 − 2 0.02625 0.86585 0.02635 0.87471
n0 − 1 0.02623 0.86837 0.02639 0.87693
n0 0.02619 0.86416 0.02630 0.87768
n0 + 1 0.02623 0.86604 0.02643 0.87829
n0 + 2 0.02622 0.86436 0.02614 0.87879

n0(error) 0.02619(4) 0.864(2) 0.0263(1) 0.8777(15)

wave functions based on the precision models WJC-1 and
WJC-2 of Ref. I.

Since the effective range expansions emerge directly from
the new high-precision phase shift analysis described in Ref. I,
they can be regarded as an up-to-date, precision determination
of the effective range parameters that should constrain any
modern theory of the nuclear force, such as effective (or chiral
effective) field theories. It does not matter that they were
determined using the CST. Note that throughout this work we
assumed equal masses for the proton and neutron; if their mass
difference were taken into account we could expect corrections
of about 0.07%.

The covariant deuteron wave functions presented here have
four components: two that have a nonrelativistic analog and
two (the P states) of purely relativistic origin. Convenient
analytic representations of these wave functions are presented,
with expansion coefficients given in Tables VII and VIII.
These expansions (and subroutines that are available from
the authors) make it easy and convenient to use these wave
functions with any calculation. When these wave functions
are used in a covariant theory with one nucleon off-shell they
provide a precise description of the nonperturbative interac-
tions that lead to the deuteron bound state. However, even in
this case a completely consistent description requires that we
include other contributions, such as final state interactions or
interaction currents, that are also generated by the one-boson-
exchange dynamics. That these effects cannot be ignored,
even in the low-energy or momentum limit, is indicated by
the size of the derivative of the kernel that contributes to
the normalization [recall Eq. (3.39)]. This is about −5% for
WJC-1 and −2% for WJC-2 and could, of course, be much
larger at higher energies for some observables. In particular,
the calculation of any electromagnetic property of the deuteron
(including the magnetic and quadrupole moments) that does
not include interaction currents can be expected ab initio to be
in error by a few percentages. It is therefore quite possible
that a careful CST calculation of the quadrupole moment
could resolve the current ∼5% discrepancy between theory and
experiment, but this calculation must wait until the exchange
currents have been accurately calculated.

For this reason it is also unclear how to incorporate the wave
functions given in this article into a calculation which uses

dynamics different from the CST (nonrelativistic or another
form of relativistic dynamics, including light-front). In such
cases we are inclined to suggest that the best procedure is to
renormalize the wave functions as shown in Eq. (3.40), which
is also why our numerical wave functions are presented here
in this normalization.

One observable that does not depend on the normalization
of the wave functions is the asymptotic D/S ratio. Our
results (Table IX) determine this ratio to an accuracy about
10 times smaller than the experimental accuracy and are
in good agreement with measured values. Still, it would be
interesting to review the theory that has gone into the analysis
of the experiments that determine the D/S ratio and to see if
there are any relativistic corrections previously overlooked.
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APPENDIX A: CONSTRUCTION OF THE KERNEL

In this appendix we present details, omitted from Ref. I [1],
of the construction of the NN kernel directly from the sum
of Feynman amplitudes that define it. This method differs
completely from that used in Ref. II [10]; it is simpler and
more transparent, allowing changes in the kernel to be made
more easily.

1. Review of definitions from Ref. I

In Ref. I the kernels are defined to be

VJρ1ρ2,ρ
′
1ρ

′
2

λ1λ2,λ
′
1λ

′
2

(
δ

p0
, δS

)
= 1

2

{
V

Jρ1ρ2,ρ
′
1ρ

′
2

dir λ1λ2,λ
′
1λ

′
2
(p0) + δSV

Jρ1ρ2,ρ
′
1ρ

′
2

dir λ1λ2,−λ′
1−λ′

2
(p0)

+δ
p0

V
Jρ2ρ1,ρ

′
1ρ

′
2

dir λ1λ2,λ
′
1λ

′
2
(−p0) + δ

p0
δSV

Jρ2ρ1,ρ
′
1ρ

′
2

dir λ1λ2,−λ′
1−λ′

2
(−p0)

}
,

(A1)

where δ
p0

= (−1)I η(ρT δS)λ (with ρT = ρ1ρ2ρ
′
1ρ

′
2, λ = λ1 −

λ2, and I the isospin) is the phase of V under p0 → −p0 and
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ρ1 ↔ ρ2, and δS = δP ρ ′
1ρ

′
2η (with δP = ±1 the parity), and

in both experssions η = (−1)J−1 is a ubiquitous phase. These
linear combinations are very similar to (but differ from) those
used previously in Ref. II.

If particle 1 is on-shell, ρ1 = ρ ′
1 = +. Using the parity

relation,

V
Jρ1ρ2,ρ

′
1ρ

′
2

dirλ1λ2,λ
′
1λ

′
2
(±p0) = ρTV

Jρ1ρ2,ρ
′
1ρ

′
2

dir−λ1−λ2,−λ′
1−λ′

2
(±p0), (A2)

the amplitudes (A1) can always be organized so that λ1 =
λ′

1 = +1/2, leaving the helicities of particle 2 and the phases
δS and δ

p0
unconstrained. Hence there are 24 = 16 independent

kernels for each J, ρ2 and ρ ′
2. Our particular choice of

independent kernels is denoted vi and defined in Table XI of
Ref. I. Their behavior under parity and interchange symmetry
for each combination of {ρ2, ρ

′
2} is given in Table XII of

Ref. I.
The evaluation of the matrix elements V J is simplified

by the fact that one can write the nucleon spinors as direct
products of two two-component spinors, one of which contains
all angle dependence, while the other describes the dependence
on momentum and ρ spin. Recall that the nucleon spinors
[from Eq. (E1) of Ref. I] are:

u
ρ

1 (p, λ) = Nρ(pλ) ⊗ χ
λ
(θ ) =

{
u(p, λ) ρ = +

v(−p, λ) ρ = −
(A3)

u
ρ

2 (p, λ) = Nρ(pλ) ⊗ χ−λ
(θ ) =

{
u(−p,−λ) ρ = +
v(p,−λ) ρ = − ,

where the ρ-space spinors are

N+(pλ) =
(

cosh 1
2ζ

2λ sinh 1
2ζ

)
N−(pλ) =

(
−2λ sinh 1

2ζ

cosh 1
2ζ

)
,

(A4)

with p = |p| and tanh ζ = p/Ep. Note that, at large p,

cosh
1

2
ζ =

√
Ep + m

2m
→

√
p

2m
(A5)

sinh
1

2
ζ = p√

2m(Ep + m)
→

√
p

2m
.

For momenta limited to the x̂ẑ plane, the spin 1/2 spinors are

χ1/2 (θ ) = Ry(θ )

(
1

0

)
=

(
cos 1

2θ

sin 1
2θ

)
(A6)

χ−1/2 (θ ) = Ry(θ )

(
0

1

)
=

(
− sin 1

2θ

cos 1
2θ

)
.

2. Extracting the angular integrals

Each term in the Feynman meson-exchange operator can
be written in the generic form

Vb(θ, p0) =
∑
ij

gisjDb(θ, p0) [Oi(p0) ⊗ Sj ]b1

× [Oi(p0) ⊗ Sj ]b2, (A7)

where Oi are operators in the ρ-spin space, Sj operators in the
spin-space, gi and sj are constants, and the sums are over all
operators needed to describe the meson exchange interaction.
Here Db is the scalar part of the propagator

Db(θ, p0) = fb(	b, q)

m2
b + |q(θ, p0)|2 , (A8)

with q(θ, p0) the four-momentum transferred by the ex-
changed meson and fb the meson form factor. The operator
O(p0) acts in the 2 × 2 ρ-spin space, and S operates in the
2 × 2 spin space, so O ⊗ S is a 4 × 4 matrix. Using this
notation, the matrix elements of V reduce to (suppressing the
index b for simplicity)

V
ρ1ρ2,ρ

′
1ρ

′
2

dir λ1λ2,λ
′
1λ

′
2
(θ,±p0) = Oρ1ρ

′
1,ρ2ρ

′
2

λ1λ2,λ
′
1λ

′
2,±〈λ1λ2|λ′

1λ
′
2〉D(θ,±p0),

(A9)

where

Oρ1ρ
′
1,ρ2ρ

′
2

λ1λ2,λ
′
1λ

′
2,± =

∑
i

gi[N̄ρ1 (pλ1)Oi(±p0)Nρ ′
1
(p′λ′

1)]

× [N̄ρ2 (pλ2)Oi(±p0)Nρ ′
2
(p′λ′

2)] (A10)

〈λ1λ2|λ′
1λ

′
2〉 =

∑
j

sj [χ †
λ1

(θ )Sjχ
λ′

1
(0)] [χ †

−λ2
(θ )Sjχ−λ′

2
(0)],

with N̄ = N †τ3 the Dirac conjugation in ρ-spin space, and
use is made of the fact that the partial-wave amplitude may
be calculated by aligning the initial momentum p′ in the +z

direction. Note that the sign of p0 in the operators O(±p0) is
captured in the last subscript of the matrix elements O, that
the superscripts for O group together the ρ-spin indices for
particle 1, followed by the ρ-spin indices for particle 2, and
that the matrix elements of S do not depend on the ρ-spin
of the states. We keep λ1 unspecified in these formulas even
though only the case λ1 = + needs to be considered. The linear
combinations (A1) restrict λ′

1 = +, but the individual terms in
the sum use both signs of λ′

1, so it cannot be restricted in (A10).
Recalling that the partial-wave projections are of the form

V
Jρ1ρ2,ρ

′
1ρ

′
2

dir λ1λ2,λ
′
1λ

′
2
(p0) = 2π

∫ π

0
sin θdθdJ

λ′λ(θ )

×V
Jρ1ρ2,ρ

′
1ρ

′
2

dir λ1λ2,λ
′
1λ

′
2
(p, p′; P ), (A11)

we see that each of the matrix elements 〈λ1λ2|λ′
1λ

′
2〉 will be

multiplied by the rotation function dJ
λ′λ(θ ), where λ = λ1 − λ2

and λ′ = λ′
1 − λ′

2. It turns out that the ρ-spin matrix elements
generate an additional factor of z = cos θ , so matrix elements
with an additional factor of z are needed; these are handled
by multiplying each of the matrix elements by zi , where i = 0
or 1. The 16 integrals we require are defined in Table X, with
explicit expressions for these 16 matrix elements in terms of
five independent integrals summarized in Table XI. The five
independent integrals over Legendre polynomials and their
derivatives are given in Table XII, with convenient identities
showing how to reduce five other integrals to these five given
in Table XIII.

