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Resumo: As redes de telecomunicações móveis ad hoc são constituídas por nós que

se organizam de forma autonóma e sem qualquer infraestutura, sendo uma das mais

promissoras modernizações das actuais redes de telecomunicações sem �os. A mobilidade

e a possibilidade de comunicação por rotas com múltiplos passos torna a topologia destas

redes dinâmica e imprevisível, sendo necessário desenvolver modelos que descrevam a

conectividade e a dinâmica dessas rotas.

A investigação inicia-se com o estudo da conectividade para redes unidimensionais e

bidimensionais. É derivada a distribuição de probabilidade do número de passos duma rota

quando a distribuição espacial dos nós provém de um processo de Poisson ou, utilizando

o método de aleatorização de Poisson, quando um número �xo de nós está uniforme-

mente distribuído numa dada região. Resultados numéricos ilustram o comportamento

da distribuição de probabilidade do número de passos duma rota.

De seguida é desenvolvido um modelo para caracterizar a dinâmica das rotas através

de um processo de Markov determinístico por troços. A distribuição e o tempo médio

de duração das rotas são derivados, sendo estes resultados obtidos através de um sistema

de equações integro-diferenciais. Um método recursivo é proposto para sua computação.

Resultados numéricos ilustram o cálculo destas medidas, os quais são comparados com os

obtidos quando se assumem rotas com passos independentes.

Palavras-chave: Redes de telecomunicações móveis ad hoc, distribuição do número de

passos, aleatorização de Poisson, mobilidade, �abilidade de rotas com múltiplos passos,

processo de Markov determinístico por troços.
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Modeling and Performance Evaluation
of Mobile Ad Hoc Networks

Abstract: Mobile ad hoc networks are characterized by having nodes that are self-

organized and cooperative without any kind of infrastructure, being the most promising

upgrade of the current telecommunication systems. The mobility and multihop capabil-

ity of these networks allows the network topology to change rapidly and unpredictably,

turning necessary the development of appropriate models to describe the multihop con-

nectivity and the dynamic of multihop paths.

The research carried on in this dissertation starts by addressing the multihop connec-

tivity for one-dimensional and two-dimensional ad hoc networks. The hop count prob-

ability distributions are derived when the underlying node spatial distribution is drawn

from a Poisson process and, by using a Poisson randomization technique, when a �xed

number of relay nodes are uniformly distributed in a region of interest. Numerical results

illustrate the computation of the hop count probabilities.

We then present an analytical framework to characterize the random behavior of a

multihop path by means of a piecewise deterministic Markov process. The mean path

duration and the path persistence metrics are obtained as the unique solution of a system

of integro-di�erential equations, and a recursive scheme for their computation is pro-

vided. Numerical results are presented to illustrate the computation of the metrics and

to compare the associated results with independent link approximation results.

Keywords: Mobile ad hoc networks, hop count distribution, Poisson randomization,

mobility, multihop path reliability, piecewise deterministic Markov process.

ii



Acknowledgments

It has been an enormous pleasure to work with Prof. António Pacheco and Prof.

Nelson Antunes. My huge gratitude for their endless support and for all that they have

transmitted to me.

To Prof. António Pacheco for the possibility to learn with his outstanding knowledge

and rigour. Thanks for all his support and guidance. Thanks for transmitting all is rigour

and humanity. He will be a reference in my future as scienti�c researcher.

To Prof. Nelson Antunes for his support, guidance and friendship. I had the fortune to

work in a daily basis with him, and his interest, dedication, enthusiasm and encouragement

was contagious. A special thanks to him by making it possible for me to work at the

Algarve University facilities.

I would like to thank my parents for the education and principles they have granted

me. Their support and incentive was always important. Thanks to my brothers for their

support.

A special thanks to my friends, for their friendship and to be there whenever I needed.

They know who they are and I'll never forget them.

In the end, but the most important of all, to Ana, to her endless patience, support,

friendship and by having always a word of understanding. She knows everything I owe

her, and the importance she had. My huge gratitude to her.

This work was partially supported by: Centro de Investigação em Matemática e Apli-

cações da Universidade de Évora (CIMA-UE).

iii



Contents

1 Introduction 1

1.1 Mobile ad hoc networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Claim of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Connectivity in one-dimensional ad hoc networks 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Connectivity probability with the minimum hop path . . . . . . . . . . . . 18

2.3.1 Recursive formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Poisson randomization method . . . . . . . . . . . . . . . . . . . . 19

2.4 Network dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Connectivity in two-dimensional ad hoc networks 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Dynamic propagation model . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Hop count distribution with a random number of relay nodes . . . . . . . . 40

iv



3.3.1 Dynamic propagation model with the nearest distance protocol . . . 41

3.3.2 Dynamic propagation model with the furthest distance protocol . . 44

3.4 Hop count distribution with a �nite number of relay nodes . . . . . . . . . 48

3.4.1 Dynamic propagation model with the nearest distance protocol . . . 49

3.4.2 Dynamic propagation model with the furthest distance protocol . . 50

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Multihop path duration 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Multihop path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Random walk mobility model . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Link duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Multihop path model . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Path based metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Mean path duration . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Path persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Recursive computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Mean path duration . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Path persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Concluding remarks 97

5.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Connectivity in one-dimensional MANETs . . . . . . . . . . . . . . . . . . 98

5.3 Connectivity in two-dimensional MANETs . . . . . . . . . . . . . . . . . . 99

5.4 Multihop path model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



Bibliography 104

vi



List of Figures

2.1 Minimum hop count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Connectivity probability and hop count probability with K hops as a func-

tion of R, with N = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Minimum hop count/connectivity probability (L = 1, R = 0.32). . . . . . . 30

2.4 Minimum hop count/connectivity probability (L = 1, R = 0.23). . . . . . . 31

2.5 Probability of the minimum hop count being K and K + 1 (L = 1, N = 20). 31

2.6 Critical value of the number of relay nodes N as a function of p. . . . . . . 32

2.7 Relation between R and N for p = 0.95 . . . . . . . . . . . . . . . . . . . . 33

3.1 Routing regions and angular spans of relay nodes i− 1 and i. . . . . . . . . 38

3.2 Dynamic propagation model with the FR protocol for a path with 3 hops. 40

3.3 Routing regions and vacant regions of relay nodes i− 1 and i. . . . . . . . 41

3.4 Intersection between A0, B(S,R) and B(D,R). . . . . . . . . . . . . . . . 47

3.5 Connectivity probability with the minimum number of hops for the FR

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Connectivity probability with the minimum number of hops for the NR

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Probability that the hop count equals K = 2 for the FR protocol, versus

the probability that the hop count equals K = 2, 3, 4 for the NR protocol. . 55

3.8 Probability that the hop count equals K = 3 for the FR protocol, versus

the probability that the hop count equals K = 3, 4, 5, 6 for the NR protocol. 55

vii



3.9 Expected hop progress for the FR and the NR protocols as a function of

the number of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Intersection points, (r, g−θ ) and (r, g+
θ ), between B(Xi−1, R) and B(Xi, ri+1). 59
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Chapter 1

Introduction

The aim of this dissertation is to contribute to the modeling and performance evaluation

of mobile ad hoc networks (MANETs), a type of network where the mobile nodes are

connected by wireless links and where nodes, despite being free to move independently,

are cooperative and self-organized in random topologies without any kind of supporting

infrastructure or centralized administration. Each node can communicate directly with

another node within its radio coverage, or with other nodes outside its radio coverage

by using intermediate nodes to relay or forward tra�c in a multihop fashion. Our re-

search will focus on the probabilistic analysis of the connectivity problems that arise in

one-dimensional and two-dimensional MANETs and on the modeling of the dynamics of

multihop paths in such networks.

In this chapter, we start with a short overview of this kind of networks and some

motivation for the study of MANETs. A description of the problems and the main con-

tributions in literature are given and the main methodologies used in the dissertation are

presented.
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1.1 Mobile ad hoc networks

In this section we give a short overview of the history and the importance that MANETs

have gained in the past few years. For additional reading see, e.g., Toh (2001) and

Aggelou (2005), which provide a comprehensive introduction to a wide range of MANET's

concepts, models, and technologies.

Wireless communications has grown exponentially in recent years. Second generation

of telecommunication systems, such as the Global System for Mobile communications

(GSM), enable voice tra�c and are undoubtedly the largest technology worldwide. As

the number of users using Internet connections and requiring multimedia applications

has increased, a new generation of telecommunications has risen: the third generation

(3G) mobile communication systems, also known as Universal Mobile Telecommunication

Systems (UMTS). The combination of several evolving and emerging access technologies

into a common platform will be the key characteristic of 4G systems. However, the high

data rates envisioned will decrease the quality of services and, to guarantee them, it

is necessary that the density of base stations (that provide users their communication

capabilities) increases, which originates higher deployment costs.

With these factors in mind, the integration of MANETs multihop capability into wire-

less networks is perhaps the most promising architectural upgrade to envisage area cov-

erage without signi�cant additional infrastructure cost. The salient features of this breed

of networks is that they can operate in di�erent propagation and networking conditions,

are self organized, and are rapidly deployable.

This type of networks has signi�cant advantages when compared with traditional

communication networks, since they have increased mobility and �exibility and can be

brought up and torn down in a very short time. The absence of �xed infrastructure reduces

the economical costs and, having short hop communications, the radio emission levels can

be kept at a low level, increasing the spectrum reuse and permitting that unlicensed bands

can be allocated. Additionally, a MANET may be connected to the edges of a �xed, wired
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internet, or other type of network, expanding the current networks.

The set of MANET applications is diverse, ranging from networks where nodes are

static and constrained by power sources to large scale, mobile, highly dynamic networks.

Their rapid deployment and low con�guration pro�le make them suitable to be used in

emergency scenarios, in cases where the existing �xed and wireless communications are

destroyed, allowing rescue agencies to rapidly create a communication platform. These

networks are also appropriate to be used in military scenarios, in remote regions, since the

low node power decreases the probability of detection and can be deployed instantaneously

and without any kind of infrastructure. In fact, military applications were one of the

propulsors of MANET's development.

For commercial communications, they are suited to be used in local area networks

(LAN) events, like congresses, meetings, and forums, where participants, in an ad hoc

manner and with their laptops, have instant network formations in addition to �le and

information sharing without the presence of �xed stations or system infrastructures.

For vehicular networks, several communication systems are being developed. They

arise in safety and information applications, permitting the vehicles to transmit and re-

ceive information about tra�c, news, weather, etc.

Recently, the Swedish company TerraNet has implemented a system for personal com-

munications in regions without landline connections or mobile network coverage, such that

users with mobile phones equipped with their technology will form their own network

and communicate directly with each other. Projects backed by Terranet were recently

launched in Tanzania and Ecuador. This company argues that with their systems the era

of free communications has arrived.

At last but not the least, applications of ad hoc networks extend to sensor networks.

These are characterized by having sensor nodes (that could be static or mobile) who re-

act to some variable of interest and collect data to be transmitted to a collector node,

usually by a multihop path. The sensors are used to collect data related to temperature,
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humidity, noise, pollution, animal movements, etc, and have a high range of applications

in life and environmental sciences.

1.2 Motivation

Recent advances in mobile equipment technologies and wireless communications gave

rise to a new kind of networks, the MANETs, which are receiving a lot of attention

mainly due to the high range of their applications (cf., e.g., Toh (2001) and Basagni

et al. (2004)). These networks are characterized by being autonomous collections of

mobile users, with small, powerfull, and versatile equipments (nodes), that communicate

over relatively bandwidth constrained wireless links and are responsible to relay tra�c

towards its destination.

In MANETs, nodes can dynamically form a network in a self-organized manner without

the need of an existing �xed infrastructure. Nodes are expected to act cooperatively in

order to route tra�c and adapt the network to the highly dynamic status of its links

and mobility patterns. The dynamic behavior of MANETs, whose network topology may

change rapidly and unpredictably, gives to mathematical models, specially the ones that

include a strong stochastic component, an important role in evaluating the performance

of MANETs.

The multihop capability is one of the key features of MANETs. When the source and

destination nodes are at a distance greater than the transmission range, the communica-

tion between them is made via multiple hops, using the neighbor nodes to redirect the

tra�c towards the destination node. The multihop path is determined by the routing

protocol and in�uences the performance of the network (cf., e.g., Mauve et al. (2001)).

The functionality of the network critically depends on its connectivity properties, being

necessary to develop models that focus on the multihop connectivity between a pair of

nodes, both for one-dimensional and two-dimensional networks. These properties depend
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on the number of nodes, their transmission ranges, the spatial distribution resulting from

the mobility pattern, and the routing protocol. The most common routing protocols for

one-dimensional networks are the furthest distance routing protocol (FR) and the nearest

distance routing protocol (NR), where the relay node chosen is at the furthest distance or

at the nearest distance from the emissor node towards the destination node, respectively.

One of the most important metrics to evaluate the performance of the routing protocols

is the hop count (cf. Kuo and Liao (2007)), de�ned as the number of relay nodes of a

multihop path between the source and the destination nodes. Obtaining the hop count

distribution for one-dimensional networks will not only be important for the design of

routing protocols, but it will also bring new insights to the connectivity probability in

one-dimensional networks. Despite of that, there are very few analytical studies on the

distribution of the number of hops in a multihop path.

In one-dimensional ad hoc networks, the existing studies are focused on the connec-

tivity probability, i.e., the probability that there exists a path between the source and

destination nodes regardless of the number of hops, when relay nodes are uniformly dis-

tributed between the source and the destination nodes, (cf., e.g., Desai and Manjunath

(2002), and Ghasemi and Nader-Esfahani (2006)). The study of the hop count distri-

bution for one-dimensional networks has applications, e.g., in vehicular ad hoc networks

built along a road in a city environment, in ad hoc networks along an attack route in

battle�elds, and in other scenarios where nodes are approximately in a line. This is the

case for dense two dimensional ad hoc networks where routes are approximately straight

line segments (Hyytia et al. 2005).

For two-dimensional ad hoc networks, additionally to the variables considered in one-

dimensional networks, nodes are randomly distributed in the plane and the choice of the

next relay node of the multihop path becomes even more decisive in the performance of

the routing protocols. The most used routing protocols for two dimensional scenarios

are the position-based routing protocols that use the geographical position of nodes to
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make routing decisions. These protocols require that a node knows its own geographical

position and the geographical position of the destination node. The similarity between

the position-based routing protocols is that all of them guarantee that the hop progress

is made towards the destination node.

Generally, there are di�erent strategies a node can use to decide to which neighbor

a given transmission should be forwarded. In addition to the furthest and the nearest

distance routing protocols also used in one-dimensional networks, one intuitive strategy

is to forward the packet to the node that makes the most forward progress towards the

destination node. This strategy is known as the Most Forward within Radius (MFR)

and tries to minimize the number of hops a packet has to traverse in order to reach

the destination node. Node that in one-dimensional ad hoc networks the MFR and the

FR protocols coincide. Another used strategy is the compass routing, which selects the

neighbor node closest to the straight line between the source and destination nodes. The

compass routing (CR) tries to minimize the spatial distance a packet travels. For a

detailed description of the most common routing protocols see, e.g., Basagni et al. (2004)

and Mauve et al. (2001).

Due to the complexity involved, the hop count distribution in two dimensional net-

works is hard to derive and, by this reason, the existing studies in the plane use single link

models (cf., eg., Srinivasa and Haenggi (2010) and Vural and Ekici (2005)) or approxima-

tion results (cf., eg., Dulman et al. (2006) and Kuo and Liao (2007)). Based on the lack

of analytical results on the hop count distribution for two-dimensional ad hoc networks,

the investigation to be carried out in this dissertation should address the distribution of

the number of hops for two-dimensional ad hoc networks. To select a multihop path, an

e�cient routing model should be proposed and its performance compared with the most

common routing protocols.

Once a multihop path is active, node mobility causes frequent failure and activation of

new links, a�ecting the performance of a MANET (cf, e.g., McDonald and Znati (1999)
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and Bai et al. (2004)). The derivation of path metrics that characterize the reliability of a

multihop path can be used in the design and performance evaluation of routing protocols.

Therefore, the development of models that integrate the mobility and the connectivity

demands of MANETs are essential for a better understanding of the complex behavior of

these networks.

As far as we know, an exact analysis of the reliability of a multihop path appears to be

unavailable in the literature and most of the analytical studies that focus on link stability

extend the analysis to multihop paths assuming independent link failures, that is, links

behave independently of each other and the path duration is given by the minimum of

the durations of the links of the multihop path (cf., e.g., Han et al. (2006), McDonald

and Znati (1999) and Xu et al. (2007)). However, as a link shares a common node with

each of its neighboor links, this introduces dependences on the mobility of the shared

nodes, which may be extended to other links in the case of group mobility models where

the mobility of nodes is correlated. The exception to the assumption of independent time

failures is the study of La and Han (2007), where using Palm theory and assuming that

the number of hops is large, proves that the distribution of path duration can be well

approximated by an exponential distribution.

Aware of the necessity of exact analytical models, the investigation to be carried in

this dissertation should develop a model for the multihop path dynamics allowing the

derivation of important path metrics, like the mean path duration and path persistence

(de�ned as the probability that a path is continuously active until some time instant).

Our main motivation is to derive a new mathematical framework to model the random

behavior of a multihop path, integrating both connectivity and mobility requirements of

MANETs. This mathematical framework should permit to consider that the duration of

the links of a multihop path are not independent, providing new insights on the multihop

path dynamics.
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1.3 Objectives

An analysis of the literature on MANETs made us realize that the distribution of the

hop count, which is one of the most important metrics to evaluate the performance of

routing protocols (c.f. Kuo and Liao (2007)), has not received a lot of attention, even in

one-dimensional networks. The literature on the subject considers the underlying node

spatial distribution as being either drawn from a Poisson process or that a �xed and

known number of nodes are uniformly distributed in the region of interest.

For one-dimensional networks, most of the studies focus on the connectivity probability

between a source node and a destination node, when relay nodes are uniformly distributed

between the source and destination nodes (cf., e.g., Desai and Manjunath (2002) and

Ghasemi and Nader-Esfahani (2006)). For two-dimensional networks, the only analytical

results for the hop count distribution are the ones derived by Dulman et al. (2006) and

Kuo and Liao (2007) and both of these studies consider some simplifying assumptions

to cope with the mathematical complexity. The existing studies use di�erent routing

protocols and there is no exact analytical study to evaluate their performance.

In this line, we propose in this dissertation:

• To derive the hop count probability distribution in one-dimensional and two dimen-

sional scenarios, assuming that the underlying node distribution is drawn from a

Poisson process or that a �xed number of relay nodes are uniformly distributed in

that region.

• To evaluate the performance of routing protocols for two-dimensional networks by

means of the hop count probability distribution.

After a multihop path is built, its evolution highly determines the performance of the

network in the short term. The dynamics of a multihop path in an ad hoc network call

for a systematic formulation of the geometrical relations governing the complex random

movement of the nodes of the path, with the state of its links limited by the transmission
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range of each relay node. We have come to realize that, due to the complexity of an

exact analysis of these dynamic, the existing studies consider simulation analysis (cf. Bai

et al. (2004)) or simplifying assumptions to model the multihop path dynamics (cf. Han

et al. (2006), McDonald and Znati (1999) and, Xu et al. (2007)). Almost all studies

consider that the duration of links of the multihop path are independent from each other,

permitting to focus the analysis on a single link. The multihop path duration is then

obtained as the minimum of the durations of the single links. However, as shown by Han

et al. (2006), these assumptions are only valid when there exists a high number of links,

which in fact is not common in MANETs. To address this problem La and Han (2007)

study the distribution of path durations considering that links are dependent, by proving

some mixing conditions in order to use Palm's theorem (cf. La and Han, 2007, Section

V) and by assuming that the number of hops is large. Our main objective is to consider

a model where the joint dynamics of the links is taken into account. To address this

problem we propose:

• To model the multihop path dynamic by a mathematical framework that integrates

the mobility and connectivity aspects.

• To obtain path based metrics from the multihop path model, like the mean path

duration and the path persistence, by considering that links that share a common

node do not behave independently.

