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Abstract Vanadium pentoxide mainly used as catalyst in

sulphuric acid, maleic anhydride and ceramics industry, is a

pollutant watering redistributed around the environment.

Research on biological influence of vanadium pentoxide has

gained major importance because it exerts toxic effects on a

wide variety of biological systems. In this work we intent to

evaluate the effects of vanadium pentoxide ranging from 0 to

2 mM in culture media on a wine wild-type Saccharomyces

cerevisiae from Alentejo region of Portugal. Our results

show that 2.0 mM vanadium pentoxide in culture medium

induced a significant increase of malonaldehyde level

and Glutathione peroxidase activity, a slightly increase of

Catalase A activity as well as a decrease of wet weight

and mitochondrial NADH cit c reductase of S. cerevisiae

UE-ME3. Also our results show that cycloheximide prevent

cell death when cells grows 30 min in presence of 1.5 mM of

vanadium pentoxide.

Keywords Vanadium � Malonaldehyde � Catalase A �
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Abbreviations

V2O5 Vanadium pentoxide

MDA Malonaldehyde

CAT A Catalase peroxisomal

GPx Glutathione peroxidase

ROS Reactive oxygen species

Introduction

Wine fermentation is a complex ecological and biochemical

process involving the sequential development of different

yeast species. The non-Saccharomyces yeasts grow well

during early stages of fermentation, but are subsequently

replaced during the following stages by Saccharomyces

yeasts (Fleet and Heard 1992; Pretorius 2000). Traditionally

the wine production by natural fermentation is greatly

influenced by the yeast resistance to the stress conditions,

including the osmotic stress imposed by the high sugar

content of the must and the ethanol produced during fer-

mentation, otherwise by pesticides and metals intakes by

grapes from the soil or present in winery steel equipment

(Bauer and Pretorius 2000; Querol et al. 2003). Vanadium is

a rare, soft, ductile grey-white element (Nechay 1984)

found combined in certain minerals and used mainly in steel

or pesticides production. The level of vanadium occurrence

in the earth’s crust is around 150 ppm. Moreover, Human

activities as fuel oil burning, steel empowerment, manu-

facturing of sulphuric acid and maleic anhydride and pes-

ticide use, increase its environmental level in the air, soil,

food and water, reaching in several cases 6,000 ppm

(Penuelas and Filella 2002). This metal exhibits a wide

range of stable oxidation states, two of which, vanadate

(V5?), and the less vanadyl (V4?), are considered to be

predominant in living systems (Bode et al. 1990). It is well

known that vanadium exerts toxic, mutagenic, and geno-

toxic effects on a wide variety of biological systems,

inducing alterations of many important metabolic functions
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(Willsky 1990). Moreover, vanadium can be a pollutant in

urban, industrial and rural areas, as a consequence of

industrial processes or chemical products application, fact

which requires the elucidation of the mechanisms by which

living organisms, like this wine yeast, answer to the pres-

ence of this metal ion in its growth medium during wine

fermentation (Mannazzu 2001). Since metals environmen-

tal level is an issue of great environmental apprehension, we

used Saccharomyces cerevisiae strain UE-ME3, a vanadium

resistant strain (Ferreira et al. 2006), for evaluate the

vanadium stress responses in a wine wild-type yeast of

Alentejo, a wine region of Portugal, having in account the

environmental importance of characterization and preser-

vation of wild-type strains of a winery region. Considering

that metals, disturbs energetic metabolism of the cell, which

is the main source of endogenous ROS production, mainly

at NADH reoxidation mechanisms and fatty acids oxida-

tion, we also intent evaluate how vanadium pentoxide affect

several antioxidant responses of yeast cell, since reactive

oxygen species has also been identified as essential in yeast

cell death (Madeo et al. 1999) and NADH dehydrogenases

display the role of regulates apoptosis in yeast (Wu et al.

2002; Wissing et al. 2004; Maris et al. 2001; Li et al. 2006).

At least five mechanisms of NADH reoxidation exist in

S. cerevisiae. These are: (a) alcoholic fermentation; (b) glyc-

erol production; (c) respiration of cytosolic NADH via

external mitochondrial NADH dehydrogenases (EC 1.6.5.3,

NDE1 and NDE2); (d) respiration of cytosolic NADH via

the glycerol-3-phosphate shuttle; and (e) oxidation of

intramitochondrial NADH via a mitochondrial ‘internal’

NADH dehydrogenase (EC 1.6.5.3, NDI). (Luttik et al.