The 16 generic integrals (for each value of ρ1) defined in
Tables XI and XII of Ref. I can then be written as products
of the 16 angular-dependent terms given in Table X and Dirac
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TABLE X. The 16 matrix elements Ai
λ1λ2,λ′

1λ′
2

= zi〈+λ2|λ′
1λ

′
2〉dJ

λ′λ for λ1 = + and i = 0 or 1. Here

λ = ± 1
2 is written as λ = ± and z = cos θ .

Ai
++,++ = zi 〈+ + | + +〉 dJ

00 = zi 1
2 (1 + z) dJ

00 Ai
++,−− = zi 〈+ + | − −〉 dJ

00 = −zi 1
2 (1 − z) dJ

00

Ai
+−,++ = zi 〈+ − | + +〉 dJ

01 = zi 1
2 sin θ dJ

01 Ai
+−,−− = zi 〈+ − | − −〉 dJ

01 = zi 1
2 sin θ dJ

01

Ai
++,+− = zi 〈+ + | + −〉 dJ

10 = −zi 1
2 sin θ dJ

10 Ai
++,−+ = zi 〈+ + | − +〉 dJ

−1,0 = zi 1
2 sin θ dJ

−1,0

Ai
+−,+− = zi 〈+ − | + −〉 dJ

11 = zi 1
2 (1 + z) dJ

11 Ai
+−,−+ = zi 〈+ − | − +〉 dJ

−1,1 = zi 1
2 (1 − z) dJ

−1,1

matrix elements (defined below) as follows:

v
ρ2ρ

′
2

1
5

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i++,++,+ Ai

++,++ − Oρ1+,ρ2ρ
′
2,i++,−−,+ Ai

++,−−
)

±
∫

−

(
Oρ2+,ρ1ρ

′
2++,++,−Ai

++,++ − Oρ2+,ρ1ρ
′
2++,−−,−Ai

++,−−
)}

v
ρ2ρ

′
2

2
6

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i+−,+−,+ Ai

+−,+− − Oρ1+,ρ2ρ
′
2,i+−,−+,+ Ai

+−,−+
)

∓
∫

−

(
Oρ2+,ρ1ρ

′
2+−,+−,−Ai

+−,+− − Oρ2+,ρ1ρ
′
2+−,−+,−Ai

+−,−+
)}

v
ρ2ρ

′
2

3
7

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i++,+−,+ Ai

++,+− − Oρ1+,ρ2ρ
′
2,i++,−+,+ Ai

++,−+
)

±
∫

−

(
Oρ2+,ρ1ρ

′
2++,+−,−Ai

++,+− − Oρ2+,ρ1ρ
′
2++,−+,−Ai

++,−+
)}

v
ρ2ρ

′
2

4
8

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i+−,++,+ Ai

+−,++ − Oρ1+,ρ2ρ
′
2,i+−,−−,+ Ai

+−,−−
)

∓
∫

−

(
Oρ2+,ρ1ρ

′
2+−,++,−Ai

+−,++ − Oρ2+,ρ1ρ
′
2+−,−−,−Ai

+−,−−
)}

v
ρ2ρ

′
2

9
13

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i++,++,+ Ai

++,++ + Oρ1+,ρ2ρ
′
2,i++,−−,+ Ai

++,−−
)

±
∫

−

(
Oρ2+,ρ1ρ

′
2++,++,−Ai

++,++ + Oρ2+,ρ1ρ
′
2++,−−,−Ai

++,−−
)}

v
ρ2ρ

′
2

10
14

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i+−,+−,+ Ai

+−,+− + Oρ1+,ρ2ρ
′
2,i+−,−+,+ Ai

+−,−+
)

±
∫

−

(
Oρ2+,ρ1ρ

′
2+−,+−,−Ai

+−,+− + Oρ2+,ρ1ρ
′
2+−,−+,−Ai

+−,−+
)}

v
ρ2ρ

′
2

11
15

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i++,+−,+ Ai

++,+− + Oρ1+,ρ2ρ
′
2,i++,−+,+ Ai

++,−+
)

±
∫

−

(
Oρ2+,ρ1ρ

′
2++,+−,−Ai

++,+− + Oρ2+,ρ1ρ
′
2++,−+,−Ai

++,−+
)}

v
ρ2ρ

′
2

12
16

=
∑

i

{∫
+

(
Oρ1+,ρ2ρ

′
2,i+−,++,+ Ai

+−,++ + Oρ1+,ρ2ρ
′
2,i+−,−−,+ Ai

+−,−−
)

±
∫

−

(
Oρ2+,ρ1ρ

′
2+−,++,−Ai

+−,++ + Oρ2+,ρ1ρ
′
2+−,−−,−Ai

+−,−−
)}

,

(A12)

where the + and − integrals include the propagator∫
±

= π

∫ π

0
sin θ dθD(θ,±p0) (A13)

and, in each case, the upper sign goes with the upper index
(of the two lower indices) and the lower sign with the lower
index (of the two lower indices), so that, for example, v1 is
symmetric under p0 → −p0 and v5 is antisymmetric. The 16
ρ-spin matrix elements that enter into these expressions, all
independent of θ , result from the fact that the general ρ-spin
matrix elements O given in Eq. (A10) are linear in z and can
therefore be separated into two terms using the notation

Oρ1ρ
′
1,ρ2ρ

′
2

λ1λ2,λ
′
1λ

′
2,± = Oρ1ρ

′
1,ρ2ρ

′
2,0

λ1λ2,λ
′
1λ

′
2,± + zOρ1ρ

′
1,ρ2ρ

′
2,1

λ1λ2,λ
′
1λ

′
2,±. (A14)

The O1’s arise only from the exchange of vector mesons; all
of the O’s arising from the exchange of each meson will be
computed below.

3. Particle momenta

In some applications there is the possibility that both
particles in the final state could be off-shell (the possibility that

TABLE XI. Matrix elements of Table X expressed in terms of the angular functions from Table XII and a6,
a7, a8, and a9 from Table XIII. Note that dJ

−1,0 = −dJ
1,0 and dJ

01 = −dJ
10. Here ai = aJ

i (θ ). The integrals a4 and
a5 are needed only for the A1 and hence only for vector mesons. The matrix elements Aij,k have i, j = {1, 4}
according to the code 1 = ++, 2 = +−, 3 = −+, 4 = −−, and k = 1 for A0 and k = 2 for A1.

A0
++,++ = A11,1 = 1

2 (1 + z) dJ
00 = 1

2 (a1 + a2) A0
++,−− = A14,1 = − 1

2 (1 − z) dJ
00 = − 1

2 (a1 − a2)

A1
++,++ = A11,2 = 1

2 z(1 + z) dJ
00 = 1

2 (a2 + a4) A1
++,−− = A14,2 = − 1

2 z(1 − z) dJ
00 = − 1

2 (a2 − a4)

A0
+−,++ = A21,1 = 1

2 sin θ dJ
01 = − 1

2 a7 A0
+−,−− = A24,1 = 1

2 sin θ dJ
01 = − 1

2 a7

A1
+−,++ = A21,2 = 1

2 z sin θ dJ
01 = − 1

2 a8 A1
+−,−− = A24,2 = 1

2 z sin θ dJ
01 = − 1

2 a8

A0
++,+− = A12,1 = − 1

2 sin θ dJ
10 = − 1

2 a7 A0
++,−+ = A13,1 = 1

2 sin θ dJ
−1,0 = − 1

2 a7

A1
++,+− = A12,2 = − 1

2 z sin θ dJ
10 = − 1

2 a8 A1
++,−+ = A13,2 = 1

2 z sin θ dJ
−1,0 = − 1

2 a8

A0
+−,+− = A22,1 = 1

2 (1 + z) dJ
11 = 1

2 (a6 + a1) A0
+−,−+ = A23,1 = 1

2 (1 − z) dJ
−1,1 = 1

2 (a6 − a1)

A1
+−,+− = A22,2 = 1

2 z(1 + z) dJ
11 = 1

2 (a9 + a2) A1
+−,−+ = A23,2 = 1

2 z(1 − z) dJ
−1,1 = 1

2 (a9 − a2)
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TABLE XII. The five independent angular
integrals, aJ

i (θ ), needed for this calculation.
Four more frequently used linear combinations
of these, denoted aj , with j = {6, 9}, are given
in Table XIII.

aJ
1 (θ ) PJ (z)

aJ
2 (θ ) zPJ (z)

aJ
3 (θ ) PJ−1(z)

aJ
4 (θ ) z2PJ (z)

aJ
5 (θ ) zPJ−1(z)

both particles in the initial state are off-shell is not considered
at this time). To allow for this possibility, we will write
the final-state momenta in the center-of-mass system of the
two-nucleon system in the general form

p1 = {
1
2W + p0, p

} = {
x0Ep + (1 − x0) 1

2W, p
}

(A15)
p2 = {

1
2W − p0,−p

} = {−x0Ep + (1 + x0) 1
2W,−p

}
with

p0 = x0
(
Ep − 1

2W
)
, (A16)

where x0 is a dimensionless number varying between −∞
and ∞ and W is the total two-body energy. Note that when
x0 = 1, particle 1 is on-shell (with energy Ep), while when
x0 = −1, particle 2 is on-shell. Hence changing the sign of
x0 is a convenient way to interchange the energies of particles
1 and 2 in the final state, and we may construct the ±p0

combinations of Eq. (A1) merely by changing the sign of x0.
(A similar variable, y0, could be used for the initial state.)

