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Speed and Accuracy Comparison of Noncentral

Chi-Square Distribution Methods for Option

Pricing and Hedging under the CEV Model

Abstract

Pricing options and evaluating greeks under the constant elasticity of variance (CEV)

model require the computation of the noncentral chi-square distribution function. In this

article, we compare the performance in terms of accuracy and computational time of al-

ternative methods for computing such probability distributions against an externally tested

benchmark. In addition, we present closed-form solutions for computing greek measures

under the CEV option pricing model for both β < 2 and β > 2, thus being able to accom-

modate direct leverage effects as well as inverse leverage effects that are frequently observed

in the options markets.



1. Introduction

Every option pricing model has to make a key assumption regarding the “right” distribution

to be used when discounting the option’s expected payoff. This expectation is typically

computed by integrating the payoff function over a risk-neutral density function. Under the

lognormal models of Black and Scholes (1973) and Merton (1973) (BSM model) it is assumed

that the underlying asset price follows a geometric Brownian motion. Yet this prediction has

been convincingly rejected in the finance literature. For instance, it is well documented—see,

for example, Jackwerth and Rubinstein (1996)—that the lognormal assumption is unable

to accommodate the negative skewness and the high kurtosis that are usually implicit in

empirical asset return distributions.

The constant elasticity of variance (CEV) model of Cox (1975) is consistent with two well-

known facts that have found empirical support in the literature: the existence of a negative

correlation between stock returns and realized volatility (leverage effect), as observed, for

instance, in Bekaert and Wu (2000); and the inverse relation between the implied volatility

and the strike price of an option contract (implied volatility skew)—see, for example, Dennis

and Mayhew (2002). More importantly, being a “local volatility” model, the CEV diffusion

is consistent with a “complete market” setup and, therefore, allows the hedging of short

option positions only through the underlying asset.

Computing option prices under the CEV model typically involves the use of the so-called

complementary noncentral chi-square distribution function. There exists an extensive litera-

ture devoted to the efficient computation of this distribution function, with several alterna-

tive representations available (see, for instance, Farebrother (1987), Posten (1989), Schroder

(1989), Ding (1992), Knüsel and Bablok (1996), Benton and Krishnamoorthy (2003), and

Dyrting (2004)). The complementary noncentral chi-square distribution function can also

be computed using a method based on series of incomplete gamma functions. For certain

ranges of parameter values, some of the alternative representations available are more com-

putationally efficient than the series of incomplete gamma functions. Moreover, for some
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parameter configurations the use of analytic approximations (e.g., Sankaran (1963), Fraser

et al. (1998), and Penev and Raykov (2000)) may be preferable.

The main purpose of this article is to provide comparative results in terms of accuracy

and computation time of existing alternative algorithms for computing the noncentral chi-

square distribution function to be used for option pricing and hedging under the CEV model.

A similar study has been conducted by Ağca and Chance (2003) to price compound options

and min-max options whose computation requires approximations of the bivariate normal

probability.

All tested methods are generally accurate over a wide range of parameters that are fre-

quently needed for pricing options, though they all present relevant differences in terms

of running times. The iterative procedure of Ding (1992) is the most efficient in terms of

computation time needed for determining option prices under the CEV assumption. As

expected, the analytic approximations run quickly but have an accuracy that varies signifi-

cantly over the considered parameter space. Option pricing under the CEV assumption is

computationally expensive especially when β is close to two, volatility is low, or the time to

maturity is small in the CEV formulae. For these cases, a two-part strategy may be designed

using the Ding (1992) method for small to moderate values of 2y and 2x, and then using an

approximation method based on Penev and Raykov (2000) for large values of 2y and 2x.

Even though our numerical analysis focus on CEV European-type options, our results are

also of interest for some options contracts with early exercise features and/or exotic payoffs.

For instance, the valuation of plain-vanilla American options under the optimal stopping

approach as proposed by Nunes (2009) requires an explicit solution of its European coun-

terpart option contract and knowledge of the transition density function of the underlying

price process. Thus, an efficient method in terms of accuracy and computation time for pri-

cing European-type options should be similarly efficient for valuing plain-vanilla American

options within this framework and under the CEV diffusion. The same line of reasoning

applies when valuing both European and American (double) barrier options using the CEV

assumption within the general multifactor pricing model offered by Nunes and Dias (2010).
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The theoretical contribution of this paper is the derivation of closed-form solutions for

computing greeks of European-type options under the CEV model that to our knowledge

are not known in the finance literature. These new formulae are important for practitioners

since closed-form solutions, when available, are generally preferable to simulation methods

because of their computational speed advantage.

The structure of the paper is organized as follows. Section 2 outlines the noncentral

chi-square distribution and presents different methods for computing it. Section 3 briefly

reviews the CEV option pricing formulae expressed in terms of the noncentral chi-square

distribution for valuing European-type options. Section 4 compares the alternative methods

in terms of speed and accuracy. Section 5 gives some concluding remarks.

