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Abstract. We present a parallel implementation of a constraint-based
local search algorithm and investigate its performance results on hard-
ware with several hundreds of processors. We choose as basic constraint
solving algorithm for these experiments the ”adaptive search” method,
an efficient sequential local search method for Constraint Satisfaction
Problems. The implemented algorithm is a parallel version of adaptive
search in a multiple independent-walk manner, that is, each process is
an independent search engine and there is no communication between
the simultaneous computations. Preliminary performance evaluation on
a variety of classical CSPs benchmarks shows that speedups are very
good for a few tens of processors, and good up to a few hundreds of
processors.

1 Introduction

Constraint Programming emerged in the late 1980’s as a successful paradigm
to tackle complex combinatorial problems in a declarative manner [2I]. It is
somehow at the crossroads of combinatorial optimization, constraint satisfaction
problems (CSP), declarative programming language and SAT problems (boolean
constraint solvers and verification tools). Experiments to parallelize constraint
problems started in the early days of the Constraint Programming paradigm,
by exploiting the search parallelism of the host logic language [22]. Parallel im-
plementation of search algorithms has indeed a long history, especially in the
context of Logic Programming [13]. In the field of constraint satisfaction prob-
lems (CSP), early work has been done in the context of Distributed Artificial
Intelligence and multi-agent systems [38], but these methods, even if interesting
from a theoretical point of view, did not lead to efficient algorithms.

In the last decade, with desktop computers turning into parallel machines
with 2, 4 or even 8 core CPUs, the temptation to implement efficient parallel
constraint solvers has become an increasingly developing research field. Most of
the proposed implementations are based on the so-called OR-parallelism, split-
ting the search space between different processors and relying on the Shared
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Memory Multiprocessor architecture as the different processors work on shared
data-structures representing a global environment in which the subcomputations
take place. Only very few implementations of efficient constraint solvers on such
machines have been reported, for instance [34] for a shared-memory architectures
with 8 core CPUs. The Comet system [23] has been parallelized for small clusters
of PCs, both for its local search solver [28] and its propagation-based constraint
solver [29]. Recent experiments have been done up to 12 processors [30], and
speedups tend somehow to level after 10 processors. For SAT solvers, several
multi-core parallel implementations have also been developed [20J8)35] and sim-
ilarly for Model Checkers, e.g., the SPIN software [bl24]. More recently [32], a
SAT solver has been implemented on a larger PC cluster, using a hierarchical
shared memory model and trying to minimize communication between nodes.
However performances tend to level after a few tens of processors, i.e., with a
speed-up of 16 for 31 processors, 21 for 37 processors and 25 for 61 processors.

In this paper we wanted to address the issue of parallelizing constraint solvers
for massively parallel architectures, involving several thousands of CPUs. A de-
sign principle implied by this goal is to abandon the classical model of shared
data structures which have been developed for shared-memory architectures or
tightly controlled master-slave communication in cluster-based architectures and
to consider either purely independent parallelism or very limited communication
between parallel processes.

Up to now, the only parallel method to solve optimization problems being
deployed at large scale is the classical branch and bound, because it does not
require much information to be communicated between parallel processes (basi-
cally: the current bound, see [I7]). It has been recently a method of choice for
experimenting the solving of optimization problems using Grid computing, be-
cause few data has to be exchanged between nodes [1]. Another implementation,
described in [7], uses several hundreds of nodes of the GRID’5000 platform. Good
speedups are achieved up to a few hundreds of processors but, interestingly, their
conclusion is that the execution time tends to stabilize afterwards.

In [I4], the authors proposed to parallelize a constraint solver based on local
search using a simple multi-start approach requiring no communication between
processes. Experiments done on an IBM BladeCenter with 16 Cell/BE cores
show nearly ideal linear speed-ups for a variety of classical CSP benchmarks
(magic squares, all-interval series, perfect square packing, etc.). We wanted to
investigate if this method could scale up to a larger number of processors, e.g., a
few hundreds or a few thousands. We therefore developed a parallel OpenMPI-
based implementation from the existing sequential Adaptive Search C-based
implementation. This parallel version can run on any system based on OpenMPI,
i.e., supercomputer, PC cluster or Grid system. We performed experiments with
classical CSP benchmarks from the CSPLIB on two systems:

— the HA8000 machine, an Hitachi supercomputer with a maximum of nearly
16000 cores installed at University of Tokyo,
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— the GRID’5000 infrastructure, the French national Grid for the research,
which contains 5934 cores deployed on 9 sites distributed in France.

