A RECURSIVE PROCESS RELATED TO A PARTIZAN VARIATION OF WYTHOFF ${ }^{1}$

Alda Carvalho
High Institute of Engineering of Lisbon \& CEMAPRE-ISEG, Lisboa, Portugal
Carlos P. Santos ${ }^{2}$
High Institute of Education and Science, Lisboa $\&$ CIMA-UE, Evora, Portugal carlos.santos@isec.universitas.pt
Cátia Lente Dias
High Institute of Engineering of Lisbon \& CIMA-UE, Evora, Portugal
Francisco Coelho
University of Evora \& LabMAg, Lisboa, Portugal
João Pedro Neto
University of Lisbon \& LabMAg, Lisboa, Portugal
Sandra Vinagre
University of Evora \& CIMA-UE, Evora, Portugal

Received: 8/6/11, Revised: 2/24/12, Accepted: 5/15/12, Published: 5/25/12

Abstract

WYTHOFF QUEENS is a classical combinatorial game related to very interesting mathematical results. An amazing one is the fact that the \mathcal{P}-positions are given by $\left(\lfloor\varphi n\rfloor,\left\lfloor\varphi^{2} n\right\rfloor\right)$ and $\left(\left\lfloor\varphi^{2} n\right\rfloor,\lfloor\varphi n\rfloor\right)$ where $\varphi=\frac{1+\sqrt{5}}{2}$. In this paper, we analyze a different version where one player (Left) plays with a chess bishop and the other (Right) plays with a chess knight. The new game (call it CHESSFIGHTS) lacks a Beatty sequence structure in the \mathcal{P}-positions as in wythoff queens. However, it is possible to formulate and prove some general results of a general recursive law which is a particular case of a PARTIZAN SUBTRACTION game. ${ }^{3}$

[^0]
1. Introduction

WYTHOFF QUEENS is played on a quarter-infinite chessboard, extending downwards and to the right. A chess queen is placed in some cell of the board. On each turn, a player moves the queen as in chess, except that the queen can only move left, up, or diagonally up-left. The player who moves the queen to the corner $(0,0)$ wins.

We can also interpret WYthoff queens as a pile game. There are two piles of stones and, on each turn, a player either removes an arbitrary number of stones from one pile, or the same number of stones from both piles. The player who makes the last move wins.

A nice result about WYthoff queens is the following one (first proved in [6]): The \mathcal{P}-positions of WYthoff QUEENS are given by $\left(\lfloor\varphi n\rfloor,\left\lfloor\varphi^{2} n\right\rfloor\right)$ and $\left(\left\lfloor\varphi^{2} n\right\rfloor,\lfloor\varphi n\rfloor\right)$ where $\varphi=\frac{1+\sqrt{5}}{2}$.

There are some variations of the game. One very interesting, analyzed in [2] (page 56), is the game white knight. In this variation, instead of a queen, the players move a chess knight. The legal moves are the following (row x and column y):
$(x, y) \rightarrow(x-1, y-2)$ or $(x, y) \rightarrow(x+1, y-2)$ or $(x, y) \rightarrow(x-2, y-1)$ or $(x, y) \rightarrow(x-2, y+1)$

We consider a variation of WYTHOFF queens, the game chessfights. The rules of this variation are the following ones:

- The board is as in Wythoff queens and white knight;
- Right plays with the knight as in white knight;
- Left plays with the bishop: $(x, y) \rightarrow(x-i, y-i)$ or $(x, y) \rightarrow(x+i, y-i)$ (in the first case, we must have $x-i \geqslant 0 \wedge y-i \geqslant 0$ and, in the second case, we must have $x+i \geqslant 0 \wedge y-i \geqslant 0$, in other words, the move must be made inside the board).

CHESSFIGHTS is a partizan game. For ease, the game with the piece in the cell (x, y) will be represented by the pair (x, y).

The game converges to the end because, after two moves, $(x, y) \mapsto\left(x^{\prime}, y^{\prime}\right) \mapsto$ $\left(x^{\prime \prime}, y^{\prime \prime}\right)$, we have $x^{\prime \prime}+y^{\prime \prime}<x+y$.