2. Alternative Methods for Computing the Noncentral

Chi-Square Distribution

2.1. The Noncentral Chi-Square Distribution

If Z1, Z2, ..., Zv are independent unit normal random variables, and δ1, δ2, ..., δv are constants,

then

Y =
v∑

j=1

(Zj + δj)
2 (1)

is the noncentral chi-square distribution with v degrees of freedom and noncentrality para-

meter λ =
∑v

j=1 δ2
j , and is denoted as χ

′
v

2
(λ). When δj = 0 for all j, then Y is distributed

as the central chi-square distribution with v degrees of freedom, and is denoted as χ2
v.

Hereafter, p
χ
′
v
2
(λ)

(w) = p(w; v, λ) is the probability density function of a noncentral chi-

square distribution χ
′
v

2
(λ), and pχ2

v
(w) = p(w; v, 0) is the probability density function of a

central chi-square distribution χ2
v. Likewise, P [χ

′
v

2
(λ) ≤ w] = F (w; v, λ) is the cumulative

distribution function of χ
′
v

2
(λ), and P [χ2

v ≤ w] = F (w; v, 0) is the cumulative distribution
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function of χ2
v. The complementary distribution functions of χ

′
v

2
(λ) and χ2

v are denoted as

Q(w; v, λ) and Q(w; v, 0), respectively.

The cumulative distribution function of χ
′
v

2
(λ) is given by (see, for instance, Johnson et

al. (1995, Equation 29.2)):

P [χ
′
v

2
(λ) ≤ w] = F (w; v, λ) (2)

= e−λ/2

∞∑
j=0

(λ/2)j

j! 2v/2+j Γ(v/2 + j)

∫ w

0

yv/2+j−1 e−y/2 dy, w > 0,

while F (w; v, λ) = 0 for w < 0. Alternatively, it is possible to express F (w; v, λ), for w > 0,

as a weighted sum of central chi-square probabilities with weights equal to the probabilities

of a Poisson distribution with expected value λ/2. This is (see, for instance, Johnson et al.

(1995, Equation 29.3), or Abramowitz and Stegun (1972, Equation 26.4.25)),

F (w; v, λ) =
∞∑

j=0

(
(λ/2)j

j!
e−λ/2

)
P [χ2

v+2j ≤ w]

=
∞∑

j=0

(
(λ/2)j

j!
e−λ/2

)
F (w; v + 2j, 0), (3)

where the central chi-square probability function F (w; v +2j, 0) is given by Abramowitz and

Stegun (1972, Equation 26.4.1).

The complementary distribution function of χ
′
v

2
(λ) is

Q(w; v, λ) = 1− F (w; v, λ)

=
∞∑

j=0

(
(λ/2)j

j!
e−λ/2

)
Q(w; v + 2j, 0), (4)
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where the complementary central chi-square probability function Q(w; v + 2j, 0) is given by

Abramowitz and Stegun (1972, Equation 26.4.2).

The probability density function of χ
′
v

2
(λ) can, similarly, be expressed as a mixture

of central chi-square probability density functions (see, for instance, Johnson et al. (1995,

Equation 29.4)):

p
χ′v

2
(λ)

(w) = p(w; v, λ)

=
∞∑

j=0

(
(λ/2)j

j!
e−λ/2

)
p(w; v + 2j, 0)

=
e−(λ+w)/2

2v/2

∞∑
j=0

(
λ

4

)j
wv/2+j−1

j! Γ(v/2 + j)

=
1

2
e−(λ+w)/2

(
w

λ

)(v−2)/4

I(v−2)/2(
√

λw), w > 0, (5)

where Iq(·) is the modified Bessel function of the first kind of order q, as defined by Abra-

mowitz and Stegun (1972, Equation 9.6.10):

Iq(z) =

(
z

2

)q ∞∑
j=0

(z2/4)j

j! Γ(q + j + 1)
. (6)

Using equation (5) we may also express the functions F (w; v, λ) and Q(w; v, λ) as integral

representations:

F (w; v, λ) =

∫ w

0

1

2
e−(λ+u)/2

(
u

λ

)(v−2)/4

I(v−2)/2(
√

λu) du, (7)

Q(w; v, λ) =

∫ ∞

w

1

2
e−(λ+u)/2

(
u

λ

)(v−2)/4

I(v−2)/2(
√

λu) du. (8)
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2.2. The Gamma Series Method

It is well-known that the functions F (w; v + 2n, 0) and Q(w; v + 2n, 0) are related to the

so-called incomplete gamma functions (see, for instance, Abramowitz and Stegun (1972,

Equation 26.4.19)). Hence, we may express noncentral chi-square distribution functions (3)

and (4) using series of incomplete gamma functions as follows:

F (w; v, λ) =
∞∑
i=0

(λ/2)i e−λ/2

i!

γ(v/2 + i, w/2)

Γ(v/2 + i)
, (9)

Q(w; v, λ) =
∞∑
i=0

(λ/2)i e−λ/2

i!