1.4 Claim of contributions

The contributions within this thesis are twofold: connectivity results for one-dimensional

and two-dimensional networks, where the hop count distribution is derived; and the dy-

namics of a multihop path, where a model for the multihop path dynamics is proposed

and important metrics of network performance are obtained.
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Concerning the research on the connectivity of mobile ad hoc networks, we pro-

pose a randomization technique to derive the hop count probability distribution in one-

dimensional and in a two-dimensional region, when a �xed and known number of relay

nodes are uniformly distributed in some region of interest. Analogous results are derived

when the relay nodes are randomly distributed according to a Poisson process.

In one-dimensional networks, the multihop path selected is the one that selects the

node with the most forward progress within radius, and we prove that the connectivity

probability derived by Ghasemi and Nader-Esfahani (2006) can be decomposed as the

sum of the probability masses at each possible value of the hop count.

In two-dimensional networks, the multihop path is selected by using the FR and NR

protocols, and the performance of both protocols is compared. To guarantee an e�cient

progress towards the destination node, we propose a novel propagation model which we

call the dynamic propagation model. This model establishes that each node transmits

within a routing region de�ned by an angular section of a circular disk with radius equal

to the transmission range and oriented to the destination node, such that the angular

span depends of the distance to the destination node.

Our analysis allow us to derive the exact hop count probability for any number of hops

and, as far as we know, these are the �rst exact analytical results for the hop count prob-

ability distribution. Moreover, our dynamic propagation model is also a generalization of

the model proposed by Srinivasa and Haenggi (2010).

Our main contributions for the connectivity in one-dimensional and two-dimensional

ad hoc networks can be summarized as follows:

• We derive the hop count probability distribution for one-dimensional and two-

dimensional networks, when the underlying node spatial distribution is drawn from

a Poisson process and, by using a Poisson randomization technique, when a �xed

number of relay nodes are uniformly distributed in a region of interest.

• We derive the hop count distribution in one-dimensional networks for the case where
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the selected path provides the greatest forward progress towards the destination.

• We extend the connectivity probability presented by Ghasemi and Nader-Esfahani

(2006) for one-dimensional networks through its decomposition as the sum of the

probabilities for each possible value of the hop count.

• To derive the hop count probability distribution for two-dimensional networks, we

propose a novel propagation model, called the dynamic propagation model, to guar-

antee an e�cient progress towards the destination node.

• We derive the hop count probability distribution for two-dimensional networks, in

the cases where the multihop path selects the closest and the furthest relay node

within the routing region of the emissor node.

Concerning the research on the multihop path dynamics, we propose to model the ran-

dom behavior of multihop paths by a Piecewise Deterministic Markov Process (PDMP).

A PDMP is a Markov process that follows deterministic trajectories between random time

instants. The usage of a PDMP to model a multihop path arises naturally, since PDMPs

are a mixture of deterministic motion and random events, just like the multihop path

dynamics. Moreover, the PDMP description of a multihop path allow us to derive related

performance measures.

Our main contributions on the multihop path dynamics for mobile ad hoc networks

can be summarized as follows:

• We propose a new mathematical framework to model the multihop path dynamics

by a PDMP, integrating both mobility and connectivity requirements of MANETs.

• We derive the mean path duration and path persistence through a system of integro-

di�erential equations.
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• We propose a recursive scheme that transforms the system of integro-di�erential

equations in a system of �rst order ordinary di�erential equations that can be nu-

merically computed.

• We evaluate numerically the e�ects of the independent link assumption and the

connectivity and mobility parameters in the path metrics.

1.5 Overview of the dissertation

We now describe the contents of the remaining chapters of this dissertation, that are based

partially in Antunes, Jacinto and Pacheco (2008, 2010a, 2010b).

In Chapter 2 we derive the minimum hop count probability distribution in one-

dimensional networks, assuming that the location of the source and destination nodes

are known and there are a �xed number of relay nodes uniformly distributed between

them. We also obtain the joint probability density function of relay node locations in the

multihop path and conclude that the probability that the source and destination nodes

are connected can be obtained by summing the probability masses for each possible value

of the minimum hop count. Numerical results illustrate the e�ect of the number of nodes

and of the transmission range in the minimum hop count probability.

In Chapter 3 we derive the hop count probability distribution in two-dimensional

networks using the dynamic propagation model and two routing protocols, the furthest

distance and the nearest distance routing protocols. We consider that the location of the

source and destination nodes are known and the underlying node spatial distribution is

assumed to be either drawn from a Poisson process or that a known and �xed number

of relay nodes are uniformly distributed in a region of interest. Moreover, we obtain

numerical results to evaluate the model performance and to compare the routing protocols.

In Chapter 4 we propose an analytical framework to fully describe the random behavior

of a multihop path in ad hoc networks and obtain path based metrics for computing its



1.5 Overview of the dissertation 13

reliability. We derive formulas for two performance evaluation metrics: the mean path

duration and the path persistence. Finally, we apply our framework to compute numerical

results for these metrics and compare them with those obtained when assuming that the

links of the multihop path behave independently.

Finally, in Chapter 5 some conclusions are drawn and some ideas for future work are

presented.



Chapter 2

Connectivity in one-dimensional ad hoc

networks

2.1 Introduction

In this chapter we derive the probability distribution of the minimum hop count in one-

dimensional ad hoc networks when a �xed and known number of relay nodes are uniformly

distributed between the source and the destination nodes. We show that the connectivity

probability, de�ned as the probability that there exists a multihop path between the

source and the destination nodes regardless of the number of hops, can be obtained from

its decomposition as the sum of the probabilities of the minimum hop count assuming

each of its possible values.

Several studies of connectivity between two nodes and for the entire network in one-

dimensional ad hoc networks have appeared in the literature. One of the �rst studies

deriving the connectivity probability for a �nite set of nodes uniformly distributed in a

�nite interval was presented by Desai and Manjunath (2002). Foh and Lee (2004) and Foh

et al. (2005) derived closed form approximation formulas for the connectivity between

two nodes when relay nodes are uniformly and non-uniformly distributed, respectively.
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Ghasemi and Nader-Esfahani (2006) obtained the connectivity probability in an one-

dimensional ad hoc network when relay nodes are uniformly distributed between the

source and the destination nodes. Other issues of interest that have been investigated are

the number of nodes and the transmission range to ensure that the network is connected

(see, e.g., Santi and Blough (2003) and Bettstetter (2002)). Assuming a Poisson process

for node locations, Mathar and Mattfeldt (1996) studied the optimal transmission ranges

that maximize the expected hop progress of a packet, and Dulman et al. (2006) and Vural

and Ekici (2005) investigated the distribution of the node distance.

We consider an one dimensional ad hoc network where the source and destination

nodes are located at the edge of the network and a �xed number of relay nodes are

uniformly distributed between them. This spatial distribution of nodes arises when nodes

move according to a Random Walk or a Random Direction mobility model over the region

of interest (Camp et al. 2002). A relay node in the path is selected by the Most Forward

within Radius (MFR) routing protocol (see, e.g., Takagi and Kleinrock (1984)). Starting

from the source node, each successive relay node in the MFR path is selected so that

it provides the greatest forward progress toward the destination node within the �xed

transmission range. Therefore, the minimum hop count is given by the number of hops in

the MFR path. We show that the connectivity probability derived in Ghasemi and Nader-

Esfahani (2006) can be obtained from its decomposition as the sum of the probability

masses for each possible value of the minimum hop count, providing new insights on the

connectivity probability.

To derive the minimum hop count distribution and the joint density location of relay

nodes for the case when a �xed number of relay nodes are uniformly distributed between

the source and the destination nodes, we use a poissoni�cation technique (Domb 1952)

that randomizes the number of relay nodes by assuming that they are distributed accord-

ing to a Poisson process, followed by conditioning on the number of nodes. Thus, our

results also apply to the case when relay nodes are distributed according to a Poisson
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process.

The outline of this chapter is described as follows. In Section 2.2 we describe the

model and de�ne the minimum hop count. In Section 2.3 we obtain a recursive formula

that in each step updates the density location of the next relay node that will forward

the packet. We then present the main result of the chapter, where, using a Poisson

randomization method, we obtain the distribution of the number of nodes in the minimum

hop path. In Section 2.4 we present results for network dimensioning, mainly we obtain

the critical value of the number of nodes and of the transmission range that guarantee a

certain connectivity probability with the minimum hop count. Finally, in Section 2.5 we

present some numerical results, illustrating the in�uence of the number of nodes and the

transmission range in the minimum hop count.

2.2 Model description

We consider a multihop ad hoc network with a source node, a destination node, and N

relay nodes between them. Let Xi, i = 1, 2, . . . , N , denote the location of relay node

i, and X0 = 0 and XN+1 = L denote the location of the source and destination nodes,

respectively. We assume that {Xi}Ni=1 are independent and uniformly distributed random

variables on (0, L) and let X(i), i = 0, 1, . . . , N + 1, denote the location of the ith node

from the origin, i.e.,

0 = X(0) < X(1) < . . . < X(N+1) = L.

Given a �xed transmission range 0 < R < L equal for all nodes, nodes i and j

are connected with no hops if |Xi − Xj| < R. If the source and destination nodes are

connected, i.e., X(i+1)−X(i) < R, i = 0, 1, . . . , N , the MFR multihop path between them

is given by Y M = (Y1, Y2, . . . , YM) where

Y1 = max{X(i) : X(i) < R}, Y2 = max{X(i) : X(i) < Y1 +R}, . . . ,

YM = max{X(i) : X(i) < YM−1 +R}
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with YM−1 + R < X(N+1) < YM + R (see Figure 2.1), and M is called the minimum hop

count.

-
--

� - � -� -

. . .

0

X0

L−KR R 2RL−(K−1)R KR L

XN+1
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K

Figure 2.1: Minimum hop count.

The minimum number of hops that may be needed to connect the source and desti-

nation nodes is denoted by

K =

⌊
L

R

⌋
(2.1)

To simplify the exposition, we de�ne K zones between the source and destination nodes

denoted by Z1, Z2, . . . , ZK , with zone i starting at location Z−i = L − R(K + 1 − i) and

ending at Z+
i = iR, with length Z = (K + 1)R − L. From Figure 2.1, the minimum hop

count is K if there exist relay nodes in the zones Z1, . . . , ZK in such way that

Z−1 < Y1 < Z+
1 , Z−2 < Y2 < Y1 +R, . . . , Z−K < YK < YK−1 +R.

On the other hand, the maximum number of hops that may be needed to connect the

source and destination nodes is 2K, which occurs if the zones Zi, i = 1, 2, . . . , K, are

empty, the �rst relay node in the MFR multihop path is before Z−1 , and between each Z+
i

and Z−i+1 there exists two relay nodes in the multihop path with the last relay node after

Z+
K , such that

Y1 < Z−1 , Z+
1 < Y2 < Y1 +R < Y3 < Z−2 , Z+

2 < Y4 < Y3 +R < Y5 < Z−3 , . . . ,

Z+
K−1 < Y2K−2 < Y2K−3 +R < Y2K−1 < Z−K , Z+

K < Y2K < Y2K−1 +R.
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2.3 Connectivity probability with the minimum hop

path

In this section we obtain the connectivity probability with minimum hop count. We �rst

present a recursive formula to obtain that probability, but it su�ers from combinatorial

problems turning it hard to evaluate. For that reason we then use a Poisson randomization

method that provides a simple closed formula for the same probability.

2.3.1 Recursive formula

The probability density function of the location of the �rst hop in the MFR path being t

and the order of the associated relay node being i is

f (i)(t|N,R,L) =
i

L

(
N

i

)(
t

L

)i−1(
1− R

L

)N−i
, 0 < t < R, i = 1, . . . , N.

This results from the marginal density location of X(i) (see, e.g., Kulkarni (1995), page

209, Eq. (5.78)) taking into account that exactly N − i ordered nodes have to be located

on (R,L).

Given the location t of the �rst hop and the order i of the associated relay node, the

locations of the last N − i ordered relay nodes are independent and uniformly distributed

on [R,L). In addition, the probability that the minimum hop count is m given that the

location and the order of the �rst hop are t and i, respectively, is equal to the probability

that the minimum hop count is m − 1 between a pair of nodes located at the endpoints

of interval [R,L] where: the source is at R and has transmission range t; and, N − i relay

nodes, each with transmission range R, are uniformly distributed on [R,L). This fact

can be used to derive a recursive formula to compute the probability distribution of the

minimum hop count, as it will be explained.

We let p(m|n, r, l) denote the probability that the minimum hop count is m when

the distance between the source and destination nodes is l, the transmission range of the
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source is r, and there are n relay nodes, each with transmission range R, uniformly placed

between the source and destination nodes. Then,

p(m|n, r, l) =
∫ r

0

∑n
i=1 f

(i)(t|n, r, l)p(m− 1|n− i, t+R− r, l − r)dt r < l, k ≤ m ≤ min(2k, n),

1 r ≥ l,m = 0,

0 otherwise,

(2.2)

where k = 1 + b(l− r)/Rc, and the probability that the minimum hop count is m is then

given by p(m|N,R,L).

2.3.2 Poisson randomization method

The recursive formula given by equation (2.2) su�ers from combinatorial problems and its

computation is hard even for moderate values of m and n. In this section we show that

the use of Poisson randomization, an exact method originally proposed by Domb (1952),

allows the derivation of an elegant formula without the mentioned drawbacks.

Our use of Poisson randomization consists in randomizing the distribution of relay

nodes, and as a consequence of the parameter N , by assuming that relay nodes are

distributed according to a Poisson process with a �xed rate, say λ. This assumption

decouples the relay nodes in the sense that the number of relay nodes located in disjoint

intervals are independent. Moreover, by conditioning on the number of nodes that lie on

(0, L), the assumption that the relay nodes are uniformly distributed on (0, L) pops up.

As a result of these facts, the probability that the minimum hop count (M) is equal to m

can be explicitly derived with little e�ort. Moreover, by viewing it as an instance of the

total probability law formula in the form

P(M = m) =
∞∑
n=m

e−λL
(λL)n

n!
P(M = m|N = n), (2.3)
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we can identify the probability that the minimum hop count is equal to m when the

number of relay nodes is n, P (M = m|N = n), n ∈ N. It turns out that this leads to a

more e�cient way to compute the minimum hop count distribution for a �xed number of

relay nodes than the one described through (2.2).

The next result characterizes the exact probability distribution of the minimum hop

count given the number of relay nodes between the source and destination nodes, which

is a consequence of the successful use of the Poisson randomization method.

Theorem 2.1. Given that the relay nodes are uniformly distributed on (0, L), the proba-

bility distribution of the minimum hop count is given by

P(M = m|N = n) =

∫
Sm

n!

(n−m)!Ln
(L−mR + ym)n−mdymdym−1 . . . dy1, (2.4)

with K ≤ m ≤ min{2K,n}, y0 = 0 and ym+1 = L, where K is given by (2.1) and

Sm = {(y1, y2, . . . , ym) ∈ (0, L)m : y1 < R, yj−2 +R ≤ yj < yj−1 +R, 2 ≤ j ≤ m+ 1}.

Proof. The �rst relay node is located at y1 if an only if there is a relay node at y1 and

there are no relay nodes between y1 and R, with y1 < R. Because the probability that

there are no relay nodes between y1 and R is e−λ(R−y1), the density function of the location

of the �rst relay node y1 is given by

λe−λ(R−y1), 0 < y1 < R.

The second relay node must be the furthest one from the �rst relay node within its

transmission range. Given that the location of the �rst relay node is y1, the density

function of the location of the second relay node at y2 is

λe−λ(y1+R−y2), R < y2 < y1 +R.

Proceeding in the same manner, given that the location of the (m− 1)-th relay node

is ym−1, the density function of the location of the m-th relay node is

λe−λ(ym−1+R−ym), ym−2 +R < ym < ym−1 +R.
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Note that the locations of the m relay nodes belong to Sm, where Sm is the set of the

possible locations of the m relay nodes in order to the origin node (located at position 0)

is connected to the destination node (located at position L) through those m relay nodes

Sm = {(y1, y2, . . . , ym) ∈ (0, L)m : y1 < R, yj−2 +R ≤ yj < yj−1 +R, 2 ≤ j ≤ m},

where y0 = 0 and ym+1 = L.

Putting all things together, the density of the locations of the consecutive m relay

nodes being y1, y2, . . . , ym is given by

λe−λ(R−y1)

m−1∏
i=1

λe−λ(yi+R−yi+1), (y1, y2, . . . , ym) ∈ Sm. (2.5)

Thus, integrating (2.5) over the set Sm we obtain the probability that the minimum

hop count is m, when the relay nodes are randomly distributed according to a Poisson

process

P(M = m) =

∫
Sm

λe−λ(R−y1)

m−1∏
i=1

λe−λ(yi+R−yi+1)dymdym−1 . . . dy1. (2.6)

Multiplying equation (2.6) by eλL, we obtain

eλLP(M = m) = eλL
∫
Sm

λme−λ(mR−ym)dymdym−1 . . . dy1

=

∫
Sm

λm
∞∑
n=0

λn

n!
(L−mR + ym)ndymdym−1 . . . dy1

=
∞∑
n=m

(λL)n

n!

n!

(n−m)!Ln

∫
Sm

(L−mR + ym)n−mdymdym−1 . . . dy1

where the change between the sum and the integral follows by the dominated convergence

theorem. On the other hand, conditioning on the value of N , which is Poisson distributed

with mean λL, the total probability law produces

eλLP(M = m) =
∞∑
n=m

P(M = m|N = n)
(λL)n

n!
.

Since the coe�cients of (λL)n/n! in the previous two expressions for eλLP(M = m) must

match, the result follows. o
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We remark that the integrand function in (2.4)

n!

(n−m)!Ln
(L−mR + ym)n−m

is the density function of the location of the relay nodes in the MFR path (Y M). The

next results show that, for some values of M , we can �nd a closed form formula for the

connectivity probability with the minimum hop count.

Corollary 2.1. The probability that the minimum hop count is equal to K is given by

P(M = K|N = n) =
n∑

i=K

(
n

i

)(
Z

L

)i(
1− Z

L

)n−i
(2.7)

for K = bL/Rc ≤ n and Z = (K + 1)R− L.

Proof. The probability with minimum hop count being equal to K is obtained by inte-

grating (2.5) over set SK , where by observing Figure 2.1 we can conclude that the set SK

must be de�ned as

SK={(y1, y2, . . . , ym)∈(0, L)m :Z−1 < y1 < Z+
1 , Z

−
2 < y2 < y1+R, . . . , Z−k < yk < yK−1+R}.

Note that this set is in fact the same as the set Sm with m = K. For the �rst relay node

in the set Sm, if y1 < Z−1 then yK + R < L and the multihop path with exactly K relay

nodes cannot be established. Then, in fact, we must have Z−1 < y1 < Z+
1 , where Z

+
1 = R.

By the same arguments, the condition R ≤ y2 < y1 + R of the set Sm must be in fact

Z−2 ≤ y2 < y1 + R of the set SK , since if y2 < Z−2 = L − R(K − 1) the path cannot be

established with exactly K relay nodes because yK +R < L. The same argument applies

to the derivation of the remain conditions de�ning the set SK .

From Theorem 2.1, we have

P(M = K|N = n) =
n!

(n−K)!Ln

∫ Z+
1

Z−1

∫ y1+R

Z−2

. . .

∫ yK−1+R

Z−K

(L−KR + yK)n−KdyKdyK−1 . . . dy1

=
n!

(n−K)!Ln

∫ Z

0

∫ s1

0

. . .

∫ sK−1

0

(L− Z + sK)n−KdsKdsK−1 . . . ds1
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where the last equality comes by the change of variables si = yi − Z−i , i = 1, 2, . . . , K.

Using the binomial theorem, we obtain

P(M= K|N = n)=

∫ Z

0

∫ s1

0

. . .

∫ sK−1

0

n−K∑
m=0

(
n−K
m

)
n!

(n−K)!

smK(L− Z)n−K−m

Ln
dsKdsK−1 . . . ds1.

Integrating in order to the variables si, i = 1, 2, . . . , K, after some algebra we obtain

P(M = K|N = n) =
n−K∑
m=0

n!

(n−m−K)!(m+K)!

(
L− Z
L

)n−m−K (
Z

L

)m+K

=
n∑

i=K

n!

(n− i)!i!

(
L− Z
L

)n−i(
Z

L

)i
.

o

Equation (2.7) is the survival function at K − 1 of the binomial distribution with pa-

rameters N and Z/L. Since the survival function of the binomial distribution is stochas-

tically increasing in the number of trials, when the success probability is kept �xed, the

probability that the minimum hop count is equal to K is increasing in N .