4. Single particle ρ-spin matrix elements

We now turn our attention to the form of the ρ-spin matrix

elements Oρ1ρ
′
1,ρ2ρ

′
2,i

λ1λ2,λ
′
1λ

′
2

. In all but the simplest cases, these are
best calculated by first constructing matrix elements on each
nucleon line and then multiplying these together to get the total
O. The one-nucleon matrix elements are evaluated numerically
by matrix multiplication, best described separately for each
type of meson exchange. The total ρ-spin matrix elements for
each meson will be summarized in the next subsection.

TABLE XIII. Useful identities involving the d

functions. Here PJ = PJ (z), ai = aJ
i (θ ), and the

new combinations, a6, a7, a8, and a9 are defined.

1
2

[
(1 + z)dJ

11 − (1 − z)dJ
−1,1

] = dJ
00 = PJ = a1

1
2

[
(1 + z)dJ

11 + (1 − z)dJ
−1,1

] = a6

= 1
J+1 [JzPJ + PJ−1] = 1

J+1 [Ja2 + a3]
1
2 z

[
(1 + z)dJ

11 + (1 − z)dJ
−1,1

] = a9

= 1
J+1 [Jz2PJ + zPJ−1] = 1

J+1 [Ja4 + a5]

sin θ dJ
10 =

√
J

J+1 [zPJ − PJ−1]

=
√

J

J+1 [a2 − a3] ≡ a7

z sin θ dJ
10 =

√
J

J+1 [a4 − a5] ≡ a8

a. Scalar mesons

The calculation of the on-shell scalar exchange is very
straightforward, with

Oρ1ρ
′
1,ρ2ρ

′
2,0,s

λ1λ2,λ
′
1λ

′
2,± = −[N̄ρ1 (pλ1)1Nρ ′

1
(p′λ′

1)]

× [N̄ρ2 (pλ2)1Nρ ′
2
(p′λ′

2)] (A17)

Oρ1ρ
′
1,ρ2ρ

′
2,1,s

λ1λ2,λ
′
1λ

′
2,± = 0,

where 1 is the unit matrix in 2 × 2 space, and the additional
superscript s labels these O’s as the contributions from scalar
mesons. It is convenient to calculate the general matrix element

1i ≡ [N̄ρi
(pλi)1Nρ ′

i
(p′λ′

i)], (A18)

and then construct all of the products (A17), avoiding as
much algebra as possible. This also allows the off-shell matrix
elements to be calculated without any extra work. In what
follows we will generalize the notation of (A18):

Oi ≡ [N̄ρi
(pλi)ONρ ′

i
(p′λ′

i)], (A19)

where O is any 2 × 2 operator in the ρ-spin space. Explicitly,
the Dirac matrices are written as a direct product of two 2 × 2
matrices (where the first matrix operates in the 2 × 2 ρ-spin
space and the second in the spin space):

1 = 1 ⊗ 1 γ 0 = τ 3 ⊗ 1 γ 5 = τ 1 ⊗ 1 γ i = iτ 2 ⊗ σ i.

(A20)

Hence, the ρ-spin matrices in the 2 × 2 spin independent part
of the Dirac space are the familiar Pauli matrices.

We frequently encounter off-shell couplings, which in every
case give factors of

(m− �p) uρ(p, λ) = (m + γ · p − γ 0p0) u
ρ

i (p, λ)

= (ρEp − p0) γ 0uρ(p, λ), (A21)

where we have used the Dirac equation for the (always) on-
shell spinor uρ(p, λ) and recalled that u−(p, λ) = v(−p, λ) so
its Dirac equation is

(m+ �p)v(−p, λ) = (m + γ 0Ep + γ · p)v(−p, λ) = 0.

This use of the Dirac equations allows us to replace the
angular dependent γ · p term by an angular independent factor.
(Similar steps work off-shell couplings in the final state.)
Off-shell couplings therefore do not involve any new angular
integrals, but they do require evaluation of a new 2 × 2 Dirac
matrix element. Since a more general scalar Feynman operator
is

	s(p, p′) = gs 1 − νs

[
m− �p

2m
+ m− �p′

2m

]
(A22)

the spin-independent part of the matrix element in the general
scalar case is then

	si(pi, p
′
i) ≡ ūρi (p, λi)	s(pi, p

′
i)u

ρ ′
i (p′, λ′

i)

= gs1i − νs

2m
τ 3
i [ρiEp − pi0 + ρ ′

iEp′ − p′
i0]

≡ R
ρiρ

′
i

λiλ
′
i ,s

(±p0,±p′
0), (A23)

where, in the last line, we define the first of the one-particle
ρ-spin matrix elements needed in this calculation. The
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TABLE XIV. Matrix elements 〈ρ, λ|On|ρ ′, λ′〉 = N̄ρ(pλ)OnNρ′ (p′λ′) ≡ D
ρρ′
λλ′,n for various operators

On, where n = {1, 4} with the correspondence τ 1 → 1, iτ 2 → 2, τ 3 → 3, and 1 → 4. The two-component
ρ-spin spinors Nρ were defined in Eq. (A4). In this table c = cosh 1

2 ζ , c′ = cosh 1
2 ζ ′, s = 2λ sinh 1

2 ζ , and
s ′ = 2λ′ sinh 1

2 ζ ′, where ζ was defined below Eq. (A4).

〈+, λ|1|+, λ′〉 = −〈−, λ|1|−, λ′〉 = cc′ − ss ′ 〈+, λ|1|−, λ′〉 = 〈−, λ|1|+, λ′〉 = −(cs ′ + sc′)
〈+, λ|τ 3|+, λ′〉 = 〈−, λ|τ 3|−, λ′〉 = cc′ + ss ′ 〈+, λ|τ 3|−, λ′〉 = −〈−, λ|τ 3|+, λ′〉 = −(cs ′ − sc′)
〈+, λ|τ 1|+, λ′〉 = 〈−, λ|τ 1, λ|−, λ′〉 = cs ′ − sc′ 〈+, λ|τ 1|−, λ′〉 = −〈−, λ|τ 1|+, λ′〉 = cc′ + ss ′

〈+, λ|iτ 2|+, λ′〉 = −〈−, λ|iτ 2|−, λ′〉 = cs ′ + sc′ 〈+, λ|iτ 2|−, λ′〉 = 〈−, λ|iτ 2, λ|+, λ′〉 = cc′ − ss ′

definition of Rs restores explicit reference to the helicities
λi and λ′

i implicitly contained in the matrix elements 1i

and τ 3
i , and replaces pi0 by ±p0, with p10 = W/2 + p0 and

p20 = W/2 − p0 (so that sign of p0 is positive for particle 1
and negative for particle 2). We emphasize that the spin
dependent angular part is unchanged by the off-shell couplings.

We encounter the off shell factors numerous times, so it is
convenient to denote

�Ei ≡ ρiEp − pi0 �E′
i ≡ ρ ′

iEp′ − p′
i0. (A24)

However, note that

�E1�E2 = �E′
1�E′

2 = 0 (A25)

because one of the two particles is always in shell.

b. Pseudoscalar mesons

The pseudoscalar Feynman operator is

	p(p, p′) = gpγ 5 − gp(1 − λp)

×
{[

m− �p
2m

]
γ 5 + γ 5

[
m− �p′

2m

]}
. (A26)

Using the same arguments, the pseudoscalar matrix elements
become

	pi(pi, p
′
i) = gp

{
τ 1
i − (1 − λp)

2m
iτ 2

i [�Ei − �E′
i]

}

≡ R
ρiρ

′
i

λiλ
′
i ,p

(±p0,±p′
0), (A27)

where we introduced the new matrix element Rp. This requires
evaluation of the matrix elements of τ 1 and iτ 2, but the spin-
dependent matrix elements are the same as in the scalar case.
For the evaluation of the matrix elements, see Table XIV.

c. Vector mesons

The vector matrix elements introduce new spin-dependent
factors, and the terms O1 linear in z.

The first step in the reduction of the vector-meson exchange
terms is to reduce the Pauli interaction term using the
generalized Gordon decomposition:

iσµν(p − p′)ν
2m

= γ µ − (p + p′)µ

2m

−
(

m− �p
2m

)
γ µ − γ µ

(
m− �p′

2m

)
. (A28)

Combining this result with the general definition of the vector
Feynman operator

	µ
v (p, p′) = gv

{
γ µ + νv

([
m− �p

2m

]
γ µ + γ µ

[
m− �p′

2m

])

+ κv

2m
iσµν(p − p′)ν

}
(A29)

gives

	µ
v (p, p′) = gv

{
γ µ(1 + κv) − κv

2m
(p + p′)µ

+ (νv − κv)

([
m− �p

2m

]
γ µ + γ µ

[
m− �p′

2m

])}

→ gv

{
γ µ(1 + κv) − κv

2m
(p + p′)µ

+ (νv − κv)

2m
[�Eγ 0γ µ + γ µγ 0�E′]

}
, (A30)

where the last line anticipates later use of the Dirac equation
to reduce the operators m−�p.