Γ(v/2 + i, w/2)

Γ(v/2 + i)
, (10)

with γ(m, t) and Γ(m, t) being, respectively, the incomplete gamma function and the comple-

mentary incomplete gamma function as defined by Abramowitz and Stegun (1972, Equations

6.5.2 and 6.5.3), and where Γ(m) is the Euler gamma function, as defined by Abramowitz

and Stegun (1972, Equation 6.1.1).1

The gamma series method has been applied by Fraser et al. (1998) as a benchmark for

computing exact probabilities to be compared with several alternative methods for approxi-

mating the noncentral chi-square distribution function, and by Dyrting (2004) for computing

the noncentral chi-square distribution function to be used under Cox et al. (1985b) diffusion

processes. Carr and Linetsky (2006) also use the gamma series approach but for computing

option prices under a jump-to-default CEV framework.

While this method is accurate over a wide range of parameters, the number of terms that

must be summed increases with the noncentrality parameter λ. To avoid the infinite sum of

the series we use the stopping rule as proposed by Knüsel and Bablok (1996) which allows

the specification of a given error tolerance by the user.

1The incomplete gamma functions γ(m, t) and Γ(m, t), and the Euler gamma function Γ(m) are all

available in the Mathematica software package as built-in functions with the call Gamma[m,0,t], Gamma[m,t]

and Gamma[t], respectively.
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There have been several alternative proposals for evaluating expressions (9) and (10)—

see, for instance, Farebrother (1987), Posten (1989), Schroder (1989), Ding (1992), Knüsel

and Bablok (1996), Benton and Krishnamoorthy (2003), and Dyrting (2004)—all of which

involve partial summation of the series. For certain ranges of parameter values, some of

the alternative representations available are more computationally efficient than the series

of incomplete gamma functions. Hence, it is important to evaluate the speed and accuracy

of each method for computing the noncentral chi-square distribution as well as for option

pricing and hedging purposes.

For the numerical analysis of this article we will concentrate the discussion on Schroder

(1989) and Ding (1992) methods since both are commonly used in the finance literature. The

algorithm provided by Schroder (1989) has been subsequently used by Davydov and Linetsky

(2001). The popular book on derivatives of Hull (2008) suggests the use of the Ding (1992)

procedure. We will also use the suggested approach of Benton and Krishnamoorthy (2003),

since it is argued by the authors that their algorithm is more computationally efficient than

the one suggested by Ding (1992).

2.3. Analytic Approximations

The cumulative distribution function of the noncentral chi-square distribution with degrees

of freedom v > 0 and noncentrality parameter λ ≥ 0 is usually expressed as an infinite

weighted sum of central chi-square cumulative distribution functions. For numerical evalua-

tion purposes this infinite sum is being approximated by a finite sum. For large values of

the noncentrality parameter, the sum converges slowly. To overcome this issue, a number of

approximations have been proposed in the literature. A comparison of early approximation

methods is given in Johnson et al. (1995, chapter 29).

In this article, we will consider the approximation method of Sankaran (1963) which is

well-known in the finance literature due to Schroder (1989) who recommends its use for large

values of w and λ. In addition, two more recent approximations, namely Fraser et al. (1998)

and Penev and Raykov (2000), will be considered also since both of them are commonly
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referenced by the statistic literature as accurate methods for approximating the noncentral

chi-square distribution.

3. The CEV Option Pricing Model

The CEV call option pricing formula for valuing European options has been initially expres-

sed in terms of the standard complementary gamma distribution function by Cox (1975)

for β < 2, and by Emanuel and MacBeth (1982) for β > 2. Schroder (1989) has subse-

quently extended the CEV model by expressing the corresponding formulae in terms of the

noncentral chi-square distribution as2

ct :=





St e
−qτ Q

(
2y; 2 + 2

2−β
, 2x

)
−X e−rτ

[
1−Q

(
2x; 2

2−β
, 2y

)]
⇐ β < 2

St e
−qτ Q

(
2x; 2

β−2
, 2y

)
−X e−rτ

[
1−Q

(
2y; 2 + 2

β−2
, 2x

)]
⇐ β > 2

, (11)

with X being the strike price of the option, Q(w; v, λ) being the complementary distribution

function of a noncentral chi-square law with v degrees of freedom and noncentrality parameter

λ, and where

k =
2(r − q)

δ2(2− β)[e(r−q)(2−β)τ − 1]
, (12a)

x = k S2−β
t e(r−q)(2−β)τ , (12b)

y = kX2−β, (12c)

δ2 = σ2
0 S2−β

0 , (12d)

τ = T − t. (12e)

2If one applies the put-call parity then the corresponding CEV put option pricing formula is obtained.
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4. Computational Results

This section aims to present computational comparisons of the alternative methods of com-

puting the noncentral chi-square distribution function for pricing and hedging European

options under the CEV diffusion. Similarly to the study conducted by Ağca and Chance

(2003), we examine CEV option pricing models using alternative combinations of input va-

lues over a wide range parameter space. The value of the assets will be S0 = 100. The striking

price of each option contract can assume values of X = {90, 95, 100, 105, 110}, which means

that we are considering options with a moneyness factor of m = {0.90, 0.95, 1.00, 1.05, 1.10}.
We let the volatility of the underlying asset to be σ = {0.10, 0.25, 0.40}. We use alternative

times to expiration of τ = {0.25, 0.50, 1.00, 3.00}. We let the risk-free interest rate to be

r = {0.10, 0.05}, and the dividend yield to be q = {0.03, 0.00}. The β parameter is assumed

to have the following values: β = {5, 3, 1, 0,−2,−4,−6}. These combinations generate a set

of 3,360 probability distributions and 1,680 unique options for each type of CEV option.