1998; Bakker et al. 2001; Jault et al. 1994; Moore et al.

1992; Crichton et al. 2007; Small and McAlister-Henn

1998; Davidson and Schiestl 2001). Although it has been

recognized that peroxisomal structures and a number of

their constituent proteins are inducible by lipids or fatty

acids, very little is known about the mechanisms involved in

induction of peroxisomes in any eucaryotic organism

(Lazarow and Fujiki 1985; Lock et al. 1989; Tolbert 1981).

Catalase A (EC 1.11.1.6, CAT A) has been demonstrated to

be induced by fatty acids together with peroxisomal struc-

tures and a number of other peroxisomal proteins (Sko-

neczny et al. 1988; Veenhuis et al. 1987; Cohen et al. 1985;

Cohen et al. 1988). Therefore it should be possible to use

the expression of the Cta1 gene as an indicator for the

induction or repression of peroxisome formation (Simon

et al. 1991). Though it was determined CAT A, a peroxi-

somal enzyme involved in scavenging of H2O2 resulting

from an eventual increase of mitochondrial free-radical flux

induced by vanadium to evaluate the antioxidant response

of peroxisomal fraction from lag yeast cells. In other hand,

glutathione peroxidase (GPx) an enzyme of redox cycle of

glutathione is expressed in yeast cells and plays a crucial

role in the defence line against ROS (Izawa et al. 1995)

under S. cerevisiae reducing H2O2 endogenously formed, as

well as, LOOH to H2O and corresponding alcohol (Inoue

et al. 1999). Given that mitochondrial electron transport is a

large contributor to oxidative stress, we have investigated

how vanadium pentoxide influence yeast mitochondrial

NADH dehydrogenases, using NADH cytochrome c

reductase activity as marker, CAT A, and GPx as peroxi-

somal and cytoplasmactic enzymes markers of antioxidant

response, as well as cytoplasmatic malonaldehyde genera-

tion during metal exposition assays to determine yeast cell

damages caused by vanadium pentoxide. In addition, we

attempt to determine if cycloheximide, a protein synthesis

inhibitor, revert an eventual yeast growth inhibition caused

by 1.5 and/or 2.0 mM V2O5 and infer an eventual apoptosis

process (Ludovico et al. 2003), which can be correlate with

events involving mitochondria and peroxisomes.

Materials and methods

Microorganisms and growth conditions

The eukaryotic model used was the wine wild-type Sac-

charomyces cerevisiae UE-ME3, a strain isolated from

regional wine (Alentejo-Portugal), belonging to the Enol-

ogy laboratory collection of University of Évora, a greatly

resistant strain to metal stress (Ferreira et al. 2006). The

isolated colonies of this strain were stored in glycerol

(30%, w/v) at -80�C. The cells were grown to mid-

exponential phase in a water bath, with orbital stirring, at

28�C, in 250-ml flasks containing 100 ml of YEPD med-

ium with 2% (w/v) of glucose (Atlas 2006). The cells

(106 cells ml-1) at mid-exponential phase were inoculated

in the same condition and incubated during 200 min at

28�C in the absence or presence of 1.5 and 2.0 mM V2O5.

At the end of the experiment, samples from each treat-

ment were used for biomass determination by wet weight.

The cultures were used to obtain the peroxisomes enriched

fraction, and mitochondria enriched fraction, as well as,

post-peroxisomal supernatant which were used for deter-

mination of CAT A; mitochondrial NADH cit C reductase;

GPx and Malondialdehyde (MDA) level, respectively.

Inhibition of protein synthesis

The effect of protein synthesis inhibition was also evalu-

ated determining the dose-response curves in liquid med-

ium and yeast growth in solid medium: Exponential-phase

cells were harvest, suspended and grown at 28�C in liquid

2% glucose YEPD medium, containing V2O5 at 0, 1.5 and

2.0 mM and cycloheximide 50 mg/ml for 30 min. At the

same time and conditions was performed a control assay
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without cycloheximide. Samples from each treatment were

diluted and plated in triplicate on YEPD medium, in order

to obtain viable counts (cfu) and to observe the effect of

protein synthesis inhibition (Ludovico et al. 2003;

Matsuyama et al. 1998).