These two vertex operators are contracted with the spin-one
meson propagator, which gives

	
µ

v1(p1, p
′
1)	ν

v2(p2, p
′
2)�µν

= 	0
v1(p1, p

′
1)	0

v2(p2, p
′
2) − 	

j

v1(p1, p
′
1)	j

v2(p2, p
′
2)

+ η

m2
v

{
	

µ

v1(p1, p
′
1)(p1 − p′

1)µ	ν
v2(p2, p

′
2)(p2 − p′

2)ν
}

(A31)

where the factor η = 1 is included solely to keep track of
the effect of the qµqν/m2

v in the meson propagator (note that
the sign follows from −qµqν = (p1 − p′

1)µ(p2 − p′
2)ν). To

simplify, note that
Bi ≡ 	ν

vi(pi, p
′
i) (pi − p′

i)ν

= gv

{
1iνv

(
p′2

i − p2
i

)
2m

− τ 3
i (1 + νv) (�Ei − �E′

i)

}

≡ R
ρiρ

′
i

λiλ
′
i ,v2(±p0,±p′

0)
(A32)

	0
vi(pi, p

′
i) = gv

{
τ 3
i (1 + κv) + 1i

[
νv

2m
(�Ei + �E′

i)

− κv

2m
(ρiEp + ρ ′

iEp′ )

]}

≡ R
ρiρ

′
i

λiλ
′
i ,v1(±p0,±p′

0),

where we introduced the new matrix elements Rv1 and Rv2.
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The three-vector part introduces the spin-dependent opera-
tors σ i and angle-dependent terms from the factor (p + p′)i .
These are first separated into two terms,

	
j

vi(pi, p
′
i) = Ai × σ

j

i − 1i

gvκv

2m
(pi + p′

i)
j , (A33)

where we remind the reader that the subscript i labels the
particle number (1 or 2), and Ai is the spin-independent
coefficient of the spin-dependent operator σ j , and the spin-
dependent part of the second term is the identity, suppressed
in the expression. The coefficient Ai is

Ai = gv

{
iτ 2

i (1 + κv) + τ 1
i

(νv − κv)

2m
(�Ei − �E′

i)

}

≡ R
ρiρ

′
i

λiλ
′
i ,v3(±p0,±p′

0), (A34)

which defines the matrix element Rv3.
In calculating the operator 	

j

v1(p1, p
′
1)	j

v2(p2, p
′
2) we

encounter the cross terms

σ 1 · (p2 + p′
2) = −σ 1 · (p1 + p′

1) = −2(λ1p + λ′
1p

′), (A35)

where the evaluation has been carried out in the center-of-mass
system and use was made of the fact that the helicity eigenstates
satisfy the eigenvalue conditions

σ · p|λ〉 = 2λp|λ〉. (A36)

(For incoming particle 2, for example, | 1
2 〉 is a state with spin

down in the ẑ direction and p′
2 is in the −ẑ direction, so σ ·

p′
2| 1

2 〉 = −pσ 3| 1
2 〉 = p| 1

2 〉.) Finally, note that

(p1 + p′
1) · (p2 + p′

2) = −(p1 + p′
1)2

= −(p2 + p′2 + 2pp′z), (A37)

where we use p2, p2, and p to denote the square of the three-
vector, the four-vector, and the magnitude of the three-vector,
respectively. Combining (A33)–(A37) gives the following:

	
j

v1(p1, p
′
1)	j

v2(p2, p
′
2)

= A1A2〈λ1λ2|σ 1 · σ 2|λ′
1λ

′
2〉

+
{

gvκv

m
[A112(λ1p + λ′

1p
′) + A211(λ2p + λ′

2p
′)]

−
(

gvκv

2m

)2

1112(p2 + p′2 + 2pp′z)

}
〈λ1λ2|λ′

1λ
′
2〉,
(A38)

where, for clarity, we have included the term 〈λ1λ2|λ′
1λ

′
2〉 that

multiplies the terms in the {}; this term is not part of the ρ-spin
matrix element and will be removed once the effect of the
operator σ 1 · σ 2 has been expressed using the relation

〈λ1λ2|σ 1 · σ 2|λ′
1λ

′
2〉 → T 〈λ1λ2|λ′

1λ
′
2〉, (A39)

where T will be determined shortly. The extra z = cos θ

dependence in the last term of (A38) is the origin of the special
linear z-dependent terms described in Eq. (A14) above. In our
model, only vector-meson exchanges contribute such terms.

To determine T correctly note that the helicity states
|+−〉 or |−+〉 correspond to the spin states |↑↑〉 or |↓↓〉,
respectively, and hence are spin triplet states with T = 1. The
same argument works for both initial or final states. This leaves

only the combinations with equal helicities in both the initial
and final states: λ1 = λ2 = ± and λ′

1 = λ′
2 = ±. Looking at

Eq. (A12), the only potentials affected are v1, v5, v9, and v13,
and using the results

σ 1 · σ 2| + +〉 = −| + +〉 + 2| − −〉
(A40)

σ 1 · σ 2| − −〉 = −| − −〉 + 2| + +〉
the T term in these kernels leads to the decomposition

v
ρ2ρ

′
2

i ∼ (
O++,ρ2ρ

′
2,i++,++,+T A i

++,++ ± O++,ρ2ρ
′
2,i++,−−,+T A i

++,−−
)

= 1
2

(
O++,ρ2ρ

′
2,i++,++,+ ± O++,ρ2ρ

′
2,i++,−−,+
)(

Ai
++,++ + Ai

++,−−
)

+ 1
2S

(
O++,ρ2ρ

′
2,i++,++,+ ∓ O++,ρ2ρ

′
2,i++,−−,+
)(

Ai
++,++ − Ai

++,−−
)
,

(A41)

where S = −3. If the T operator is absent, the same expression
holds, but with S = 1, so this decomposition can be used for
both cases. With this relation it is not necessary to explicitly
calculate the matrix elements 〈λ1λ2|σ 1 · σ 2|λ′

1λ
′
2〉.

d. Axial vector mesons

Only the simplest possible coupling was used for the axial
vector mesons, namely

	
µ

ai(pi, p
′
i) = gaγ

5
i γ

µ

i , (A42)

and this was contracted with the gµν tensor, giving

	
µ

a1(p1, p
′
1)	ν

a2(p2, p
′
2)gµν = 	0

a1	
0
a2〈λ1λ2|λ′

1λ
′
2〉

−C1C2〈λ1λ2|σ 1 · σ 2|λ′
1λ

′
2〉,

(A43)

with

	0
ai = −igaτ

2
i ≡ R

ρiρ
′
i

λiλ
′
i ,a1(±p0,±p′

0)
(A44)

Ci = −gaτ
3
i ≡ R

ρiρ
′
i

λiλ
′
i ,a2(±p0,±p′

0),

which defines the last two ρ-spin matrix elements, Ra1 and
Ra2.

5. Two-particle ρ-spin matrix elements

The two-particle ρ-spin matrix elements are the ones
defined in Eq. (A14). They are constructed from the helicity
matrix elements D

ρρ ′
λλ′,n given in Table XIV, and the one-

nucleon matrix elements Rb defined in Eqs. (A23), (A27),
(A32), (A34), and (A44) above. In constructing the matrix
elements, note that p0 → −p0 corresponds to the interchange
of p10 ↔ p20, and similarily for p′

0. The results, with all
indices included, are as follows:

scalar, from Eq. (A23):

Oρ1ρ
′
1,ρ2ρ

′
2,0,s

λ1λ2,λ
′
1λ

′
2,± = −R

ρ1ρ
′
1

λ1λ
′
1,s

(±p0, p
′
0)R

ρ2ρ
′
2

λ2λ
′
2,s

(∓p0,−p′
0)

Oρ1ρ
′
1,ρ2ρ

′
2,1,s

λ1λ2,λ
′
1λ

′
2,± = 0 (A45)

pseudocalar, from Eq. (A27):

Oρ1ρ
′
1,ρ2ρ

′
2,0,p

λ1λ2,λ
′
1λ

′
2,± = R

ρ1ρ
′
1

λ1λ
′
1,p

(±p0, p
′
0)R

ρ2ρ
′
2

λ2λ
′
2,p

(∓p0,−p′
0)

Oρ1ρ
′
1,ρ2ρ

′
2,1,p

λ1λ2,λ
′
1λ

′
2,± = 0 (A46)
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vector, from Eqs. (A32), (A34), and (A38):

Oρ1ρ
′
1,ρ2ρ

′
2,0,v

λ1λ2,λ
′
1λ

′
2,± = R

ρ1ρ
′
1

λ1λ
′
1,v1(±p0, p

′
0)R

ρ2ρ
′
2

λ2λ
′
2,v1(∓p0,−p′

0)

+ η

m2
v

R
ρ1ρ

′
1

λ1λ
′
1,v2(±p0, p

′
0)R

ρ2ρ
′
2

λ2λ
′
2,v2(∓p0,−p′

0)

− T R
ρ1ρ

′
1

λ1λ
′
1,v3(±p0, p

′
0)R

ρ2ρ
′
2

λ2λ
′
2,v3(∓p0,−p′

0)

+
(gvκv

2m

)2
(p2 + p′2)D

ρ1ρ
′
1

λ1λ
′
1,4

D
ρ2ρ

′
2

λ2λ
′
2,4

− gvκv

m

[
(λ1p + λ′

1p
′)Rρ1ρ

′
1

λ1λ
′
1,v3(±p0, p

′
0)D

ρ2ρ
′
2

λ2λ
′
2,4

+ (λ2p + λ′
2p

′)Rρ2ρ
′
2

λ2λ
′
2,v3(∓p0,−p′

0)D
ρ1ρ

′
1

λ1λ
′
1,4

]
Oρ1ρ

′
1,ρ2ρ

′
2,1,v

λ1λ2,λ
′
1λ

′
2,± = 2pp′

(gvκv

2m

)2
D

ρ1ρ
′
1

λ1λ
′
1,4

D
ρ2ρ

′
2

λ2λ
′
2,4

(A47)

(in these expressions we used the fact that D4 does not depend
on p0), and

axial vector, from Eqs. (A43) and (A44):

Oρ1ρ
′
1,ρ2ρ

′
2,0,a

λ1λ2,λ
′
1λ

′
2,± = g2

b

{
D

ρ1ρ
′
1

λ1λ
′
1,2

D
ρ2ρ

′
2

λ2λ
′
2,2

− T D
ρ1ρ

′
1

λ1λ
′
1,3

D
ρ2ρ

′
2

λ2λ
′
2,3

}
Oρ1ρ

′
1,ρ2ρ

′
2,1,a

λ1λ2,λ
′
1λ

′
2,± = 0 (A48)

Once again we note that the D’s do not depend on p0.

Treatment of the photon. For the photon we assume that
F1n = 0 and that all other form factors are equal: F2n =
F1p = F2p = FD . The photon is an isovector-vector exchange,
obtained using the following couplings (with α � 0.007297):

g2 → 0 no e2 term

g2κ → e2κn → −α(1.913) = −0.01396 ≡ G1 (A49)

g2κ2 → e2κpκn → −α(1.913)(1.793) = −0.02503 ≡ G2.

These couplings require a special construction and cannot
easily be incorporated into the general vector formulas
above.