All the calculations in this article were made using Mathematica 7.0 running on a Pen-

tium IV (2.53 GhZ) personal computer. Option prices and greeks are computed using each

of the alternative algorithms for approximating the complementary noncentral chi-square

distribution. We have truncated all the series with an error tolerance of 1E−10. All values

are rounded to four decimal places. In order to understand the computational speed of the

alternative algorithms, we have computed the CPU times for all the algorithms using the

function Timing[.] available in Mathematica. Since the CPU time for a single evaluation is

very small, we have computed the CPU time for multiple computations.

4.1. Benchmark Selection

The noncentral chi-square distribution function F (w; v, λ) as well as its complementary func-

tion Q(w; v, λ) require values for w, v, and λ. For option pricing and hedging under the CEV

model both w and λ can assume values of 2x or 2y. Table 1 shows the maximum, minimum,

and mean values for 2x, 2y, and v under the designed parameter space.
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[Please insert Table 1 about here.]

To compare methods, in terms of speed and accuracy, for computing noncentral chi-

square probabilities for pricing and hedging under the CEV model we need to choose a

benchmark. An obvious candidate for a benchmark is to use the noncentral chi-square

distribution F (w; v, λ) and its complementary function Q(w; v, λ) expressed as gamma series

as given by equations (9) and (10), respectively. For instance, Fraser et al. (1998) uses the

gamma series method as a benchmark for computing exact probabilities to be compared

with several alternative methods for approximating the noncentral chi-square distribution

function.

Alternatively, we can employ a standard numerical integration method for computing

equations (7) and (8) or use a routine from an external source, such as Matlab or R, for

computing noncentral chi-square probabilities.

Based on the results of Table 1 and to have a high degree of confidence in our results,

we let the parameters w, v, and λ vary over a wide range of possible values. Thus, we let w

and λ vary from 0.01 to 2,000.01 in increments of 20. We also let run v from 0.20 to 4.00 in

increments of 0.20. These combinations of parameters produce 204,020 probabilities. For the

benchmark selection we focus on the computation of the noncentral chi-square distribution

F (w; v, λ).

Table 2 compares the gamma series method (GS) for computing the noncentral chi-square

distribution function F (w; v, λ) based on equation (9), with a pre-defined error tolerance of

1E−10, against four external benchmarks based on the Mathematica built-in function (with

the call CDF[NoncentralChiSquareDistribution[v,λ],w]), the integral representation method

based on equation (7) and using the NIntegrate[.] function available in Mathematica, the

Matlab built-in-function (with the call ncx2cdf(w,v,λ)), and the R built-in-function (with

the call pchisq(w,v,λ)).

[Please insert Table 2 about here.]
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Two test statistics obtained from computing these noncentral chi-square probabilities are

shown. The first statistic, MaxAE, is the maximum absolute error, while the second, RMSE,

is the root mean squared error. Ağca and Chance (2003) have adopted a similar procedure

for choosing a benchmark to compute the bivariate normal probability for option pricing and

hedging. The results show that the MaxAE and the RMSE are higher for the comparison

between the GS vs CDF of Mathematica and the GS vs Integral Representation, though the

number k1 is small in relative terms (in both cases, it represents only about 0.03% of the

204,020 computed probabilities). However, the number k2 is slightly higher for the CDF of

Mathematica3 and much higher for the Integral Representation method.

The results comparing the GS vs CDF of Matlab and GS vs CDF of R show that the

corresponding differences are smaller. The number of k1 = 1, 024 (approximately 0.50%

of the total) for the CDF of R is justified by the fact that when R computes noncentral

chi-square probabilities whose value is very close to 1 it returns, by default, a value of 1.

However, as in the gamma series method, we have not obtained any probability value greater

than 1 (k2 = 0) under the selected wide parameter space either in Matlab or R. In summary,

we may conclude that the gamma series method is an appropriate choice for our benchmark.

4.2. Noncentral Chi-Square Distribution Using Alternative Me-

thods

Now we want to evaluate the differences in approximations of noncentral chi-square proba-

bilities F (w; v, λ) for the iterative procedures of Schroder (1989) (S89), Ding (1992) (D92)

and Benton and Krishnamoorthy (2003) (BK03), and the analytic approximations of Sanka-

ran (1963) (S63), Fraser et al. (1998) (FWW98) and Penev and Raykov (2000)4 compared

against the benchmark based on the gamma series approach.