Preparation of peroxisomes enriched fraction

Peroxisomes enriched fraction was obtained by a modifi-

cation of the procedure of Petrova et al. (2004). Cells

growing in YEPD medium with 2% (w/v) of glucose and,

incubated during 200 min at 28�C, in the absence or

presence of 1.5 and 2.0 mM V2O5 were harvested and

ultra-sonic disrupt in chilled lysis buffer (0.2 M sorbitol,

20 mM HEPES-KOH pH 7.0, 50 mM potassium acetate,

2 mM EDTA). The resulting extracts were differentially

centrifuged at 3,000g, 4�C, 10 min, and at 12,000g, 4�C,

30 min. The crude organelle fraction obtained from this

centrifugation was suspended in 50 mM phosphate buffer

pH 7.5 at a protein concentration of 150 lg per ml.

Preparation of mitochondria enriched fraction

Mitochondria enriched fraction was obtained by a modifi-

cation of the procedure of Tzagoloff (1971). Cells growing in

YEPD medium with 2% (w/v) of glucose and incubated

during 200 min at 28�C in the absence or presence of 1.5 and

2.0 mM V2O5 were harvested and suspended in a medium

consisting of 0.25 M mannitol, 0.05 M Tris–acetate, pH 7.5,

and 1 mM EDTA (MTE) at a concentration of 1–5 g, wet

weight, per 30 ml of medium. The suspension (2.5 ml)

was mechanical homogenized with 1 ml of glass beads

(0.45–0.50 mm diameter) for 45 s. The homogenate was

centrifuged at 800g for 20 min. The supernatant was cen-

trifuged at 12,000g for 30 min. The mitochondria enriched

fraction obtained was suspended in a solution containing

0.25 M sucrose and 0.01 M Tris–acetate, pH 7.5, concen-

tration of 200 lg per ml. All steps were carried out at 0–4�C.

Malonaldehyde and protein determination

The obtained post-peroxisomal supernatant was used for

malonaldehyde determination (MDA, nmol/mg wet weight)

as an index of lipid peroxidation according to the spectro-

fluorometric method of Uchiyama and Mihara (1978) and

Kitamura et al. (2006). In brief, 0.05 ml of post-peroxis-

somal supernatant, 0.2 ml of 8.1% SDS and 3.0 ml of 0.4%

thiobarbiturate in 10% acetic acid solution (pH 3.5) were

added and heated in a water bath at 95�C for 60 min. After

cooling, 5.0 ml of n-butanol and 1.0 ml distilled water were

added to the sample, which was centrifuged at 3,000 rpm

for 10 min. The fluorescence of TBARS was determined in

the butanol phase at 553 nm using a single beam Shimadzu

RF-5001 PC spectrofluorophotometer with the excitation at

515 nm. MDA was prepared by hydrolysis of 1,1,3,3-tet-

raethoxypropane (10 mmol; Aldrich) by HCl (10 ml,

100 mM) in a total volume of 50 ml at 60�C for 1 h. A

series of MDA standards ranging from 2.5 to 100 lM were

treated like de samples and used to prepare a standard cal-

ibration curve. The solutions were stored at 4�C and assayed

spectrofluorophotometrically immediately prior to use.

Protein concentration was determined according to

Lowry et al. (1951) using BSA as standard.

Enzymatic assays

CAT A activity was determined by measuring the decrease in

absorbance at 240 nm due to H2O2 consumption according

to Beers and Sizer (1952). The reaction mixture consisted of:

30 mM H2O2 and adequate concentration of peroxisomal

pellet (*5 lg per ml) in 50 mM phosphate buffer pH 7.5.

NADH-cytochrome c reductase activity was determined

in mitochondria enriched fraction (*15 lg per ml) at 30�C

in 10 mM K2HPO4, pH 7.5, containing 100 lM KCN by

following the reduction of Cyt C (22.5 lM) at 550 nm in

the presence of 0.5 mM NADH, according to Tzagoloff

et al. (1975) and Ludovico et al. (2002).

GPx activity in post-peroxissomal supernatant were

assayed in reaction buffer comprised of 100 mM phosphate

pH 7.0, 5 mM EDTA, 1.60 mM, NADPH, 5.0 mM GSH

and 0.24U glutathione reductase. Post-peroxissomal

supernatant in adequate dilution (25 lg per ml) was added

to 1 ml of total volume. The reaction mixture was pre-

incubated for 10 min to 37�C with continuous stirring.