As a first step, define artificial couplings designed to
reproduce the ratio G2/G1 = κeff = κp = 1.7930 and g2

eff =
G1/κp = G2

1/G2 = −0.00779. The upshot of this is to use
the proton anomalous moment for κ and a fictitious charge
of g2

eff = −0.00779 so g2
effκp = G1 and g2

effκ
2
p = G2 are

reproduced. Then, we will factor out the coupling geff from
the R’s so it occurs as an overall multiplicative factor with the
correct (negative) sign.

Next, note that all terms in the photon exchange must
involve at least one factor of κ , so B ∼ Rv2 does not contribute.
The Rv1 and Rv3 squared terms must have the g2

eff terms
subtracted. Noting that ν = 0 for the photon, and redefining
the photon R’s so gv = 1 and κv = κp, this gives

Photon:

Oρ1ρ
′
1,ρ2ρ

′
2,0,γ

λ1λ2,λ
′
1λ

′
2,± = g2

eff

(
R

ρ1ρ
′
1

λ1λ
′
1,γ 1(±p0, p

′
0)R

ρ2ρ
′
2

λ2λ
′
2,γ 1(∓p0,−p′

0)

−D
ρ1ρ

′
1

λ1λ
′
1,3

D
ρ2ρ

′
2

λ2λ
′
2,3

) − T g2
eff

(
R

ρ1ρ
′
1

λ1λ
′
1,γ 3(±p0, p

′
0)

×R
ρ2ρ

′
2

λ2λ
′
2,γ 3(∓p0,−p′

0) − D
ρ1ρ

′
1

λ1λ
′
1,2

D
ρ2ρ

′
2

λ2λ
′
2,2

)
+G2

(p2 + p′2)

4m2
D

ρ1ρ
′
1

λ1λ
′
1,4

D
ρ2ρ

′
2

λ2λ
′
2,4

− G1

m

[
(λ1p + λ′

1p
′)Rρ1ρ

′
1

λ1λ
′
1,γ 3(±p0, p

′
0)D

ρ2ρ
′
2

λ2λ
′
2,4

+ (λ2p + λ′
2p

′)Rρ2ρ
′
2

λ2λ
′
2,γ 3(∓p0,−p′

0)D
ρ1ρ

′
1

λ1λ
′
1,4

]
Oρ1ρ

′
1,ρ2ρ

′
2,1,γ

λ1λ2,λ
′
1λ

′
2,± = G2

pp′

2m2
D

ρ1ρ
′
1

λ1λ
′
1,4

D
ρ2ρ

′
2

λ2λ
′
2,4

, (A50)

where the redefined R’s are [recalling Eqs. (A32) for Rv1 and
(A34) for Rv3 with ν = 0 and gv = 1]

R
ρρ ′
λλ′,γ 1(x0, y0) = (1 + κp)D

ρiρ
′
i

λiλ
′
i ,3

− κp

2m
D

ρρ ′
λλ′,4(ρEp + ρ ′Ep′ )

R
ρρ ′
λλ′,γ 3(x0, y0) = (1 + κp)Dρρ ′

λλ′,2

− κp

2m
D

ρρ ′
λλ′,1[�Eρ(x0) − �E′

ρ ′ (y0)]. (A51)

6. Isospin factor

For the exchange of isovector mesons, one must evaluate the
factor τ 1 · τ 2. This operator preserves the isospin symmetry
of the state; therefore its value is the same for each of the
16 kernels (or 4 when J = 0) that make up the coupled array
describing the singlet (S), triplet (T), or coupled (C) channels:
namely it must equal unity on isovector np states and −3 on
isoscalar np states. To determine the correct value, look at
the leading amplitudes (those which are symmetric under the
change in sign of p0 and hence survive when both particles are
on shell) and note that, for these amplitudes, the Pauli principle
requires that L + S + I be odd. For singlet and triplet states,
J = L while for coupled states J = L ± 1. Hence we have
the identification:

singlet and coupled:

{
J even → I = 1

J odd →: I = 0
(A52)

triplet :

{
J even → I = 0

J odd →: I = 1.

These are summarized by the following:

singlet and coupled: τ 1 · τ 2 = −1 + 2(−1)J
(A53)

triplet: τ 1 · τ 2 = −1 − 2(−1)J .

To determine the correct isospin factor for each v
ρ2ρ

′
2

i the
channel to which it contributes must first be determined by
examining the matrices Eqs. (E43)–(E48) of Ref. I. Inspection
shows that the kernels v1, v3, v9, and v11 do not contribute
to the triplet channels, while kernels v5, v7, v13, and v15

contribute only to triplet channels. The rest contribute to either,
depending on their ρ spin. In particular, contributions to the
triplet channels come from (i) the ++ sector of v6 and v8,
(ii) the +− sector of v10 and v12, (iii) the −+ sector of v2 and
v4, and (iv) the −− sector of v14 and v16, with the other sectors
of these kernels contributing to either singlet or coupled.

7. Charge symmetry breaking induced by pion exchange

In order to include important violations of charge symmetry
and to better describe the important pion exchange, both
models treat the charged π± and the neutral π0 as independent
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mesons, with their masses fixed to their experimental values.
Model WJC-1 allows the couplings of the pions to be varied
independently while model WJC-2 assumes that the couplings
(written in terms of g and not f ) of both are the same.

In addition to the couplings and masses, the correct isospin
factor for the exchange of each pion must be worked out.
There are two ways to do this. The operator τ 1 · τ 2 can be
decomposed into

τ 1 · τ 2 = τ 3
1 τ 3

2 + 2(τ+
1 τ−

2 + τ−
1 τ+

2 ), (A54)

where τ± = (τ 1 ± τ 2)/2 are the raising and lowering opera-
tors (normalized to 1 and not

√
2 as is more commonly done)

and the first term arrises from π0 exchange and the second
from π± exchange. Noting that

τ 3
1 τ 3

2 |pn〉 = −|pn〉
τ 3

1 τ 3
2 |np〉 = −|np〉

(A55)
2(τ+

1 τ−
2 + τ+

1 τ−
2 )|pn〉 = 2|np〉

2(τ+
1 τ−

2 + τ+
1 τ−

2 )|np〉 = 2|pn〉
we see that

τ 1 · τ 2|π0 → −1

τ 1 · τ 2|π± →
{

2 I = 1 states

−2 I = 0 states.
(A56)

These factors can also be obtained by using the fact that isospin
invariance gives couplings for {p → pπ0, n → nπ0, p →
nπ+, n → pπ−} in the ratios {1,−1,

√
2,

√
2}.

The implication of (A56) for π± couplings is to replace the
isospin factors from (A53) by

τ 1 · τ 2|π± →
{

2(−1)J S and C states

−2(−1)J T states.
(A57)

APPENDIX B: EVALUATION OF ANGULAR INTEGRALS

1. Angular integrals

The angular integrals needed for this problem are defined
to be

Ai,a,±
λ1λ2,λ

′
1λ

′
2
=

∫ 1

−1
dz Ai

λ1λ2,λ
′
1λ

′
2
Db

[
θ, x0

(
Ep − 1

2
W

)]
(B1)

where Db is the dressed propagator (including form factor) for
meson b, defined in Eq. (A8), and the four-momentum transfer
for the direct (+) and alternating (−) terms is

q2(x0) = [
x0
(
Ep − 1

2W
) − y0

(
Ep′ − 1

2W
)]2

−p2 − p′2 + 2pp′z, (B2)

where in this article the initial state always has particle 1 on-
shell, so y0 = 1. These integrals are assembled from the matrix
elements of Table X and the functions of Table XIII, leading to
the identities of Table XI. All of the integralsA are recalculated
for each J , p, x0, p′, and y0, so these arguments are not
included in the list of subscripts denoting the dependencies
of A.

2. Mapping for the direct terms

For the direct term the meson propagator is strongly peaked
in the forward direction (z = 1). For the recent NN fits, the
meson propagators have the form

Db(z) ≡ F (z) = m2
b

m2
b + A|z0 − z|

[
	2

b

	2
b + A|z0 − z|

]4

, (B3)

where mb and 	b are the meson mass and form factor mass of
meson b, respectively, and

A = 2pp′

z0 = p2 + p′2 − (Ep − Ep′ )2

2pp′ ≡ 1 + ξ, (B4)

with ξ = 0 if the incoming and outgoing momenta (p and p′)
are equal in magnitude, and ξ > 0 when p �= p′. [Since z0 � 1,
the absolute value in (B3) can be ignored.] At the largest
momenta used in the numerical solutions, A � 1800 GeV2,
compared to (for example) the pion mass squared m2

π � 2 ×
10−4 GeV2. Under these conditions, numerical evaluation of
the integral, with its narrow and large forward peak is difficult.

To carry out the integration numerically, we apply a Gauss-
Legendre quadrature rule to discretize the integration variable
z into a grid of Gauss points distributed between −1 and
+1. However, it is convenient to map the integration variable
z → y, where y will vary slowly in the region where F (z) is
large. One possible function that will accomplish this, and still
remain bounded between −1 and 1 is

z(y) = tanh[y/(b0 − 1)]

tanh[1/(b0 − 1)]
. (B5)

When b0 is close to 1, this function spreads out the intervals
near z = ±1, so more Gauss points may be placed in the region
of the forward peak. The mapping function, for four different
values of b0, is shown in Fig. 10. Using these mappings, the
propagator becomes a function of the integration variable y

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

z

y

FIG. 10. Plot of the mapping function z(y) defined in Eq. (B5).
The four curves, each with 90 Gauss points, correspond to b0 = 10
(small solid triangles), b0 = 1.5 (open boxes), b0 = 1.2 (solid boxes),
and b0 = 1.1 (small solid circles).
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FIG. 11. Plot of the meson propagator F (with mb = 0.14, 	b = 4, z0 = 1, and A = 1800) as a function of the mapped variable y defined
in Eq. (B5). The four curves, each with 90 Gauss points, correspond to b0 = 10 (small solid triangles), b0 = 1.5 (open boxes), b0 = 1.2 (solid
boxes), and b0 = 1.1 (small solid circles). The right panel covers the region shown in the upper right corner of the left panel.