3This means that care must be taken if one wants to use the CDF built-in-function of Mathematica for

computing the noncentral chi-square distribution function.
4For the analytic method of Penev and Raykov (2000) we have considered both the second order Wiener

germ approximation (PR00a) and the improved first order Wiener germ approximation (PR00b).
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Table 3 reports such comparison results using the following set of parameters: S0 =

100, X = {90, 95, 100, 105, 110}, σ = {0.10, 0.25, 0.40}, τ = {0.25, 0.50, 1.00, 3.00}, r =

{0.10, 0.05}, q = {0.03, 0.00}, and β = {5, 3, 1, 0,−2,−4,−6}. The second rightmost column

of the table reports the CPU time for computing 1,000 times the 3,360 probabilities (Panel

A)5, for computing 1,000 times the 80 probabilities when 2x > 1, 000 and/or 2y > 1, 000

(Panel B) and 1,000 times the 160 probabilities when 2x > 600 and/or 2y > 600 (Panel C),

and for computing 1,000 times the 3,360 probabilities but using a combined two-part strategy,

COMB1 (COMB2), based on D92 when 2x ≤ 1, 000 (2x ≤ 600) and/or 2y ≤ 1, 000 (2y ≤
600) and on PR00a otherwise (Panel D). The MaxAE, MaxRE, RMSE, MeanAE, and k1

denote, respectively, the maximum absolute error, the maximum relative error, the root

mean squared error, the mean absolute error, and the number of times the absolute difference

between the two methods exceeds 1E−07.6

[Please insert Table 3 about here.]

The iterative procedures based on S89, D92, and BK03 methods are accurate for de-

termining noncentral chi-square probabilities that are needed for computing option prices.

However, the differences in terms of computation time plays a key role for the tradeoff bet-

ween speed and accuracy. The computational results show that the iterative procedure of

D92 is the most efficient in terms of running time. Even though the BK03 method is more

accurate than the S89 and D92 procedures the corresponding computational expenses do

not compensate the improvement in terms of accuracy. Moreover, while Benton and Krish-

namoorthy (2003) argue that their algorithm performs best when compared with the Ding

(1992) procedure, we do not found such superiority at least for a typical parameter space to

be used for option pricing and hedging purposes under the CEV diffusion.

As expected, the analytic approximations run quickly but have an accuracy that varies

significantly over the considered parameter space. Thus, for small to moderate values of 2y

5The CPU time for the gamma series method is 21,494.52 seconds.
6In order to compute the statistics of Panel A in Table 3 for the Penev and Raykov (2000) method we

have excluded 3 probabilities whose values were indeterminate.
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and 2x none of the approximation methods should be used and the preference is to use the

D92 method.

It is well-known that the running time needed for computing the noncentral chi-square

distribution F (w; v, λ) and its complementary distribution function Q(w; v, λ) increases when

w and λ are large. Option pricing under the CEV assumption is computationally expensive

especially when β is close to two, volatility is low, or the time to maturity is small in

the CEV formulae. For this reason, Schroder (1989) has suggested a two-part strategy for

computing the noncentral chi-square distribution where for small to moderate values of w and

λ the iterative procedure is used, otherwise the distribution is evaluated using the analytic

approximation of Sankaran (1963).

However, results from panels B and C of Table 3 indicate that the analytic approximation

method of PR00a performs best in terms of accuracy for large values of 2y and 2x. For these

cases, a two-part strategy may be designed using the D92 method for small to moderate

values of 2y and 2x, and then using an approximation method based on PR00a for large

values of 2y and 2x since the computational expenses will diminish substantially, as presented

in panel D of Table 3. To achieve a higher value of accuracy, our preference is to use COMB1,

though the use of other cut-off point, as the one used in COMB2, is also a viable alternative.

4.3. Option Pricing under the CEV Model

Even thought we have already analyzed the speed and accuracy of alternative methods of

computing the noncentral chi-square distribution at the statistic level, it is also relevant to

understand how quickly and accurate are those competing methods for pricing and hedging

purposes under the CEV model. We will concentrate our analysis on call options, but the

same line of reasoning applies also for put options.

Table 4 values the differences in call option prices under the CEV assumption using the

iterative procedures of Schroder (1989) (S89), Ding (1992) (D92) and Benton and Krishna-

moorthy (2003) (BK03), and the analytic approximations of Sankaran (1963) (S63), Fraser et

al. (1998) (FWW98) and Penev and Raykov (2000) (PR00a and PR00b) compared against
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the benchmark based on the gamma series approach using the same parameter set as in

Table 3. The second rightmost column of the table reports the CPU time for computing

1,000 times the 1,680 call option prices (Panel A)7, for computing 1,000 times the 40 call

option prices when 2x > 1, 000 and/or 2y > 1, 000 (Panel B) and 1,000 times the 80 call

option prices when 2x > 600 and/or 2y > 600 (Panel C), and for computing 1,000 times the

1,680 call option prices but using a combined two-part strategy, COMB1 (COMB2), based

on D92 when 2x ≤ 1, 000 (2x ≤ 600) and/or 2y ≤ 1, 000 (2y ≤ 600) and on PR00a otherwise

(Panel D). The MaxAE, MaxRE, RMSE, MeanAE, and k3 denote, respectively, the maxi-

mum absolute error, the maximum relative error, the root mean squared error, the mean

absolute error, and the number of times the absolute difference between the two methods

exceeds $0.01.8

[Please insert Table 4 about here.]

The results of Table 4 highlight that the iterative procedures of S89, D92 and BK03

are all accurate for computing options prices under the CEV assumption, though the ite-

rative procedure of D92 is still the most efficient in terms of computation time needed for

determining option prices.

