
_____________________
Chaos Theory: Modeling, Simulation and Applications
C. H. Skiadas, I. Dimotikalis and C. Skiadas (Eds)
© 2011 World Scientific Publishing Co. (pp. 135 - 142)

Symbolic dynamics and chaotic synchronization

Acilina Caneco(1), Clara Grácio(2) and J. Leonel Rocha(3)

(1) Mathematics Unit, Instituto Superior de Engenharia de Lisboa, 
Lisboa and CIMA-UE É vora, Portugal. Email: acilina@deetc.isel.ipl.pt.
(2) Department of Mathematics, Universidade de É vora and CIMA-UE, 
É vora, Portugal. Email: mgracio@uevora.pt
(3) Mathematics Unit, Instituto Superior de Engenharia de Lisboa and 
CEAUL, Lisboa, Portugal. Email:  jrocha@deq.isel.ipl.pt

Abstract: Chaotic communications schemes based on synchronization aim to provide 
security over the conventional communication schemes. Symbolic dynamics based on 
synchronization methods has provided high quality synchronization [5]. Symbolic 
dynamics is a rigorous way to investigate chaotic behavior with finite precision and 
can be used combined with information theory [13]. In previous works we have 
studied the kneading theory analysis of the Duffing equation [3] and the symbolic 
dynamics and chaotic synchronization in coupled Duffing oscillators [2] and [4]. In 
this work we consider the complete synchronization of two identical coupled 
unimodal and bimodal maps. We relate the synchronization with the symbolic 
dynamics, namely, defining a distance between the kneading sequences generated by 
the map iterates in its critical points and defining n-symbolic synchronization. We
establish the synchronization in terms of the topological entropy of two unidirectional 
or bidirectional coupled piecewise linear unimodal and bimodal maps. We also give 
numerical simulations with coupled Duffing oscillators that exhibit numerical 
evidence of the n-symbolic synchronization.
Keywords: Chaotic synchronization, Symbolic dynamics, Symbolic synchronization,

Kneading theory.

1. Introduction
Synchronization of two or more systems, is a process wherein the systems 
adjust a given property of their motion to a common behaviour, due to 
coupling or forcing. Chaos synchronization is the agreement or correlation of 
different chaotic processes in time. A great deal of researches has been 
undertaken on this subject, since the pioneering works of Pecora and Carroll 
([9], [10]). Various types of synchronization have been studied. This includes 
complete synchronization, phase synchronization, lag synchronization, 
generalized synchronization, anticipated synchronization, and so on [1]. The 
coupled systems might be identical or different, the coupling might be 
unidirectional, (master-slave or drive-response), or bidirectional (mutual 
coupling) and the driving force might be deterministic or stochastic [11].
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In this paper we relate the synchronization with symbolic dynamics, namely, 
defining a distance between the kneading sequences generated by the map
iterates in its critical points and defining n-symbolic synchronization. We 
will see that this distance is a good measure of synchronization, since it
decreases to zero, as the coupling parameter increases and the oscillators 
begin to synchronize. Moreover we establish in two theorems the 
synchronization in terms of the topological entropy of two unidirectional or 
bidirectional coupled piecewise linear unimodal and bimodal maps. The n-
symbolic synchronization is numerically showed for Duffing oscillators. 

2. The Synchronization Problem
Consider two coupled systems )(=1 nn xfx   and )(=1 nn yfy  . The two 

identical systems are in complete synchronization, if the difference

nnn xyz =  converges to zero, as n . The coupling may be

unidirectional
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where k is the coupling parameter. In [9] and [10] it is establish that this kind 
of synchronization can be achieved provided that all the Lyapunov exponents 
are negative.
Motivated by the fact that any transitive m-modal map with positive 
topological entropy and growth number ,s  is topologically semi-

conjugated to a piecewise linear map with slope s everywhere, see [8], we 
will study the synchronization of unimodal and bimodal piecewise linear 
maps.

2.1. Coupling two unimodal piecewise linear maps

Consider the tent map ]1,0[]1,0[: sf  defined by ,2)(  ssxxfs

if sx /110  and ,)( sxsxfs   if .1/11  xs   This map sf can 

be written as

)1)((22=)(  sxsxssxxfs                            (3)

with ,1)( x if sx /110  and ,0)( x if .1/11  xs
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Note that, there exist a one-to-one correspondence between the images of the 
map , {0,1}, and the usual alphabet A={L, R}, associated to the unimodal 
map. With the kneading theory we construct symbolic sequences associated 
with the critical points of the map, see [3], [7] and [8]. Noticing that, as the 
coupled systems became synchronized, the number of equal initial symbols 
in the kneading sequences grows (see Table 1), we are led to the following.
Definition 2.1. Let ......