(instead of the physical variable z), and the integrand, as a
function of the mapped variable y, is shown in Fig. 11 (for the
same four choices of b). The angular integral is transformed
to ∫ 1

−1
dzF (z) =

∫ 1

−1
dy

dz

dy
F [z(y)]. (B6)

Clearly, without any mapping (b0 > 10) the forward peak
is very poorly sampled. If we take b0 = 1 + ε, with ε small,
but larger than zero (to avoid the “singularity” at b0 = 1), we
are able to evaluate the integrals accurately. In practice, we
found that b0 = 1.2 (one of the cases shown in the figures)
gave a good sampling of the forward peak and the integration
converged rapidly.

3. Mapping for the exchange terms

The exchange propagator has the same form as Eq. (B3),
except now

z0 = p2 + p′2 − (Ep + Ep′ − W )2

2pp′ → −1 + 2W

p
, (B7)

where W is the total energy of the NN system in its center of
mass, and the last expression holds if p = p′ → ∞. We see
that it is now possible for |z0| to be less than unity, so the peak
can lie in the region of integration.

To handle this case we need a mapping where the number of
Gauss points is strongly distributed near z = z0, where F (z) is
sharply peaked. It is convenient to use a mapping which maps
the points y = z0, 1,−1 into z = z0, 1,−1 respectively. Such
a mapping is

z(y) =
{

z+(y, b) z0 < y < 1

z−(y, b) −1 < y < z0
, (B8)

where

z+(y, z0) = 1

2
(1 − z0)

tanh[ζ (2y − 1 − z0)/(1 − z0)]

tanh[ζ ]

+ 1

2
(z0 + 1)

z−(y, z0) = 1

2
(1 + z0)

tanh[ζ (2y + 1 − z0)/(1 + z0)]

tanh[ζ ]

+ 1

2
(z0 − 1) (B9)

and ζ is a parameter. This mapping (with ζ = 4) is shown in
Fig. 12. Note that each curve distributes the 90 Gauss points
so they are densely spaced in the region of z = z0.
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z

y

FIG. 12. Plot of the mapping function z(y) defined in Eq. (B8),
with ζ = 4. The three curves, each with 90 Gauss points, correspond
to z0 = −0.5, z0 = 0, and z0 = 0.5. Each curve flattens out in the
region of z = y = z0.
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FIG. 13. (Color online) Plot of the meson propagator F (with
mb = 0.14, 	b = 4, and A = 1800) as a function of both the
unmapped variable y and the mapped variable z(y), defined in
Eq. (B8), for each of the choices z0 = −0.5, z0 = 0, and z0 = 0.5. The
90 Gauss points distributed between −1 < y < 1 are shown on each
curve. All the curves peak at y = z0, with the unmapped functions
F (y) having narrower peaks than the mapped function F [z(y)].

Both the mapped and unmapped meson propagators are
shown in Fig. 13, for each of the cases z0 = −0.5, 0, and 0.5.
Note that the unmapped propagator has a very narrow peak
at y = z0 and that this peak is described by only a few Gauss
points, even when the total number of points is quite large
(90 in this case). The mapped functions, however, have their
peaks spread out with many Gauss points distributed around
the peak. From this picture, it is easy to see why the mapping
allows a more accurate evaluation of the integrals. (In practice,
a better result was obtained by dividing the interval into
�1 = [−1, z0] and �2 = [z0, 1] and doing separate Gaussian
integrations over each interval. The points assigned to each
interval, ni , depended on the value of z0. If z0 < −0.5, we
chose n1 = n/4 and n2 = n, for −0.5 � z0 < 0, n1 = n/2 and
n2 = n − n/4, for 0 � z0 < 0.5, n1 = n − n/4 and n2 = n/2,
and for 0.5 � z0, n1 = n and n2 = n/4, so in all cases we
actually used 5n/4 Gauss points.)

Finally, the angular convergence is illustrated in Tables XV
and XVI for a typical matrix element [the isoscalar kernel
v++

1 defined in Eq. (A12)] at one of the most difficult points:
the diagonal elements with p = p′ = pmax, where pmax �

30 GeV, the largest momenta used in the numerical solutions
of the equations. Table XV shows the convergence of the direct
terms (those with x0 = 1) and Table XVI the exchange terms
(those with x0 = −1). Note that the direct terms calculated
with unmapped integrations (the columns labeled with y in
the tables) do not converge and that the convergence of the
exchange terms is very marginal. With the mappings (columns
labeled z), the direct terms converge even at n = 20, but
excellent results for the exchange terms requires n � 40.
Because the high-momentum matrix elements only make a
small contribution to the solutions of the equation, smaller
values of n give very good results for the phase shifts, and
these improved angular integrations only affect the accuracy
with which the asymptotic deuteron wave functions can be
determined.

APPENDIX C: DEUTERON WAVE FUNCTIONS:
SOME DETAILS

In this appendix we start by showing in detail how the
matrix Eq. (3.26) is derived and then use the equation to study
the asymptotic behavior of the wave functions, obtaining the
results (3.41). We conclude with a demonstration of how the
general normalization condition (3.12) reduces to (3.39).

1. Equations for the partial-wave deuteron wave functions

The equation for the deuteron wave functions, in partial-
wave form, can be extracted from the general result (E36)
of Ref. I. This equation uses a kernel antisymmetrized under
particle exchange (with the superscript J = 1 suppressed)

V
+ ρ2,+ ρ ′

2

d,λ1λ2,λ
′
1λ

′
2
(p, k) = 1

2

{
V

+ρ2,+ρ ′
2

dir λ1λ2,λ
′
1λ

′
2
(p, p0; k)

+ δ
p0

V
ρ2+,+ρ ′

2

dir λ1λ2,λ
′
1λ

′
2
(p,−p0; k)

}
. (C1)

We will show how the full kernel with well defined parity,
Eq. (A1), will emerge automatically, but the phase of the ampli-
tude under particle interchange cannot emerge automatically
in the CST (as discussed in Refs. I and II); that phase must
be imposed by hand from the start by using the symmetrized
kernel (C1). The phase δp0 = ±1 is related but not equal to the
phase under particle exchange [because the helicities λ1, λ2

are not exchanged in (C1)].

TABLE XV. Convergence of the diagonal element of the direct part of the kernel v++
1 at the point p = p′ = pmax. Columns labeled y use

no mapping; those labeled z(y) use the mapping function (B5). Here the nucleon form factor has been set to 1. With the correct form factor, all
of these matrix elements are reduced by a factor of 7×10−15. (All numbers in this table are multiplied by 10−3.)

n J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6

y z(y) y z(y) y z(y) y z(y) y z(y) y z(y) y z(y)

20 0.14321 −3.3764 −0.38372 −24.288 0.14001 −3.3825 −0.36991 −24.233 0.13277 −3.3967 −0.34585 −24.134 0.12190 −3.4184
30 0.62029 −3.3765 −2.0149 −24.288 0.61385 −3.3827 −1.9816 −24.232 0.59907 −3.3968 −1.9225 −24.133 0.57642 −3.4186
40 1.4365 −3.3765 −5.2403 −24.288 1.4277 −3.3827 −5.1898 −24.232 1.4074 −3.3968 −5.0999 −24.133 1.3762 −3.4186
60 2.5656 −3.3765 −12.496 −24.288 2.5569 −3.3827 −12.435 −24.232 2.5368 −3.3968 −12.326 −24.133 2.5059 −3.4186
90 1.4055 −3.3765 −18.312 −24.288 1.3992 −3.3827 −18.254 −24.232 1.3847 −3.3968 −18.152 −24.133 1.3624 −3.4186
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TABLE XVI. Convergence of the diagonal element of the exchange part of the kernel v++
1 at the point p = p′ = pmax. Columns labeled

y use no mapping; those labeled z(y) use the mapping function (B8). Here the nucleon form factor has been set to 1. With the correct form
factor, all of these matrix elements are reduced by a factor of 7×10−15.

n J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6

y z(y) y z(y) y z(y) y z(y) y z(y) y z(y) y z(y)

20 −25.184 −74.786 −5.1601 −14.525 −16.551 −49.079 −2.1999 −6.2065 −2.1638 −6.2802 0.98501 2.7617 8.5080 25.368
30 −37.148 −81.841 −6.0514 −11.903 −24.393 −53.713 −2.5703 −5.0887 −3.1487 −6.8793 1.1690 2.2584 12.580 27.757
40 −43.422 −80.907 −8.1636 −13.401 −28.504 −53.097 −3.4750 −5.7208 −3.6625 −6.7959 1.5681 2.5541 14.716 27.443
60 −54.117 −80.899 −9.9713 −13.594 −35.514 −53.091 −4.2542 −5.8025 −4.5432 −6.7939 1.9029 2.5918 18.356 27.441
90 −67.458 −80.910 −9.1111 −13.607 −44.267 −53.098 −3.8893 −5.8080 −5.6594 −6.7948 1.7357 2.5944 22.885 27.445

Using this kernel, the deuteron bound state equation is

m

Ep

�
+ρ2
λ1λ2,λd

(p) = −
∫ ∞

0

k2dk

(2π )3

∑
µ1µ2ρ

V
+ρ2,+ρ

d,λ1λ2,µ1µ2
(p, k)

×Gρ(k)
m

Ek

�
+ρ
µ1µ2,λd

(k). (C2)

The dependence of the amplitudes on the total momentum
P has been dropped, and the energy factors of m/E, written
explicitly, will be absorbed later when we go to the matrix
notation of Eq. (3.26). At this stage the sum is over all helicities
µ1, µ2 and the intermediate rho spin ρ.