2. Some Theorems of CHESSFIGHTS

The options of a game are all those positions which can be reached in one move. In combinatorial game theory, games can be expressed recursively as $G=\left\{\mathcal{G}^{L} \mid \mathcal{G}^{R}\right\}$ where \mathcal{G}^{L} are the Left options and \mathcal{G}^{R} are the Right options of G. The followers of G are all the games that can be reached by all the possible sequences of moves from G (this is the usual notation of [3], [2], and [1]).

In the particular case of CHESSFIGHTS, we can compute the values of the cells (or, rather, the games corresponding to the placement of a single piece in a cell). The best way to do it is to choose a diagonal path:

With this procedure, we get an organized table (the following example corresponds to 9×9):

0	1	$\{1 \mid 0\}$	$\frac{1}{2}$	1	$\{1 \mid \uparrow\}$	$\frac{1}{2}$	1	$\{1 \mid \uparrow 3 *\}$
0	1	$\{1 \mid 0\}$	\uparrow	1	$\left\{1 \left\lvert\, \frac{1}{2}\right.,\{1 \mid *\}\right\}$	$\uparrow 3 *$	1	$\left\{1 \left\lvert\, \frac{1}{2}\right.\right\}$
0	$*$	$\{1 \mid 0\}$	$\{1 \mid *\}$	\Uparrow	$\{1 \uparrow\}$	$\{1 \mid 1,\{1 \mid * 2\}\}$	$\{1 \mid \uparrow *\}$	
0	$*$	$\uparrow *$	$\{1 \mid *\}$	$\{1 \mid * 2\}$	$\Uparrow *$	$\{1 \mid \Uparrow,\{1 \mid * 2\}\}$	$\{1 \mid\{1 \mid \uparrow\}, \uparrow 3 *\}$	$\uparrow 3 * 3$
0	$*$	$* 2$	\uparrow	$\{1 \mid * 2\}$	$\{1 \mid \uparrow\}$	$\Uparrow * 2$	$\{1 \mid \Uparrow *,\{1\| \| 0 \mid *, * 2\}\}$	$\{1 \mid \uparrow 3,\{1 \mid \uparrow * 3\}\}$
0	$*$	$* 2$	\uparrow	$\uparrow * 3$	$\{1\|\|0\| *, * 2\}$	$\{1 \mid \uparrow * 3\}$	$\{0\|\|0\| *, * 2\}$	$\{1 \mid \Uparrow * 2\}$
0	$*$	$* 2$	$\{0 \mid *, * 2\}$	$\uparrow * 3$	$\{0\|\|0\| *, * 2\}$	$\{1 \mid \uparrow * 3\}$	$\{1\|\|0\| 0\| *, * 2\}$	$\{0\|\|0\| * 2,\{0 \mid *, * 2\}\}$
0	$*$	$* 2$	$\{0 \mid *, * 2\}$	$\uparrow * 3$	$\{0\|\|0\| *, * 2\}$	$\{0\|\|0\| * 2,\{0 \mid *, * 2\}\}$	$\{1\|\|0\|\| 0 \mid *, * 2\}$	$\{1\|\|0\|\| 0 \mid * 2,\{0 \mid *, * 2\}\}$
0	$*$	$* 2$	$\{0 \mid *, * 2\}$	$\{0 \mid * 2,\{0 \mid *, * 2\}\}$	$\{0\|\|0\| *, * 2\}$	$\{0\|\|0\| * 2,\{0 \mid *, * 2\}\}$	$\{0\|\|0\| *, * 2\}$	$\{1\|\|0\|\| 0 \mid * 2,\{0 \mid *, * 2\}\}$

The same table just with the reduced canonical forms:

0	1	$\{1 \mid 0\}$	$\frac{1}{2}$	1	$\{1 \mid 0\}$	$\frac{1}{2}$	1	$\{1 \mid 0\}$
0	1	$\{1 \mid 0\}$	0	1	$\left\{1 \left\lvert\, \frac{1}{2}\right.\right\}$	0	1	$\left\{1 \left\lvert\, \frac{1}{2}\right.\right\}$
0	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$	0	$\{1 \mid 0\}$	1	0	$\{\mid 0\}$
0	0	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$	0
0	0	0	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$
0	0	0	0	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$	0	$\{1 \mid 0\}$
0	0	0	0	0	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$	0
0	0	0	0	0	0	0	$\{1 \mid 0\}$	$\{1 \mid 0\}$
0	0	0	0	0	0	0	0	$\{1 \mid 0\}$

A visual inspection of the table allows us to guess some patterns. In fact, it is possible to prove some results.

Proposition 1. $(x, 0)=0$.
Proof. Left has no options. Right has no options (cases $(0,0)$ and $(1,0))$ or Right has just one option to $(x-2,1)$. If so, Left plays to $(x-1,0)$ and, by induction, Right loses.

In the next results, it is important to consider the following groups of cells:
$-\operatorname{Red} \longrightarrow(x, y): y-x \equiv 0(\bmod 3)$

- Yellow $\longrightarrow(x, y): y-x \equiv 1(\bmod 3)$
- Green $\longrightarrow(x, y): y-x \equiv 2(\bmod 3)$

Lemma 1. From the games in the following region (call it \mathfrak{R}),

Right to move, has a strategy allowing, at all times, if the sub-position is still not zero, a Right move to a green cell or a Right move to zero.

Proof. Let us analyze all the possible sub-positions (a, b) (Right moving).

- If $b=0$ then the position $(a, b)=0$ (Proposition 1).
- If $(a, b) \in \mathfrak{R}$ is green $(b-a \equiv 2(\bmod 3))$ then Right moves to $(a+1, b-2)$. We can see that $(a+1, b-2)$ remains green because $(b-2)-(a+1) \equiv 2$ $(\bmod 3)$.
- If $(a, b) \in \mathfrak{R}$ is $\operatorname{red}(b-a \equiv 0(\bmod 3))$ then Right moves to $(a-1, b-2)$. We can see that $(a-1, b-2)$ turns green because $(b-2)-(a-1) \equiv 2(\bmod 3)$.
- If $(a, b) \in \mathfrak{R}$ is yellow $(b-a \equiv 1(\bmod 3))$ then Right moves $(a-2, b-1)$. We can see that $(a-2, b-1)$ turns green because $(b-1)-(a-2) \equiv 2(\bmod 3)$.
- The only possible Left moves to $(a, b) \notin \Re$ are $(a, 0)$ (item 1$)$ and $(a, 1) \wedge a>1$ (in this case, the Right option to $(a-2, b-1)=0$ is available). The moves indicated in the previous items never allow other options $(a, b) \notin \mathfrak{R}$ for Left.

Proposition 2. $(0,3 k+1)=1(k \geqslant 0)$ and $(0,3 k)=\frac{1}{2}(k \geqslant 1)$.
Proof. Let us prove that $(0,3 k+1)=1(k \geqslant 0)$.
The base case $(0,1)=1$ is calculated by hand. We want to prove that, for $k \geqslant 1$, $(0,3 k+1)+\{\mid 0\}=0$, i.e., $(0,3 k+1)+\{\mid 0\}$ is in \mathcal{P}.

If Right plays to $(0,3 k+1)$, Left replies to $(3 k+1,0)=0$ (Proposition 1).
If Right plays to $(1,3 k-1)+\{\mid 0\}$, Left replies to
$(0,3 k-2)+\{\mid 0\}=(0,3(k-1)+1)+\{\mid 0\}=1-1$ (induction).
So, if Right plays, Right loses.
If Left plays first to $(a, b)+\{\mid 0\}$ then $(a, b) \in \mathfrak{R}$ or $(a, b)=(a, 0)$ or $(a, b)=$ $(a, 1) \wedge a>1$. The last two cases are trivial. For the first case, Right just plays in (a, b) with the strategy of the Lemma 1 eventually ending in $0-1$. So, playing first, Left loses.

