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ABSTRACT
We present a parallel implementation of a constraint-based
local search algorithm and investigate its performance re-
sults on hardware with several hundreds of processors.

1. INTRODUCTION
In this paper we want to address the issue of paralleliz-

ing constraint solvers for massively parallel architectures,
involving several thousands of CPUs. In [3], the authors pro-
posed to parallelize a constraint solver based on local search
using a simple multi-start approach requiring no commu-
nication between processes. Experiments done on an IBM
BladeCenter with 16 Cell/BE cores show nearly ideal lin-
ear speed-ups for a variety of classical CSP benchmarks
(magic squares, all-interval series, perfect square packing,
etc). We wanted to investigate if parallel constraint solving
could scale up to a larger number of processors, e.g. a few
hundreds or a few thousands. Most previous experiments
in parallel constraint solving have been done with just few
processors [8, 5, 6]. They showed good speedups, but does
it scale up? Experiments with the Comet system show that
speedups tend to stabilize after 10 processors [7].

2. THE ADAPTIVE SEARCH ALGORITHM
Adaptive Search was proposed by [1, 2] as a generic, domain-

independent constraint-based local search method. It is a
simple algorithm but it turns out to be quite efficient in
practice This meta-heuristic takes advantage of the struc-
ture of the problem in terms of constraints and variables
and can guide the search more precisely than a single global
cost function to optimize, such as for instance the number
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of violated constraints. The algorithm also uses an short-
term adaptive memory in the spirit of Tabu Search in or-
der to prevent stagnation in local minima and loops. This
method is generic, can be applied to a large class of con-
straints (e.g. linear and non-linear arithmetic constraints,
symbolic constraints, etc) and naturally copes with over-
constrained problems. The input of the method is a problem
in CSP format, that is, a set of variables with their (finite)
domains of possible values and a set of constraints over these
variables. For each constraint, an “error function” needs to
be defined; it will give, for each tuple of variable values,
an indication of how much the constraint is violated. For
instance, the error function associated with an arithmetic
constraint |X − Y | < c, for a given constant c ≥ 0, can
be max(0, |X − Y | − c). Adaptive Search relies on iterative
repair, based on variable and constraint error information,
seeking to reduce the error on the worst variable so far. The
basic idea is to compute the error function for each con-
straint, then combine for each variable the errors of all con-
straints in which it appears, thereby projecting constraint
errors onto the relevant variables. Finally, the variable with
the highest error will be designated as the “culprit” and its
value will be modified. In this second step, the well known
min-conflict heuristic is used to select the value in the vari-
able domain which is the most promising, that is, the value
for which the total error in the next configuration is mini-
mal. In order to prevent being trapped in local minima, the
Adaptive Search method also includes a short-term memory
mechanism to store configurations to avoid (variables can
be marked Tabu and “frozen” for a number of iterations). It
also integrates reset transitions to escape stagnation around
local minima. A reset consists in assigning fresh random
values to some variables (also randomly chosen). A reset is
guided by the number of variables being marked Tabu. As
in any local search method, it is also possible to restart from
scratch when the number of iterations reaches a given limit.

3. PARALLEL PERFORMANCE ANALYSIS
We used the implementation of the adaptive search method

consisting of a C-based framework library available as free-
ware at the URL:



http://cri-dist.univ-paris1.fr/diaz/adaptive/
Parallelization was done by using OpenMPI, an implemen-
tation of the MPI standard. The main idea is straightfor-
ward and based on the idea of multi-start and independent
multiple-walks: just fork a sequential Adaptive Search en-
gine on every available core, starting from a different (ran-
dom) configuration.

We performed experiments on the Hitachi HA8000 super-
computer of the University of Tokyo. This machine is com-
posed of 952 nodes, each of which is composed of 4 AMD
Opteron 8356 (Quad core, 2.3 GHz) with 32 GB of mem-
ory. It therefore contains a total number of 15232 cores.
These 952 nodes are divided in five sub-clusters of respec-
tively 16, 36, 256, 128 and 512 nodes. Nodes are intercon-
nected with a Myrinet-10G network with a full bisection
connection, attaining 5 GB/sec in both directions. HA8000
can theoretically achieve a performance of 147 Tflops, but
we only accessed to a subset of its nodes as users can only
have a maximum of 64 nodes (1,024 cores) in normal service.

The benchmarks used were taken from CSPLib [4]: the
All-Interval Series problem (prob007 in CSPLib), the Perfect-
Square placement problem (prob009 in CSPLib), and the
Magic Square problem (prob019 in CSPLib). Although these
benchmarks are academic, they are abstractions of real-world
problems and involve very large combinatorial search spaces,
e.g. the 200x200 magic square problem requires 40000 vari-
ables whose domains range over 40000 values. Classical
propagation-based constraint solvers cannot solve this prob-
lem for instances higher than 10x10.

The execution times in the table below are in seconds and
represent the average of 50 runs; they only account for the
actual solving time.

# cores MS 120 perfect 5 A-I 450
time speed time speed time speed

1 53.4 1.0 36.2 1.0 177 1.0
8 5.84 9.14 3.86 9.39 18.6 9.53
16 3.99 13.4 2.49 15.5 11.7 15.1
32 3.03 17.7 1.45 25.0 6.29 28.1
64 2.26 23.6 1.19 30.3 5.58 31.7
128 2.24 23.9 1.01 35.9 5.09 34.8

Table 1: execution times and speedups on HA8000

We can see that speedups tend to stabilize after 64 pro-
cessors and that only a marginal gain (about 10%) is then
achieved when doubling the execution power, that is, using
128 processors. When using 256 processors an even smaller
gain is achieved.

If one concentrates on a single benchmark, e.g. Magic
Square, and consider various problem instances, better speed-
ups can of course be achieved with larger instances, but
they all follow the same pattern. Figure 1 details the per-
formances for the instances 100x100, 120x120 and 200x200,
together with that of Perfect Square (instance 5) and All-
Interval (n=450).

4. CONCLUSION AND FUTURE WORK
We presented a parallel implementation of a constraint-

based local search algorithm, the ”adaptive search” method
in a multiple independent-walk manner. Each process is an

Figure 1: speedups on HA8000

independent search engine and there is no communication
between the simultaneous computations.

As we can see in the obtained results, the parallelization
of the method gives benefits, but the speedup tends to sta-
bilize after 64 processors. Of course speedups depend on
benchmarks and the bigger the benchmark, the better the
speedups; also benchmarks are big enough to let all pro-
cessors busy during the whole execution time. But these
experiments point out that there is maybe an intrinsically
sequential aspect in local search methods and that the im-
provement given by the multi-start approach might reach
some limit.

We are currently working on a more complex algorithm,
with communication between parallel processes in order to
reach better performances.
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