The probability that the minimum hop count is K+1 can be obtained in a similar way.

Closed form expressions for other values of M are out of reach because of the complexity

involved.

Corollary 2.2. The probability that the minimum hop count is equal to K + 1 is

P(M = K + 1|N = n) =
n∑

i=K+1

(
n

i

)(
L−R− Z

L

)n−i
[
K−1∑
j=0

(
i

j

)((
Z

L

)j (
R

L

)i−j
− (i− j)

(
R− Z
L

)(
Z

L

)i−1
)
−
(
Z

L

)i
(1 + i(K − 1))

]
(2.8)

for K = bL/Rc < n and Z = (K + 1)R− L.

Proof. From Theorem 2.1, the probability that the minimum hop count is equal to K + 1

is

P(M= K + 1|N = n) =
n!

(n− (K + 1))!Ln

∫
SK+1

(L− (K + 1)R + yK+1)n−(K+1)dyK+1 . . . dy1
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where SK+1 is the set of possible locations of the K + 1 relay nodes such that the con-

nectivity between the source and the destination nodes is done in exactly K + 1 hops,

that can be written as the union of 2 disjoint sets. The �rst set S1
K+1, is the set of the

locations of the K + 1 relay nodes when one of the zones Zj, 1 ≤ j ≤ K (see Figure 2.1)

does not have relay nodes belonging to the multihop path Y M . Thus, S1
K+1 =

⋃K
j=1 S

1,j
K+1,

where S1,j
K+1 stands for the set of node locations when the j-th intersection zone has no

relay nodes

S1,j
K+1 =

{
(y1, ..., yK+1) ∈ (0, L)K+1 : Z−1 < y1 < Z+

1 , Z
−
i < yi < yi−1 +R, 2 ≤ i ≤ j − 1

Z+
j−1 < yj < Z−j , Z

+
j < yj+1 < yj +R, and Z−i−1 < yi < yi−1 +R, j + 2 ≤ i ≤ K + 1

}
,

where we recall that Z−i = L−R(K + 1− i) and Z+
i = iR.

The second set S2
K+1, is the set of the locations of the K + 1 relay nodes when one of

the remaining zones Zj, 2 ≤ j ≤ K − 1, has two relay nodes. Thus S2
K+1 =

⋃K−1
j=2 S2,j

K+1,

where S2,j
K+1 stands for the set of node locations when the j-th intersection zone has two

relay nodes

S2,j
K+1 =

{
(y1, ..., yK+1) ∈ (0, L)K+1 : Z−1 < y1 < Z+

1 , Z
−
i < yi < yi−1 +R, 2 ≤ i ≤ j,

yj−1 +R < yj+1 < Z+
j , yj +R < yj+2 < yj+1 +R;

and Z−i−1 < yi < yi−1 +R, j + 3 ≤ i ≤ K + 1
}
.



2.3 Connectivity probability with the minimum hop path 25

Integrating in order to the set S1,j
K+1, 1 ≤ j ≤ K we obtain

n!

(n− (K + 1))!Ln

∫
S1,j
K+1

(L− (K + 1)R + yK+1)n−(K+1) dyK+1 . . . dy1 =

=
n!

(n−K − 1)!Ln

∫ Z+
1

Z−1

∫ y1+R

Z−2

. . .

∫ yj−2+R

Z−j−1

∫ Z−j

Z+
j−1

∫ yj+R

Z+
j

∫ yj+1+R

Z−j+1

. . .

. . .

∫ yK+R

Z−K

(L− (K + 1)R + yK+1)n−K−1 dyK+1 . . . dy1

=
n!

(n−K − 1)!Ln

∫ Z

0

∫ s′1

0

. . .

∫ s′j−2

0

∫ R

Z

∫ sj

Z

∫ sj+1

0

. . .

. . .

∫ sK

0

(L− Z −R + sK+1)n−K−1 dsK+1 . . . dsj ds′j−1 . . . ds′1

where the last equality results by the change of variables s′i = yi − Z−i , i = 1, . . . , j − 1,

and si = yi−Z−i−1, i = j, . . . , K + 1. Using the binomial theorem and integrating in order

to the variables si, s′i, and after some algebra we obtain

n!

(n− (K + 1))!Ln

∫
S1
K+1

(L− (K + 1)R + yK+1)n−(K+1)dyK+1 . . . dy1 =

=
n−K−1∑
m=0

(
n

m+K + 1

)
1

Ln
(L− Z −R)n−m−K−1

∫ Z

0

∫ s′1

0

. . .

∫ s′j−1

0

∫ R

Z

∫ sj

Z

∫ sj+1

0

. . .

∫ sK

0

smK+1 dsK+1 . . . dsj ds′j−1 . . . ds′1

=
n∑

i=K+1

(
n

i

)
1

Ln
(L− Z −R)n−i

(
i

j − 1

)(
Zj−1

(
Ri−j+1− Zi−j+1

)
−(i− j + 1)(R− Z)Zi−1

)
.

(2.9)

For the set set S2,j
K+1, 2 ≤ j ≤ K − 1, using the change of variables s′i = yi − Z−i ,
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i = 1, . . . , j and si = yi − Z−i−1, i = j + 1, . . . , K + 1, we obtain

n!

(n− (K + 1))!Ln

∫
S2,j
K+1

(L− (K + 1)R + yK+1)n−(K+1) dyK+1 . . . dy1 =

=
n!

(n−K − 1)!Ln

∫ Z+
1

Z−1

∫ y1+R

Z−2

. . .

∫ yj−1+R

Z−j

∫ Z+
j

yj−1+R

∫ yj+1+R

yj+R

∫ yj+2+R

Z−j+2

. . . (2.10)

. . .

∫ yK+R

ZK

(L− (K + 1)R + yK+1)n−K−1 dyK+1 . . . dy1

=
n−K−1∑
m=0

(
n

m+K + 1

)
1

Ln
(L− Z −R)n−m−K−1

∫ Z

0

∫ s′1

0

. . .

∫ s′j−1

0

∫ Z

s′j−1

∫ sj+1

s′j

∫ sj+2

0

. . .

∫ sK

0

smK+1 dsK+1 . . . dsj ds′j−1 . . . ds′1

=
n∑

i=K+1

(
n

i

)
1

Ln
(L− Z −R)n−i Zi

((
i

j

)
− i
)
. (2.11)

Summing (2.9) in order to j, 1 ≤ j ≤ K, the integration in order to the set S1
K+1 =⋃K

j=1 S
1,j
K+1 is derived. In the same way, summing (2.10) in order to j, 2 ≤ j ≤ K − 1, the

integration in order to the set S2
K+1 =

⋃K−1
j=2 S2,j

K+1 is derived. Joining both results, (2.8)

follows after some algebra. o

Since the set of all locations of relay nodes, where the source and destination nodes are

connected, can be partitioned in the sets of locations of nodes associated to each possible

value of the minimum number of hops necessary to connect the source and destination

nodes, the connectivity probability Pc may be computed through the relation

Pc =

min(2K,n)∑
m=K

P(M = m|N = n). (2.12)

2.4 Network dimensioning

In this section, we obtain the critical number of relay nodes and the critical transmission

range that guarantee a desired connectivity probability with the minimum number of

hops. These results can be used in network dimensioning.
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Since we have derived a closed formula for the minimum value of the hop count, if

we invert that formula in order to the number of nodes n or the transmission range

R, we obtain a value for the number of nodes or a value for the transmission range that

guarantee a given hop count probability (and also a given connectivity probability because

this probability is greater or equal to the hop count probability with K hops). The cases

where the number of nodes is either too high or too low, originating a minimum hop count

probability close to 1 or 0, respectively, have no interest for the analysis. However, for

moderate values of the number of nodes, knowing the values of n and R that guarantee a

desired minimum hop count probability can be of interest for applications.

Given that there are n relay nodes uniformly distributed between the source and

destination nodes, the connectivity probability with the minimum number of hops K is

given by

P (M = K|N = n) =
n∑

i=K

(
n

i

)(
Z

L

)i(
1− Z

L

)n−i
= 1− FB(n,ZL )(K − 1). (2.13)

where the right hand side of (2.13) is the survival function of a binomial distribution with

parameters N and Z/L.

A possible approximation of the binomial distribution by the normal distribution in

(2.13) gives, with p denoting the desired connectivity probability with the minimum num-

ber of hops,

p ' 1− Φ

 K −N Z
L√

N Z
L

(
1− Z

L

)
 . (2.14)

which can be written as

Φ−1(1− p) =
K −N Z

L√
N Z

L

(
1− Z

L

) . (2.15)

where Φ−1 is the inverse of the cumulative distribution function of the standard normal

distribution. Note that in order to obtain an upper bound forN , in (2.14) we haven't made
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the usual approximation of the binomial distribution by the normal distribution, and we

consider this approximation valid for the rule of thumb N > 5 and 1/
√
N(
√

(L− Z)/Z−√
Z/(L− Z)) < 0.3 presented in Box et al. (1978, p. 130). Letting A = Φ−1(1− p) and

solving equation (2.15) in order to N we obtain

N =

⌈
2KL+ A2(L− Z)− A

√
4KL(L− Z) + A2(L− Z)2

2Z

⌉
(2.16)

the critical number of relay nodes, that is, the minimum number of nodes that guarantee

a connectivity probability with K hops with at least probability p, for a given value of R

(note that Z = (K + 1)R− L).

Obtaining the critical value of the transmission range is a bit more involved. We

can see in Figure 2.2 a representation of the connectivity probability and the hop count

probability with K hops, for N = 20, as a function of the transmission range R. We

can observe that for each possible value of K, obtained for each R ∈ (L/(K + 1), L/K],

the connectivity probability with K hops has an increasing behavior within each interval

R ∈ (L/(K + 1), L/K].

Given that the source and destination nodes are at a distance L from each other and

that K is the minimum number of hops, we can �nd the critical (i.e. smallest) value

of the transmission range R, with R ∈ (L/(K + 1), L/K] that originates a connectivity

probability with K hops of at least p, if there exists one. This is done using exactly the

same approach used to obtain the critical value of the number of relay nodes and so we

will just present numerical results for the critical value of the transmission range.

2.5 Numerical results

In this section, we evaluate the e�ect of the number of nodes and the transmission range

in the distribution of the minimum hop count. We scale the parameters with respect

to the distance between the source and destination nodes. Thus we set L = 1 and

1/(K + 1) < R ≤ 1/K, so that 0 < Z ≤ 1/K. The most interesting cases are when K is
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Figure 2.2: Connectivity probability and hop count probability with K hops as a function

of R, with N = 20.

small since as the number of hops increases a multihop path may break frequently due to

mobility of nodes (Jiang and Rao 2005).

In Figure 2.3 we can observe the connectivity probability decomposed in terms of the

possible values of the hop count. Considering R = 0.32 (K = 3, Z = 0.28), the minimum

hop count goes from K = 3 to 2K = 6. Each value of the hop count probability is denoted

in Figure 2.3 by 3, 4 and 5+ (for values greater or equal to 5) hops. We can observe that

the hop count with K = 3 has the highest hop count probability, giving values close to

the connectivity probability when the number of nodes is large (around 30 or more). The

sum of the probabilities for the two smallest values of the hop count (K = 3 and K = 4)

is close to the connectivity probability, indicating that the connectivity probability can

be approximated by the sum of the hop count probabilities for the two smallest values

of K. As expected, with the increase of the number of relay nodes, the probability that

the minimum hop count is 4 starts to decrease and goes to zero, turning the hop count

probability with K relay nodes the only non negligible probability.
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Figure 2.3: Minimum hop count/connectivity probability (L = 1, R = 0.32).

In Figure 2.4, we consider the connectivity probability and values of the probability

function of the minimum hop count between the source and destination nodes when

R = 0.23 (K = 4, Z = 0.15) for di�erent values of the number of nodes N . Here, the

connectivity probability is given by the sum of the probabilities of the minimum hop count

being 4, 5, 6, and 7 or more (denoted by 7+). As can be seen from the Figure 2.4, this

probability is approximately equal to the sum of the probabilities of the minimum hop

count being 4, 5, and 6. Again, the connectivity probability can be approximated by the

sum of the probabilities for the two smallest values of K, 4 and 5, when the number of

relay nodes is large.

As the length of the intersections zones (Z) decreases, due to the increase of K or the

value of the transmission range (R), and gets close to zero, the connectivity probability

in more than K + 1 hops stops being negligible. However, as the number of relay nodes

increases this probability starts to decrease, converging to zero.

In Figure 2.5, we depict jointly the probabilities that the minimum hop count is equal

to K and K + 1, as a function of R, for N = 20. We can see that, in this setting, K
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Figure 2.4: Minimum hop count/connectivity probability (L = 1, R = 0.23).

takes values 2, 3, 4, 5 in the interval of the transmission range. In an interval for R of the

form (1/(K + 1), 1/K], the probability that the minimum hop count is K increases with

R, since the size of the intersection zones (Z) also increases as R increases.
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We now present some numerical results for the critical values of N and R. In Figure

2.6 we can observe the critical values of the number of relay nodes, N , needed to obtain

a connectivity probability with K hops of at least p, where the hop count is equal to

K = 2, 3 and Z = (K + 1)R−L = 0.30. These results are obtained using (2.16). We can

conclude that as p increases also the necessary number of nodes increases, as expected.

For example, to obtain a connectivity probability with K hops of at least 0.95 we will

need a minimum of 16 relay nodes if K = 2, and a minimum of 19 relay nodes if K = 3,

when Z = 0.3.
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Figure 2.6: Critical value of the number of relay nodes N as a function of p.

In Figure 2.7 we can observe the relation between R and N for a hop count probability

of p = 0.95 and forK = 2, 3 hops. We can observe that as the transmission range increases,

the number of relay nodes needed to connect the source and destination nodes decreases.
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Chapter 3

Connectivity in two-dimensional ad hoc

networks

3.1 Introduction

In this chapter we derive the exact probability distribution of the hop count in a two-

dimensional ad hoc network in which: either a �xed number of relay nodes are uniformly

distributed between the source and the destination nodes, or the relay nodes are dis-

tributed according to a Poisson process. We recall that in Chapter 2 we derived the hop

count distribution for a one-dimensional ad hoc network. In this chapter we will generalize

the results of Chapter 2 for a two-dimensional ad-hoc network.

When the source and destination nodes are at a distance greater than the transmission

range, the communication between them is made via a multiple hop path determined by

the routing protocol (cf., e.g., Mauve et al. (2001)). Among the existing position-based

routing protocols for two dimensional networks we have described the most used: the

MFR (most forward within radius routing), the NR (nearest distance routing), the FR

(furthest distance routing) and CR (compass routing) protocol. The similarity between

these protocols is that all of them guarantee that the hop progress is made towards the
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destination node.

As stated by Kuo and Liao (2007) and the references therein, one of the most impor-

tant metrics to evaluate the performance of routing protocols is the number of hops of the

multihop path. Derivation of the hop count distribution in a two-dimensional scenario

must take into account, among other factors: the node spatial distribution, the transmis-

sion range and the routing protocol. The interaction of these characteristics turns the

derivation of the hop count distribution a di�cult task. This is the reason why, despite its

importance, there are few analytical studies on the subject and most of them address only

single link models (Haenggi (2005), Srinivasa and Haenggi (2010) and Vural and Ekici

(2005)) and/or approximation results (Dulman et al. (2006) and Kuo and Liao (2007)).

Haenggi (2005), assuming that relay nodes are distributed according to a Poisson

process, derived the distribution of the distance from the source to the furthest neighbor

node within transmission range. The analysis was extended in Srinivasa and Haenggi

(2010) to a model where a �nite number of relay nodes is uniformly distributed in a

region of interest. Also assuming a Poisson process for the node locations, Vural and

Ekici (2005) derived an approximation of the distribution of the distance to the furthest

neighbor node within transmission range.

As far as we know, only two papers focus their analysis in more than a single link.

Dulman et al. (2006) derived an approximation for the relationship between the number

of hops and the distance between the source and the destination nodes, and Kuo and

Liao (2007) derived an approximation for the probability of existence of a multihop path

between the source and destination nodes.

Other issues of interest that have been analyzed in the literature are the expected

hop progress and the expected hop distance. The expected hop progress from a relay

node is de�ned as the expected value of the length of the hop, measured along the axis

between the relay node and the destination node, whereas the expected hop distance is

de�ned as the expected distance between two consecutive relay nodes of the multihop
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path. Assuming that relay nodes are randomly distributed by a Poisson process, Hou and

Li (1986) compared the expected hop progress of a single link for the FR and NR routing

protocols.

In this chapter, we assume that the source and destination nodes are �xed at a known

distance. In addition, the underlying node distribution, in a given region of interest, is

either assumed as a stationary Poisson process or that a known and �xed number of relay

nodes are uniformly distributed in that region. To obtain the multihop path, we propose

a propagation model where the routing region of each relay node is de�ned by a given

angular span and a radius equal to the transmission range. Our model is a generalization

of the model proposed by Srinivasa and Haenggi (2010) in the sense that we consider a

variable angular span instead of a �xed angular span. This is accomplished by considering

that the angular span depends on the distance between the relay and destination nodes.

We call this model the dynamic propagation model.

Using the dynamic propagation model, our results permit to derive the exact hop

count probability distribution with an arbitrary number of hops for a multihop path

selected by the FR and NR routing protocols. The hop count distribution is derived

when relay nodes are distributed according to a Poisson process and, by resorting to the

Poissoni�cation technique, we derive the hop count distribution when a �nite number of

relay nodes is uniformly distributed in an area of interest. As far as we know, these are

the �rst exact analytical results for the hop count distribution with an arbitrary number

of hops in a two-dimensional scenario. From the hop count probability distribution, we

numerically compute the expected hop progress and the expected hop distance to evaluate

the performance of the routing protocols.

The outline of this chapter is the following. In Section 3.2 we describe the dynamic

propagation model. In Section 3.3 we derive the density location of relay nodes and the hop

count distribution for the dynamic propagation model with the nearest and the furthest

distance routing protocols, when the relay nodes are randomly distributed according to a
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Poisson process. In Section 3.4 we derive analogous results assuming that a �xed number

of relay nodes are uniformly distributed in a region of interest. In Section 3.5 we present

some numerical results to compare both routing protocols and to evaluate the performance

of the dynamic propagation model. Finally, in Section 3.6 we present the proofs of some

auxiliary results used in the former sections.

3.2 Model description

We consider a multihop ad hoc network with the source node �xed at the origin and the

destination node �xed at a distance L from the source node. A multihop path with m

hops is de�ned as an existing path from the source to the destination node using exactlym

relay nodes. Denote by Xi, 1 ≤ i ≤ m, the location of the relay node i of a multihop path,

with these nodes ordered according to their distance to the origin, and let X0 = (0, 0)

and Xm+1 = (L, 0) denote the locations of the source and destination nodes, respectively.

Note that, without loss of generality, we have assumed that the destination node is located

in the x-axis. Given a �xed transmission range R, 0 < R < L, equal for all nodes, nodes

i and j are connected with no hops if ‖Xi −Xj‖ < R.

We assume that the locations of the source node, the destination node, and all relay

nodes of the multihop path belong to a compact set Ω ⊂ R2. The set Ω is de�ned

by an isosceles triangle with one vertice at the origin (0, 0) with associated angle φ0 =

2 arctan (R/L), and the height of the triangle lies on the horizontal axis and is equal

to L + R. For the underlying node distribution, we assume that either a �xed and

known number of nodes are uniformly distributed in Ω, or a random number of nodes are

distributed in Ω according to a stationary Poisson process.
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3.2.1 Dynamic propagation model

For e�cient routing progress towards the destination, we consider that each relay node

transmits within a routing region limited by the transmission radius R and an angular

span oriented to the destination node. The angular span φi of relay node i is chosen

in a dynamic way, being dependent on the location Xi of the relay node. The choice

of the angular span is such that it originates a triangle with vertices at points (L,R),

(L,−R) and Xi (see Figure 3.1), decreasing when the relay node gets further away from

the destination node and increasing when it gets closer to the destination node.

di−1

R

Xi−1
Xm+1

Xi

φi−1

φi

θi ri bi

Ai−1

Ai

bi

s+
i

s−i

di

(L,R)

(L,−R)

φ+
i

φ−i

Figure 3.1: Routing regions and angular spans of relay nodes i− 1 and i.