Again, the analytic approximations run quickly but have an unsatisfactory accuracy when

all possible values of 2x and 2y are considered since all generate a high k3. However, for large

values of 2x and 2y all approximation methods returns a value of k3 = 0 (see panels B and C

of Table 4). In summary, for small to moderate values of 2x and 2y the iterative procedure of

D92 is the most efficient in terms of computation time needed for determining option prices

under the CEV assumption whereas the analytic approximation method of PR00a performs

best for large values of 2y and 2x.

7The CPU time for the gamma series method is 21,531.63 seconds.
8Once again, we have excluded 3 call option prices in order to compute the statistics of Panel A in Table

3 for the Penev and Raykov (2000) method, since the corresponding probabilities were indeterminate.
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4.4. Greeks under the CEV Model

Information about derivatives of options (commonly known as greeks) is of practical and

theoretical importance. In addition to pricing an option, a dealer of the financial services

industry must also be able to hedge it. Thus, a practitioner needs to have knowledge re-

garding the sensitivity measures of derivative securities for designing hedging strategies to

reduce the risk of a given security or a portfolio of securities, when closing the position is not

viable or desirable. Greeks also enjoy many other multiple applications such as for market

risk measurement, profit and loss attribution, model risk assessment and optimal contract

design, and to imply out parameters from market prices.

For European-type options on dividend paying assets under the lognormal assumption,

closed-form expressions for delta (∂/∂S), gamma (∂2/∂S2), vega (∂/∂σ), theta (∂/∂t), rho

(∂/∂r), and phi (or rho-q, (∂/∂q)) are well documented in the literature (e.g., Hull (2008,

Chapter 17)). Pelsser and Vorst (1994) discuss the computation of these greeks under the

binomial option pricing model of Cox et al. (1979). Chung and Shackleton (2002) show that

the so-called binomial Black-Scholes method advocated by Broadie and Detemple (1996)

is not only useful for pricing, but also for computing greeks via numerical differentiation

since it does not suffer from the problem of discreteness. Chung and Shackleton (2005)

examine convergence problems when calculating vegas by comparing different alternative

improvements to the traditional binomial method. Hull and White (1987) compare the

relative performance of different hedging schemes available to a financial institution when it

writes non-exchange-traded currency options. Garman (1992) introduces three more partial

derivatives for derivative instruments, namely the speed (∂3/∂S3), the charm (∂2/∂S∂t),

and the colour (∂3/∂S2∂t). Many other greeks of options are discussed in Haug (2006).

Derivative information of option prices are also important at a theoretical level. For

instance, Breeden and Litzenberger (1978) show that the second derivative with respect to the

strike price (∂2/∂X2) can be interpreted as a state price density. Carr (2001) shows how delta,

gamma, speed and other higher-order derivatives of an option’s price with respect to the

initial price of the underlying asset can be viewed as an expectation, through an appropriate
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change of measure, of the corresponding derivative at the terminal date. Bergman et al.

(1996) derive a general theoretical expression for delta when volatility is a function of stock

price and time. Grundy and Wiener (1999) derive theoretical and empirical bounds on deltas

under the same volatility setting.

In this article we have derived closed-form solutions for delta, gamma, vega, theta, and

rho under the CEV option pricing model for both β < 2 and β > 2 that, to our knowledge,

have not been published in the literature.9 Based on these new closed-form solutions, we

should also consider how different methods for computing the complementary noncentral

chi-square distribution affect the computation of greeks.

Table 5 shows results for deltas (∆), gammas (Γ), vegas (V), thetas (Θ), and rhos (ρ)

for European-style standard call and put options under the CEV assumption for different

specifications of the option parameters. The last five lines of the table report the CPU times

for computing 1,000 times the greeks of the twenty one option contracts using our closed-

form solutions based on the gamma series method (CPU time 1), on the iterative procedures

of Schroder (1989), Ding (1992), and Benton and Krishnamoorthy (2003) (CPU time 2-

4, respectively), and via elementary differentiation of the gamma series method through

Mathematica with nmax = 200 (CPU time 5).

[Please insert Table 5 about here.]

Several points are noteworthy from Table 5. Inspection of results highlights that for

at-the-money options we can imagine that a mirror has been placed at the parameter β = 2,

which reflects similar values for some of the sensitivity meaures (e.g., vega, theta, and rho).

Moreover, while symbolic algebra programs such as Mathematica or Maple can derive such

sensitivity measures10, these new closed-form solutions for determining greeks under the

9Even tough their closed-form solutions are omitted here due to constraints of space, they are available

upon request.
10For instance, Shaw (1998) shows how to derive greeks under the geometric Brownian motion assumption

via elementary differenciation using Mathematica. A similar symbolic algebra procedure can be used to

derive any other arbitrary greek under alternative stochastic processes.
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CEV model are important at least for three reasons. Firstly, as stated by Carr (2001), the

derivation of greeks through symbolic algebra programs cannot replace an intuitive unders-

tanding of the role, genesis, and relationships between all the various greeks. Secondly, the

computation time needed for computing analytic greeks will diminish substantially, which is

extremely relevant when one needs to design hedging strategies through time. For example,

while options under the CEV model have nonzero gammas and vegas, these two greek mea-

sures are not affected by the complementary noncentral chi-square distribution. Thus, the

small computational expense needed for computing gammas and vegas is especially notable.