After the addition of NADPH, the decay of the absorbance

at 340 nm was followed for 3 min to obtain a line of

control test. The overall reaction was then initiated by

addition of 1.0 mM of t-BHP, preheated to 37�C and the

decrease in absorption at 340 nm was monitored for 5 min

according to standard protocols (Chaudiere et al. 1984;

Flohé and Gunzler 1984). The rate of reaction depends on

GPx was obtained when the effects of independent and

non-enzymatic hydroperoxide were subtracted from the

total rate of reaction, according to descriptions in literature

(Flohé and Gunzler 1984). As GSH was continuously

regenerated by glutathione reductase, the concentration of

GSH in the trial was held in the initial level. Consequently,

the GPx reaction proceeds in accordance with an order

kinetics of pseudo-zero. To calculate enzymatic activity,

it was used the coefficient of molar extinction 6.22

mM-1 cm-1 of NADPH ? H? (Holme and Peck 1993).

Protein and all enzymatic measurements were carried

out with a double beam spectrophotometer, Hitachi-U2001

with temperature control.
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Statistical analysis

All the data presented are mean values achieved in five

independent experiments ± SD. The normality and

homogeneity of variance were assessed by the P-Plot and

Levene’s test, respectively. The statistical analysis of

results were performed by ANOVA I and Dunett’s test to

determine significant differences (P \ 0.01) between

treatments, using SPSS for windows, version 16, licensed

to University of Évora (Sokal and Rohlf 1997).

Results

In this work we have been studied the stress response to

vanadium pentoxide a pollutant resulting from chemical

industry like, sulphuric acid and pesticides production or

ceramic making processes, using a wine wild-type yeast of

Alentejo region of Portugal. Figure 1 shows a significantly

decrease of biomass production for 200 min by wine

Saccharomyces cerevisiae UE-ME3 cultures exposed to

V2O5 (P \ 0.01), occurring a decline of 19 and 53% of wet

weight for cells growing in culture medium with 1.5 and

2.0 mM V2O5, respectively. This fact appoints us vana-

dium pentoxide, in this range concentration, as a potent

growth inhibitor of this wild-type yeast S. cerevisiae.

In order to evaluate the effects of vanadium pentoxide

on de novo protein synthesis, the dose-response curves

were determined, growing yeast cells in liquid medium

containing V2O5 at 0, 1.5 and 2.0 mM with or without

cycloheximide 50 mg/ml for 30 min, plating samples from

each treatment on YEPD medium and counting colony

forming units (cfu) in solid medium. Figure 2 shows that

these concentration of cycloheximide is not cytotoxic after

30 min incubation and increased cell viability in cultures

treated with 1.5 mM vanadium pentoxide, whereas for

2.0 mM V2O5 occur a reverse response.

Having in account that oxidative damages resulting from

ROS formation in metal stress conditions and a subsequent

fail of antioxidant and energetic mechanisms of the cell

will be implicated in cell death, it was also select as a

significant goal of this study to prospect the possibility of

MDA level of the cell, antioxidant peroxisomal catalase,

mitochondrial NADH cytochrome c reductase and gluta-

thione peroxidase activities of wine wild-type yeast

Saccharomyces cerevisiae UE-ME3 will be used as bio-

markers of vanadium toxicity.

Figure 3 shows that yeast cells growing in presence of

vanadium pentoxide have got an high significantly increase

of MDA level (P \ 0.01) with values 19- and 52-fold higher

than control, for 1.5 and 2.0 mM V2O5, respectively.
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Fig. 1 Effect of V2O5 on biomass production for 200 min by wine

wild-type Saccharomyces cerevisiae UE-ME3 cell. Each bar repre-

sents the mean ± SD of five independents experiments (bars with no
common letter are significantly different, P \ 0.01)
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Fig. 2 Relative survival (% cfu) of wine wild-type Saccharomyces
cerevisiae UE-ME3, for 30 min, V2O5 0, 1.5 and 2.0 mM in the

absence or presence of cycloheximide. Each bar represents the mean

of five independent experiments (bars with no common letter are

significantly different, P \ 0.01)
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Fig. 3 Effect of V2O5 on MDA level of wine wild-type Saccharo-
myces cerevisiae UE-ME3. Each bar represents the mean ± SD of

five independents experiments (bars with no common letter are

significantly different, P \ 0.01)
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Figure 4 only shows an increase of antioxidant CAT A

activity for the treatment with 2.0 mM V2O5, but without

statiscal significance.