The polar coordinates of the location of the relay node i relative to the location of

relay node i − 1 are denoted by (ri, θi), −π ≤ θi ≤ π. Given (ri, θi) and the distance

from relay node i− 1 to the destination node, di−1, the distance from relay node i to the

destination node, di, is given by the function

di ≡ f(di−1, ri, θi) =
√

(di−1 − ri cos θi)2 + (ri sin θi)2, 1 ≤ i ≤ m, (3.1)

with d0 = L. The angle φi of relay node i, can then be written as a function of di−1 and

(ri, θi),

φi ≡ φ(di−1, ri, θi), (3.2)
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and is given by

φi = arcsin

(
R− bi
s+
i

)
+ arcsin

(
R + bi
s−i

)
, (3.3)

where bi = ri sin θi, so that |bi| is the minimum distance between Xi and the axis that goes

from Xi−1 to Xm+1, and s
±
i =

√
(di−1 − ri cos θi)2 + (R∓ bi)2 is the distance between Xi

and (L,±R); see Figure 3.1. Using geometric arguments, we can show that the angle φ+
i

formed by the points (L,R), Xi and Xm+1 is given by

φ+
i = arcsin

(
R− bi
s+
i

)
+ arcsin

(
bi
di

)
and the angle φ−i formed by the points (L,−R), Xi and Xm+1 is given by

φ−i = arcsin

(
R + bi
s−i

)
− arcsin

(
bi
di

)
.

Note that the angular span of relay node i is given by φi = φ+
i + φ−i .

To describe the routing regions of each relay node, we make a translation and rotation

of the plane to locate the origin of the new plane at the current emissor node (in this

case at relay node i), with horizontal axis being the line drawn from the emissor node to

the destination node. For a relay node i located at Xi, the routing region relative to Xi

is denoted by Ai ≡ A(Xi, Xm+1, φi) and, at each hop, an angular slice of a circular disk

with radius R and with area φi
2
R2 is covered (see Figure 3.1). More precisely, the routing

region of relay node i relative to Xi is

Ai ≡ A(Xi, Xm+1, φi) =
{

(r, θ) : 0 < r < R,−φ−i ≤ θ ≤ φ+
i

}
Since the routing regions will be dynamic and oriented towards the destination node,

we call this model the dynamic propagation model. Using this model, two routing protocols

are analyzed: the furthest distance routing (FR) and the nearest distance routing (NR).

With the FR protocol the transmission is made to the furthest neighbor node within

the routing region, whereas in the NR protocol the transmission is made to the nearest

neighbor node within the routing region. In Figure 3.2 we can observe the dynamic

propagation model with the FR protocol for a path with 3 hops.
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Figure 3.2: Dynamic propagation model with the FR protocol for a path with 3 hops.

The minimum number of hops needed to connect the source and the destination nodes

for the FR and the NR routing protocols is

K =

⌊
L

R

⌋
, (3.4)

which can be easily veri�ed by putting each relay node Xi = (xi, yi) on the source-

destination axis (i.e., yi = 0) and such that their abscissas are

Z−1 < x1 < Z+
1 , Z−2 < x2 < x1 +R, . . . , Z−K < xK < xK−1 +R.

with Z−i = L − R(K + 1 − i) and Z+
i = iR, just like in the unidimensional case (cf.

Antunes, Jacinto, and Pacheco (2008)).

3.3 Hop count distribution with a random number of

relay nodes

In this section we assume that relay nodes are randomly distributed in the plane according

to a stationary Poisson point process with intensity λ. In this scenario, the number of

relay nodes in disjoint sets are independent of each other and for any given set with area
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B the number of relay nodes in the set has Poisson distribution with mean λB. For the

dynamic propagation model with the furthest distance and the nearest distance routing

protocols, we derive the density location of relay nodes for a multihop path with m hops

and the distribution of the number of hops.

3.3.1 Dynamic propagation model with the nearest distance pro-

tocol

In this subsection we derive the hop count probability distribution for a multihop path

that selects the relay node closer to the emissor node.

To derive the hop count probability distribution we need to obtain the area of the

vacant region of each relay node of the multihop path. The vacant region VNRi of relay

node i is de�ned to be the subset of the routing region of relay node i that has no relay

nodes. That is, since the relay node selected is the closest one from the emissor node, the

vacant region of relay node i is given by the set of points that are closer to i than relay

node i+ 1, having an area V NR
i = φi

2
r2
i+1, see Figure 3.3.
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Figure 3.3: Routing regions and vacant regions of relay nodes i− 1 and i.

Denote by lm = (l1, l2, . . . , lm) the vector of relative locations of the m relay nodes,
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with li = (ri, θi), and let dlm = drm dθm dθm−1 drm−1 . . . dr1 dθ1.

Theorem 3.1. Given that relay nodes are distributed according to a Poisson process with

rate λ, the probability distribution of the hop count for the dynamic propagation model

with the nearest distance routing protocol is given by

P(M = m) =

∫
Nm

λme−λ
Pm−1
i=0 V NRi

m∏
i=1

ri dlm (3.5)

with m ≥ K, where

Nm =
{
lm : li = (ri, θi) ∈ Ai−1, i = 1, 2, . . . ,m, dm < R ≤ dm−1

}
. (3.6)

Proof. We �rst derive the joint density location of the m relay nodes of the multihop

path. For that, �x (r1, θ1) ∈ A0 =
{

(r′1, θ
′
1) : 0 < r′1 < R,−φ0

2
< θ′1 <

φ0

2

}
and de�ne

V0 =

{
(r′1, θ

′
1) : 0 < r′1 < r1,−

φ0

2
< θ′1 <

φ0

2

}
Vε0 = {(r′1, θ′1) : r1 ≤ r′1 < r1 + ε1, θ1 ≤ θ′1 < θ1 + ε2} .

Denote by N(A) the number of points of the Poisson process that lies in A. Then we have

P (N(V0) = 0, N(Vε0) > 0) = P (N(V0) = 0)P (N(Vε0) > 0)

= e−λ
φ0
2
r2
1 (1− P (N(Vε0 = 0))

= e−λ
φ0
2
r2
1

(
1− exp

(
−λ
∫ r1+ε1

r1

∫ θ1+ε2

θ1

rdrdθ

))
= e−λ

φ0
2
r2
1λ

∫ r1+ε1

r1

∫ θ1+ε2

θ1

rdrdθ + o(ε1ε2).

The density function of the location of the �rst relay node being at (r1, θ1) is given by

h(r1, θ1) = lim
ε1,ε2→0+

P (N(V0) = 0, N(Vε0) > 0)

ε1ε2
=

= λr1e
−λφ0

2
r2
1 .

To derive the density location of the �rst two relay nodes, we make a rotation and

translation of the plane in order to place the origin of the new plane at (r1 + ε, θ1) with
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horizontal axis being the line drawn from (r1+ε, θ1) to the destination node. The following

three sets are de�ned relative to this new origin.

Fix (r2, θ2) ∈ A1 =
{

(r′2, θ
′
2) : 0 < r′2 < R,−φ1

2
< θ′2 <

φ1

2

}
and de�ne

V1 =

{
(r′2, θ

′
2) : 0 < r′2 < r2,−

φ1

2
< θ′2 <

φ2

2

}
Vδ1 = {(r′2, θ′2) : r2 ≤ r′2 < r2 + δ1, θ2 ≤ θ′2 < θ2 + δ2}.

Therefore,

P
(
N(V0) = 0, N(Vε0) > 0, N(V1) = 0, N(Vδ1) > 0

)
=

= P (N(V0) = 0)P (N(Vε0) > 0)P (N(V1) = 0)P
(
N(Vδ1) > 0

)
= P (N(V0) = 0) (1− P (N(Vε0) = 0))P (N(V1) = 0)

(
1− P (N(Vδ1) = 0)

)
= e−λ

φ0
2
r2
1

(
λ

∫ r1+ε1

r1

∫ θ1+ε2

θ1

rdrdθ + o(ε1ε2)

)
e−λ

φ1
2
r2
2

(
λ

∫ r2+δ1

r2

∫ θ2+δ2

θ2

rdrdθ + o(δ1δ2)

)
.

The density function of the location of the �rst two relay nodes is given by

h(r1, θ1, r2, θ2) = lim
ε1,ε2,δ1,δ2→0+

P
(
N(V0) = 0, N(Vε0) > 0, N(V1) = 0, N(Vδ1) > 0

)
ε1ε2δ1δ2

=

= λ2r1r2e
−λφ0

2
r2
1e−λ

φ1
2
r2
2 .

Proceeding in the same manner until the m-th relay node reaches the destination node

we obtain the joint density location of the m relay nodes of the multihop path

h(lm) = λme−λ
Pm
i=1

φi−1
2

r2
i

m∏
i=1

ri, (3.7)

where the given node locations are in Nm and the last relay node is m because dm < R ≤

dm−1.

Thus, integrating (3.7) over the set Nm we obtain the probability that the hop count is

m for the nearest distance routing protocol, when the relay nodes are randomly distributed

according to a Poisson process

P(M = m) =

∫
Nm

λme−λ
Pm
i=1

φi−1
2

r2
i

m∏
i=1

ri dlm (3.8)

o
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Note that the function (3.7) is the joint density location of the relay nodes in the

multihop path selected with the dynamic propagation model and the NR protocol.

3.3.2 Dynamic propagation model with the furthest distance pro-

tocol

In this subsection we characterize the exact probability distribution of the hop count for

the dynamic propagation model that selects the relay node that is furthest away from the

emissor within the routing region.

We denote by Âi the admissible propagation region of relay node i, de�ned as the

possible relative locations of relay node i+ 1, (ri+1, θi+1), given the location of relay node

i. For di�erent values of i, the sets Âi are disjoint. For a given relative location of relay

node i+ 1, and since it is at the furthest distance from the relay node i within its routing

region, the vacant region of relay node i, denoted by VFRi , is given by the set of points of

the routing region of relay node i that are at a distance greater than ri+1. We denote by

V FR
i the area of the vacant region of relay node i and, for a multihop path with m hops,

we will denote the sum of the areas of the disjoint vacant regions by

V FR(lm) =
m−1∑
i=0

V FR
i . (3.9)

Note that, to simplify the notation, we write VFRi and V FR
i instead of the more accurate

VFRi (ri, θi, di, ri+1, θi+1) and V FR
i (ri, θi, di, ri+1, θi+1). Since the derivations of the areas of

V FR
i and Âi have a high level of details, being necessary to consider all possible relative

locations of relay nodes i and i + 1, we present the auxiliary lemmas that derive these

results at the end of this chapter, in Section 3.6.

Theorem 3.2. Given that relay nodes are distributed according to a Poisson process with

rate λ, the probability distribution of the hop count for the dynamic propagation model
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with the furthest distance routing protocol is

P(M = m) =

∫
Gm

λme−λV
FR(lm)

m∏
i=1

ri dlm (3.10)

with m ≥ K, where

Gm =
{
lm : li = (ri, θi) ∈ Âi, i = 1, 2, . . . ,m, dm < R ≤ dm−1

}
. (3.11)

Proof. Proceeding as in the proof of Theorem 3.1 we can prove that, in a Poisson random

network with intensity λ, the density function of the location of the �rst relay node that

is at furthest distance from the source, is given by

g(l1) = λr1e−λ
φ0
2

(R2−r2
1) = λr1e−λV

FR
0 ,

with l1 = (r1, θ1) ∈ A0.

The density location of the �rst two relay nodes is given by

g(l1, l2) = λ2r1r2e
−λ(V FR0 +V FR1 ).

where V FR
1 is the area of the vacant region of relay node 1 and (r1, θ1) ∈ A0, (r2, θ2) ∈ Â1,

with V FR
1 and Â1 being given by Lemma 3.2 of Section 3.6.

Proceeding in the same manner for the m relay nodes, the density location of the m

relay nodes is

g(lm) = λme−λV
FR(lm)

m∏
i=1

ri, (3.12)

where the possible locations of the m given relay nodes are in Gm and the last relay node

is m because dm < R ≤ dm−1.

Thus, integrating (3.12) over the set Gm we obtain the probability that the hop count

is m for the furthest distance routing protocol, when the relay nodes are randomly dis-

tributed according to a Poisson process

P(M = m) =

∫
Nm

λme−λ
Pm−1
i=0 V NRi

m∏
i=1

ri dlm (3.13)

o
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Note that the function (3.12) is the density location of the relay nodes in the multi-

hop path selected by the dynamic propagation model with the furthest distance routing

protocol.

For a path with one hop, a simple closed formula can be obtained.

Theorem 3.3. Given that relay nodes are distributed according to a Poisson process with

rate λ, for R ≤ L < 2R, the probability that the hop count is equal to 1 is given by

P (M = 1) = 1− e−λA,

where

A =


(
R2

2
(φ0 − a+ sin a)− h2 tan

(
φ0

2

))
, R < L ≤

√
3R(

2R2 arccos
(
L

2R

)
− L

2

√
4R2 − L2

)
,
√

3R < L ≤ 2R
(3.14)

where a = 2 arccos
(
L−h
R

)
, h = L−

√
R2 − (b sin φ0

2
)2 and b = L cos φ0

2
−
√
R2 − (L sin φ0

2
)2.

Proof. Denote by B(x, a) a circumference with center at x and radius a. The area of

intersection I between the transmission ranges of the source node S and the destination

node D, I = B(S,R) ∩ B(D,R), is given by (cf., http://mathworld.wolfram.com/Circle-

CircleIntersection.html)

2R2 arccos

(
L

2R

)
− L

2

√
4R2 − L2.

If the routing region is such that
√

3R < L ≤ 2R, the intersection region I is completely

inside the routing region of the source A0. Since relay nodes are distributed according to

a Poisson point process, the probability that the hop count is equal to 1 is given by the

probability that there is at least one node in the intersection region I, which is

1− exp

(
−λ
(

2R2 arccos

(
L

2R

)
− L

2

√
4R2 − L2

))
.

Case R < L ≤
√

3R, the routing region of the source cuts, above and below, the

intersection region I (see Figure 3.4), and we proceed to �nd the area of J = I ∩ A0.
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Figure 3.4: Intersection between A0, B(S,R) and B(D,R).

To obtain the area of J , we �rst need to obtain the area of the circular segment

de�ned by the line between P and Q and the boundary of B(D,R). The area of this

circular segment is (cf. Polyanin and Manzhirov, 2006, p. 38, formula 3.1.3.1)

R2

2
(a− sin a) .

with the angle a given by a = 2 arccos
(
L−h
R

)
, where L − h is the height of the triangle

PDQ, which is given by

L− h =
1

2

√
4R2 − c2,

where c is the length of the cord PQ which is also the base of the triangle PSQ. By the

law of sines (cf. Polyanin and Manzhirov, 2006, p. 44),

c = 2b sin
φ0

2
,

where b is the length of SP = SQ and is obtained by the law of cosines (cf. Polyanin and
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Manzhirov, 2006, p. 44), R2 = b2 + L2 − 2bL cos φ0

2
, whose solution gives

b = L cos
φ0

2
−

√
R2 −

(
L sin

φ0

2

)2

.

Knowing the area of the circular segment and the area of the triangle PSQ (which

is h2 tan φ0

2
), we can obtain the area of the cone B de�ned by the region that is not

intersected by B(D,R) and is inside A0, which is

area(B) = h2 tan
φ0

2
− R2

2
(a− sin a)

Finally, knowing the area of B and the area of the routing region A0, we obtain the

area of J ,

area(J) = area(A0)− area(B) =
R2

2
(φ0 + a− sin a)− h2 tan

φ0

2
.

Then, the probability that the hop count is equal to 1 is given by the probability that

there is at least one node in J , which is

1− exp

(
−λ
(
R2

2
(φ0 + a− sin a)− h2 tan

φ0

2

))
.

o

3.4 Hop count distribution with a �nite number of relay

nodes

We now assume that a �nite and known numberN of relay nodes are uniformly distributed

in Ω, in order to derive the hop count probability distribution for a multihop path selected

by the dynamic propagation model with the FR and the NR protocols. The hop count

probability distribution is obtained by using the Poisson randomization technique, used

in Section 2.3.2, that consists in randomizing the number of relay nodes by assuming that

relay nodes are distributed in Ω according to a Poisson process with rate λ.
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3.4.1 Dynamic propagation model with the nearest distance pro-

tocol

In this subsection we derive the hop count probability distribution for a multihop path

selected by the dynamic propagation model with the NR protocol when a �xed and known

number of relay nodes are uniformly distributed on Ω. We denote by B the area of Ω

Theorem 3.4. Given that there are n relay nodes uniformly distributed on Ω, the proba-

bility distribution of the hop count for a multihop path selected by the dynamic propagation

model with the nearest distance routing protocol is given by

P(M = m|N = n) =

∫
Nm

n!

(n−m)!

1

Bm

(
1− 1

B

m−1∑
i=0

V NR
i

)n−m m∏
i=1

ri dlm (3.15)

with K ≤ m ≤ n and where

Nm =
{
lm : li = (ri, θi) ∈ Ai−1, i = 1, 2, . . . ,m, dm < R ≤ dm−1

}
.

Proof. From (3.5) the probability that the hop count ism when relay nodes are distributed

according to a Poisson process is

P(M = m) =

∫
Nm

λme−λ
Pm−1
i=0 V NRi

m∏
i=1

ri dlm (3.16)

Multiplying equation (3.16) by eλB where B is the area of Ω, we obtain

eλBP(M = m) = eλB
∫
Nm

λme−λ
Pm−1
i=0 V NRi

m∏
i=1

ri dlm

=

∫
Nm

λm
∞∑
n=0

(λB)n

n!

(
1− 1

B

m−1∑
i=0

V NR
i

)n m∏
i=1

ri dlm

=
∞∑
n=m

(λB)n

n!

∫
Nm

n!

(n−m)!

1

Bm

(
1− 1

B

m−1∑
i=0

V NR
i

)n−m m∏
i=1

ri dlm

where the change between the sum and the integral follows by the dominated convergence

theorem. On the other hand, conditioning on the value of N , which is Poisson distributed



3.4 Hop count distribution with a �nite number of relay nodes 50

with mean λB, the total probability law produces

eλBP(M = m) =
∞∑
n=m

P(M = m|N = n)
(λB)n

n!
.

Since the coe�cients of (λB)n

n!
in the previous two expressions for eλBP(M = m) must

match, the result follows.

o

Note that the integrand function in (3.15),

n!

(n−m)!

1

Bm

(
1− 1

B

m−1∑
i=0

V NR
i

)n−m m∏
i=1

ri

is the density location of the relay nodes when a �nite and known number n of relay

nodes are uniformly distributed on Ω with the multihop path selected by the dynamic

propagation model with the NR protocol.

3.4.2 Dynamic propagation model with the furthest distance pro-

tocol

In this subsection we characterize the exact probability distribution of the hop count for

the dynamic propagation model with the FR protocol, given the number of relay nodes

in the region Ω. We also obtain a closed formula for the connectivity probability with 1

hop.

Theorem 3.5. Given that there are n relay nodes uniformly distributed on Ω, the proba-

bility distribution of the hop count for a multihop path selected by the dynamic propagation

model and the furthest distance routing protocol is given by

P(M = m|N = n) =

∫
Gm

n!

(n−m)!

1

Bm

(
1− V FR(lm)

B

)n−m m∏
i=1

ri dlm (3.17)

with K ≤ m ≤ n and where

Gm =
{
lm : li = (ri, θi) ∈ Âi−1, i = 1, 2, . . . ,m, dm < R ≤ dm−1

}
.
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Proof. Assuming that the relay nodes are distributed on Ω by a Poisson process with rate

λ, the probability that the hop count is m is given by (3.10),

P(M = m) =

∫
Gm

λme−λV
FR(lm)

m∏
i=1

ri dlm. (3.18)

Multiplying equation (3.18) by eλB, where B is the area of Ω, we obtain

eλBP(M = m) = eλB
∫
Gm

λme−λV
FR(lm)

m∏
i=1

ri dlm

=

∫
Gm

λm
∞∑
n=0

(λB)n

n!

(
1− V FR(lm)

B

)n m∏
i=1

ri dlm

=
∞∑
n=m

(λB)n

n!

∫
Gm

n!

(n−m)!