The symmetries of the vertex function are a direct con-
sequence of the symmetries of the kernel. Under parity, the
deuteron kernel transforms as

PV
+ρ2,+ρ

d,λ1λ2,µ1µ2
(p, k)P−1 = ρρ2V

+ρ2,+ρ

d,−λ1−λ2,−µ1−µ2
(p, k). (C3)

Hence the equation satisfied by the transformed vertex
function,

m

Ep

ρ2�
+ρ2
−λ1−λ2,λd

(p) = −ρ2

∫ ∞

0

k2dk

(2π )3

∑
µ1µ2ρ

V
+ρ2,+ρ

d,−λ1−λ2,µ1µ2
(p,k)

× Gρ(k)
m

Ek

�
+ρ
µ1µ2,λd

(k)

= −
∫ ∞

0

k2dk

(2π )3

∑
µ1µ2ρ

V
+ρ2,+ρ

d,λ1λ2,µ1µ2
(p, k)

× Gρ(k)
m

Ek

ρ�
+ρ
−µ1−µ2,λd

(k), (C4)

is identical to the original equation, showing that the parity
relation (3.24) is satisfied. Using this result we may reduce
the sum over µ1, µ2 from four to two terms. Dropping the
redundant ρ1 = ρ ′

1 = + indices, we can write the summation
over the two values of µ1 explicitly and use the parity relations
to reduce the equation to a form in which only µ1 = + 1

2
appears:

m

Ep

�
ρ2
λ1λ2,λd

(p) = −
∫ ∞

0

k2dk

(2π )3

m

Ek

∑
µ2ρ

Gρ(k)
{
V

ρ2,ρ

d,λ1λ2,+ 1
2 µ2

(p,k)

× �
ρ

+ 1
2 µ2,λd

(k) + V
ρ2,ρ

d,λ1λ2,− 1
2 µ2

(p, k)

× �
ρ

− 1
2 µ2,λd

(k)
}

= −
∫ ∞

0

k2dk

(2π )3

m

Ek

∑
µ2ρ

{
V

ρ2,ρ

d,λ1λ2,+ 1
2 µ2

(p, k)

+ ρV
ρ2,ρ

d,λ1λ2,− 1
2 ,−µ2

(p, k)
}

× {
Gρ(k)�ρ

+ 1
2 µ2,λd

(k)
}

= −
∫ ∞

0

k2dk

(2π )3

m

Ek

∑
µ2ρ

Vρ2,ρ

d,λ1λ2,+ 1
2 µ2

(δp0 , ρ)

×Gρ(k)�ρ

+ 1
2 µ2,λd

(k)
}
, (C5)

where in the last line we have recovered the fully symmetrized
kernel of Eq. (A1). The deuteron channel must have the phases
δp0 = ρλ

2 , appropriate to an isospin 0 state, and δS = ρ ′
2 =

ρ. Using the notation V = Vρ2,ρ
λ2µ2,δp0

(and, for the helicities,

± 1
2 → ±) leads to the identifications

Vρ2+
++,+(p, k) = v

ρ2+
9 Vρ2−

++,+(p, k) = v
ρ2−
1

Vρ2+
+−,+(p, k) = v

ρ2+
11 Vρ2−

+−,+(p, k) = v
ρ2−
3

V++
−+,+(p, k) = v++

12 V+−
−+,+(p, k) = v+−

8
(C6)

V++
−−,+(p, k) = v++

10 V+−
−−,+(p, k) = v+−

6

V−+
−+,−(p, k) = v−+

16 V−−
−+,−(p, k) = v−−

4

V−+
−−,−(p, k) = v−+

14 V−−
−−,−(p, k) = v−−

2 ,

where the kernels are written in the order for coupling
to |�+

++〉, |�−
++〉, |�+

+−〉, |�−
+−〉, respectively. Note that they

reproduce the matrix (3.28), finishing this discussion.

2. Asymptotic behavior of the wave functions

Starting from Eq. (C5), the wave function (3.22) has the
following general behavior at large p

ψ
ρ
λ1λ2,λd

(p) = NdG
ρ(p)

m

Ep

�
ρ
λ1λ2,λd

(p)

� Gρ(p)
∫ ∞

0
dkVd (p, k)C(k), (C7)

where, in this section, we return to the notation k ≡ |k|
for the magnitude of the three-momentum, and Vd is the
appropriate partial-wave projection of the Feynman OBE
amplitudes [shown in detail in Eq. (C6)]. All we need know
about the function C(k) is that it provides the convergence for
the k integral. The kernels include a factor of m/Ep, which
contributes to the large p behavior.

The kernels Vd are multiplied by nucleon form factors
[recall Eq. (3.5)], one of which depends on the intermediate
momentum (k) and the other on the final momentum (p). The
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final-state form factor, h(p), plays an important role in the
asymptotic behavior of the wave function. It depends only on
p2, which is the square of the mass of the off-shell nucleon

p2 = (Md − Ep)2 − p2

(C8)
p2 → −2Mdp for p � m.

Hence,

h(p2) →
(
	2

N − m2
)4

16M4
d p4

for p � m, (C9)

so the form factor behaves like p−4. This contributes a k−4

behavior to the function C(k), which, together with the internal
nucleon form factor h(k) that is part of Vd , assures that the
integral over k will converge. Hence we may conclude that the
wave functions go like

ψ
ρ
λ1λ2,λd

(p) → Gρ(p)Vd (p, k̄)C(k̄), (C10)

where the mean value theorem has been used to write the
integral over k, with k̄ a four-vector whose three-vector part
has some fixed (unknown) value k̄ in the interval [0,∞).

To finish this discussion we examine the asymptotic
behavior of the partial-wave amplitudes for one of the OBE
terms in the kernel. If the form factors h(p) and h(k) are
removed, this integral has the generic form

Db(p, k̄) =
∫ 1

−1
dz gb(p)

m

Ep

f (	b, q)

m2
b + |q2| d(z), (C11)

where q2 is the momentum transferred by the boson with mass
mb, form factor f (	b, q), and momentum-dependent coupling
gb(p) → p� (as p → ∞, where � is yet to be determined). We
have isolated the m/Ep term incorporated into the definition
of Vd , and d(z) includes the z dependence that arises from the
generic rotation matrices of the type tabulated in Table XI. In
Ref. I the meson form factors have the form

f (	b, q) =
[

	2
b

	2
b + |q2|

]nb

, (C12)

where nb = 4 for all mesons.
The asymptotic behavior of the integral (C11) depends on

whether it is a direct or an exchange term. The momentum
transferred by the mesons in the direct terms

q2 = (Ep − Ek)2 − (p − k)2

→ 2m2 − 2p(Ek − kz) (as p → ∞, k fixed) (C13)

and is never positive, so the integrand is a smooth function of
z. The asymptotic behavior, for a fixed k = k0, is therefore

Ddir
b (p, k̄) → p�

pnb+2
. (C14)

As shown below, these terms are vanishingly small com-
pared to the exchange terms.

The exchange terms have a very different structure. Here
the momentum transferred by the meson is

q2 = (Md − Ep − Ek)2 − (p + k)2

→ m2 + (Md − Ek)2 − k2 − 2p(Md − Ek + kz)

→ −2p(Md − Ek + kz) as p → ∞. (C15)

When p is very large, this is zero along a line in the k, z plane
given approximately by Md − Ek + kz = 0. Along this line
the integrand has a cusp which sits at

zc = −Md − Ek

k
(C16)

in the region of integration (−1 � z � 1) for values of k in the
interval

M2
d − m2

2Md

≡ kmin < k < ∞. (C17)

Contributions from the cusp clearly dominate the integral,
because in that region the integrand is constant. Hence, letting
mb = 	b in order to simplify the determination of the asymp-
totic p dependence, the exchange integral is approximately

Dex
b (p, k̄)

p�−1
�

∫ 1

−1
dz

[
	2

b

	2
b + |q2|

]nb+1

d(z)

�
∫ zc

−1
dz

[
	2

b

	2
b + 2pk̄(zc − z)

]nb+1

d(z)

+
∫ 1

zc

dz

[
	2

b

	2
b + 2pk̄(z − zc)

]nb+1

d(z)

� 2	2
b

nbpk̄
d(zc), (C18)

where we have integrated by parts, keeping only the leading
term (the corrections go like higher powers of 1/p).

Collecting these results together we see that the reduced
partial-wave amplitude, Db, behaves like

D(p, k0) →
{

p�−(2+nb) direct

p�−2 exchange,
(C19)

where nb is the power of the form factor at the NNb vertex and
� the power of the p dependence of the NNb vertex function.

It remains to determine the power �. First, note that the
single particle ρ-spin matrix elements given in Table XIV each
contribute a factor of

√
p/(2m) [from the high-momentum

limits (A5)]; their product gives one power of p implicitly
contained in Eqs. (A45)–(A48).

Next, examine any additional p dependence coming from
the two particle ρ-spin matrix elements given in Eqs. (A45)–
(A48). There are terms of order p coming from the off-shell
energy factors �Ei defined in (A24), but the condition (A25)
shows that these factors cannot be multiplied together to make
a term of order p2. Special terms of order p2 seem to be present
in the vector meson exchange terms, but we will show below
that these terms cancel. Hence the final result is the product of
two terms of order p giving � = 2.

To show the cancellation of the special p2 terms
contributing to vector-meson exchange, consider the three
terms in Eq. (A47) which give rise to them: the product of
Rv1’s (first term), the p2 multipying the D4 terms (fourth
term), and the last term. It is sufficient to look at the
exchange-term matrix elements where particle 1 is off-shell
in the final state, so that �E2 = 0. At large p use the fact that
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�E1 → (ρ1 + 1)p to obtain

Rv1Rv1 → p2 g2
vκv

(2m)2
[ρ1κv − (ρ1 + 1) νv]1112

D4D4 → p2

(
gvκv

2m

)2

1112 (C20)

Rv3D4 → p2 g2
vκv

(2m)2
(κv − νv)(ρ1 + 1) 2λ1τ

1
112.

Adding these together and replacing ρ1 by ρ2 [in accordance
with the notation for the exchange terms in Eq. (A12)] gives
the following compact result

gv(p) � p2 g2
vκv

(2m)2
(κv − νv)(ρ2 + 1)

[
11 + 2λ1τ

1
1

]
12. (C21)

Note that this is zero if ρ2 = −1, insuring immediately that
eight of the deuteron kernels (C6) have no special terms of
order p2. To see that this is also true of the other eight cases set
ρ2 = 1 (and recall that ρ ′

1 = 1) and substitute for the matrix
elements 1 and τ 1 using the results from Table XIV (with
ρ2 ↔ ρ1) and the high-momentum limits (A5)

gv(p) � 2p2

√
p

2m

g2
vκv

(2m)2
(κv − νv) (1 − 2λ1) (c′ − s ′)12.

