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E-mail: pasf@uevora.pt

Carlos, Clara
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E-mail: croquete@uevora.pt

Individual animal growth in a randomly varying environment is modeled using stochastic differ-

ential equation models. These models are generalizations of the classical deterministic growth models

used in regression methods, but incorporate a random dynamical term describing the effects of envi-

ronmental and other random fluctuations on the growth process. We describe parameter estimation

and prediction methods, illustrating with data on cow growth of the Mertolengo breed raised in Alen-

tejo (Portugal) under natural conditions. We first show that these models outperform the traditional

regression models in predictive power for they take into account the dynamical nature of the growth

process and its interaction with environmental fluctuations.

We then apply the models to profit optimization in livestock production, taking into account

production costs and sales revenues.

Assuming the animal is to be sold when it reaches some prescribed age, we determine the optimal

age at which an animal should be sold in order to maximize profit. Another possibility is to sell the

animal when it reaches a prescribed size. The first passage time distribution through a prescribed

size is studied and used to determine the optimal size at which the animal should be sold. We then

determine which policy (selling at a fixed age or selling at a fixed size) is preferable in terms of profit.

Individual growth models

Most commonly classical deterministic growth models used to describe individual growth of an

animal (or plant) in terms of its size Xt (weight, volume, height, lenght, etc.) at instant (age) t can

be written in the form of an autonomous differential equation given by

dYt
dt

= β(α− Yt), Yt0 = y0,(1)



where Yt can be considered as a modified size, i.e., Yt = h(Xt), where h is a known strictly increasing

continuously differentiable function. Here y0 = h(x0) and α = h(A), where x0 is the observed size at

t0 (initial observation) and A represents the asymptotic size or size at maturity. The parameter β > 0

is the growth coefficient and represents the rate of approach to maturity. According to the choice

of h in (1) we obtain well known deterministic models. For instance, when h(x) = x we obtain the

monomolecular model; if h(x) = −x−1 we are in the case of the logistic model; when h(x) = lnx we

have the Gompertz model and for h(x) = xc, c > 0, we obtain the Bertalanffy-Richards model.

Individual growth of organisms must take into account environmental random fluctuations that

affect the growth rate and autonomous stochastic differential equations (SDE) are quite adequate

to describe this phenomenon. The SDE models we present are generalizations of the classical de-

terministic growth models (1) but incorporate a random dynamical term, describing the effects of

environmental and other random fluctuations on the growth process. We use the model

dYt = β (α− Yt) dt+ σdWt, Y (t0) = y0.(2)

The intensity of the environmental random fluctuations is measured by the parameter σ > 0 and Wt

is the standard Wiener process.

Here we will consider that the asymptotic size A is fixed (the same for all individuals) and

the growth coefficient β is constant throughout the complete growth curve. This is a variant of the

Ornstein-Uhlenbeck model also known in finance as the Vasicek model.

Some developments on the case where we assume that the parameter A varies randomly from

individual to individual can be found in Braumann et al. (2009), resulting in a mixed-efects SDE

model. In Filipe et al. (2010a) we have studied the generalization of model (2) to the multiphasic

case, where we have assumed that the growth coefficient β takes different values for different phases

of the individual’s life.

The solution of (2), for t ≥ t0,

Yt = α+ e−β(t−t0)(y0 − α) + σe−βt
∫ t

t0
eβsdWs(3)

is an ergodic diffusion process with drift coefficient β (α− y) and diffusion coefficient σ2, and follows

a gaussian distribution with mean α + e−β(t−t0)(y0 − α) and variance σ2(1 − e−2β(t−t0))/(2β), which

converges, as t → +∞, to a gaussian distribution with mean α and variance σ2/(2β). For tk−1 < tk
and δk−1 = tk−tk−1, given Ytk−1

= yk−1, we see that Ytk = α+e−βδk−1(yk−1−α)+σe−βtk
∫ tk
tk−1

eβsdWs

and the transition distribution is gaussian with mean and variance given by α + (yk−1 − α) e−βδk−1

and σ2(1− e−2βδk−1)/(2β), respectively.

Fitting and Prediction

Consider we wish to model Y as a function of t having observed (t1, y1), (t2, y2),..., (tn, yn),

where yk is the observed value of Ytk .