1

Bm

(
1− V FR(lm)

B

)n−m m∏
i=1

ri dlm

where the change between the sum and the integral follows by the dominated convergence

theorem. By the same arguments used in the proof of Theorem 3.4, the result follows.

o

Note that the integrand function in (3.17),

n!

(n−m)!

1

Bm

(
1− V FR(lm)

B

)n−m m∏
i=1

ri

is the density location of the relay nodes when a �nite and known number n of relay

nodes are uniformly distributed on Ω with the multihop path selected by the dynamic

propagation model with the FR protocol.

The next result gives an exact closed formula for the probability that there is a path

with 1 hop.

Theorem 3.6. Given that there are n relay nodes uniformly distributed on Ω, for R ≤

L < 2R, the probability that the hop count is equal to 1 for the FR protocol is given by

the binomial distribution

P(M = 1|N = n) = 1− (1− p)n (3.19)
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where p = A/B is the probability that a relay node uniformly distributed on Ω is connected

with both the source and destination nodes, and A is given by (3.14).

Proof. The result follows directly using the same arguments as in Theorem 3.3 and noting

that if there are n relay nodes uniformly distributed on Ω, vectors whose coordinates are

the number of nodes in the sets of a �nite partition of Ω have a multinomial distribution.

Here p is the probability that a relay node uniformly distributed on Ω is connected with

both the source and destination nodes. o

3.5 Numerical results

In this section we evaluate the performance of the dynamic propagation model and com-

pare the hop count probability distributions for the FR and the NR protocols. We scale

all parameters with respect to the distance between the source and destination nodes

assuming that L = 1, having the set Ω an area B = R(R + 1)2. Therefore, depending

on the value of R, for 1/(K + 1) < R ≤ 1/K, K ∈ N, we have multihop paths with a

minimum number of hops equal to K. The results were obtained by numerical integration

using a Monte Carlo algorithm. We only present the results when the number of relay

nodes are uniformly distributed on Ω, since similar results are obtained when assuming

that the node distribution on Ω follows a stationary Poisson process with rate λ equal to

n/B, the mean number of nodes per unit area.

Figure 3.5 shows the connectivity probability with the minimum number of hops K,

K = 1, 2, 3, with the FR protocol and for di�erent values of the number of nodes, when

the nodes are uniformly distributed on Ω. We can observe that when the number of nodes

increases, the probability of reaching the destination node with the minimum number of

hops increases and approaches the value 1. For the same number of relay nodes, the hop

count probability decreases as K increases.

Figure 3.6 shows the connectivity probability with the minimum number of hops K,
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Figure 3.5: Connectivity probability with the minimum number of hops for the FR pro-

tocol.

K = 1, 2, 3, with the NR protocol and for di�erent values of the number of nodes, when

the nodes are uniformly distributed on Ω. We can observe that when the number of nodes

increases, the NR protocol is ine�ective because it cannot transmit with a high probability

with the minimum number of hops. This protocol is only worth of consideration when

there is a small number of nodes in the network. When the number of nodes increases,

the minimum hop count probability decreases and approaches the value 0.

In Figure 3.7 we compare the hop count probability for the FR protocol, with the

minimum number of hops, to di�erent hop count probabilities for the NR protocol. We

consider that R = 0.4, giving K = 2 for the FR protocol and K = 2, 3, 4 for the NR

protocol. In this way, we compare the e�ciency of the FR protocol using the minimum

number of hops versus the e�ciency of the NR protocol using longer hop paths (K = 3, 4).

We can observe that, when there is a small number of nodes, the NR protocol with

K + 1 = 3 hops produces probabilities similar to those obtained by the FR protocol. The

probability of having a path with K = 2, 3, 4 hops for the NR protocol is always smaller or
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Figure 3.6: Connectivity probability with the minimum number of hops for the NR pro-

tocol.

equal to the probability of having a path with K = 2 hops for the FR protocol. Moreover,

when the number of nodes increases all the probabilities (K = 2, 3, 4) for the NR protocol

approach zero, whereas for the FR protocol the probability with K = 2 approaches 1.

In Figure 3.8 we compare the hop count probability for the FR protocol, with the

minimum number of hops, to di�erent hop count probabilities for the NR protocol. We

consider that R = 0.3, giving K = 3 for the FR protocol and K = 3, 4, 5, 6 for the

NR protocol. We observe again that when there is a small number of nodes, the NR

protocol with K + 1 = 4 hops produces probabilities similar to those obtained by the

FR protocol. Despite that all probabilities (K = 3, 4, 5, 6) on the NR protocol approach

zero with the increase of the number of nodes, the probabilities obtained for paths with a

large number of hops are generally higher than the ones obtained for paths with a smaller

number of hops. Thus, we can conclude that the FR protocol with the minimum hop

count outperforms the NR protocol with other number of hops, being more e�ective in

�nding a multihop path.
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Figure 3.7: Probability that the hop count equals K = 2 for the FR protocol, versus the

probability that the hop count equals K = 2, 3, 4 for the NR protocol.
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Figure 3.8: Probability that the hop count equals K = 3 for the FR protocol, versus the

probability that the hop count equals K = 3, 4, 5, 6 for the NR protocol.

In Figure 3.9 we present the expected hop progress for the FR and NR protocols, for

a multihop path with 2 hops (R = 0.4). These results were obtained numerically from
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the density location of relay nodes given by (3.18) and (3.15), respectively. We observe

that for the FR protocol the expected hop progress increases with the number of nodes

and approaches its maximum value 0.4 as the number of nodes increases, whereas for the

NR protocol the expected hop progress decreases as the number of nodes increases. For

the expected hop distance similar �gures (not displayed) and similar conclusions were

obtained.
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Figure 3.9: Expected hop progress for the FR and the NR protocols as a function of the

number of nodes.

3.6 Auxiliary lemmas

In this section we derive the area of the vacant region of relay node i for the FR protocol,

denoted by V FR
i , and the admissible propagation region Âi of relay node i. Recall that

the vacant region of relay node i is given by the set of points of the routing region of relay

node i that are further away from relay node i than relay node i + 1 is. Moreover, the

admissible propagation region of relay node i is de�ned as the possible relative locations
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of relay node i + 1, (ri+1, θi+1), given the location of relay node i, that is, is the set of

points of Ai that are not intersected by Ai−1.

As before, we denote by B(x, a) a circumference with center at x and radius a. In

the following lemma we derive the coordinates of the intersection points between the

circumferences B(Xi, r) and B(Xi−1, R), for Xi ∈ B(Xi−1, R) and r < R. This lemma

will provide the necessary results to prove the main result of this section, which enables

us to derive the regions V FR
i and Âi for each relay node i of the multihop path.

Lemma 3.1. For r < R and Xi ∈ B(Xi−1, R), the polar coordinates relative to Xi of

the intersection points between B(Xi, r) and B(Xi−1, R), are given by (r, g+
θ ) and (r, g−θ ),

where

g±θ ≡ g±θ (r, ri, θi, di) = θi − γi ± arccos

(
R2 − r2

i − r2

2rir

)
, (3.20)

with γi = − arcsin
(
ri sin θi
di

)
.

In the counterpart, the distance from Xi to the point of B(Xi−1, R) that is at an angle

θ from Xi is given by the function

gr ≡ gr(θ, ri, θi, di) = −ri cos(θ + γi − θi) +
√
R2 − (ri sin(θ + γi − θi))2. (3.21)

Proof. Relative to a cartesian coordinate system (x, y) with origin at Xi−1, and horizon-

tal axis given by the line drawn from Xi−1 to Xm+1, the equation of the circumference

B(Xi−1, R) is

x2 + y2 = R2. (3.22)

We rewrite equation (3.22) relative to relay node i, by making a translation and a rotation

of the plane (x, y) in order to locate the origin of the new plane at Xi and the horizontal

axis being the line drawn from Xi to Xm+1. The translation and rotation is obtained by

the following transformation of the coordinate system (x, y) into (x̂, ŷ) (see, e.g., Polyanin

and Manzhirov, 2006, p. 80, eq. 4.1.2.3), x = x̂ cos γi − ŷ sin γi + ri cos θi

y = x̂ sin γi + ŷ cos γi + ri sin θi
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where the new plane origin (xi, yi) (that corresponds to the cartesian coordinates of relay

node i) is written by its polar coordinates relative to relay node i− 1, (ri cos θi, ri sin θi),

and the angle of rotation (in the interval (−π/2, π/2)) is given by γi

γi = − arcsin

(
ri sin θi
di

)
,

where (ri, θi) are the polar coordinates of relay node i relative to relay node i− 1.

Transforming equation (3.22) into the new coordinate system (x̂, ŷ), we obtain

(x̂ cos γi − ŷ sin γi + ri cos θi)
2 + (x̂ sin γi + ŷ cos γi + ri sin θi)

2 = R2 (3.23)

and, by transforming into polar coordinates (x̂, ŷ) = (r̂ cos θ̂, r̂ sin θ̂), after some algebra,

equation (3.23), that describes the points of the circumference B(Xi−1, R), can be written

in polar coordinates in the new coordinate system and relative to the location of relay i

by

r̂2 + r2
i + 2rir̂ cos

(
θ̂ + γi − θi

)
= R2. (3.24)

Solving (3.24) in order to r̂ we obtain the distance from Xi to the point of B(Xi−1, R)

that is at an angle θ̂ from Xi,

gr(θ̂, ri, θi, di) = −ri cos(θ̂ + γi − θi) +

√
R2 − (ri sin(θ̂ + γi − θi))2.

For a given r, 0 < r < R, the two intersection points between B(Xi−1, R) and B(Xi, r)

are obtained by solving (3.24) in order to θ̂. Then, relative to relay node i location and

in the new coordinate system, the angles of the two points that are at a distance r from

Xi are given by

g±θ ≡ g±θ (r, ri, θi, di) = θi − γi ± arccos

(
R2 − r2

i − r2

2rir

)
. (3.25)

where the solution of arccos is obtained in its principal value, that is in the interval (0, π)

(cf. Polyanin and Manzhirov, 2006, p. 32). In Figure 3.10 we can observe a representation

of the intersection points that are at a distance ri+1 from relay node i.

o
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(ri+1, g
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θ

)

(ri+1, g
+
θ

)

ri+1

ri

φi−1

θi

φi

γi

Figure 3.10: Intersection points, (r, g−θ ) and (r, g+
θ ), between B(Xi−1, R) and B(Xi, ri+1).

In the next lemma we derive the vacant region V FR
i and the admissible propagation

region Âi for each relay node of the multihop path. We have to distinguish between two

cases: when the vacant region is obtained just from Âi, as represented in Figure 3.11(a),

and when the vacant region is obtained from both Âi and Ai−1, as represented in Figure

3.11(b).

Lemma 3.2. Given that relay node i, located at Xi, is at a distance di > R from the

destination node, the set of possible locations (r, θ) of relay node i + 1 relative to relay

node i, is given by the admissible propagation region Âi,

Âi ≡ Âi(ri, θi, di) = {(r, θ) : rmini+1 < r ≤ R, θmini+1 ≤ θ ≤ θmaxi+1 }.

and for a given location (ri+1, θi+1) of relay node i+ 1 relative to relay node i, the vacant

region of relay node i is given by

VFRi ≡ VFRi (ri, θi, di, ri+1, θi+1) = {(r, θ) : ri+1 < r ≤ R, θmini+1 ≤ θ ≤ θmaxi+1 }.

Here

rmini+1 =

 R− ri , sign(θi)φ
sign(θi)
i ≤ θi − γi

gr

(
φ
sign(θi)
i , ri, θi, di

)
, sign(θi)φ

sign(θi)
i > θi − γi

(3.26)

when θi−1 6= 0, and rmini+1 = R − ri when θi = 0, with θmini+1 = max
(
g−θ ,−φ

−
i

)
, θmaxi+1 =

min
(
g+
θ , φ

+
i

)
, and γi = − arcsin

(
ri sin θi
di

)
. The functions gr (θ, ri, θi, di) and g±θ are given

in Lemma 3.1
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Figure 3.11: Admissible propagation region, Âi, and vacant region, VFRi , of relay node i,

obtained from: (a) only Âi; (b) both Âi and Ai−1 .

From the result above, we can obtain the area of the vacant region of relay node i,

that is given by

V FR
i ≡ V FR(ri, θi, di, ri+1, θi+1) =

∫ R

ri+1

∫ θmaxi+1

θmini+1

r dθ dr. (3.27)

Proof. To distinguish between the two cases presented in Figure 3.11, we need to obtain

the maximum and minimum distances from relay node i to the curve PQ (as shown in

Figure 3.12), denoted by rmaxi+1 and rmini+1 , respectively. If the distance between relay node

i and relay node i + 1 is such that ri+1 ≥ rmaxi+1 , we are in case (a) of Figure 3.11, and if

rmini+1 < ri+1 < rmaxi+1 we are in case (b) of Figure 3.11.

If θi ≤ 0 (like in Figure 3.11), rmaxi+1 is obtained by replacing θ by φ+
i in equation (3.21)
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of Lemma 3.1, and if θi > 0, rmaxi+1 is obtained by replacing θ by −φ−i , that is

rmaxi+1 =

 gr
(
φ+
i , ri, θi, di

)
, θi ≤ 0

gr
(
−φ−i , ri, θi, di

)
, θi > 0

. (3.28)

Thus, for a given relative location of relay node i+1, (ri+1, θi+1), such that ri+1 > rmaxi+1

(the case of Figure 3.11(a)), the vacant region of relay node i is given by

VFRi ≡ VFRi (ri, θi, di, ri+1, θi+1) = {(r, θ) : ri+1 < r ≤ R,−φ−i ≤ θ ≤ φ+
i }.

To derive the minimum distance from relay node i, �rst note that θi−γi is the relative

angle between relay nodes i − 1 and i after the plane rotation, where γi is the angle of

the rotation (see Figure 3.12 and the proof of Lemma 3.1),

γi = − arcsin

(
ri sin θi
di

)
.

By simple geometric arguments it can be shown that, case θi < 0

rmini+1 =

 R− ri , φ−i ≥ γi − θi
gr
(
φ−i , ri, θi, di

)
, φ−i < γi − θi

(3.29)

and case θi > 0,

rmini+1 =

 R− ri , φ+
i ≤ θi − γi

gr
(
φ+
i , ri, θi, di

)
, φ+

i > θi − γi
. (3.30)

Putting all things together, we conclude that the minimum distance of relay node i to

the curve PQ is given by

rmini+1 =

 R− ri , sign(θi)φ
sign(θi)
i ≤ θi − γi

gr

(
φ
sign(θi)
i , ri, θi, di

)
, sign(θi)φ

sign(θi)
i > θi − γi

when θi 6= 0, and given by rmini+1 = R− ri when θi = 0.

In Figure 3.12 we can observe a representation of the maximum and minimum distances

from relay node i to PQ.
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Figure 3.12: Representation of the parameters rmini+1 , r
max
i+1 , θ

min
i+1 , θ

max
i+1 .

To completely describe the regions VFRi and Âi for each possible value of r such that

rmini+1 < r < rmaxi+1 , we just need to �nd the possible relative angles. In Lemma 3.1, we

derive the coordinates of the intersection points between the circumferences B(Xi−1, R)

and B(Xi, r), for r < R, which are given by (r, g+
θ ) and (r, g−θ ), where g±θ are given by

(3.25). Since we are only interested in the set of points located inside the routing region

of relay node i, the angle between the consecutive relay nodes as to be restricted to the

interval (−φ−i , φ+
i ).

Consider �rst the case θi ≤ 0. If the solution g−θ given by equation (3.25) is smaller

than −φ−i the point (r, g−θ ) /∈ Ai, being the minimum relative angle to relay node i

given by θmini+1 = −φ−i (see Figure 3.12), otherwise θmini+1 = g−θ . On the other hand, since

rmini+1 < r < rmaxi+1 and θi ≤ 0, the other solution of (3.25), g+
θ , is such that g+

θ < φ+
i , being

the maximum relative angle given by θmaxi+1 = g+
θ . Then, case θi ≤ 0, we have

Âi =
{

(r, θ) : rmini+1 < r ≤ rmaxi+1 , max
(
g−θ ,−φ

−
i

)
≤ θ ≤ g+

θ

}
.

Then, for a given relative location of relay node i + 1, (ri+1, θi+1), such that rmini+1 <
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ri+1 ≤ rmaxi+1 , the vacant region of relay node i is given by

VFRi = {(r, θ) : ri+1 < r ≤ R, max
(
g−θ ,−φ

−
i

)
≤ θ ≤ g+

θ }.

The arguments for the case θi > 0 are analogous

Âi =
{

(r, θ) : rmini+1 < r ≤ rmaxi+1 , g
−
θ ≤ θ ≤ min

(
g+
θ , φ

+
i

)}
and, for a given relative location of relay node i+ 1, (ri+1, θi+1), such that rmini+1 < ri+1 ≤

rmaxi+1 , the vacant region of relay node i is given

VFRi = {(r, θ) : ri+1 < r ≤ R, g−θ ≤ θ ≤ min
(
g+
θ , φ

+
i

)
}.

Putting all things together, the possible locations of relay i+ 1 are given by the set

Âi =
{

(r, θ) : rmini+1 < r ≤ R, θmini+1 ≤ θ ≤ θmaxi+1

}
,

where θmini+1 = max
(
g−θ ,−φ

−
i

)
and θmaxi+1 = min

(
g+
θ , φ

+
i

)
. Note that, for the source node,

since (r0, θ0) = (0, 0), θmin1 = −φ0

2
and θmax1 = φ0

2
, we have Â0 = A0.

Given the location of relay node i+ 1, (ri+1, θi+1), the vacant region of relay node i is

given by

VFRi ≡ VFRi (ri, θi, di, ri+1, θi+1) = {(r, θ) : ri+1 < r ≤ R, θmini+1 ≤ θ ≤ θmaxi+1 }.

o



Chapter 4

Multihop path duration

4.1 Introduction

In the previous chapters we have studied the multihop connectivity between the source

and the destination nodes, and have obtained the hop count distribution to compare and

evaluate the performance of routing protocols. After a multihop path is built, its evolution

highly determines the performance of the network.

Modeling the random movement of nodes in a multihop path plays an important role

in examining the statistical properties of link and path reliability. In the general case, the

dynamic of a multihop path in an ad hoc network requires a formulation of the geometric

relations governing the complex dynamic of random movement of the nodes along the

multihop path, with the state of its links limited by the transmission range of each relay

node. In this chapter we propose a model for the multihop path dynamics. To evaluate

the performance of the model, we derive two path metrics: the mean path duration and

the path persistence - de�ned as the probability that the path is continuously in existence

until time t0 provided the path is set-up (or already active) at time 0.

One of the earliest analysis of mobility was done by McDonald and Znati (1999), who

addressed the link and path availability, assuming independent links and that nodes move
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according to a variant of the random walk mobility model. The mobility model proposed

models the evolution of the network topology. By characterizing the random movement of

mobile nodes, analytical expressions are derived for the link availability (the probability

that a link between two nodes is available at time t, given that the link exists at time

t0, t0 < t). However, this analysis does not consider that disruptions in one of the links

could exist between times t0 and t.

Samar and Wicker (2004) investigated the behavior of the communication links of a

node in a random mobility environment and derived analytical expressions to characterize

the total link duration and link residual time (the link residual time and link duration

are lengths of time of the remaining and the total duration of paths, respectively). They

assumed a straight-line mobility such that nodes do not change their mobility behavior

(direction and velocity) until the path is broken.

Xu et al. (2007) used a Markov chain mobility model to derive several analytical path

metrics, under a straight-line mobility rather than a random direction mobility model.

Assuming that links are independent, they derived the link persistence, link availability,

link residual time, and link duration.

Due to the complexity involved, a common approach to study the properties of path

durations in mobile ad hoc networks is using simulation. One of the �rst complete studies

concerning the analysis of path durations under di�erent mobility models and routing

protocols based on simulations was done by Bai et al. (2004). These authors concluded

that, for moderate and high velocities, the density function of the path duration for

paths with 4 or more links can be approximated by an exponential distribution. They

also concluded that the path duration is a good metric for the performance evaluation

of routing protocols, and observed a relationship between the duration of the multihop

paths and the mobility parameters.