The rest of this paper is organized as follows. Section 2 gives some context and
background in parallel local search, while Section 3 presents the Adaptive Search
algorithm, a constraint-based local search method based on the CSP formalism.
Section 4 details the performance analysis on the parallel hardware. A short
conclusion and perspectives end the paper.

2 Local Search and Parallelism

Local Search methods and Metaheuristics [25/T9] can be applied to solve CSPs as
Constraint Satisfaction can be seen as a branch of Combinatorial Optimization
in which the objective function to minimize is the number of violated constraints:
a solution is therefore obtained when the function has value zero.

For nearly two decades Local Search methods have been used in SAT solvers
for checking the satisfaction of boolean constraints. Since the pioneering algo-
rithms such as GSAT and WalkSAT in the mid 90’s, there has been a trend to
incorporate more and more local search and stochastic aspects in SAT solvers,
in order to cope with ever larger problems [27]. Recently, algorithms such as the
ASAT heuristics or Focused Metropolis Search, which incorporate even more
stochastic aspects, seem to be among the most effective methods for solving
random 3-SAT problems [3].

Parallel implementation of local search metaheuristics has been studied since
the early 90’s, when multiprocessor machines started to become widely available,
see [3733]. With the increasing availability of PC clusters in the early 2000’s, this
domain became active again [I1/4]. Apart from domain-decomposition methods
and population-based method (such as genetic algorithms), [37] distinguishes
between single-walk and multiple-walk methods for Local Search. Single-walk
methods consist in using parallelism inside a single search process, e.g., for par-
allelizing the exploration of the neighborhood (see for instance [36] for such a
method making use of GPUs for the parallel phase). Multiple-walk methods
(parallel execution of multi-start methods) consist in developing concurrent ex-
plorations of the search space, either independently or cooperatively with some
communication between concurrent processes. Sophisticated cooperative strate-
gies for multiple-walk methods can be devised by using solution pools [12], but
requires shared-memory or emulation of central memory in distributed clusters,
impacting thus on performances. A key point is that independent multiple-walk
methods are the most easy to implement on parallel computers without shared
memory and can lead in theory to linear speed-up if solutions are uniformly dis-
tributed in the search space and if the method is able to diversify correctly [37].
Interestingly, [2] showed pragmatically that this is the case for the GRASP local
search method on a few classical optimization problems such as quadratic assign-
ment, graph planarization, MAX-SAT, maximum covering but this experiment
was done with a limited number of processors (28 max).
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3 The Adaptive Search Algorithm

Adaptive Search was proposed by [9/I0] as a generic, domain-independent con-
straint based local search method. This meta-heuristic takes advantage of the
structure of the problem in terms of constraints and variables and can guide
the search more precisely than a single global cost function to optimize, such
as for instance the number of violated constraints. The algorithm also uses a
short-term adaptive memory in the spirit of Tabu Search in order to prevent
stagnation in local minima and loops. This method is generic, can be applied
to a large class of constraints (e.g., linear and non-linear arithmetic constraints,
symbolic constraints, etc.) and naturally copes with over-constrained problems.
The input of the method is a problem in CSP format, that is, a set of variables
with their (finite) domains of possible values and a set of constraints over these
variables. For each constraint, an “error function” needs to be defined; it gives,
for each tuple of variable values, an indication of how much the constraint is vio-
lated. This idea has also been proposed independently by [16], where it is called
" penalty functions”, and then reused by the Comet system [23], where it is called
”violations”. For example, the error function associated with an arithmetic con-
straint | X — Y] < ¢, for a given constant ¢ > 0, can be max(0,|X — Y| — ¢).
Adaptive Search relies on iterative repair, based on variable and constraint er-
ror information, seeking to reduce the error on the worst variable so far. The
basic idea is to compute the error function for each constraint, then combine for
each variable the errors of all constraints in which it appears, thereby project-
ing constraint errors onto the relevant variables. This combination of errors is
problem-dependent, see [9] for details and examples, but it is usually a simple
sum or a sum of absolute values, although it might also be a weighted sum if
constraints are given different priorities. Finally, the variable with the highest
error is designated as the “culprit” and its value is modified. In this second step,
the well known min-conflict heuristic [31] is used to select the value in the vari-
able domain which is the most promising, that is, the value for which the total
error in the next configuration is minimal. In order to prevent being trapped in
local minima, the Adaptive Search method also includes a short-term memory
mechanism to store configurations to avoid (variables can be marked Tabu and
“frozen” for a number of iterations). It also integrates reset transitions to escape
stagnation around local minima. A reset consists in assigning fresh random val-
ues to some variables (also randomly chosen). A reset is guided by the number
of variables being marked Tabu. It is also possible to restart from scratch when
the number of iterations becomes too large (this can be viewed as a reset of all
variables but it is guided by the number of iterations). The core ideas of adaptive
search can be summarized as follows:

— to consider for each constraint a heuristic function that is able to compute
an approximated degree of satisfaction of the goals (the current “error” on
the constraint);

— to aggregate constraints on each variable and project the error on variables
thus trying to repair the “worst” variable with the most promising value;
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— to keep a short-term memory of bad configurations to avoid looping (i.e.,
some sort of “tabu list”) together with a reset mechanism.

Adaptive Search is a simple algorithm but it turns out to be quite efficient in
practice. The following table compares its performances with the Comet 2.1.1
system on a few benchmarks from CSPLib [I8], included in the distribution
of Comet. Timings are in seconds and taken for both solvers on a PC with a
Core2 Duo E7300 processor at 2.66 GHz, and are the average of 100 executions
for AS and of 50 executions for Comet. Of course, it should be noticed that
Comet is a complete and very versatile system while Adaptive Search is just a
C-based library, but one can see that Adaptive Search is about two orders of
magnitude faster than Comet. Also note that [26] compares a new metaheuristics
named Dialectic Search with the older (2001) version of Adaptive Search [9],
showing that both methods have similar results. However when using the timings
from [10], the newer (2003) version of Adaptive Search is about 15 to 40 times
faster than Dialectic Search on the same reference machine.

Table 1. Execution times and speedups of Adaptive Search vs Comet

Benchmark Comet Adaptive Search Speedup
Queens n=10000 24.5 0.52 47
Queens n=20000 96.2 2.16 44.5
Queens n=50000 599 13.88 43.2

Magic Square 30x30 56.5 0.34 166
Magic Square 40x40 199 0.53 375
Magic Square 50x50 609 1.18 516

We can thus state the overall Adaptive Search algorithm as follows:

Input:

A problem given in CSP format:

- a set of variables V' = {V}, V4, ..., V,,} with associated domains

- a set of constraints C' = {C1, Cy, ..., Ck} with associated error functions
- a combination function to project constraint errors on variables
- a (positive) cost function to minimize

And some tuning parameters:

- T: Tabu tenure (number of iterations a variable is frozen)

- RL: reset limit (number of frozen variables to trigger reset)

- RP: reset percentage (percentage of variables to reset)

- Max I: maximal number of iterations before restart

- Max R: maximal number of restarts

Output:
A solution (configuration where all constraints are satisfied) if the CSP is satis-
fied or a quasi-solution of minimal cost otherwise.
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Algorithm
Restart = 0
Repeat

Restart = Restart 4+ 1 ; Iteration = 0 ; Tabu Nb = 0
compute a random assignment A of variables in V
Opt Sol = A ; Opt Cost = cost(A)
Repeat
Iteration = Iteration +1
compute errors of all constraints in C and combine errors on each var.
(by considering only the constraints in which a variable appears)
select the variable X (not marked Tabu) with highest error
evaluate costs of possible moves from X
if  no improvement move exists
then mark X as Tabu until Iteration + T
Tabu Nb = Tabu Nb + 1
if  Tabu Nb > RL
then randomly reset RP variables in V
(and unmark those which are Tabu)
else select the best move and change the value of X
accordingly to produce next configuration A’
if  cost(A’) < Opt Cost
then Opt Sol = A = A’ ; Opt Cost = cost(A’)
until a solution is found or Iteration > Max I
until a solution is found or Restart > Max R
output (Opt Sol, Opt Cost)