For the other greeks (i.e., delta, theta, and rho) the D92 method is again the most efficient

in terms of computation time. Lastly, the existence of analytical solutions allows that they

can be coded in any desired computer language such as Matlab, Fortran, R, or C.

5. Conclusions

In this article, we compare the performance of alternative algorithms for computing the

noncentral chi-square distribution function in terms of accuracy and computation time for

evaluating option prices and greeks under the CEV model. We find that the gamma se-

ries method and the iterative procedures of Schroder (1989), Ding (1992), and Benton and

Krishnamoorthy (2003) are all accurate over a wide range of parameters, though presenting

significative speed computation differences. For small to moderate values of 2y and 2x the

Ding (1992) algorithm is the most efficient in terms of computation time needed for deter-

mining option prices under the CEV assumption. However, for large values of 2y and 2x

this method is more computationally expensive. For these cases, a two-part strategy may

be designed using the Ding (1992) method for small to moderate values of 2y and 2x, and

then using an approximation method based on Penev and Raykov (2000) for large values of

2y and 2x. Finally, we present closed-form solutions for computing greek measures under

the CEV option pricing model for both β < 2 and β > 2, thus being able to accommodate

direct leverage effects as well as inverse leverage effects that are frequently observed in the

options markets.
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Table 1: Maximum, minimum, and mean values for 2x, 2y, and v.

Parameter Maximum Minimum Mean

2x 1,620.0833 0.1639 105.8837

2y 1,800.0926 0.0134 105.5586

v 4.0000 0.2500 1.9643

Table 2: Benchmark selection.

Methods MaxAE RMSE k1 k2

GS vs CDF of Mathematica 3.07E−05 2.08E−07 55 2,500

GS vs Integral Representation 3.07E−05 2.17E−07 69 39,366

GS vs CDF of Matlab 7.68E−11 3.29E−11 0 0

GS vs CDF of R 1.35E−06 4.06E−08 1,024 0

This table compares the gamma series method (GS) for computing the noncentral chi-square dis-
tribution function F (w; v, λ) based on equation (9), with a pre-defined error tolerance of 1E−10,
against four external benchmarks based on the Mathematica built-in function (with the call
CDF[NoncentralChiSquareDistribution[v,λ],w]), the integral representation method based on equation (7)
and using the NIntegrate[.] function available in Mathematica, the Matlab built-in-function (with the call
ncx2cdf(w,v,λ)), and the R built-in-function (with the call pchisq(w,v,λ)). The MaxAE, RMSE, k1, and k2

denote, respectively, the maximum absolute error, the root mean squared error, the number of times the ab-
solute difference between the two methods exceeds 1E−07, and the number of times a computed probability
is greater than 1.
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Table 3: Differences in approximations of noncentral chi-square probabilities F (w; v, λ) for each
method compared against a benchmark based on the gamma series approach.

Methods MaxAE MaxRE RMSE MeanAE CPU time k1

Panel A: For all possible values of 2x and 2y
S89 4.43E−10 1.17E−07 8.93E−11 4.61E−11 6,826.10 0
D92 9.71E−11 3.70E−08 5.70E−11 5.05E−11 6,137.68 0
BK03 2.47E−11 8.52E−10 3.00E−12 1.51E−12 48,668.51 0
S63 5.41E−02 2.87E+00 6.78E−03 2.84E−03 384.73 3,350
FWW98 1.74E−01 1.86E+00 1.54E−02 6.01E−03 318.54 3,161
PR00a 6.31E−01 1.00E+00 7.28E−02 1.79E−02 1,155.94 3,104
PR00b 6.31E−01 7.82E−01 7.20E−02 1.78E−02 1,115.42 3,312

Panel B: For values of 2x > 1, 000 and/or 2y > 1, 000
S63 1.04E−06 4.23E−05 5.28E−07 4.62E−07 9.06 76
FWW98 1.55E−06 1.25E−05 6.97E−07 5.19E−07 7.36 66
PR00a 1.04E−07 1.98E−07 1.85E−08 8.57E−09 26.68 1
PR00b 3.42E−07 1.86E−06 1.54E−07 1.27E−07 25.72 43

Panel C: For values of 2x > 600 and/or 2y > 600
S63 2.99E−06 7.15E−05 1.23E−06 9.37E−07 17.63 153
FWW98 4.57E−06 3.13E−05 1.70E−06 1.19E−06 14.54 146
PR00a 5.95E−05 1.19E−04 4.70E−06 4.06E−07 53.66 13
PR00b 5.95E−05 1.19E−04 4.72E−06 6.75E−07 52.01 117

Panel D: For all possible values of 2x and 2y but using a combined two-part strategy
COMB1 1.04E−07 1.98E−07 2.86E−09 2.53E−10 4,633.53 1
COMB2 5.95E−05 1.19E−04 1.03E−06 1.94E−08 3,847.12 13