Let us prove that $(0,3 k)=\frac{1}{2}(k \geqslant 1)$. The base case $(0,3)=\frac{1}{2}$ is calculated by hand. We want to prove that, for $k>1,(0,3 k)+\{-1 \mid 0\}=0$, i.e., $(0,3 k)+\{-1 \mid 0\}$ is in \mathcal{P}.

If Right plays to $(0,3 k)$, Left replies to $(3 k, 0)=0$ (Proposition 1$)$.
If Right plays to $(1,3 k-2)+\{-1 \mid 0\}$, Left replies to
$(0,3 k-3)+\{-1 \mid 0\}=(0,3(k-1))+\{-1 \mid 0\}=\frac{1}{2}-\frac{1}{2}$ (induction).
So, if Right plays, Right loses.
If Left plays first to $(1,3 k-1)+\{-1 \mid 0\}$, Right replies to
$(0,3 k-3)+\{-1 \mid 0\}=(0,3(k-1))+\{-1 \mid 0\}=\frac{1}{2}-\frac{1}{2}$ (induction).
If Left plays to $(a, b)+\{-1 \mid 0\}$ with $a>1$ then $(a, b) \in \mathfrak{R}$ or $(a, b)=(a, 0)$ or $(a, b)=(a, 1) \wedge a>1$. The last two cases are trivial. For the first case, Right just plays in (a, b) with the strategy of the Lemma 1 eventually ending in $0-\frac{1}{2}$. So, playing first, Left loses.

The next proposition is a useful inequality. With this result it will be possible to make some arguments of domination and reversibility.

We will write (x, y) to represent the game (x, y), but Left playing with the Knight and Right with the Bishop. We have $-(x, y)=\underline{(x, y)}$. This is a nice tool to perform
proofs on the board with two different pieces. Also, we call principal diagonal to the set of cells such that $x=y$.

Lemma 2. If $k \geqslant 2$ and $x^{\prime}>y-k$ then $(x, y)+\underline{\left(x^{\prime}, y-k\right)} \nless 0$ (if the second component is below the principal diagonal and the components are separated by more than one column, Left wins playing first).

Proof. If $y-k=0$ then $\left(x^{\prime}, y-k\right)=0$ (Proposition 1). So, Left plays in the other component to $(x+y, 0)+\underline{\left(x^{\prime}, 0\right)}$ going to zero.

If $y-k=1$, Left moves to $(x, y)+\left(x^{\prime}-2,0\right)$ which is equal to (x, y) (Proposition 1). Following, after a move by Right in (x,y), Left moves this component to the column 0 .

If $y-k>1$, Left moves to $(x, y)+\underline{\left(x^{\prime}+1, y-k-2\right)}$. Following, all the possible moves by Right maintain the Lemma conditions. So, by induction, Left wins.

Proposition 3. If $x>y$ then $(x-k, y) \geqslant(x, y)$ ($k \geqslant 0$, positions inside the board).
Proof. We want to prove that, if $x>y,(x-k, y)-(x, y) \geqslant 0$. So, we want to prove that Right loses playing first in the game $(x-k, y)+(x, y)$. We will analyze all the Right options (consider the principal diagonal, red cells such that $x=y$).

- Right plays to $(x-k, y)+(x+i, y-i)$.

Left moves to $(x-k+i, y \overline{-i)+\underline{(x+i}, y-i)}$ and, by induction, Left wins.

- Right plays to $(x-k, y)+(x-1, y-1)$ (and $\left.\mathrm{k}_{\mathrm{b}} 1\right)$.

Left moves to $(x-k+1, y \overline{-1)+(x-1}, y-1)$ and, by induction, Left wins.

- Right plays to $(x-k, y)+(x-1, y-1)$ (and $k \leqslant 1)$.

Left moves to $(x-k-1, y \overline{-1)+\underline{(x-1}, y-1)}$ (available) and, by induction,

Left wins.