A classic regression model can be written using the expression yi = f(ti, θ)+εi, where f(ti, θ) =

α+ e−β(ti−t0)(y0 − α) is the solution of (1) with θ = (α, β, y0), and εi are i.i.d. N (0, σ2
ε).

For fitting of Y values, as well as for prediction of future values of Y , we use the expression

ŷt = α̂+ e−β̂(t−t0)(ŷ0 − α̂), where α̂, β̂ and ŷ0 are least square parameters estimates.

The traditional assumption of regression models that observed deviations from the regression

curve are independent at different ages is unrealistic when the deviations are due to environmental

random fluctuations. SDE models are built to incorporate the dynamics of the growth process and

the effect environmental random fluctuations have on such dynamics.



For the SDE models, we can not really talk about fitting the curve for ages t = tk, because Ytk
is the exact value given by (3) of the individual modified size and not, as in the regression case, a

value measured with error for which we wish to estimate the true value. Here, for convenience, we

will refer as fitting the estimate of the deterministic curve that we would obtain in the absence of

random environmental fluctuations (σ = 0) if we start with size y0 at time t0. In our case, this is

equivalent to the curve of the expected values of Yt. So, the fitting of the growth curve can be given

by Ŷt = Ê [Yt0 | y0] = α̂+ (yt0 − α̂) e−β̂(t−t0), where Ê is the estimate of the mathematical expectation

and α̂ and β̂ are maximum likelihood estimates based on the full set of available observations of Y .

For prediction, given the values of the process until instant tk, Yt1 , Yt2 ,..., Ytk , we intend to

predict the value Yt for t > tk

Yt = α+ (Ytk − α) e−β(t−tk) + σe−βt
∫ t

tk

eβsdW (s).(4)

The exact observed sizes until instant tk should be used to predict future sizes. Since Yt is a Markov

process, E [Yt|Yt1 , ..., Ytk ] = E [Yt|Ytk ]. Conditional on Ytk = yk, one can see from (4) that Yt
follows a gaussian distribution with mean α+(yk − α) e−β(t−tk) and variance σ2

2β

(

1− e−2β(t−tk)
)

. For

prediction, we can use Ŷt = Ê [Yt|Ytk = yk] = α̂ + (Yk − α̂) e−β̂(t−tk), where α̂ and β̂ are maximum

likelihood estimates based on the first k observations. Considering that Ŷt − Yt is approximately

gaussian, the 95% confidence interval for Yt can be determined by Ŷt−E
[

Ŷt − Yt
]

±1.96
√

V ar
[

Ŷt − Yt
]

.

For illustration of the previous results, we have worked with data on the weight of one mertolengo

cow randomly selected between a set of 97 animals. For this animal we had available 51 observations

from birth till approximately 12 years of age. We have started by comparing the nonlinear regression

(NLR) model with the SDE model in terms of fitting. Table 1, shows estimation results based on the

data of the full trajectory. Comparing the values of the root of the mean square error (RMSE), shown

in Table 2, we can see that the NLR model is better than the SDE model. This result was expected,

since the least square method was used to obtain the estimates of the NLR model parameters, which

minimizes the sum of the square errors, consequently the RMSE. However, there is only a slight

diference between the two models and the NLR model has an additional parameter, y0, while in the

SDE model we use the actual known value y0 = h(x0), with x0 = 26 kg for our trajectory.

Table 1: Regression vs SDE: parameters estimates based on full data of the chosen animal

y0 A β

Gompertz NLR 26.9 409.44 1.40

SDE 406.13 1.49

B-R NLR 30.75 416.41 1.04

SDE 407.36 1.22

In terms of prediction, one can see that the SDE model is much better than the NLR model.

For further analysis of the quality of prediction, we used for estimation a subset of the data, leaving

out the last 15 observations of the trajectory, (t36, y36), (t37, y37), ..., (t50, y50). We present the results

for long-term (LT) prediction and step-by-step (SS) prediction at the ages left out of the estimation

procedure. In the LT case, we predict future weights of the animal using estimates obtained based

on the weights observed until age t35. In each step of the SS case, we just predict the animal size at

next age using the current size as a starting point and using maximum likelihood updated parameter

estimates based on all observations up to and including the present time. The RMSE values obtained

are shown in Table 2 for two models that have proved to be appropriate (see, for instance, Filipe and

Braumann, 2007): Gompertz (h(x) = lnx) and Bertalanffy-Richards with c = 1/3 (h(x) = x1/3).



