
A Parallel and Distributed Framework for
Constraint Solving

(abstract)

Vasco Pedro1, Rui Machado2, and Salvador Abreu1

1 CENTRIA and Departamento de Informática,
Universidade de Évora, Portugal – {vp,spa}@di.uevora.pt

2 Franhofer ITWM,
Kaiserslautern, Germany – rui.machado@itwm.fhg.de

Abstract. With the increased availability of affordable parallel and dis-
tributed hardware, programming models for these architectures has be-
come the focus of significant attention. Constraint programming, which
can be seen as the encoding of processes as a Constraint Satisfaction
Problem, because of its data-driven and control-insensitive approach is
a prime candidate to serve as the basis for a framework which effectively
exploits parallel architectures.
To effectually apply the power of distributed computational systems,
there must be an effective sharing of the work involved in the search for
a solution to a Constraint Satisfaction Problem (CSP) between all the
participating agents, and it must happen dynamically, as it is hard to
predict the effort associated with the exploration of some part of the
search space.
We describe and provide an initial experimental assessment of an imple-
mentation of a work stealing-based approach to distributed CSP solving,
which relies on multiple back-ends for the distributed computing mecha-
nisms – from the multicore CPU to supercomputer clusters running MPI
or other interprocess communication platforms.

1 Introduction

Constraints are used to model problems with no known polynomial algorithm,
but for which search techniques developed within the field of constraint pro-
gramming provide viable procedures.

Notwithstanding their relative efficiency, constraint solving methods are com-
putationally demanding and good candidates to benefit from multiprocessing.
Moreover, the declarative style of constraint programming frees the programmer
from concerns usually entailed by parallel and distributed programming, such
as control, synchronisation, and communication issues. In fact, the programmer
may not even be aware that there is any parallelism involved in solving the
problem.

Given the increasing availability of parallel computational resources, in the
form of multiprocessors, clusters of computers, or both, there is a need for an



effective way to help incorporating that power into the constraint programming
setting. In this context, our goal is to build a library which takes advantage of
parallel hardware in a transparent way, for constraint solving.

In parallel constraint solving (see for example [2, 4, 1]) the problem may be
partitioned around the domains of the variables, effectively partitioning its search
space. The search for a solution is then carried out in each of the sub-search
spaces by one agent (or worker), all agents working in parallel.

Constraint solving involves exploring large search spaces. To perform search
using several agents in parallel, the effort ought to be shared among them. This
may happen either by having each agent do a part of the work and coordinate
with the other agents, or the agents may be mostly independent from each other,
performing their (possibly non-overlapping) part of the work, hoping that one
of them finds a quicker path to an answer. While the former typically requires
significant inter-agent communication, not only for the search to progress but
also for termination detection, in the latter communication can be limited to an
initial dispatching of the agents and to an answer collecting phase at the end
of the procedure. In that case, however, the initial work distribution may turn
out to be quite unbalanced, leaving some agents to bear most of the effort while
others become idle and their contribution is wasted.

This article reports on preliminary results of our experiments in implementing
PaCCS, a work-stealing scheme for overcoming the effect described above. This
is a two-level scheme: work stealing occurs between co-located agents, but when
distant agents are involved, some cooperation is needed to redistribute the work
still left.

Moreover, as we aim to seek high performance on hierarchical hybrid multi-
processors (such as clusters of multicore computers), the underlying interprocess
communication facility is determining with respect to the resulting performance:
we have to adapt to whatever programming patterns are adequate to yield per-
formance. Nevertheless, this must be done without burdening the application
programmer.

2 The PaCCS Solver Architecture

A PaCCS constraint solver consists of workers, grouped together as teams (Fig-
ure 1). The search for one or all solutions is carried out by the workers, which
implement a propagator-based constraint solving engine. Each active worker has
a pool of idle search spaces and a current search space, the one it is currently
working on. Each team includes a controller, which does not participate in the
search. One of the controllers, the main controller, also coordinates the teams.

Structuring the workers this way serves two purposes: the first is that a
workers’ sole task becomes searching, as all communication with the environ-
ment required by the dynamic sharing of work among teams is handled by the
controller. The second objective is the sharing of resources enabled by binding
the workers in a team close together. If all workers were on the same level, they
would either have to divide their attention between search and communication



Team 1
Team 2

Team 3

Team 4

Fig. 1. PaCCS Solver Architecture

or there would have to be one controller per worker, thereby increasing resource
usage.

3 Distributed Computational Models

Our initial implementation of PaCCS is based on POSIX threads and MPI. We
forked PaCCS to derive MaCS, which is based on a Partitioned Global Address
Space (PGAS) interprocess communications framework called GPI, developed
at Fraunhofer ITWM, and for which our initial experiments on unbalanced tree
search [3] have yielded good performance indicators.

4 Conclusions and Future Work

We do not provide formal experimental results, as the prototype implementation
is still undergoing intense development. We do however, note that we carried out
experiments with up to 256 cores on 64 nodes, with interesting speedups.

The present prototype implementation of PaCCS is written in C and is de-
signed to allow for experimentation with several parameters. This goal has been
met and the system can be tuned to work on several multiprocessor organi-
zations. The work leading up to this can be partly found in [5] and [3]. We
are presently working on tuning PaCCS and MaCS to be able to tackle large
problems and generally improve performance.

References

1. Geoffrey Chu, Christian Schulte, and Peter J. Stuckey. Confidence-Based Work
Stealing in Parallel Constraint Programming. In Ian P. Gent, editor, CP, volume
5732 of Lecture Notes in Computer Science, pages 226–241. Springer, 2009.

2. Pascal Van Hentenryck. Parallel Constraint Satisfaction in Logic Programming:
Preliminary Results of CHIP within PEPSys. In ICLP, pages 165–180, 1989.

3. Rui Machado, Carsten Lojewski, Salvador Abreu, and Franz-Josef Pfreundt. Un-
balanced tree search on a manycore system using the GPI programming model.
Computer Science - R&D, 26(3-4):229–236, 2011.



4. Laurent Michel, Andrew See, and Pascal Van Hentenryck. Parallelizing Constraint
Programs Transparently. In Christian Bessiere, editor, CP, volume 4741 of Lecture
Notes in Computer Science, pages 514–528. Springer, 2007.

5. Vasco Pedro and Salvador Abreu. Distributed work stealing for constraint solving.
CoRR - Proceedings of CICLOPS-WLPE 2010, abs/1009.3800, 2010.