- Right plays to $(x-k, y)+(x-i, y-i)(i>1)$.

By Lemma 2, Left wins.

- Right plays to $(x-k+1, y-2)+(x, y)$.

Left moves to $(x-k+1, y-2)+(\overline{x+1}, y-2)$ and, by induction, Left wins.

- Right plays to $(x-k-1, y-2)+(x, y)$

Left moves to $(x-k-1, y-2)+\underline{(x-1, y-2)}$ and, by induction, Left wins.

- Right plays to $(x-k-2, y+1)+(x, y)$

Left moves to $(x-k-1, y)+\underline{(x, y)}$ and, by induction, Left wins.

- Right plays to $(x-k-2, y-1)+(x, y)$ and $(x-1>y$ or $k=0)$.

Left moves to $(x-k-2, y-1)+\underline{(\overline{x-2}, y-1)}$ and, by induction, Left wins.

- Right plays to $(x-k-2, y-1)+\underline{(x, y)}$ and, using the previous notation, $(x-k-2, y-1)$ is a red or a yellow cell.
Left moves to $(0, y-x+k+1)+(x, y)$ and, because $(0, y-x+k+1)=1$ or $(0, y-x+k+1)=\frac{1}{2}$ (Proposition 2), Left wins maintaining the second component below the principal diagonal.

- Right plays to $(x-k-2, y-1)+(x, y)$ and $(x-k-2, y-1)$ is a green cell. Left moves to $(x-k-2, y-1)+\overline{(x-1}, y-2)$ and, if Right wants to avoid the induction, must move to $(x-k-4, y-2)+(x-1, y-2)$. After this pair of moves, $(x-k-4, y-2)$ turns red or yellow and Left chooses the strategy of the previous item.

Proposition 4. If $x \geqslant 2$ then $(x, 1)=*$.
Proof. We can calculate by hand $(2,1)=*$. Now we prove the theorem by induction in x. The Left options of $(x, 1)$ are 0 (Proposition 1). The Right options are $(x-2,0)=0$ and $(x-2,2)$. Against a Right's move to $(x-2,2)$, Left can immediately reply to $(x-1,1)$. By Proposition $3,(x-1,1) \geqslant(x, 1)$. So, by reversibility, the Right option $(x-2,2)$ can be replaced by Right options of $(x-1,1)$. But, by induction, $(x-1,1)=*$ and $(x-2,2)$ can be replaced by 0 .

Lemma 3. If $x>y$ then $1 \geqslant(x, y)$.
Proof. Let us analyze $1+(x, y)$ to see that Right, playing first, loses. Against a Right move (if he has one)

- To $1+\underline{\left(x^{\prime}, 0\right)}$. In that case, the game turned $1+0$.
- To $1+\underline{\left(x^{\prime}, 1\right)}$. In that case, the game turned $1 *$.
- To $1+\underline{\left(x^{\prime}, k\right)}(k \geqslant 2)$. In that case, Left answers to $1+\underline{\left(x^{\prime}+1, k-2\right)}$ reaching the same kind of position as before.

In all cases, Left wins.
Lemma 4. If $x>y$ then $(x-2, y+1) \geqslant(x+1, y-2)$.
Proof. Let us analyze $(x-2, y+1)+(x+1, y-2)$ to see that Right, playing first, loses. If Right plays in the component $(x-2, y+1)$, Left replies in the same component to the column $y-2$ and wins (Proposition 3).

If Right plays to $(x-2, y+1)+(x+1-i, y-2-i)$, Left replies to $(x-2-$ $i, y+1-i)+(x+1-i, y-2-i)$ maintaining the situation. If the Left answer was not available, that was because Right's move was to $(x-2, y+1)+(k, 1)(k \geqslant 2)$ or to $(x-2, y+1)+(k, 0)(k \geqslant 1)$. Against the first, Left moves the component $(x-2, y+1)$ to the column 1 and against the second, Left moves the component $(x-2, y+1)$ to the column 0 .

In both cases, Left wins.