Table 2: NLR vs SDE: values of the root of the mean square error

RMSE Fitting LT prediction SS prediction

Gompertz NLR 45.4 68.9 59.9

SDE 46.2 42.8 27.5

B-R NLR 42.7 64.3 56.3

SDE 44.9 38.9 27.3

Profit optimization

We study optimization issues for the mean profit from selling an animal, comparing two method-

ologies, one that consists in selling the animal when a certain optimal age is reached (independently

of weight) and the other that consists in selling the animal when an optimal weight is achieved (inde-

pendently of age). Let us start by the first case - optimization of the mean profit through the animals

age.

The profit from selling an animal to the cattle market, L, can be computed as L = V −C where

V represents the selling price and C the costs of acquisition and animal raising. Let Xt0 = x0 be the

weight of the animal at the age of purchase t0 (assumed known) and t the age at which the animal is to

be sold. If we denote by P the price per kg of carcass, R the dressing proportion (reflects the amount

of carcass in relation to the animals live weight = carcass weight/live weight, for mertolengo cattle

typically about 0.5), C1 the fixed costs (e.g., purchase price of the animal, veterinary, transportation

and commercialization costs) and C2 = c2(t− t0) the variable costs, supposed proportional to the time

of animal raising, we can write the profit as Lt = PRXt − C1 − C2. We consider the cases of the

stochastic Gompertz model (SGM) and the stochastic Bertalanffy-Richards (SBRM), Xt = h−1(Yt) =

eYt and Xt = h−1(Yt) = Y 3
t , respectively. Consequently, the profit can be expressed as a function of

Yt, Lt = lt(Yt) = PReYt − C1 − c2(t− t0) for the SGM and Lt = lt(Yt) = PRY 3
t − C1 − c2(t− t0) for

the SBRM. Since it is known the probability distribution of Yt, putting y0 = lnx0 for the SGM and

y0 = x
1/3
0 for the SBRM, the Lt probability density function can be obtained as follows

fLt
(u) = fYt

(l−1t (u))

∣

∣

∣

∣

∣

dl−1t (u)

du

∣

∣

∣

∣

∣

=(5)

=
1

√

2π σ2

2β (1− e−2β(t−t0))
exp






−

(

l−1t (u)− α− (y0 − α) e−β(t−t0)
)2

2σ2

2β (1− e−2β(t−t0))







∣

∣

∣

∣

∣

dl−1t (u)

du

∣

∣

∣

∣

∣

(6)

with l−1t (u) = ln
(

u+C1+c2(t−t0)
PR

)

for the SGM and l−1t (u) =
(

u+C1+c2(t−t0)
PR

)1/3
for the SBRM. For the

particular case of SGM, we can easily verify that Lt follows a shifted log-normal distribution.

The mean and variance of Lt are given by

E [Lt] = PRE [Xt]− C1 − c2(t− t0) and V ar [Lt] = P 2R2V ar [Xt] .(7)

Assuming the initial weight x0 known, using the properties of the log-normal distribution for the SGM

we have obtained

E [Xt] = E
[

eYt

]

= eE[Yt]+
V ar[Yt]

2 and V ar [Xt] =V ar
[

eYt

]

=e2E[Yt]+2V ar[Yt] − e2E[Yt]+V ar[Yt],

and applying Stein’s Lemma for the SBRM case we get

E [Xt] = E
[

Y 3
t

]

= 3E [Yt]V ar [Yt] + E [Yt]
3



and

V ar [Xt] =V ar
[

Y 3
t

]

=36E2 [Yt]V ar2 [Yt] + 9E4 [Yt]V ar [Yt] + 15V ar3 [Yt] .