Figure 5 shows a significantly decrease of mitochondrial

NADH cyt C reductase in both vanadium pentoxide treat-

ments, occurring a decline of 30 and 33% for 1.5 and

2.0 mM V2O5 in culture medium.

Figure 6 shows a significantly and reverse increase of

glutathione peroxidase in S. cerevisae UE-ME3 grown in

presence of vanadium pentoxide, occurring a raise of 3, 59

and 29 for 1.5 and 2.0 mM V2O5 in culture medium,

respectively.

Discussion

The aim of this study was to evaluate the effect of 1.5 and

2.0 mM vanadium pentoxide on cell growth, de novo

protein synthesis, lipid peroxidation, catalase A, mito-

chondrial NADH cytochrome C reductase and cytosolic

glutathione peroxidase activities of wild-type wine yeast

Saccharomyces cerevisiae UE-ME3.The results show that

vanadium pentoxide is a potent growth inhibitor of wine

wild-type yeast Saccharomyces cerevisiae UE-ME3, in both

concentration assayed (Fig. 1). In order to address the

question if the cell death process, induced in S. cerevisiae

UE-ME3 by vanadium pentoxide, is an active process,

which is characteristic of apoptosis (Ludovico et al. 2002),

we analysed the dependence of the vanadium pentoxide

induced yeast killing on de novo protein synthesis. The

presence of cycloheximide attenuated the toxic effect of

1.5 mM vanadium pentoxide, increasing cell viability of

yeast exposed 30 min to 1.5 mM vanadium pentoxide, an

indication that such cell death is an active process (Fig. 2).

During oxidative stress, a proportion of the ROS evades the

host defences and can cause oxidative damage to nucleic

acids, lipids, and proteins (Halliwell 1991; Kappus 1987;

Sies and de Groot 1992). As a result of the oxidative

damage to lipids, a variety of lipid hydroperoxides are

formed, whose subsequent breakdown products may well be

just as toxic as the ROS themselves (Esterbauer 1993).

MDA is a commonly detected aldehyde (Esterbauer et al.

1991; Steels et al. 1994) which has been used as a measure

of lipid peroxidation (Turton et al. 1997). Consequently, the

highly significant increase of MDA level detected in yeast

cells grown in presence of vanadium pentoxide (Fig. 3)

advise that oxidative damages caused by ROS (Cabiscol

et al. 2000), linked to an approximately null response of

CAT A (Fig. 4) and a reverse increase of GPx (Fig. 6) to

lipid peroxides stress, are also implicated in S. cerevisiae

UE-ME3 growth inhibition. This response is correlate with

loss of vital functions, like cytotoxic inhibition of mito-

chondrial dehydrogenases (Fig. 5), which block cytosolic
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Fig. 4 Effect of V2O5 on CAT A activity of wine wild-type

Saccharomyces cerevisiae UE-ME3. Each bar represents the

mean ± SD of five independents experiments (bars with no common
letter are significantly different, P \ 0.01)
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Fig. 5 Effect of V2O5 on mitochondrial NADH cyt C reductase

activity of wine wild-type Saccharomyces cerevisiae UE-ME3. Each
bar represents the mean ± SD of five replicates (bars with no
common letter are significantly different, P \ 0.01)
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Fig. 6 Effect of V2O5 on GPx activity of wine wild-type Saccharo-
myces cerevisiae UE-ME3. Each bar represents the mean ± SD of

five replicates (bars with no common letter are significantly different,

P \ 0.01)
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NADH reoxidation with disturb of energetic metabolism of

the S. cerevisiae UE-ME3 cells, generating ROS, like is

described by several authors (Herrero et al. 2008; Sedensky

and Morgan 2006; Wang et al. 2004; Davidson and Schiestl

2001; Overkamp et al. 2000). Bearing in mind that cytosolic

ROS, namely hydrogen peroxide and/or lipid peroxides can

be implicated in the yeast cell death (Madeo et al. 2002), we

presume that oxidative stress generate by 1.5 mM vana-

dium pentoxide can cause apoptosis in S. cerevisiae

UE-ME3. Additionally we also suppose that yeast MDA

levels and mitochondrial dehydrogenases activity can be

sensitive markers of vanadium toxicity.
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