Han et al. (2006) used Palm theory to prove analytically what Bai et al. (2004) had

concluded by simulation. They proved that, when the link count is large, the distribu-
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tion of path duration converges to an exponential distribution. Assuming that links are

mutually independent, they provided a solution for the analysis of paths which is valid

for routes with a large number of hops. However, the importance of short hop paths is

reinforced by the fact that in order to reduce the e�ects of wireless retransmissions on the

performance of the network, most of the relevant protocols in MANETs use the minimum

hop count as the metric to select a route and, thus, the hop count in MANETs is small. La

and Han (2007) relaxed the independent link assumption assumed by Han et al. (2006),

proving that the dependence between links goes away asymptotically with increasing link

count.

We propose an analytical framework to fully describe the random behavior of a multi-

hop path in ad hoc networks and to obtain path based metrics for computing its reliability.

This framework models the dynamic of a multihop path with any number of nodes, and

takes into account the dependencies of the durations of the links of a multihop path.

The path is characterized through a Piecewise Deterministic Markov Process (PDMP, see

Davis (1993)) where, for simplicity, the mobility of each node along the path is given by

the random walk model. The PDMP is known as the most general class of continuous-time

Markov processes which includes both discrete and continuous processes, except di�usion

processes. A PDMP is a Markov process that follows deterministic trajectories between

event times that can be random (as for example in a Poisson-like fashion) or �xed (when

the process hits the boundary of its state space). Other mobility models (c.f. Camp et al.

(2002)) admit a PDMP description of a multihop path, such as group mobility models

where, instead of independent mobility, mobile nodes have correlated mobility.

The model is characterized by a vector of phase states governed by an alternating

Markov renewal process, and by a vector of phase attributes. The phase attributes of

each mobile node describe its movement, mainly: its velocity, its direction, and the so-

journ time in the current state. To completely characterize a PDMP, we need to describe

the jump rate, the transition measure, and the �ow of the process. The jump rate function
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is a measurable function on the state space of the process that describes the transition

rate from each state of the process; the transition measure describes the transition prob-

ability between each pair of states of the process; and the �ow of the process is a locally

Lipschitz continuous function that describes the deterministic motion of the process be-

tween random jumps. For a detailed description of the characteristics of a PDMP, see

Davis (1993, Section 24.8).

Using the PDMP model, the mean path duration and the path persistence are de-

rived. We establish that these path metrics are obtained as functionals of the underlying

process and are the unique solution of a set of integro-di�erential equations. Since direct

methods to solve them are problematic, we introduce a recursive method by which nu-

merical solutions of the metrics can be obtained. This is accomplished by transforming

the set of integro-di�erential equations into a system of �rst order ordinary di�erential

equations, that solved recursively converge to the desired path metrics. Finally, we apply

our framework to compute numerical results for the metrics and compare them with those

presented by Han et al. (2006) assuming independent links. Our work creatively applies

the power of the PDMP formalism to study the reliability of multihop paths in ad hoc

networks.

This chapter is organized as follows. In Section 4.2 we describe the multihop path

model under a PDMP, describing the jump rate function, the transition measure, and

the deterministic behavior of the process. Section 4.3 shows that the mean path duration

and path persistence are the unique solution of a set of integro-di�erential equations and

can be obtained as expectations of functionals of the PDMP. Section 4.4 gives a recursive

method to apply in the computation of the path metrics. Numerical results are presented

in Section 4.5 to show the adequacy of the recursive method and the e�ect of the mobility

and connectivity parameters in the metrics.
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4.2 Multihop path

We consider that a multihop path is set-up (or already active) at time 0 with N − 1 links

and extends from node 1 along nodes 2, 3, . . . , until it reaches node N . Each node in the

path moves across the plane independently of other nodes according to a variation of the

random walk mobility model (see, e.g., Camp et al. 2002) next described.

4.2.1 Random walk mobility model

A node alternates between two phases, pause (0) and move (1), with the phase process

being an alternating Markov renewal process. If at a transition instant a node goes into

phase i, the amount of time it stays in phase i is drawn independently of the past according

to a continuous distribution function Fi with support on the set R+. We assume that

the hazard rate function of Fi, denoted by λi(t) = d
dt
Fi(t)/(1− Fi(t)), is bounded on the

positive reals. When the phase of a node changes to move, the node picks a mobility

vector according to a distribution function HM on an open set SM . Choosing a mobility

vector m corresponds to choosing independently a direction θ and a velocity v through

m = (v cos θ, v sin θ). The node travels from the current location in the direction and

with the velocity drawn from the mobility vector during the entire phase duration, with

distribution F1. Once this time expires, independently of the past, the node pauses for a

random time period with distribution F0 before starting to move again.

4.2.2 Link duration

We consider a transmission range R equal for all nodes in the multihop path. Given

two consecutive nodes in the path, i − 1 and i with locations in the plane li−1 and li,

respectively, they can communicate if ‖li−1 − li‖ < R.

In cellular networks, the characterization of the hando� metrics is based on the analysis

of the movement of a node with respect to a �xed base station (Hong and Rappaport 1986).
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In ad hoc networks, the link duration can be transformed into the hando� problem by

considering the relative movement between the two nodes. Let pj denote the phase of

node j and mj its mobility vector if pj = 1 (i.e. the node is in the move phase). The

relative location and relative mobility vector of node i with respect to node i − 1 are

de�ned, respectively, by

lir = li − li−1, mi
r = mi −mi−1

where mi (resp. mi−1) is omitted in the expression if pi = 0 (resp. pi−1 = 0); and, if

both nodes are in pause phases, mi
r = 0 with 0 = (0, 0). Let x→ (‖x‖, θ(x)) denote the

one-to-one correspondence between the cartesian coordinates in the plane and the polar

coordinates on {0}∪R+×[0, 2π) with 0 being the polar coordinates of the cartesian origin.

From the relative mobility vector mi
r, the direction and velocity of node i with respect to

node i− 1 are, respectively, θ(mi
r) and ‖mi

r‖. In Figure 4.1, we show the relative motion

of node i, within the transmission region SL = {x ∈ R2 : ‖x‖ < R}, with respect to node

i− 1. After traveling a distance

Z(lir,m
i
r) =

√
R2 − (‖lir‖ sin θ′)2 − ‖lir‖ cos θ′

where θ′ = |θ(mi
r)− θ(lir)|, node i moves out of the range of node i− 1. The duration of

the link i is

dlink(l
i
r,m

i
r) = Z(lir,m

i
r)/‖mi

r‖ (4.1)

for mi
r 6= 0. Case mi

r = 0, the duration of the link is in�nity and we set dlink(lir,m
i
r) =∞.

4.2.3 Multihop path model

To characterize the multihop path as a PDMP we need to incorporate, for each node in

the path: `the phase', `the elapsed time since the previous phase transition', `the mobility

vector', and `the relative location with respect to the previous node'. Thus, we obtain a

process

X = (P,A)
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node i− 1
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r
Z

‖lir‖
θ′ R
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θ(lir)

‖lir‖ sin θ′

‖lir‖ cos θ′

Figure 4.1: Link duration between two nodes with respect to the relative motion.

with P = (P i)1≤i≤N , where P i denotes the phase process of node i, and

A = (E,M,Lr)

denotes the joint attribute process where E = (Ei)1≤i≤N , M = (M i)1≤i≤N and Lr =

(Lir)2≤i≤N are de�ned as follows:

- The process Ei gives the elapsed time since the previous phase transition of node i.

- The process M i is the mobility vector process of node i, such that M i(t) is the

mobility vector of node i at time t if P i(t) = 1 and is omitted if P i(t) = 0.

- The process Lir is the relative location process of node i with respect to node i− 1.

The process X is de�ned as having a completely deterministic motion between the

random jumps of the process. To completely characterize a PDMP we need to describe
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its local characteristics: the �ow φ, the jump rate function λ, and the transition measure

Q.

Deterministic motion and state space

Constructing a PDMP as a path model requires a description of the deterministic tra-

jectory of the process between random jumps along with the explicit de�nition of the

boundary of its state space where jumps occur.

From the de�nition ofX, a state will be denoted by x = (p, a), with vector of attributes

a = (e,m, lr) and node phase vector p = (p1, . . . , pN), with e = (e1, . . . , eN) being the

elapsed times of the N nodes in the current phases, m = (m1, . . . ,mN) including the

mobility vectors of the nodes (having dimension N when all pj = 1 and with mj omitted

if pj = 0), and lr = (l2r , . . . , l
N
r ) the relative locations of nodes 2, 3, . . . , N with respect to

nodes 1, 2, . . . , N − 1, respectively.

From a state x, the deterministic trajectory of X until the next jump time is charac-

terized by φ(t,x) = (p, φp(t, a)) with

φp(t, a) = (e + t1,m, lr + tmr), t ∈ R

denoting the evolution of the vector of attributes a over time, where 1 denotes a vector

of 1′s with dimension N .

The function φp(t, a) is the �ow of a vector �eld Vp, de�ned on the open set

Sp = (0,∞)N × SM
P
pi × SLN−1

where we recall that SM and SL are open sets, whose time derivative at each point along

the �ow is the value of the vector �eld at that point, i.e.,

d

dt
φp(t, a) = Vp(φp(t, a)), φp(0, a) = a, (4.2)

where Vp(φp(t, a)) is the tangent vector at point φp(t, a) given by

Vp(φp(t, a)) = (1,0,mr)
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where each of the vector coordinates 1,0 and mr are given by 1 =
(

de1(t)
dt

, . . . , deN (t)
dt

)
,

0 =
(

dm1(t)
dt

, . . . , dmN (t)
dt

)
and mr =

(
dl2(t)

dt
, . . . , dlN (t)

dt

)
. For each (t, a) ∈ Sp, since Vp is

a Lipschitz continuous function, there is a unique �ow φp(t, a) for Vp passing through a

at time 0 and satisfying (4.2).

Let ∂Sp denote the boundary of the set Sp. Now, let

∂+Sp = {a′ ∈ ∂Sp : a′ = φp(t, a) for some a ∈ Sp, t > 0}

denote the set of boundary points at which the multihop path process exits from Sp, and

∂−Sp = {a′ ∈ ∂Sp : a′ = φp(−t, a) for some a ∈ Sp, t > 0}

denote the set of boundary points that take the process into Sp. The disjoint union of

the sets ∂+Sp is

B =
∐

p∈{0,1}N
∂+Sp = {(p, a) : p ∈ {0, 1}N , a ∈ ∂+Sp},

which represents the set of states through which the multihop path disconnects. When

the process hits a state in the boundary B, it means that the path breaks and X jumps

to an absorbing state which we denote by ∆. Therefore, the state space of X becomes

S∆
X = SX ∪ {∆},

where SX denotes the disjoint union of the sets S−p = Sp ∪ ∂−Sp,

SX =
∐

p∈{0,1}N
S−p = {(p, a) : p ∈ {0, 1}N , a ∈ S−p }.

For x ∈ SX, de�ne dpath(x) as the path duration (i.e. the time to hit a state in B)

constrained to no phase transitions of the nodes taking place when starting from state x,

dpath(x) = inf{t > 0 : φp(t, a) ∈ B}

= inf{dlink(lir,mi
r) : i = 2, . . . , N},

and recall that dlink(lir,m
i
r) is given by (4.1). This time is equal to in�nity if all nodes are

in the pause phase or all nodes have the same mobility vector.
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Jump rate

The function λ : S∆
X → R+

0 characterizes the jump rate in each state of the process. For

x ∈ SX, the jump rate depends only on the phase and the time since the previous phase

transition of each node, and is given by the sum of the hazard rate functions of the phase

duration distributions, i.e.,

λ(x) =
N∑
i=1

λpi(e
i)

while at the absorbing state λ(∆) = 0.

Transition measure

Before introducing the transition measure, �rst some words about notation. For a vector

y = (y1, . . . , yN), let [y]jz denotes a vector that di�ers from y only on the component j,

taking the value z on that component (i.e., the j-th component of the vector [y]jz is equal

to z and the other components are equal to yi, i 6= j). In addition, we let y\j denote the

vector obtained from y by omitting yj and retaining yi for all i 6= j. The interpretation

of P and A makes it clear that from any x = (p, a) ∈ SX it is only possible to jump to

a state where a node changes its phase characteristics (phase, elapsed time in the phase,

and mobility vector) and all the other values of the components remain the same, i.e., for

some j, we make the transition

x = (p, e,m, lr) −→ x(j) =

 ([p]j0, [e]j0,m\j, lr) pj = 1

([p]j1, [e]j1, [m]jm, lr) pj = 0

with m ∈ SM . The transition measure Q : (SX ∪ B) × E → [0, 1], with E denoting the

event space of SX, is such that for x ∈ SX, Q(x, ·) is a probability measure de�ned by

Q(x, {x(j)}) =
λ
pj

(ej)

λ(x)
pj = 1

Q(x,dx(j)) =
λ
pj

(ej)

λ(x)
Hm(dm) pj = 0

(4.3)

and for x ∈ B we have Q(x, {∆}) = 1, where dx(j) = {p} × {e} × djm × {lr} and

djm = {m1} × . . .× { dmj} × . . .× {mN}.
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Motion of the multihop path process

Putting all things introduced above together, the evolution of X starting from state

x ∈ SX can be constructed as follows. The survival function of the �rst jump time of the

multihop path model, T1, is de�ned by

Gx(t) =

 exp
(
−
∫ t

0
λ(φ(s,x))ds

)
t < dpath(x)

0 t ≥ dpath(x)
(4.4)

and the state at an instant of time before the �rst jump is

X(t) = φ(t,x), t < T1.

If T1 < dpath(x), then one of the nodes in the path changes phase and mobility attributes

at time T1, and the next state of the multihop process, X(T1), has distribution

Q(φ(T1,x), ·)

given by (4.3). Otherwise, T1 = dpath(x) which means that the path breaks since the

process hits a state in B and the next state, X(T1), is ∆ with probability 1; the process

then stays in ∆ forever since the jump rate out of ∆ is zero. The process restarts from

X(T1) in a similar way if T1 < dpath(x), with survival function of the next inter jump time

T2 − T1 given by GX(T1), and so on ....

We assume that at time t = 0 the state of a multihop path with N nodes is drawn

according to some speci�ed initial distribution; see Section 4.5 for an initialization rule.

Note that, as we have described a variant of the random walk mobility model, the

transition measure Q and the jump rate function λ only depend on the vector phase

p and the vector of the elapsed times e. By adding a little more complexity on the

notation, Q and λ could depend on the whole state vector x, making possible to describe

other mobility models, like group mobility models, where the mobility of the nodes are

correlated. Thus, the framework proposed here has a huge potential in the description

of a wide variety of mobility models used in mobile ad hoc networks, requiring only the
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adjustment of the transition measure Q, the jump rate function λ, and the deterministic

motion φ.

Note also that, an inspection in the de�nition shows that technical problems will arise

if mobility vectors can assume values from a closed set SM . We can relax this assumption

when the velocities or directions that describe the mobility vectors are discrete sets. This

includes the case of one dimensional ad hoc network with directions on a straight line.

All that needs to be done is to consider the discrete quantities (velocities or directions)

in the �rst component of X, along with the node phases, and to rede�ne the PDMP

properly according to these changes. In the rest of the paper, we shall focus only on the

assumptions de�ned in Subsection 4.2.1.

4.3 Path based metrics

In this section, we will express as expectations of functionals of the process X two main

path metrics to characterize the reliability of paths: the mean path duration and the path

persistence. Given that a path is set-up (or is already active) at time 0, the path duration

refers to the amount of time the path remains available until one of its links fails for the

�rst time. The path persistence at time t0 is de�ned as the probability that the path

duration is greater than t0, provided the path is set-up (or already active) at time 0.

4.3.1 Mean path duration

Given the state of the multihop path process x ∈ S∆
X, the mean path duration is denoted

by

D(x) = Ex

[∫ ∞
0

1SX
(X(s))ds

]
(4.5)

where 1A is the indicator function of a set A.

Theorem 4.1. The expected path duration D(x) is a bounded function of x ∈ SX, and

Ex[D(X(t))] goes to zero as t goes to in�nity.
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Proof. For any multihop path process (X(t)) with initial state x = (p, a) ∈ SX, we have

that

D(x) ≤ D(x′)

where D(x′) denotes the expected path duration of a multihop path process (X′(t)) with

one hop whose initial state

x′ = (p′, a′)),p′ = (pj, pj+1)

and

a′ = ((ej, ej+1), (mj,mj+1), lj+1
r ),

j ∈ {1, . . . , n−1} is given by the state of two consecutive nodes of (X(t)) at time 0. If T ′i ,

i ≥ 1, are the jump times of the process (X′(t)) then taking T ′0 = 0 and S ′i = T ′i+1 − T ′i ,

we can write

D(x′) = Ex′

[
∞∑
i=0

S ′i1SX
(X ′(T ′i ))

]
.

Given that at a jump time the path is not broken, the expected time between jumps is

bounded by

Ex′ [S
′
i1SX

(X ′(T ′i ))] ≤ K ≡ 1/(2 min(λmin
0 , λmin

1 ))

where we recall that we assume that the hazard rate functions of the times distributions

in the phases are bounded such that 0 < λmin
i ≤ λi(t) ≤ λmax

i . If at time T ′i−1 the process

is in a state X′(T ′i−1) where the two nodes are in di�erent phases then, dpath(X′(T ′i−1)),

the duration of the path constrained to no phase transitions of the nodes, is smaller or

equal to 2R/vmin (i.e., the maximum time it takes a node in move phase to cross the

transmission range of a node in pause phase). Hence,

Ex′

[
1SX

(X′(T ′i ))|X′(T ′i−1) ∈ S−(0,1) ∪ S
−
(1,0)

]
≤ p ≡ 1− exp(−2R/vmin(λmax

0 + λmax
1 )).

Note that for a multihop path process (X′(t)) with two nodes, the process alternates

between states in which the two nodes are in di�erent phases and states in which both
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nodes are in the same phase. Therefore, assuming that the path just breaks when the

two nodes are in di�erent phases, the probability that the path is alive after i jumps is

bounded by

Ex′ [1SX
(X ′(T ′i ))] ≤ pbi/2c

where bi/2c is the minimum number of jumps from a state where the two nodes are in

di�erent phases in i jumps of the process from any initial state x′. Thus, putting all

together, we have that

D(x′) ≤ K
∞∑
i=1

pbi/2c =
K(1 + p)

1− p

which proves the �rst statement of the theorem. From the above

Ex[D(X(t))] = Ex [D(X(t))1SX
(X ′(t))]

≤ D(x′)P(X ′(t) ∈ SX).

Since limt→∞ P(X ′(t) ∈ SX) = 0, the theorem is proved. o

Let f : S∆
X ∪ B → R+ be a bounded measurable function and, for x ∈ B, de�ne

f(x) ≡ limt↓0 f(φ(−t,x)). Let Q be an operator mapping the set of bounded measurable

functions from SX ∪B into itself such that Qf is a function de�ned by

Qf(x) =

∫
S∆
X

f(y)Q(x,dy) (4.6)

and therefore for x ∈ SX,

Qf(x) =
∑
{j:pj=0}

∫
{m:m∈SM}

Q(x,dx(j))f(x(j)) +
∑
{j:pj=1}

Q(x, {x(j)})f(x(j)),

and for x ∈ B, Qf(x) = f(∆).

For x ∈ SX, the state of X after a short time t is, roughly speaking, φ(t,x) with

probability (1− λ(x)t), while with probability λ(x)t the process jumps to another state

X(t) with transition measure Q and all other events have probability o(t). Thus, we have

Ex[f(X(t))] = (1− λ(x)t)f(φ(t,x)) + λ(x)tQf(φ(t,x)) + o(t)
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so that

1

t
Ex[f(X(t))− f(x)] =

1

t
(f(φ(t,x))− f(x)) (4.7)

+ λ(x) (Qf(φ(t,x))− f(φ(t,x))) + o(1).

Let A denote an operator acting on the domain of bounded measurable real-valued func-

tions on S∆
X ∪B de�ned by

Af(x) = lim
t→0

1

t
Ex[f(X(t))− f(x)].

In order to de�ne the derivative of f with respect to the �ow φ(t,x) in a rigorous way, we

need to de�ne its phase function by fp : S−p → R+ such that fp(a) = f(x). If for a state

x the function t→ fp(φp(t, a)) is di�erentiable almost everywhere on [0, dpath(x)[, then

d
dt
fp(φp(t, a)) = Vpfp(φp(t, a)), φp(0, a) = a (4.8)

holds for almost all t, being equivalent to (4.2), and where Vp is a vector �eld and φp(t, a)

is the unique integral curve of Vp such that (4.8) is satis�ed.

