Contents

Preface ... ix

1 Porous Media Fundamentals 1
 1.1 Structure ... 1
 1.1.1 Microporous Media .. 5
 1.1.2 Mesoporous Media .. 6
 1.1.3 Macroporous Media .. 7
 1.2 Mass Conservation ... 7
 1.3 Darcy Flow and More Advanced Models 10
 1.4 Energy Conservation .. 17
 1.5 Heat and Mass Transfer 23
 1.5.1 Fluid Flow ... 28
 1.5.2 Heat Flow .. 29

2 Flows in Porous Media .. 31
 2.1 Use Simple Methods First 31
 2.2 Scale Analysis of Forced Convection Boundary Layers 33
 2.3 Sphere and Cylinder with Forced Convection 37
 2.4 Channels with Porous Media and Forced Convection 38
 2.5 Scale Analysis of Natural Convection Boundary Layers ... 40
 2.6 Thermal Stratification and Vertical Partitions 42
 2.7 Horizontal Walls with Natural Convection 45
 2.8 Sphere and Horizontal Cylinder with Natural Convection 46
 2.9 Enclosures Heated from the Side 47
 2.10 Enclosures Heated from Below 53
 2.11 The Method of Intersecting the Asymptotes 58
 2.11.1 The Many Counterflows Regime 60
 2.11.2 The Few Plumes Regime 61
 2.11.3 The Intersection of Asymptotes 64
Contents

3 Energy Engineering

- 3.1 Thermodynamics Fundamentals: Entropy Generation or Exergy Destruction 67
- 3.2 Exergy Analysis ... 71
- 3.3 Thermal Energy Storage 76
- 3.4 Sensible Heat Storage 80
- 3.5 Aquifer Thermal Energy Storage 87
- 3.6 Latent Heat Storage .. 89
- 3.7 Cold Thermal Energy Storage 96
- 3.8 Porous Medium Model of a Storage System with Phase-Change Material 100
- 3.9 Fuel Cell Principles and Operation 105
- 3.10 Fuel Cell Structure and Performance 109
- 3.12 Exergy, Environment, and Sustainable Development 120

4 Environmental and Civil Engineering

- 4.1 The Energy–Environment Interface 125
- 4.2 Wakes: Concentrated Heat Sources in Forced Convection ... 126
- 4.3 Plumes: Concentrated Heat Sources in Natural Convection ... 127
- 4.4 Penetrative Convection 130
- 4.5 Aerosol Transport and Collection in Filters 134
- 4.6 Filter Efficiency and Filtration Theories 139
- 4.7 Pressure Drop, Permeability, and Filter Performance 146
- 4.8 Ionic Transport .. 152
- 4.9 Reactive Porous Media 156
- 4.10 Electrodiffusion .. 162
- 4.11 Tree-Shaped Flow Networks 166
- 4.12 Optimal Size of Flow Element 173
- 4.13 Hot Water Distribution Networks 177
- 4.14 Minimal Resistance Versus Minimal Flow Length 183

5 Compact Heat Transfer Flow Structures

- 5.1 Heat Exchangers as Porous Media 194
- 5.2 Optimal Spacings in Natural Convection 201
- 5.3 Optimal Spacings in Forced Convection 207
- 5.4 Pulsating Flow .. 212
- 5.5 Optimal Packing of Fibrous Insulation 216
- 5.6 Optimal Maldistribution: Tree-Shaped Flows 218
- 5.7 Dendritic Heat Exchangers 224
 - 5.7.1 Elemental Volume 224
5.7.2 First Construct .. 229
5.7.3 Second Construct 230
5.8 Constructal Multiscale Structure for Maximal Heat Transfer Density 238
 5.8.1 Heat Transfer .. 241
 5.8.2 Fluid Friction .. 242
 5.8.3 Heat Transfer Rate Density: The Smallest Scale 243
5.9 Concluding Remarks 245

6 Living Structures .. 247
 6.1 Respiratory System 247
 6.1.1 Airflow Within the Bronchial Tree 249
 6.1.2 Alveolar Gas Diffusion 250
 6.1.3 Particle Deposition 251
 6.2 Blood and the Circulatory System 253
 6.3 Biomembranes: Structure and Transport Mechanisms 254
 6.3.1 Cell Membrane 254
 6.3.2 Capillary Wall 263
 6.4 Transport of Neutral Solutes Across Membranes 266
 6.5 Transport of Charged Solutes Across Membranes 275
 6.5.1 Membrane Potential 276
 6.5.2 Electrical Equivalent Circuit 278
 6.6 The Kidney and the Regulation of Blood Composition 279
 6.6.1 Kidney Failure and Dialysis 280
 6.6.2 Pumping Blood Through Semipermeable Membranes 281

7 Drying of Porous Materials 283
 7.1 Introduction .. 283
 7.2 Drying Equipment 284
 7.3 Drying Periods .. 284
 7.4 Basic Heat and Moisture Transfer Analysis 285
 7.5 Wet Material ... 288
 7.6 Types of Moisture Diffusion 294
 7.7 Shrinkage .. 295
 7.8 Modeling of Packed-Bed Drying 298
 7.9 Diffusion in Porous Media with Low Moisture Content 302
 7.10 Modeling of Heterogeneous Diffusion in Wet Solids 303
 7.10.1 Mass Transfer 304
 7.10.2 Heat Transfer 305
 7.10.3 Boundary Conditions 306
7.10.4 Numerical Analysis ... 306
7.10.5 Heat and Mass Transfer Coefficients 308
7.11 Correlation for the Drying of Solids 310

8 Multidisciplinary Applications 315
8.1 Walls with Cavities: Insulation and Strength Combined 315
8.2 Fibers Coated with Phase-Change Material 326
8.3 Methane Hydrate Sediments: Gas Formation and Convection .. 337

Nomenclature ... 349

References ... 359

Index .. 389
Porous and Complex Flow Structures in Modern Technologies represents a new approach to the field, considering the fundamentals of porous media in terms of the key roles played by these materials in modern technology. Intended as a text for advanced undergraduates and as a reference for practicing engineers, the book uses the physics of flows in porous materials to tie together a wide variety of important issues from such fields as biomedical engineering, energy conversion, civil engineering, electronics, chemical engineering, and environmental engineering.

For example, flows through porous ground play a central role in energy exploration and recovery (oil, geothermal fluids), energy conversion (effluents from refineries and power plants), and environmental engineering (leachates from waste repositories). Similarly, the demands of miniaturization in electronics and in biomedical applications are driving research into the flow of heat and fluids through small-scale porous media (heat exchangers, filters, gas exchangers). Filters, catalytic converters, the drying of stored grains, and myriad other applications involve flows through porous media.

Another new feature is the ‘constructal’ approach to the generation of flow structures for maximal global performance (e.g. maximal heat transfer density) at decreasing length scales. In this direction, the optimized structures become ‘designed porous media’.

By providing a unified theoretical framework that includes not only the traditional homogeneous and isotropic media but also coarse structures in which the assumptions of representative elemental volumes or global thermal equilibrium fail, the book provides practicing engineers the tools they need to analyze complex situations that arise in practice. This volume includes examples, a large number of current references, and an extensive glossary of symbols.