(C22)

This is zero if λ1 = 1
2 , which is true of all of the amplitudes

(and, in particular, the remaining 8). We have proved that the
special p2 terms coming from vector meson exchange cancel,
and that � = 2. The conclusion is that the wave functions
should go like

zρ(p) → Gρ(p)h(p2)Dex(p, k0) (C23)

which gives the result (3.41) as expected.
To confirm the predictions of Eq. (C6), Fig. 14 shows how

the 16 deuteron kernels Vi(p, k) vary with p for a fixed k.

3. Reduction of Eqs. (3.12) to (3.39)

Substituting the expansion (3.16) into Eq. (3.12), and using
the orthogonality of the Dirac spinors, compactly written as

ūρ(−p, λ)γ 0uρ ′
(−p, λ′) = Ep

m
δλ′λδρ ′ρ (C24)

gives

δλdλ′
d

=
∫

d3p ψ
ρ†
λ1λ2,λ

′
d
(p)ψρ

λ1λ2,λd
(p) −

∫ ∫
d3pd3p′

(2π )3

×ψ
ρ†
λ1λ2,λd

(p)�V
ρρ ′

λ1λ2,λ
′
1λ

′
2
(p, p′; P )ψρ ′

λ′
1λ

′
2,λ

′
d
(p′),

(C25)

where the V
ρρ ′

≡ V
+ρ,+ρ ′

includes the factors of m2/EpEp′

[cf. Eq. (E13) of Ref. I].
Next we express the helicity amplitudes in terms of the

wave functions z�(p) using (3.30). To this end recall Eq. (A6)
for the two-component helicity spinors and use the convenient

relation iσ2χλ
= −2λχ−λ

and the matrix elements

χ †
−λ2

σ · ξ
λd

iσ2χλ1
=

√
2

|λ|
d1

λd ,λ(θ )

χ †
−λ2

σ · p̂ iσ2χλ1
= χ †

−λ2
χ−λ1

= δλ1,λ2 (C26)

p̂ · ξ
λd

= d1
λd ,0(θ ),

where λ = λ1 − λ2 and the rotation matrices are

d1
00(θ ) = cos θ

d1
10(θ ) = d1

0,−1(θ ) = −d1
0,1(θ ) = −d1

−1,0(θ ) = − 1√
2

sin θ

(C27)

d1
11(θ ) = d1

−1,−1(θ ) = 1

2
(1 + cos θ )

d1
−1,1(θ ) = d1

1,−1(θ ) = 1

2
(1 − cos θ ).

The result is

ψ+
λ1λ2,λd

(p) = 1√
8π

{(
u(p) − 1√

2
w(p)

)√
2

|λ|
d1

λd ,λ(θ )

+ δλ1,λ2

3w(p)√
2

d1
λd ,0(θ )

}

ψ−
λ1λ2,λd

(p) = −2λ1

√
3

8π

{
δλ1,λ2

(
vs(p) − vt (p)√

2

)
d1

λd ,0(θ )

+ vt (p)√
2

√
2

|λ|
d1

λd ,λ(θ )

}
. (C28)

Explicitly, for each individual case, using λ = ± 1
2

ψ+
λλ,λd

(p) = 1√
8π

(u(p) +
√

2w(p))d1
λd ,0(θ )

ψ+
λ,−λ,λd

(p) = 1√
4π

(
u(p) − 1√

2
w(p)

)
d1

λd ,2λ(θ )

(C29)

ψ−
λλ,λd

(p) = −2λ

√
3

8π
vs(p)d1

λd ,0(θ )

ψ−
λ,−λ,λd

(p) = −2λ

√
3

8π
vt (p)d1

λd ,2λ(θ ).

We now can reduce the first term in the normalization
condition (C25). Taking λd = λ′

d and using the normalization
condition (3.20) for the d1 functions gives

1 = 2π

∫ ∞

0
p2dp

∫ π

0
sin θdθ{2|ψ+

λλ,λd
(p)|2

+ 2|ψ+
λ,−λ,λd

(p)|2 + 2|ψ−
λλ,λd

(p)|2 + 2|ψ+
λλ,λd

(p)|2}

= 1

3

∫ ∞

0
p2dp

{
(u(p) +

√
2w(p))2

+ 2

(
u(p) − 1√

2
w(p)

)2

+ 3v2
s (p) + 3v2

t (p)

}

=
∫ ∞

0
p2dp

{
u2(p) + w2(p) + v2

t (p) + v2
s (p)

}
, (C30)

in agreement with Eq. (3.39). The derivative terms can be
similarly reduced and expressed in terms of the kernels given
in Eq. (C6).
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FIG. 14. The p dependence (for k fixed at 816 MeV) of the 16 model WJC-1 deuteron kernels Vi(p, k) defined in Eq. (C6) (but with the
nucleon form factors set to unity). The left panel shows clearly that the total kernel (direct plus exchange) approaches a constant at large p,
as predicted by (C19) with � = 2. The right panel shows that the asymptotic p dependence of 5 of the direct kernels behaves like p−4, again
predicted by (C19) with nb = 4 and � = 2. The other direct kernels decrease more rapidly, presumably because they have an � < 2.

Before leaving this section we note that the partial-wave
deuteron wave functions follow from the normalization con-
dition (3.20) and the definitions (3.21)

ψ+
++,λd

(p) =
√

3

8

∫ 1

−1
dz

∣∣d1
λd ,0(θ )

∣∣2(u +
√

2w)

= 1√
6

(u +
√

2w)

ψ+
+−,λd

(p) =
√

3

8

∫ 1

−1
dz

∣∣d1
λd ,1(θ )

∣∣2(
√

2u − w)

= 1√
6

(
√

2u − w) (C31)

ψ−
++,λd

(p) = − 3√
8

∫ 1

−1
dz

∣∣d1
λd ,0(θ )

∣∣2vs = − 1√
2

vs

ψ−
+−,λd

(p) = − 3√
8

∫ 1

−1
dz

∣∣d1
λd ,1(θ )

∣∣2vt = − 1√
2

vt .

4. Coordinate-space expansion functions

The coordinate-space wave functions discussed in
Sec. III G 3 are constructed from the spherical Bessel trans-
forms (3.37), which can be written in terms of the j0 Bessel

transform

Gi
�(r) = r

√
2

π

∫ ∞

0
p2 dpj�(pr)Gi

�(p)

= (−1)�
√

2

π
r�+1

(
1

r

d

dr

)� ∫ ∞

0
p2 dpj0(pr)

Gi
�(p)

p�

= (−1)�
r�+1

M�
i

(
1

r

d

dr

)� [
Gi

0(r)

r

]
. (C32)

Hence, for S and P states it is sufficient to calculate the
following Fourier sine transforms:

Gi
0(r) =

√
2

π

∫ ∞

0
p dp sin(pr)Gi

0(p)

= Ai

{
e−zi − e−Zi

[
1 + 1

2
Zi

(
1 − R2

i

)]}

Gn
0(r) =

√
2

π

∫ ∞

0
p dp sin(pr)Gn

0(p)

= 2

3π
M2

nZ2
nK1(Zn), (C33)

where zi , Zi , Ri , and Ai were given in Eq. (3.52) and the
modified Bessel functions of the second kind are

Kn(z) = zn

(2n − 1)!!

∫ ∞

1
dt e−zt (t2 − 1)n− 1

2 . (C34)
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The P-state wave functions are obtained by differentiation,
as outlined in Eq. (C32). They are

Gi
1(r) = − r

Mi

d

dr

[
Gi

0(r)

r

]
= Ai

{
Rie

−zi

[
1 + 1

zi

]

− e−Zi

[
1 + 1

Zi

+ 1

2
Zi

(
1 − R2

i

)]}
, (C35)

Gn
1(r) = − r

Mn

d

dr

[
Gn

0(r)

r

]
= 2

3π
M2

nZ2
nK0(Zn).

Finally, the D-state wave functions are computed by first
transforming the functions

Gi
0d (p) =

√
2

π

m2
i M

6
i(

m2
i + p2

)(
M2

i + p2
)3

(C36)

Gn
0d (p) =

√
2

π

M7
n(

M2
n + p2

)7/2

which gives
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π

∫ ∞
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p dp sin(pr)Gi

0d (p)

= Bi

{
e−zi − e−Zi − 1

8
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where Bi was given in Eq. (3.52). Differentiating these
following (C32) gives
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,
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1
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]2

Gn
0d (r) = 2

15π
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nZ3
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At large r the functions Gi
� go like

lim
r→∞ Gi

0(r) = Aie
−zi

lim
r→∞ Gi

1(r) = AiRie
−zi

[
1 + 1

zi

]
(C39)

lim
r→∞ Gi

2(r) = BiR
2
i e

−zi

[
1 + 3

zi

+ 3

z2
i

]
.

This is the asymptotic behavior expected for solutions of
the Schrödinger equation with orbital angular momentum �.
The tail functions fall off like exponentials multiplied by a
fractional power of r

lim
r→∞ Gn

0(r) = 1

3

√
2

π
M2

nZ3/2
n e−Zn

lim
r→∞ Gn
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lim
r→∞ Gn

2(r) = 1

15

√
2

π
M2

nZ5/2
n e−Zn .

At small r the functions Gi
� have the expected r�+1 ∼ Z�+1

i

behavior

lim
r→0

Gi
0(r) = 1

2AiZi(1 − Ri)
2

lim
r→0

Gi
1(r) = 1

6AiZ
2
i (1 − Ri)

2(1 + 2Ri) (C41)

lim
r→0

Gi
2(r) = 1

40BiZ
3
i (1 − Ri)

3(1 + 3Ri + 8
3R2

i

)
.

However, the tail functions contribute some nonanalytic
behavior at small r:

lim
r→0

Gn
0(r) = 2

3π
M2

nZn.

lim
r→0

Gn
1(r) = − 2

3π
M2

nZ2
n(log Zn − log 2 + γ ) (C42)

lim
r→0

Gn
2(r) = − 2

15π
M2

nZ3
n(log Zn − log 2 + γ ),

where γ = 0.5772 is Euler’s constant.
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