Theorem 1. The games (x, y) for $x>y$ are all-small.
Proof. Let us consider $y \geqslant 2$ (the cases $y=0$ and $y=1$ are already known). By induction, Left options are all-small. Right has 4 options. By induction, $(x+1, y-2)$ and $(x-1, y-2)$ are all-small.

- Right option to $(x-2, y-1)$.

If $(x-2, y-1)$ is not in the principal diagonal, by induction, $(x-2, y-1)$ is all-small.
If $(x-2, y-1)$ is in the principal diagonal, Left can answer to $(1,1)=1$. By Lemma $3,1 \geqslant(x, y)$. So, the Right option is reversible to \emptyset.

- Right option to $(x-2, y+1)$.

By Lemma $4(x+1, y-2)$ dominates $(x-2, y+1)$. Because we are thinking for columns with index $y \geqslant 2,(x+1, y-2)$ is available.

3. The General Recursive Process

As we saw in the previous section, the Right option $(x-2, y+1)$ is dominated (see Theorem 1). For the sensible options, the column number is decreased by one or two. This strongly motivates the analysis of the recursion

$$
g(n)=\{g(0), \ldots g(n-1) \mid g(n-1), g(n-2)\} .
$$

This is a special case of a partizan subtraction game (see [4]). The first elements of the sequence are

0	1	2	3	4
0	$*$	$* 2$	$\{0 \mid *, * 2\}$	$\{0 \mid * 2,\{0 \mid *, * 2\}\}$

We can generalize the recursive law for similar chess knights (capable of making "larger" moves):

$$
g_{k}(n)=\left\{g_{k}(0), \ldots g_{k}(n-1) \mid g_{k}(n-k), g_{k}(n-2 k)\right\}(n \geqslant 0)
$$

There is no problem with the $g_{k}(i)$ not previously defined. The empty set is available for the construction of the games.

For impartial subtraction games, it is well-known that $\operatorname{SUBTRACTION}\left(m s_{1}, \ldots, m s_{k}\right)$ is the m-plicate of $\operatorname{SUBTRACTION}\left(s_{1}, \ldots, s_{k}\right)$ ([2], page 98 and a proof in [5], page $36)$. We will prove that the general g_{k} is also a kind of "dilation" of g_{1}. Just for intuition, we list the first elements of $g_{2}(n)$ and $g_{3}(n)$:

0	1	2	3	4	5	6
0	1	$\{1 \mid 0\}$	$1 *$	$\{1,1 * \mid 0,\{1 \mid 0\}\}$	$1 * 2$	$\{1 \mid\{1 \mid 0\},\{1,1 * \mid 0,\{1 \mid 0\}\}\}$

0	1	2	3	4	5	6	7
0	1	2	$\{2 \mid 0\}$	$\{2 \mid 1\}$	$2 *$	$\{2,2 * \mid 0,\{2 \mid 0\}\}$	$\{2,2 * \mid 1,\{2 \mid 1\}\}$

8	9	10
$2 * 2$	$\{2 \mid\{2 \mid 0\},\{2,2 * \mid 0,\{2 \mid 0\}\}\}$	$\{2 \mid\{2 \mid 1\},\{2,2 * \mid 1,\{2 \mid 1\}\}\}$

We start with a result about the left options of $g_{k}(n)$.
Lemma 5. For $k \geqslant 1$, we have

$$
\begin{gathered}
g_{k}(n)=\left\{g_{k}(0), \ldots, g_{k}(n-1) \mid g_{k}(n-k), g_{k}(n-2 k)\right\} \\
= \begin{cases}n & n \leqslant k-1 \\
\left\{k-1,(k-1) * \mid g_{k}(n-k), g_{k}(n-2 k)\right\} & 2 k \leqslant n \leqslant 3 k-1 . \\
\left\{k-1 \mid g_{k}(n-k), g_{k}(n-2 k)\right\} & \text { other cases }\end{cases}
\end{gathered}
$$