This table values the differences in approximations of noncentral chi-square probabilities F (w; v, λ) for the
iterative procedures of Schroder (1989) (S89), Ding (1992) (D92) and Benton and Krishnamoorthy (2003)
(BK03), and the analytic approximations of Sankaran (1963) (S63), Fraser et al. (1998) (FWW98) and
Penev and Raykov (2000) (PR00a and PR00b) compared against a benchmark based on the gamma series
approach. The second rightmost column of the table reports the CPU time for computing 1,000 times
the 3,360 probabilities (Panel A), for computing 1,000 times the 80 probabilities when 2x > 1, 000 and/or
2y > 1, 000 (Panel B) and 1,000 times the 160 probabilities when 2x > 600 and/or 2y > 600 (Panel C),
and for computing 1,000 times the 3,360 probabilities but using a combined two-part strategy, COMB1
(COMB2), based on D92 when 2x ≤ 1, 000 (2x ≤ 600) and/or 2y ≤ 1, 000 (2y ≤ 600) and on PR00a
otherwise (Panel D). The MaxAE, MaxRE, RMSE, MeanAE, and k1 denote, respectively, the maximum
absolute error, the maximum relative error, the root mean squared error, the mean absolute error, and
the number of times the absolute difference between the two methods exceeds 1E−07. Parameters used in
the calculations: S0 = 100, X = {90, 95, 100, 105, 110}, σ = {0.10, 0.25, 0.40}, τ = {0.25, 0.50, 1.00, 3.00},
r = {0.10, 0.05}, q = {0.03, 0.00}, and β = {5, 3, 1, 0,−2,−4,−6}.
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Table 4: Differences in call option prices using each alternative method for computing the noncentral
chi-square distribution compared against a benchmark based on the gamma series approach.

Methods MaxAE MaxRE RMSE MeanAE CPU time k3

Panel A: For all possible values of 2x and 2y
S89 8.62E−08 1.29E−06 1.74E−08 8.94E−09 7,104.16 0
D92 1.96E−08 5.82E−07 1.07E−08 9.66E−09 6,499.81 0
BK03 2.10E−09 7.64E−08 4.74E−10 2.86E−10 47,904.63 0
S63 5.69E+00 9.34E−01 9.74E−01 4.04E−01 364.64 1,228
FWW98 1.34E+01 5.32E−01 1.86E+00 7.34E−01 282.81 1,223
PR00a 5.04E+01 1.03E+01 9.02E+00 3.16E+00 1,126.19 939
PR00b 4.75E+01 5.42E+00 8.87E+00 3.09E+00 1,086.92 1,052

Panel B: For values of 2x > 1, 000 and/or 2y > 1, 000
S63 2.01E−04 1.37E−03 1.04E−04 9.18E−05 8.03 0
FWW98 2.05E−04 5.82E−04 1.24E−04 1.03E−04 6.38 0
PR00a 4.58E−06 2.05E−06 8.53E−07 2.59E−07 25.44 0
PR00b 4.90E−05 1.45E−04 3.03E−05 2.53E−05 24.85 0

Panel C: For values of 2x > 600 and/or 2y > 600
S63 5.92E−04 1.37E−03 2.37E−04 1.81E−04 15.91 0
FWW98 6.09E−04 7.34E−04 3.03E−04 2.37E−04 12.75 0
PR00a 5.98E−03 2.10E−03 6.68E−04 7.73E−05 51.61 0
PR00b 6.06E−03 2.13E−03 6.83E−04 1.34E−04 49.42 0

Panel D: For all possible values of 2x and 2y but using a combined two-part strategy
COMB1 4.58E−06 2.05E−06 1.32E−07 1.54E−08 4,606.05 0
COMB2 5.98E−03 2.10E−03 1.46E−04 3.69E−06 3,828.66 0

This table values the differences in call option prices under the CEV assumption using the iterative procedures
of Schroder (1989) (S89), Ding (1992) (D92) and Benton and Krishnamoorthy (2003) (BK03), and the
analytic approximations of Sankaran (1963) (S63), Fraser et al. (1998) (FWW98) and Penev and Raykov
(2000) (PR00a and PR00b) compared against a benchmark based on the gamma series approach. The
second rightmost column of the table reports the CPU time for computing 1,000 times the 1,680 call option
prices (Panel A), for computing 1,000 times the 40 call option prices when 2x > 1, 000 and/or 2y > 1, 000
(Panel B) and 1,000 times the 80 call option prices when 2x > 600 and/or 2y > 600 (Panel C), and
for computing 1,000 times the 1,680 call option prices but using a combined two-part strategy, COMB1
(COMB2), based on D92 when 2x ≤ 1, 000 (2x ≤ 600) and/or 2y ≤ 1, 000 (2y ≤ 600) and on PR00a
otherwise (Panel D). The MaxAE, MaxRE, RMSE, MeanAE, and k3 denote, respectively, the maximum
absolute error, the maximum relative error, the root mean squared error, the mean absolute error, and
the number of times the absolute difference between the two methods exceeds $0.01. Parameters used in
the calculations: S0 = 100, X = {90, 95, 100, 105, 110}, σ = {0.10, 0.25, 0.40}, τ = {0.25, 0.50, 1.00, 3.00},
r = {0.10, 0.05}, q = {0.03, 0.00}, and β = {5, 3, 1, 0,−2,−4,−6}.
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