Therefore, making t→ 0 in equation (4.7), we obtain

Af(x) = Vf(x) + λ(x)(Qf(x)− f(x))

for x ∈ SX, where to simplify the notation we write Vf(x) instead of the more ac-

curate Vpfp(a). Also, any reference to a function t → f(φ(t,x)) should be read as

t→ fp(φp(t, a)).

The next result follows by theorems 32.2 and 32.10 of Davis (1993) conveniently applied

to the expectation functional D of the PDMP X with �nite time horizon and taking into

account the speci�c boundary conditions.

Theorem 4.2. For each x ∈ SX, t→ D(φ(t,x)) is an absolutely continuous function on

[0, dpath(x)[ and D is the unique bounded solution of the equations

Af(x) = −1, x ∈ SX, (4.9)
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and at a boundary state x ∈ B, f(x) = f(∆) = 0.

The result above states that, for x ∈ SX, the function t→ D(φ(t,x)) is di�erentiable

almost everywhere on [0, dpath(x)[ with derivative denoted by VD(x′) at x′ = φ(t,x), when

it exists. The value of the derivative at such points is equal to

−1− λ(x′)(QD(x′)−D(x′)).

Since (4.9) includes an integral term, the equations are systems of integro-di�erential

equations. Solving them provides a way of computing the mean path duration for di�erent

initial conditions.

Proof. By de�nition D(∆) = 0. We assume that x ∈ SX and t ∈]0, dpath(x)[. By the

strong Markov property, the function D satis�es

D(x) = Ex[(T1 ∧ t) +D(φ(T1 ∧ t,x))]

= Gx(t)(t+D(φ(t,x))) + Ex

[
(T1 +QD(φ(T1,x)))1]0,t](T1)

]
. (4.10)

Using the density function of �rst phase transition time T1 on [0, t], given by λ(φ(s,x))Gx(s),

the second term on the right hand side of (4.10) is

Ex

[
(T1 +QD(φ(T1,x)))1]0,t](T1)

]
=

∫ t

0

λ(φ(s,x))Gx(s)

(∫ s

0

1 dv +QD(φ(s,x))

)
ds

=

∫ t

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x))) ds−Gx(t)t,

where the last equality is obtained by changing the order of integration. Then (4.10)

becomes

D(φ(t,x)) =Gx(t)−1

(
D(x)−

∫ t

0

Gx(s) (1 + λ(φ(s,x))QD(φ(s,x))) ds

)
(4.11)

=Gx(t)−1D(x)−
∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x))) ds

−
∫ t

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x)))(Gx(t)−1 −Gx(s)−1) ds
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and, since ∫ t

s

λ(φ(v,x))Gx(v)−1 dv = Gx(t)−1 −Gx(s)−1, 0 ≤ s ≤ t, (4.12)

we have

D(φ(t,x)) =

(∫ t

0

λ(φ(s,x))Gx(s)−1ds+ 1

)
D(x)−

∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x))) ds

−
∫ t

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x)))

∫ t

s

λ(φ(v,x))Gx(v)−1 dv ds

=D(x)−
∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x)))ds

+

∫ t

0

λ(φ(v,x))Gx(v)−1

(
D(x)−

∫ v

0

Gx(s)(1 + λ(φ(s,x))QD(φ(s,x)))ds

)
dv,

where the last equality is obtained by changing the order of integration. Then, by (4.11)

we obtain

D(φ(t,x)) =D(x)−
∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x)))ds

+

∫ t

0

λ(φ(v,x))Gx(v)−1 (D(x)− (D(x)−Gx(v)D(φ(v,x)))) dv

=D(x)−
∫ t

0

(1 + λ(φ(s,x))QD(φ(s,x)))ds+

∫ t

0

λ(φ(s,x))D(φ(s,x))ds

=D(x)−
∫ t

0

(1 + λ(φ(s,x)) (QD(φ(s,x))−D(φ(s,x))) ds.

Thus, this last equation can be written as

D(φ(t,x)) = D(x) +

∫ t

0

g(s) ds

where

g(s) = −1− λ(φ(s,x))(QD(φ(s,x))−D(φ(s,x))).

In Theorem 4.1 we have proven that D is a bounded function for all x ∈ S∆
X and

Ex[D(X(t))] goes to zero as t tends to in�nity. Then QD is also bounded and
∫ t

0
|g(s)| ds

is �nite. Therefore, by the fundamental theorem of calculus t→ D(φ(t,x)) is absolutely
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continuous on [0, t] with derivative g(t) and equation (4.9) is satis�ed. Now, let x′ ∈ B

and t > 0 such that the initial state is x = φ(−t,x′). By the strong Markov property, we

have

D(x) = Gx(t)(t+QD(x′)) +

∫ t

0

λ(φ(s,x))Gx(s)(s+QD(φ(s,x))) ds.

Thus, as t ↓ 0 the function D possesses a limit as a boundary state is approached and

D(x′) = 0.

Under the conditions that, for x∈SX, t → f(φ(t,x)) is an absolutely continuous

function on [0, dpath(x)[ and f is a bounded function, from Davis (1993, Theorem 31.3, p.

83) conveniently applied, the process (M f (t)) de�ned by

M f (t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds, t ≥ 0

is a martingale and Af(X(s)) = limt→0
1
t
EX(s)[f(X(s+ t))− f(X(s)]. Since (M f (t)) is a

martingale, then taking conditional expectation we have Ex[M f (t)] = M f (0) = 0, which

implies that the Dynkin formula holds in the form

f(x) = Ex[f(X(t))]− Ex

[∫ t

0

Af(X(s))ds

]
.

In view of (4.9) and f(∆) = 0, we have that Af(X(s)) = −1SX
(X(s)); therefore, if

limt→∞ Ex[f(X(t))] = 0, by the monotone converge theorem we get

f(x) = Ex

[∫ ∞
0

1SX
(X(s))ds

]
and the solution is unique. o

4.3.2 Path persistence

We can derive the probability that a path is continuously in existence until time t0 ∈ (0, t∗]

(where t∗ > 0 is �xed) provided that the path is alive at time 0 as the expectation of a

functional of X. For that, we need to include explicitly the time variation in the state
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of the PDMP X. We denote the extended multihop path process by X̂ with state space

S∆bX = SbX ∪ {∆} where
SbX = SX × (0, t∗],

and the set of boundary states is represented by

B̂ = (B × [0, t∗]) ∪ B̂0

with B̂0 = SX×{0}. From the de�nition of X̂, a state in SbX∪ B̂ is denoted by x̂ = (x, t0)

where t0 is the time variation component and x = (p, a) is de�ned as before. The

deterministic evolution of the process from a state x̂ is given by φ̂(t, x̂) = (p, φ̂p(t, (a, t0)))

with

φ̂p(t, (a, t0)) = (φp(t, a), t0 − t), t ∈ R.

Let d̂path(x̂) be the time to hit a state in B̂ constrained to no phase transition of nodes

in the path when starting from state x̂,

d̂path(x̂) = inf{t > 0 : φ̂p(t, (a, t0)) ∈ ∂+Sp × [0, t∗] ∪ S−p × {0}}

= inf{dpath(x), t0}.

When the extended multihop path process hits the boundary B̂, it means that the path

breaks or the time variation component has reached zero, and X̂ jumps to the absorbing

state ∆. The remaining characteristics of the PDMP X̂ are the jump rate λ̂ : S∆bX → R+

de�ned by

λ̂(x̂) = λ(x), x̂ ∈ SbX
and λ̂(∆) = 0; the transition measure Q̂ : (SbX ∪ B̂) × Ê → [0, 1], where Ê denotes the

event space of SbX, is such that for x̂ ∈ SbX we have

Q̂(x̂,dx(j) × {t0}) = Q(x,dx(j))

where Q is de�ned in (4.3), and Q̂(x̂, {∆}) = 1 for x̂ ∈ B̂. The extended process X̂ has

the same behavior as X until it hits a state in boundary B̂. Starting from state x̂ ∈ SbX,
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the survival function of the �rst jump time T̂1 of the process X̂ is given by

Ĝbx(t) = 1[0,bdpath(bx))(t)Gx(t), t ≥ 0, (4.13)

and

X̂(t) = φ̂(t, x̂), t < T̂1.

The next state X̂(T̂1) has distribution Q̂(φ̂(T̂1, x̂), ·). If X̂(T̂1) = ∆ the process stays in

state ∆ there forever since the jump rate out of ∆ is zero. Otherwise, the process restarts

from X̂(T̂1) in a similar way if T̂1 < d̂path(x̂) with survival function of the next inter jump

time T̂2 − T̂1 given by ĜbX( bT1) and so on ....

The path persistence at time t0 ∈]0, t∗] starting from x̂ ∈ SbX can be written as the

expectation of a functional of X̂ by

U(x̂, t0) = E(bx,t0)

[
1 bB0(X̂(T̂∗))

]
where T̂∗ = inf{T̂i : X̂(T̂i) ∈ B̂} is the time to reach the absorbing state ∆ and, by

convention, U(∆) = 0.

Let f : S∆bX ∪ B̂ → R+ denote an arbitrary bounded measurable function and at the

boundary state x̂ ∈ B̂ we de�ne f(x̂) ≡ limt↓0 f(φ̂(−t, x̂)). Let Q̂ denote an operator

mapping the set of bounded measurable functions on SbX ∪ B̂ into itself. The operation

of Q̂ on f is a function de�ned by Q̂f(x̂) =
∫
S∆bX f(ŷ)Q̂(x̂,dŷ) and, for x̂ ∈ SbX, we have

Q̂f(x̂) =
∑
{j:pj=0}

∫
{m:m∈SM}

Q(x,dx(j))f(x(j), t0) +
∑
{j:pj=1}

Q(x, {x(j)})f(x(j), t0)

and, for x̂ ∈ B̂, Q̂f(x̂) = f(∆). Using the same heuristic arguments as in Subsection

4.3.1, we obtain, for x̂ ∈ SbX,
1

t
Ebx[f(X̂(t))− f(x̂)] =

1

t
(f(φ̂(t, x̂))− f(x̂)) + λ(x)

(
Q̂f(φ̂(t, x̂))− f(φ̂(t, x̂))

)
+ o(1).

(4.14)
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In addition, let Â be an operator acting on the domain of bounded measurable real-

valued functions on S∆bX ∪ B̂ such that Âf is a function de�ned by

Âf(x̂) ≡ lim
t→0

1

t
Ebx[f(X̂(t))− f(x̂)]. (4.15)

For a function f de�ne its phase function by fp : S−p ∪(0, t∗]→ R+ such that fp(a, t0) =

f(x̂). If for a state (x, t0) the function t → fp(φ̂p(t, (a, t0))) is di�erentiable almost

everywhere on [0, d̂path(x̂)), then

d
dt
fp(φ̂p(t, (a, t0))) = V̂pfp(φ̂p(t, (a, t0))), φ̂p(0, (a, t0)) = (a, t0), (4.16)

holds for almost all t, where V̂p is a vector �eld and φ̂p(0, (a, t0)) = (a, t0) is the unique

integral curve of V̂p such that (4.16) is satis�ed.

Therefore, letting t tend to zero, equation (4.14) becomes

Âf(x, t0) = V̂f(x, t0) + λ(x)
(
Q̂f(x, t0)− f(x, t0)

)
where, with a slight abuse of notation, V̂f(x, t0) should be read as V̂fp(a, t0). Finally, we

write from now on t→ f(φ̂(t, x̂)) in place of more cumbersome t→ fp(φ̂p(t, (a, t0))).

The next result shows that the augmentation of the state space of X allows to de�ne

U as the unique solution of a set of integro-di�erential equations. The impact of this

transformation will become more relevant in Section 4.4.

Theorem 4.3. For each x̂ ∈ SbX, t→ U(φ̂(t, x̂)) is an absolutely continuous function on

[0, d̂path(x̂)[ and U is the unique solution of the equations

Âf(x̂) = 0, x̂ ∈ SbX, (4.17)

f(∆) = 0, and at a boundary state x̂ ∈ B̂, f(x̂) = 1 bB0(x̂).

Proof. By de�nition, U(∆) = 0. We assume that x̂ = (x, t0) ∈ SX×]0, t∗] and t ∈

]0, d̂path(x̂)[. By the strong Markov property, we have

U(x̂) = Ĝbx(t)U(φ̂(t, x̂)) + Ebx
[
Q̂U(φ̂(T̂1, x̂)))1]0,t](T̂1)

]
.
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Now, using the density function of the �rst transition T̂1 on [0, t], given by λ̂(φ̂(s, x̂))Ĝbx(s)

and proceding in a similar way as in the proof of Theorem 4.2, it follows that

U(φ̂(t, x̂)) = U(x̂) +

∫ t

0

λ̂(φ̂(s, x̂))(U(φ̂(s, x̂))− Q̂U(φ̂(s, x̂))) ds. (4.18)

Since Q̂U is clearly bounded (U is bounded) by the fundamental theorem of calculus

t→ U(φ̂(t, x̂)) is an absolutely continuous function on [0, t] and equation (4.17) is satis�ed.

Now �x x̂
′ ∈ B̂ and t > 0 such that the initial state is x̂ = φ̂(−t, x̂′). By the strong Markov

property, we have

U(x̂) = E
[
1 bB0(x̂′)1{bT1= bdpath(bx)} + Q̂U(X̂(T̂−1 ))

]
= P(T̂1 = d̂path(x̂))(1 bB0(x̂′) + Q̂U(x̂

′
)) +

∫ t

0

λ̂(s, φ̂(t, x̂))Ĝbx(s)Q̂U(φ̂(s, x̂)) ds.

Letting t ↓ 0, the function U has a limit as a boundary state is approached, and U(x̂′) =

I bB0(x̂′).

If x̂ ∈ [0, t∗)× SbX, t→ f(φ̂(t, x̂)) is an absolutely continuous function on [0, d̂path(x̂))

and f is bounded. From conditions from Davis (1993, Theorem 31.3, p. 83) conveniently

applied, the process (M̂ f (t)) de�ned by

M̂ f (t) = f(X̂(t))− f(X̂(0))−
∑

{bTi≤t,bX( bT−i )∈ bB}
(Q̂f(X̂(T̂i))− f(X̂(T̂−i ))), t ≥ 0

is a martingale. Taking conditional expectations, Ebx(M̂ f (t)) = M̂ f (0) = 0 and, therefore,

f(x̂) = Ebx
[
fX̂(t))

]
− Ebx

 ∑
{bTi≤t,bX( bT−i )∈ bB}

(Q̂f(X̂(T̂i))− f(X̂(T̂−i )))

 . (4.19)

In view of f(x̂) = 1 bB0(x̂) and Q̂f(x̂) = 0 for x̂ ∈ B̂, we have that Q̂f(X̂(T̂i))−f(X̂(T̂i)) =

−1 bB0(X̂(T̂i)). Since X̂(t) = ∆ for all t ≥ t∗,

lim
t→∞

Ebxf(X̂(t)) = 0.

Letting t→∞ the solution of the equation (4.19) is unique and f = U . o
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The mean path duration and the path persistence written as expectations of function-

als of the multihop path process are the unique solutions of systems of integro-di�erential

equations. However, any direct method to solve them is quite problematic and depends

very much on the speci�c characterization of the multihop path process (number of nodes,

deterministic motion, jump rate, transition measure). There are some recent studies (cf.

Annunziato 2007, 2008) addressing the numerical solution of integro-di�erential equa-

tions, but they can be only applied when the number of initial states is small. In our case,

we have several nodes in the path and each one as a large set of attributes and so these

methodologies cannot be applied.

4.4 Recursive computations

In this section we present a recursive scheme which provides the basis for practical nu-

merical techniques for computing the path metrics de�ned in Section 4.3. The basic idea

is to obtain a simple system of �rst order ordinary di�erential equations and prove that

this system converges to the original system of integro-di�erential equation.

4.4.1 Mean path duration

Let D0 be a function such that D0(x) = 0, for all x ∈ S∆
X, and let O be an operator

mapping the set of bounded measurable functions on S∆
X ∪ B into itself. The action of

the operator O on D0 gives the function D1 ≡ OD0 de�ned by

D1(x) = Ex

[∫ T1

0

1SX
(X(s)) ds+D0(X(T1))

]
, x ∈ S∆

X.

Iterating k(≥ 1) times the operator O on D0 results in the function Dk ≡ OkD0 given by

Dk(x) = ODk−1(x)

= Ex

[∫ T1

0

1SX
(X(s)) ds+Dk−1(X(T1))

]
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for x ∈ S∆
X. The metric Dk(x) denotes the mean path duration constrained to at most k

jumps of the multihop process X starting from state x. As the number of jumps increases

we obtain in the limit the mean path duration D(x) de�ned by (4.5).

Theorem 4.4. For each x ∈ SX and k ≥ 1,

Dk(x) = Ex

[∫ Tk

0

1SX
(X(s)) ds+D0(X(Tk))

]
(4.20)

and

lim
k→∞

Dk(x) = D(x). (4.21)

Proof. For k = 1, equation (4.20) follows from de�nition. Suppose that (4.20) holds for a

�xed k, then by induction

Dk+1(x) = Ok(OD0)(x)

= Ex

[∫ Tk

0

1SX
(X(s)) ds+D1(X(Tk))

]
.

By the strong Markov property,

Dk+1(x) = Ex

[∫ Tk

0

1SX
(X(s)) ds+D1(X(Tk))

]
= Ex

[∫ Tk

0

1SX
(X(s)) ds

+ Ex

[∫ Tk+1

Tk

1SX
(X(s)) ds+D0(Tk+1)|FTk

] ]
= Ex

[∫ Tk+1

0

1SX
(X(s)) ds+D0(Tk+1)

]
,

where FTk is the history of X until time Tk. Since Tk →∞ w.p.1 as k →∞, for all initial

states x ∈ SX, equation (4.21) follows by monotone convergence. o

If the path starts at x ∈ SX, then after a short time t either there has been no jump,

in which case Dk(X(t)) is equal to Dk(φ(t,x)), with probability (1−λ(x)t+ o(t)), or one
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jump occurs with probability λ(x)t+ o(t), in which case Dk(X(t)) = QDk−1(φ(t,x)) (the

probability of other events is o(t)). Thus,

1

t
Ex[Dk(X(t))−Dk(x)] =

1

t
(Dk(φ(t,x))−Dk(x))

+ λ(x)
(
QDk−1(φ(t,x))−Dk(φ(t,x))

)
+ o(1),

where the operator Q is de�ned by (4.6). From the de�nition of Dk and proceeding as in

(4.7), we obtain, for x ∈ SX,

ADk(x) = VDk(x) + λ(x)
(
QDk−1(x)−Dk(x)

)
where VDk is the vector �eld V , as de�ned in (4.8), and note that Q now acts on the

externally given function Dk−1. To establish the next result, we use Proposition 32.20 in

Davis (1993), conveniently applied to the PDMP X.

Theorem 4.5. Suppose that the function Dk−1 is given. For each x ∈ SX, t→ Dk(φ(t,x))

is an absolutely continuous function on [0, dpath(x)[ and Dk is the unique bounded solution

of the equations

Vf(x) + λ(x)
(
QDk−1(x)− f(x)

)
= −1, x ∈ SX, (4.22)

and at a boundary state x ∈ B, f(x) = f(∆) = 0.

The di�erence between equations (4.22) and (4.9) is that now the operator Q acts only

on the externally given function Dk−1, which turn them into a system of �rst order ordi-

nary di�erential equations. Combining this result with Theorem 4.4 provides a recursive

way of computing the mean path duration D.

Proof. To show that Dk satis�es equation (4.22) and t → Dk(φ(t,x)) is absolutely con-

tinuous, we may proceed along the same lines as in the proof of Theorem 4.2 with the

di�erence that the operator Q now acts on the given function Dk−1. The same also holds

to prove that Dk satis�es the boundary conditions.
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Fix a state x ∈ SX such that dpath(x) = ∞. If we write yx(t) = f(φ(t,x)), ax(t) =

λ(φ(t,x)) and bx(t) = 1+λ(φ(t,x))QDk−1(φ(t,x)), then equation (4.22) is a linear scalar

ordinary di�erential equation (ODE) with general coe�cients

d
dt
yx(t) = ax(t)yx(t)− bx(t), yx(0) = f(x) (4.23)

which, by Davis (1993, Formula 22.10, p. 55), has a unique solution along {φ(t,x), t <

dpath(x)} given by

yx(t) = exp

(∫ t

0

ax(s) ds

)
f(x)−

∫ t

0

exp

(∫ t

s

ax(u) du

)
bx(s) ds.