Let us consider the situation where a mertolengo cow raised with the mother is bought by a

producer for 200 euros, at 7 months (0.58 years) of age (approximate weaning age) and 160kg, to be

sold at age t. The usual t for market sale is 16 months (1.33 years). What is the expected profit of

this producer? We must consider, in the case of mertolengo cattle breed, that the dressing proportion

is 50% of live weight (R = 0.5); the usual raising costs (in euros) for an animal from the age of 7

months to age t are: 18.85 for commercialization and transportation, 26.68 for feeding/month, 7.25

for sanitation costs and 1.55 for other costs; and we consider typical selling prices P (euros/kg) of the

animal to be 3.25, 3.50 or 3.75 euros. The mean and variance of the profit from selling the animal at

age t can then be determined using (7), considering now C1 = 200+ 18.85+ 7.25+ 1.55 = 227.45 and

c2 = 26.68/month× 12months/year = 320.16/year.

Table 3 shows the optimal age (topt) for selling the animal in order to obtain a maximum mean profit.

The correspondent standard-deviation of the profit is shown. To obtain these results we have used

maximum likelihood estimates of the parameters, based on the complete data set available.

Table 3: Maximum mean profit (in euros), correspondent optimal selling age (in years) and standard-

deviation (in euros)

P 3.25 3.50 3.75

topt E[Ltopt ] sd[Ltopt ] topt E[Ltopt ] sd[Ltopt ] topt E[Ltopt ] sd[Ltopt ]

SGM 1.05 62.19 109.6 1.13 96.94 127.00 1.19 133.26 143.72

SBRM 0.86 39.73 47.7 0.97 68.49 61.21 1.07 99.63 72.99

Using the previous approach we can determine the best age at which the animal is to be sold

in order to optimize the mean profit. However, market demands may be others, such as the demand

for animals with a certain specific weight. In this case, it is important to be able to determine the

average time required for the animal to reach that weight. For this, the theory of first passage times

will find here a very interesting application.

Denote by Q∗ the upper threshold for the size Xt of the animal. Since Yt = h(Xt), the

time required for an animal to reach a certain size Q∗ is equivalent to the first passage time TQ =

inf {t > 0 : Yt = Q} of Yt by Q = h(Q∗). Assume −∞ < y0 < Q < +∞, with Q in the interior of the

state space of Y . In Braumann et al. (2009), we present details on obtaining, for our class of SDE

models, the expressions for the mean and variance of TQ:

E[TQ|Y (0) = y0] =
1

β

√
2β(Q−α)/σ

∫

√
2β(y0−α)/σ

Φ(y)

φ(y)
dy(8)

and

V ar[TQ|Y (0) = y0] =
2

β2

√
2β(Q−α)/σ

∫

√
2β(y0−α)/σ

1

φ(z)

z
∫

−∞

Φ2(x)

φ(x)
dxdz,(9)

where Φ and φ are the distribution function and the probability density function of a standard normal

random variable. The values of the mean and variance of TQ are obtained by numerical integration of

(8) and (9).



The profit from selling the animal when a certain weight Q∗ is achieved, is LQ∗ = PRQ∗ −
C1 − c2TQ. Consequently, the mean and variance for the profit is given by E[LQ∗ ] = PRQ∗ − C1 −
c2E[TQ|Y (0) = y0] and V ar[LQ∗ ] = c22V ar[TQ|Y (0) = y0].

We have considered the same situation described above, but now, we have computed the optimal

selling weight Q∗opt of the animal, in order to maximize the profit. Results are shown on Table 4.

Table 4: Maximum mean profit (in euros), correspondent optimal selling weight (in kg) and standard-

deviation (in euros)

P 3.25 3.50 3.75

Q∗opt E[LQ∗opt
] sd[LQ∗opt

] Q∗opt E[LQ∗opt
] sd[LQ∗opt

] Q∗opt E[LQ∗opt
] sd[LQ∗opt

]

SGM 292 68.32 68.79 309 106.00 79.85 324 145.40 91.13

SBRM 232 41.74 51.22 256 72.29 64.62 275 105.5 76.37

We can compare the two methodologies presented for optimization of the mean profit by com-

paring the values of Tables 3 and 4. We can observe that, for the typical market values the second

methodology is preferable, since it allows a higher optimal profit than the first one and, in the SGM

case, even with a lower standard deviation of that optimal profit (for the SBRM the standard-deviation

is slightly higher in the second methodology).
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