Proof. Case (a) $n \leqslant k-1$. By definition,

$$
\begin{gathered}
g_{k}(0)=\{\mid\}=0 \\
g_{k}(1)=\left\{g_{k}(0) \mid\right\}=\{0 \mid\}=1 \\
(\ldots) \\
g_{k}(k-1)=\left\{g_{k}(k-2) \mid\right\}=\{k-2 \mid\}=k-1
\end{gathered}
$$

Case (b) $k \leqslant n \leqslant 2 k-1$. We already know that $g_{k}(0)=0, g_{k}(1)=1, \ldots$, $g_{k}(k-1)=k-1$. Therefore, by definition (and domination),

$$
\begin{gathered}
g_{k}(k)=\{k-1 \mid 0\} \\
g_{k}(k+1)=\{k-1,\{k-1 \mid 0\} \mid 1\} \\
g_{k}(k+2)=\{k-1,\{k-1 \mid 0\},\{k-1,\{k-1 \mid 0\} \mid 1\} \mid 2\}
\end{gathered}
$$

(:).
We can use reversibility arguments:

Similarly,

In general, for $0 \leqslant j \leqslant k-1$,

$$
g_{k}(k+j)=\left\{k-1, g_{k}(k), g_{k}(k+1), \ldots, g_{k}(k+j-1) \mid j\right\}
$$

and
$g_{k}(k)$ reverses out through 0 ; $g_{k}(k+1)$ reverses through 1 to 0 which is dominated by $k-1$;
(:)
$g_{k}(k+j-1)$ reverses through $j-1$ to $j-2$ which is dominated by $k-1$.
The reversibility effects are justified by the inequality

$$
\left\{k-1, g_{k}(k), g_{k}(k+1), \ldots, g_{k}(k+j-1) \mid j\right\} \geqslant j-1
$$

We can conclude that the property is true for $k \leqslant n \leqslant 2 k-1$.
Case (c) $2 k \leqslant n \leqslant 3 k-1$. We have,

$$
\begin{gathered}
g_{k}(2 k)=\{k-1,(k-1) * \mid 0,\{k-1 \mid 0\}\} \\
\left.g_{k}(2 k+1)=\left\{k-1,(k-1) *, g_{k}(2 k) \mid 1,\{k-1 \mid 1\}\right\}\right\} \\
\left.g_{k}(2 k+2)=\left\{k-1,(k-1) *, g_{k}(2 k), g_{k}(2 k+1) \mid 2,\{k-1 \mid 2\}\right\}\right\}
\end{gathered}
$$

$$
(\ldots)
$$

As the previous cases, it is easy to check that only the left options $k-1$ and $(k-1) *$ don't reverse. In fact, in general, for $0 \leqslant j \leqslant k-1$,

$$
g_{k}(2 k+j)=\left\{k-1,(k-1) *, g_{k}(2 k), g_{k}(2 k+1), \ldots, g_{k}(2 k+j-1) \mid j,\{k-1 \mid j\}\right\}
$$

and
$g_{k}(2 k)$ reverses out through 0 ;
$g_{k}(2 k+1)$ reverses through 1 to 0 which is dominated by $k-1$;
(:)
$g_{k}(2 k+j-1)$ reverses through $j-1$ to $j-2$ which is dominated by $k-1$.
The reversibility effects are justified by the inequality

$$
\left\{k-1,(k-1) *, g_{k}(2 k), g_{k}(2 k+1), \ldots, g_{k}(2 k+j-1) \mid j,\{k-1 \mid j\}\right\} \geqslant j-1
$$

We can conclude that the property is true for $2 k \leqslant n \leqslant 3 k-1$.
Case d) Other cases. In the other cases, also $(k-1) *$ reverses. This is true because, in these cases, we have

$$
\left\{k-1,(k-1) * \mid g_{k}(n-k), g_{k}(n-2 k)\right\} \geqslant k-1 .
$$

We can see that, in the game

$$
\left\{k-1,(k-1) * \mid g_{k}(n-k), g_{k}(n-2 k)\right\}+1-k,
$$

if Right begins, Right loses. This happens because the Left option $k-1$ is available in the games $g_{k}(n-k)$ and $g_{k}(n-2 k)$.