4 Parallel Performance Analysis

We used the implementation of the Adaptive Search method consisting of a C-based
framework library available as freeware at the URL: http://contraintes.inria.
fr/~ diaz/adaptive/

The parallelization of the Adaptive Search method was done with OpenMPI,
an implementation of the MPI standard [15]. The idea of the parallelization is
straightforward, and based on the idea of multi-start and independent multiple-
walks: fork a sequential Adaptive Search method on every available cores. But on
the opposite of the classical fork-join paradigm, parallel Adaptive Search shall ter-
minate as soon as a solution is found, not wait until all the processes have finished
(since some searches initialized with ”bad” initial configurations can take some
time). Thus, some non-blocking tests are involved every c iterations to check if
there is a message indicating that some other processes has found a solution; in
which case it terminates the execution properly. Note however that several pro-
cesses can find a solution ”at the same time”, i.e., during the same c-block of it-
erations. Thus, those processes send their statistics (among which the execution
time) to the process 0 which will then determine which of them is actually the
fastest.
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Three testbeds were used to perform our experiments:

— HAR8000, the Hitachi HA8000 supercomputer of the University of Tokyo with
a total number of 15232 cores. This machine is composed of 952 nodes, each
of which is composed of 4 AMD Opteron 8356 (Quad core, 2.3 GHz) with 32
GB of memory. Nodes are interconnected with a Myrinet-10G network with a
full bisection connection, attaining 5 GB/sec in both directions. HA8000 can
theoretically achieve a performance of 147 Tflops, but we only accessed to a
subset of its nodes as users can only have a maximum of 64 nodes (1,024 cores)
in normal service.

— GRID’5000 [6], the French national Grid for the research, which contains 5934
cores deployed on 9 sites distributed in France. We used two subsets of the
computing resources of the Sophia- Antipolis node: Suno, composed of 45 Dell
PowerEdge R410 with 8 cores each, thus a total of 360 cores, and Helios, com-
posed of 56 Sun Fire X4100 with 4 cores each, thus a total of 224 cores.

We use a series of classical benchmarks from CSPLib [18] consisting of:

— all-interval: the All Interval Series problem (prob007 in CSPLib),
— perfect-square: the Perfect Square placement problem (prob009 in CSPLib),
— magic-square: the Magic Square problem (prob019 in CSPLib).

Although these benchmarks are academic, they are abstractions of real-world prob-
lems and could involve very large combinatorial search spaces, e.g., the 400x400
magic square problem requires 160000 variables whose domains range over 160000
values and the time to find a solution on a single processor by local search is nearly 2
hours on average. Classical propagation-based constraint solvers cannot solve this
problem for instances higher than 10x10. Also note that we are tackling constraint
satisfaction problems as optimization problems, that is, we want to minimize the
global error (representing the violation of constraints) to value zero, therefore find-
ing a solution means that we actually reach the bound (zero) of the objective func-
tion to minimize.

Table 2. Speedups on HA8000, Suno and Helios

Platform Problem Time on Speedup on k cores
lcore 16 32 64 128 256

HAS8000 MS 400 6282 10.6 20.6 31.7 41.3 54.1
Perfect 5 42.7 15.0 29.5 44.6 49.1 57.0

A-1700 638 8.19 14.8 17.8 23.4 27.7

Suno MS 400 5362 8.4 22.8 32.6 41.3 52.8
Perfect 5 106 15.1 23 46.1 70.7 106

A-1700 662 10.1 15.8 19.9 23.9 28.3

Helios  MS 400 6565 13.220.6 31 44 -
Perfect 5 139.7 15.8 24.5 46.6 77.2 -

A-I700 865.8 9.114.923.527.3 -



Experiments in Parallel Constraint-Based Local Search 103

—8—MS 400 —@—perfects —d—all-interval 700
&0
_..--‘"';*
I.-.-
50 ——
____..--" |

40

Pl
% X il
7

speedup

20

10 +

0 16 32 48 64 BO 96 112 128 144 160 176 192 208 224 240 256

number of processors

Fig. 1. Speedups on HA8000

TablePlpresents the execution times and speedups for executions up to 256 cores
on HA8000 and on the GrRID’5000 platform. The same code has been ported and
executed, timings are given in seconds and are the average of 50 runs, except for
MS 400 on HA8000 where it is the average of 20 runs.