Using the distribution of T1 and noting that

exp

(∫ s

0

−ax(u) du

)
= Gx(s),

Dk(x) can be expressed as

Dk(x) = Ex

[∫ T1

0

1SX
(X(s)) ds+Dk−1(X(T1))

]
=

∫ ∞
0

λ(φ(s,x))Gx(s)

(∫ s

0

1SX
(φ(s,x)) du+QDk−1(φ(s,x))

)
ds

=

∫ ∞
0

∫ ∞
s

λ(φ(t,x))Gx(t) dt ds+

∫ ∞
0

λ(φ(s,x))Gx(s)QDk−1(φ(s,x)) ds

=

∫ ∞
0

Gx(s) ds+

∫ ∞
0

λ(φ(s,x))Gx(s)QDk−1(φ(s,x)) ds

=

∫ ∞
0

exp

(∫ s

0

−ax(u) du

)
bx(s) ds.

where the third equality is obtained by changing the order of integration.

Since bx(t) is bounded and ax(t) > 0, by the variant-of-constants formula we can

show that the unique solution for which yx(t) is bounded is given by the initial condition

yx(0) = f(x) = Dk(x) and therefore

yx(t) =

∫ ∞
t

exp

(∫ s

t

−ax(s) ds

)
bx(s) ds

with yx(t) = f(φ(t,x)) = Dk(φ(t,x)).



4.4 Recursive computations 90

Suppose now that x ∈ SX such that dpath(x) < ∞. Let x′ = φ(dpath(x),x) and

t ∈ [−dpath(x), 0]. Then, equation (4.23) becomes

d
dt
yx′(t) = ax′(t)yx′(t)− bx′(t), yx′(0) = f(x′).

Since the solution of the equation is unique and f(x′) = Dk(x′) = 0, by the boundary

condition, then yx′(t) = f(φ(t,x′)) = Dk(φ(t,x′)). This completes the proof. o

4.4.2 Path persistence

De�ne the function U0 such that U0(x̂) = 0 for all x̂ ∈ S∆bX. Let Ô denote an operator

acting on the domain of bounded measurable real valued functions on S∆bX ∪ B̂ such that

the operation of Ô on U0 gives the function U1 ≡ OU0 given by

U1(x̂) = Ebx
[
1 bB0(X̂(T̂−1 )) + U0(X̂(T̂1))

]
, x̂ ∈ S∆bX.

Iterating successively k(> 1) times the operator Ô on U0 results in the function Uk ≡

ÔkU0 given by

Uk(x̂) = ÔUk−1(x̂) = Ebx
[
1 bB0X̂(T̂−1 )) + Uk−1(X̂(T̂1))

]
,

for x̂ ∈ S∆bX. The metric Uk(t0,x), for (t0,x) ∈ SbX, denotes the path persistence at time

t0 constrained to at most k jumps of the process X̂ starting from state x. As k tends to

in�nity, we obtain the expectation functional U(x̂). By the strong Markov property and

the de�nition of X̂, we can state the following result.

Theorem 4.6. For each x̂ ∈ SbX and k ≥ 1,

Uk(x̂) = Ebx
[

k∑
i=1

1 bB0(X̂(T̂−i )) + Û0(X̂(T̂k))

]

and

lim
k→∞

Uk(x̂) = U(x̂).
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Proof. The proof follows along the same arguments as in the proof of Theorem 4.4. Just

note that for k = 1, U1 ≡ OU0, and by induction

Uk+1(x̂) = Ôk(ÔU0)(x̂)

= Ebx
[

k∑
i=1

1 bB0(X̂(T̂−i )) + U1(X̂(T̂k))

]
and, by the strong Markov property,

Uk+1(x̂) = Ebx
[

k∑
i=1

1 bB0(X̂(T̂−i )) + Ebx
[
1 bB0(X̂(T̂−k+1)) + U0(X̂(T̂k+1))|F̂bTk

]]

= Ebx
[
k+1∑
i=1

1 bB0(X̂(T̂−i )) + U0(X̂(T̂k+1))

]

where F̂bTk is the history of the process X̂ until time T̂k. o

Using the de�nition of Uk and following the same steps as in (4.14), we have

ÂUk(x, t0) = V̂Uk(x, t0) + λ(x)
(
Q̂Uk−1(x, t0)− U(x, t0)

)
, (x, t0) ∈ SbX

where V̂Uk is the vector �eld applied to Uk and de�ned as in (4.16). Note that now Q̂

acts on the function Uk−1. This gives rise to the following result whose proof is omitted,

since it uses merely the arguments used in the proof of Theorem 4.5.

Theorem 4.7. Suppose that the function Uk−1 is as given before. Then, for each x̂ ∈ SbX,
t→ Uk(φ̂(t, x̂)) is an absolutely continuous function on [0, d̂path(x̂)[ and Uk satis�es and

is the unique solution of the equations

V̂f(x, t0) + λ(x)
(
Q̂Uk−1(x, t0)− f(x, t0)

)
= 0 (4.24)

for (x, t0) ∈ SbX, f(∆) = 0, and, at a boundary state x̂ ∈ B̂, f(x̂) = 1 bB0(x̂).

Proof. The proof follows along the same arguments used in the proof of Theorem 4.5

by letting b̂bx(t) = − ∂f
∂t0

(x, t0) + λ(φ̂(t, x̂))Q̂Uk−1(φ̂(t, x̂)), ŷbx(t) = f(φ̂(t, x̂) and âbx(t) =

λ(φ̂(t, x̂))

o
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Computing Dk (resp. Uk) requires only to solve ODEs instead of solving integro-

di�erential equations. The results of these calculations are then used to compute the next

iteration k+1. Since we are dealing with independent ODEs, they can be computed using

parallel computation. The convergence of the solution depends on how large k needs to

be before Dk (resp. Uk) is close to D (resp. U). The derivation of error bounds for these

quantities is possible (as shown in the proof of Theorem 4.1), which also gives an estimate

of number of iterations needed for convergence.

To exemplify the computation of the recursive equations, in the case where there are

only two nodes, the set {(1, 1), (1, 0), (0, 1), (0, 0)} contains the possible phases of the two

nodes and, for a given initial state, we need to solve a system of 4 ordinary di�erential

equations, one for each possible phase pair. For p = (1, 1) and initial state

a = (e,m, l2r) = ((e1, e2), (v1 cos θ1, v1 sin θ1, v2 cos θ2, v2 sin θ2), l2r),

the equation (4.22) for the mean path duration is given by

∂

∂t
Dk

(1,1)(e(t),m, l2r) = 2λ1D
k
(1,1)(e(t),m, l2r + (v2 − v1)t)

− λ1D
k−1
(1,0)(e(t), (v1 cos θ1, v1 sin θ1, 0, 0), l2r + (v2 − v1)t)

− λ1D
k−1
(0,1)(e(t), (0, 0, v2 cos θ2, v2 sin θ2), l2r + (v2 − v1)t)− 1,

with λ0 (λ1) being the mean duration of the pause (move) phase, e(t) = (e1 + t, e2 + t)

being the sojourn time in phase after t units of time, and where the boundary condition is

Dk
(1,1)(e(dpath(x)),m, l2r + (v2− v1)dpath(x)) = 0. The equations for the other initial phase

states are obtained in an analogous way. The solution is obtained pro�ting from the fact

that at step k the values of Dk−1(x) for all states are known from previous calculations.

The ordinary di�erential equation (4.24) for the path persistence can be obtained in a

similar way.

Any direct implementation of these equations requires a discretization of the state

space and solving at each grid point an independent ODE, providing the data for cal-

culating the next iteration. Therefore, numerical software routines that implement the
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corresponding di�erential equations in a recursive way are needed for obtaining the �nal

results. It is unrealistic to hope that numerical solutions are possible for a medium size

number of links in a single workstation due to the great number of computer processing

cycles and the need of storing large amounts of data. However, it is possible to solve the

equations in the case of one or two links and in one dimensional ad hoc networks. It should

be noted that, for numerical problems of this kind, the use of distributed computing for

studying the reliability of multihops paths in a general scenario seems to be a conditio

sine qua non. Such a development will be e�cient if, in addition, we use techniques such

as function interpolation and eliminate sample paths whose contribution is negligible. It

seems that the equations presented in this section can be e�ectively solved for non trivial

cases, however, more research in this direction is necessary.

4.5 Numerical results

In this section we illustrate an application of the preceding results of the chapter to study

the di�erences between independent links. The scenario proposed is based in La and

Han (2007) with pause times and restricted mobility direction of nodes, which intends

to model a military scenario where vehicles moves in low velocities in a given direction.

We consider that the phase durations are exponentially distributed with means of 30s

and 120s in move and pause phase, respectively. The transmission range of a node is

set up to 250m. The mobility vector is obtained choosing a velocity (m/s) and direction

of nodes uniformly distributed in ]10, 20[ and ] − π/4, π/4[, respectively. For a multihop

path with N nodes, initially each node i (2 ≤ i ≤ N) is deployed inside node i− 1's radio

coverage, with an angle uniformly distributed in the interval ] − π/4, π/4[ and with a

distance following a triangular distribution in the interval (0, 250) with mode 62.5. If the

initial phase is move, the mobility vector is chosen as done at a phase transition instant.

Figure 4.2 shows the results of the mean path duration after each iteration for di�erent

link count. The departure states of the multihop path were sampled according to the initial
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Figure 4.2: Mean path duration after each iteration.

distribution and their respective mean path durations were estimated in each iteration

using Monte Carlo methods (in a single computer workstation). The results were averaged

out in the �nal of each iteration. The di�erence between iterations gets smaller as the

number of links increases since it is more likely that a path failure occurs after a small

number of phase transitions. However, all curves have converged before iteration 20.

In Figure 4.3 we investigate the impact of neglecting the dependency between links in

the mean path duration for di�erent link count. Numerical routines were developed for

independent links. Since each link is only dependent on its neighboor links, the di�erence

between mean path durations reaches its maximum value for two links and decreases with

the increase of link count. The percentage error from assuming independent links under

this scenario could achieve values up to 30%.

Figure 4.4 depicts the path persistence for 2 and 5 links in the interval [0, 200]. The

initial states of the multihop path were selected according to the initial distribution (de-

scribed above) and the path persistences were estimated in each iteration through Monte

Carlo methods. After convergence, the results were averaged out. The curves obtained
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Figure 4.3: Mean path duration vs link count

have been plotted against the independent link assumption. The marginal probabilities

of independent links were computed using the results of PDMP with one link. For 2-

link paths the maximum di�erence between the curves is smaller than for 5-link paths

but persists for a longer time since the path duration is stochastically decreasing in the

number of links. As expected, for values of t0 at the beginning and at the end of the

interval the di�erences are small. Finally, the independent link failure assumption leads

to underestimation of the path metrics in the scenario presented.

In Figure 4.5 we study the impact of mean time in pause phase on the mean duration

of a 4-link path. The results are rather sensitive to the mean value of pause phase and

getting an estimate for the mean path duration using the link independence assumption

may in fact be a major problem when the inactive time of a node is large.

In spite of the goal of this model being to present an analytical framework to study

path reliability, we highlight from our experiments that slower moving nodes along with

shorter link distances conducts to more signi�cant di�erences in the path metrics when

compared with the corresponding independent link approximations.
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Chapter 5

Concluding remarks

In this chapter we present a general overview of this dissertation, review the main contri-

butions and provide some directions for future work.

5.1 General overview

Motivated by the absence of mathematical models to cope with one of the main char-

acteristics of MANETs - the multihop ability - in this dissertation we have focused on

probabilistic models for the existence of multihop paths and their dynamics.

The �rst two chapters after the introduction study the distribution of the number of

hops of a multihop path between the source and destination nodes. Chapter 2 is dedicated

to one-dimensional ad hoc networks, which have applications in vehicular networks and

sensor networks, and Chapter 3 is dedicated to two-dimensional ad hoc networks, which

have applications in commercial communications, emergency services, military networks,

sensor networks, etc. Once a multihop path between two nodes is built, the duration of

the multihop path depends on the mobility of the relay nodes. This originate a complex

behavior that integrates both connectivity and mobility requirements of such networks.

In Chapter 4 we have studied the multihop path dynamics by a mathematical framework
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to fully describe the random behavior of a multihop path in ad hoc networks.

5.2 Connectivity in one-dimensional MANETs

In Chapter 2 we have studied the connectivity for one-dimensional ad hoc networks, when

a known number of relay nodes are uniformly distributed on a straight line between the

source and the destination nodes. We then derived the hop count probability distribu-

tion from the density location of relay nodes in a multihop path selected with the most

forward progress within radius. To obtain the hop count distribution, we used a Poissoni-

�cation technique that randomizes the number of relay nodes by assuming that they are

distributed according to a Poisson process. So, in fact, the results obtained can also be

used in the case that relay nodes are randomly distributed by a Poisson process on the

line.

The results derived in Chapter 2 can be summarized as follows:

• We have derived the joint density function of relay node locations and, from this

density, we derived the hop count probability distribution when the multihop path

selected provides the greatest forward progress towards the destination node.

• We have obtained the connectivity probability, that is, the probability that the

source and the destination nodes are connected regardless the number of hops, by

summing the probability masses for each possible value of the hop count, extending

the results of Ghasemi and Nader-Esfahani (2006).

• We have obtained a closed formula for the hop count probabilities of the two smallest

possible values of the number of hops. We proved that the hop count probability

distribution with the minimum number of hops follows a binomial distribution.

We have also obtained the critical number of relay nodes that, for a given transmission

range, guarantees a desired minimum hop count probability. The inverse problem was also
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analyzed, that is, given the number of relay nodes, the critical transmission range that

guarantees a desired minimum hop count probability is obtained. These results can be

used for network dimensioning tools since, as a function of the characteristics of the

wireless devices, the number of relay nodes that guarantees a desired minimum hop count

probability (and also of the connectivity probability) can be obtained.

In terms of practical conclusions for telecommunications engineering, we can make the

following considerations:

• The connectivity probability can be well approximated by the sum of the probabili-

ties for the two smallest values of the hop count when there is, at least, a moderate

number of nodes.

• With the increase of the number of relay nodes, the minimum hop count probability

distribution has the highest contribution for the connectivity probability, and tends

to 1. On the other hand, the probabilities with other values of the hop count,

decreases and tend to 0.

• The minimum hop count probability increases with the increase of the transmission

range, when the number of hops is �xed.

5.3 Connectivity in two-dimensional MANETs

In Chapter 3 we focused on the connectivity in two-dimensional ad-hoc networks. We have

assumed that the source and the destination nodes are �xed at a known distance and have

considered that the underlying node spatial distribution is drawn from a Poisson process

and, by using a Poisson randomization technique, that a �xed number of relay nodes

are uniformly distributed in a region of interest. To �nd a multihop path, we proposed a

novel propagation model which we have called the dynamic propagation model. The main

characteristic of this model is that the routing region is de�ned by an angular section of a
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circular disk with radius equal to the transmission range and oriented to the destination

node, with the angular section being dynamic since it depends on the distance to the

destination node. We derived the hop count probability distribution when the multihop

path chosen follows two routing protocols: the relay node chosen is at the furthest distance

within the routing region or the relay node chosen is at the nearest distance within the

routing region.

We can summarize the results obtained in Chapter 3 as follows:

• We derived the joint density function of relay nodes and, from this density, the

hop count probability distribution when relay nodes are distributed according to a

Poisson process. Using a Poissoni�cation technique, analogous results were obtained

when a �nite number of relay nodes is uniformly distributed in a region of interest.

• The hop count probability distribution was derived when the multihop path is ob-

tained from the dynamic propagation model for each of the two routing protocols

considered. Our results extended the results of Srinivasa and Haenggi (2010) and

Vural and Ekici (2005), by considering multihop paths instead of single link models.

The numerical results derived in our model allowed us to compare the routing proto-

cols. For practical telecommunication networks we can make the following considerations:

• A novel dynamic propagation model was proposed, which guarantees an e�cient

progress towards the destination node while increasing the connectivity probability.

• With the increase of the number of relay nodes, the hop count probability distribu-

tion for the furthest distance routing protocol with the minimum number of hops

increases and tends to 1, while the connectivity probabilities for other values of the

minimum hop count, decreases and tend to 0.

• With the increase of the number of relay nodes, the hop count probabilities for the

nearest distance routing protocol decrease and tend to 0.
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• The furthest distance routing protocol outperforms the nearest distance routing

protocol, originating, for the same number of hops, higher probabilities for the

minimum number of hops and being more e�ective in �nding a multihop path.

• The expected hop progress and the expected hop distance with the furthest (nearest)

distance protocol increase (decrease) with the number of nodes.

5.4 Multihop path model

In Chapter 4 we have proposed a piecewise deterministic Markov process (PDMP) to

model the dynamics of a multihop path. We considered that nodes move randomly along

the plane according to a variation of a random walk mobility model (other mobility models

can also be described with the PDMP, by adjusting the transition measure, the jump rate

function and the deterministic behavior between jump epochs).

As a summary, for the results presented in Chapter 4, we can make the following

remarks:

• We proposed a new mathematical framework to model the multihop path dynamics

by a PDMP.

• We derived exact analytical results for two main path metrics: the mean path

duration and path persistence. These metrics were obtained as the solution of a

system of integro-di�erential equations.

• To complement the model with potential applications, a recursive scheme was given,

permitting the numerical computation of the path metrics considered by transform-

ing the system of integro-di�erential equations into a recursion of simple systems of

ordinary di�erential equations.

• Our model permitted to extend the results presented by Han et al. (2006) and La

and Han (2007), where the distribution of the path duration was obtained assuming
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that the hop count is large. In Han et al. (2006) it is was also assumed that each

link is independent of the remaining links of the multihop path.

We numerically compared the path metrics obtained with our model with the correspon-

ding results assuming that the links are independent. We have assumed a military scenario

where nodes have low velocities but restricted mobility. We can summarize our conclusions

for this scenario as follows:

• The independent link assumption is only feasible when: the nodes have such a high

mobility that leads to very small path durations; and, the number of links of the

path is very high.

• The independent link assumption leads to underestimation of the path metrics.

Our results showed that by assuming independent links the percentage error on the

computation of mean path durations could achieve values up to 30%.

• In respect to the mobility parameters, we concluded that higher velocities reduce

the mean path duration and the path persistence. Decreasing the mean duration of

the pause phase also increase the node mobility, reducing the duration of the paths.

• As regards to the connectivity parameters, we conclude that higher transmission

ranges increase the duration of the paths. We have also concluded that multihop

paths with higher number of hops have smaller durations.

5.5 Future work

The models presented in this dissertation cover important lacks of the literature concern-

ing the dynamics of multihop paths and the performance of routing protocols. However

there is still a lot of work in this area that can be done in the future.

As regards the connectivity in two-dimensional networks, we intend to model other

routing protocols and compare them with the ones used in this dissertation. Mainly, we
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intend to compare the furthest distance routing protocol used here with the most forward

routing protocol (see, e.g., Takagi and Kleinrock (1984)), and with a greedy protocol that

chooses the relay node that is closer to the destination (see, e.g., Dulman et al. (2006)

and Kuo and Liao (2007)).

We also intend to include other connectivity issues, like fading and shadow environ-

ments (see, e.g., Haenggi (2008) and Patwari and Agrawal (2008)), where a link between

two nodes is established not only as a function of the distance between nodes, but also as

a function of the environment, turning the transmission range of each relay node into a

random variable.

We also envisage to include an interference model along the multihop path (see, e.g.,

Dousse et al. (2005) and Srinivasa and Haenggi (2007)). In this case the links between

nodes are not only a�ected by their physical distance, but also by the locations of other

transmitting relay nodes, that create interferences and originate link failures.

As concerns the dynamic of multihop paths, we envisage to apply our framework to

derive other path metrics Jiang and Rao (2005). Future work will also include other

individual or group mobility models (see, e.g., Camp et al. (2002)), that admit a PDMP

description. We have already concluded that random mobility and correlated mobility

models can be described by a PDMP, just by changing the characteristics of the PDMP,

mainly the jump rate function, the transition measure, and the deterministic behavior

between jump epochs.
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