Now, we are able to prove a kind of "dilation" theorem.

Theorem 2. Consider $n \geqslant 0$ and $k \geqslant 1$.

1. If $n \leqslant k-1, g_{k}(n)=n$.
2. If $n>k-1$, we obtain $g_{k}(n)$ from $g_{1}(n)$ as indicated: consider $i \in\{0, \ldots, k-$ $1\}$ such that $n \equiv i(\bmod k)$. Let G be the game $g_{1}\left(\left\lfloor\frac{n}{k}\right\rfloor\right)$ (the form of the game according to its initial definition) and J the game constructed from G executing the following:
(a) Add $k-1$ to the games $G^{L}, G^{R L}, G^{R R L}, \ldots$
(b) Add i to the games $G^{R}, G^{R R}, G^{R R R}, \ldots$ not affected by the first step.

We have $g_{k}(n)=J$.
Proof. The theorem is compatible with Lemma 5 because adding $k-1$ to the Left options of the game $g_{1}\left(\left\lfloor\frac{n}{k}\right\rfloor\right)$ generates exactly the same Left options for $g_{k}(n)$ indicated in the Lemma 5. So, we just have to analyze the Right options.

Just the induction step is non-trivial. Consider the game

$$
g_{k}(n+1)=\left\{g_{k}(0), \ldots, g_{k}(n) \mid g_{k}(n+1-k), g_{k}(n+1-2 k)\right\} .
$$

By induction, we have to add $k-1$ and i in the games $g_{1}\left(\left\lfloor\frac{n+1-k}{k}\right\rfloor\right)$ and $g_{1}\left(\left\lfloor\frac{n+1-2 k}{k}\right\rfloor\right)$ where $n+1-2 k \equiv n+1-k \equiv i(\bmod k)$.

But this is exactly the same as adding $k-1$ and i in the Right options of $g_{1}\left(\left\lfloor\frac{n+1}{k}\right\rfloor\right)$. This is true because the Right options of $g_{1}\left(\left\lfloor\frac{n+1}{k}\right\rfloor\right)$ are $g_{1}\left(\left\lfloor\frac{n+1}{k}\right\rfloor-1\right)$ $=g_{1}\left(\left\lfloor\frac{n+1-k}{k}\right\rfloor\right)$ and $g_{1}\left(\left\lfloor\frac{n+1}{k}\right\rfloor-2\right)=g_{1}\left(\left\lfloor\frac{n+1-2 k}{k}\right\rfloor\right)$ and $n+1 \equiv i(\bmod k)$.

References

[1] M. H. Albert, R. J. Nowakowski, D. Wolfe, Lessons in Play: An Introduction to Combinatorial Game Theory, A. K. Peters, 2007.
[2] E. R. Berlekamp, J. Conway, R. Guy, Winning Ways. Academic Press, London, 1982.
[3] J. Conway, On Numbers and Games, Academic Press, 1976.
[4] A. S. Fraenkel, A. Kotzig. "Partizan Octal Games. Partizan Subtraction Games," International Journal of Game Theory, 1987.
[5] C. Santos, Some Notes on Impartial Games and Nim Dimension, PhD Thesis, University of Lisbon, 2010.
[6] W. A. Wythoff. A modification of the game of Nim, Niew Archief voor Wiskunde, 1907.

[^0]: ${ }^{1}$ Research in Play mathematics - A Workshop in Combinatorial Game Theory, Center for Mathematics and Fundamental Applications, Lisbon, November, 2010.
 http://ptmat.fc.ul.pt/arquivo/docs/seminarios/confwork/2010/Mini_workshop.pdf
 ${ }^{2}$ Correspondent author: Alameda das Linhas de Torres, 179, 1750-142, Lisboa, Portugal
 ${ }^{3}$ Supported by the research centers CEMAPRE-ISEG, CIMA-UE, LabMAg (Laboratório de Modelação de Agentes), FCT-Portugal funding program.