We can see that the speedups are more or less equivalent on both platforms.
Only in the case of perfect-square are the results significantly different between
the two platforms, for 128 and 256 cores. In those cases GRID’5000 has much bet-
ter speedups than on HA8000. Maybe this is because execution time is getting
too small (less than one second) and therefore some other mechanisms interfere.
The stabilization point is not yet obtained for 256 cores, even if speedups do not
increase as fast as the number of cores, i.e., are getting further away from linear
speedup. This is visually depicted on Fig. [l and Fig. Bl As the speedups on the
two GRID’5000 platforms (Helios and Suno nodes) are nearly identical, we only
depicted the speedups with Suno, as we can experiment up to 256 cores on this
platform.

4.1 Discussion

As we can see in the results obtained, the parallelization of the method gives good
benefits on both the HA8000 and the GRID’5000 platforms, achieving speedups
of about 30 with 64 cores, 40 with 128 cores and more than 50 with 256 cores. Of
course speedups depend on the benchmarks and the bigger the benchmark, the
better the speedup.
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To see the impact of the problem size on performances, let us detail a single
benchmark, magic square, on three instances of increasing difficulty. Table Bl de-
tails the performances on HA8000 for the following instances: 100x100, 120x120
and 200x200. The three plots on Fig. [3] show a similar shape, but the bigger the
benchmark, the better the parallel speedup, and for those smaller benchmarks the
speedup curve start to flatten after 64 processors.

As these experiments show that every speedup curves tend to flatten at some
point, itsuggests that thereis maybeanintrinsically sequential aspect inlocal search
methods and that the improvement given by the multi-start aspect might reach
some limit when increasing the number of parallel processors. This might be theo-
retically explained by the fact that, as we use structured problem instances and not
random instances, solutions may be not uniformly distributed in the search space.

Table 3. Performances for magic square on HA8000

# cores  MS 100 MS 120 MS200
time speed time speed time speed

1 18.2 1.0 534 1.0 338 1.0
8 2.16 8.41 584 9.14 423 8.0
16 1.69 10.8 3.99 134 224 15.1
32 1.43 12.7 3.03 17.7 14.8 229
64 1.20 15.1 2.26 23.6 12.2 2738
128 1.16 155 2.24 239 12.1 28.0
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5 Conclusion and Future Work

We presented a parallel implementation of a constraint-based local search algo-
rithm, the ” Adaptive Search” method in a multiple independent-walk manner.
Each process is an independent search engine and there is no communication be-
tween the simultaneous computations except for completion. Performance eval-
uation on a variety of classical CSPs benchmarks and on two different parallel
architectures (a supercomputer and a Grid platform) shows that the method is
achieving speedups of about 30 with 64 cores, 40 with 128 cores and more than 50
with 256 cores. Of course speedups depend on the benchmarks and the bigger the
benchmark, the better the speedup.

In order to take full advantage of the execution power at hand (i.e., hundreds or
thousands of processors), we have to seek a new way to further increase the bene-
fit of parallelization. We are currently working on a more complex algorithm, with
communication between parallel processes in order to reach better performances.
The basic idea is as follows: Every c iteration a process will send the value of its
current best total configuration cost to other processes. Every c iteration each pro-
cess also checks messages from other processes and if it received a message with a
cost lower than its own cost, which means that it is further away from a solution,
then it can decide to stop its current computation and make a random restart.
This will be done following a given probability p. Therefore the two key param-
eters are ¢, the number of iterations between messages and p, the probability to
make a restart. We are currently experimenting this algorithm with various values
for the benchmarks described in this paper.
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