21 nzzzz SSSS  , be a symbolic sequence, associated 
to the orbit of a point z of the map f, using in position i a symbol

izS belonging to some alphabet A. Define a distance between two sequences
......

21 pxxxx SSSS   and ......
21 q

yyyy SSSS   by
n

yx eSSd ),( , where }.:1min{
nn yx SSnn 

Definition 2.2. In the conditions of the previous definition, two sequences 
......

21 pxxxx SSSS  and ......
21 q

yyyy SSSS  are said n-symbolic
synchronized iff n : .),( n

yx eSSd 
Note that ,),( n

yx eSSd   means that,
ii yx SS   ni 1  and 

}.:1min{
nn yx SSnn  For the unimodal map fs, we used )(x to 

represent the symbolic sequence xS . In this case, the symbol )( ix x
i

S  , in 
the position i of xS , can only be 0 or 1. As we have )(=1 nn xfx  , we must 
consider )( nx and )( 1nx . 

Theorem 2.1. Let )(=1 nn xfx  and )(=1 nn yfy  be two identical coupled 
systems, with f given by (3) and .21  s  Let h be the topological entropy 
of (3) (h = log s) and k ∈ [0, 1] the coupling parameter. If )( y  and )(x are 
n-symbolic synchronized, then

1) The unidirectional coupled systems (1) are synchronized if hek  1 .
2) The bidirectional coupled systems (2) are synchronized if

     hh eke  121121 .                               (4)

Proof. Attending to (1) and (3), we have for the unidirectional case
)].1)((2)1)((2)[1(=1  nnnnnn sxsxsxsysynsykz  From 

the considered hypothesis, it follows that, for n sufficiently large, 
,)()(   nn xy  and .)21)(1(=1 nn szkz 

Then, .])21)(1[(= n
m

mn zskz  We may writte ,= n
m

mn zqz  with
.)21)(1(= skq  So, we have 0lim 


m

m
q , iff 1|| q . From the 

definition of , ,1|21|    then, to have complete synchronization of the 
unidirectionally coupled maps it suffices 11  sk , i.e., .1 hek 
On the other hand, attending to (2) and (3), we have for the bidirectional case

)].1)((2)1)((2)[21(=1   nnnnnn sxsxsxsysysykz n  From the 
considered hypothesis, it follows that, for n large enough,

,)()(   nn xy and .)21)(21(=1 nn szkz 
Then, .])21)(21[(= n

m
mn zskz   So, we have 0lim  mn

m
z , iff  

1|21||21|  sk  . From the definition of , ,1|21|    then, to have 
complete synchronization of the bidirectionally coupled maps it suffices (4).

�
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2.2. Coupling two bimodal piecewise linear maps

Consider the bimodal piecewise linear map ]1,0[]1,0[:, rsf , with slopes 

s , defined by
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with   )(23 21 ccssr   and critical points   src 221  and 

  srsc 212  , see [7]. Recall that any transitive bimodal map is

topologically semi-cojugated to such a map.  The map rsf , can be written as 

),12)(()22)((1)(
21,  rssxyrsxxsxxf ccrs     (5)

with                          








1,1

0,0
)(

xcif

cxif
x

i

i
ic        ).2,1( i

In this case, we may define )()()(
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xxx cc   , i.e.,
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Note the existence of a one-to-one correspondence between the images of the 
map , {0, 1, 2}, and the usual alphabet associated to the bimodal map A={L, 

M, R}, see [3], [8] and [6]. For the bimodal map fs,r, the symbol )( ix x
i

S  , 

in the position i of xS = )(x , can be 0, 1, or 2. Now, we can state a theorem 

for bimodal maps similar to the one to unimodal maps. The conclusions are 
the same, although for a different local map f. 

Theorem 2.2. Let )(=1 nn xfx   and )(=1 nn yfy  be two identical coupled 
systems, with f given by (5) and .21  s  Let h be be the topological 
entropy of (5) (h = log s) and k ∈ [0, 1] the coupling parameter. If )(x

ic
and )(y

ic for i=1,2, are n-symbolic synchronized, then
1) The unidirectional coupled systems (1) are synchronized if hek  1 .
2) The bidirectional coupled systems (2) are synchronized if

     hh eke  121121 .                                 (6)

Prof. Attending to (1) and (5), we have for the unidirectional case
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From the considered hypothesis, it follows that, for n large enough,
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So, skq )1(||  , and to have complete synchronization it suffices, 
11  sk , i.e., .1 hek 

For the bidirectional case and attending to (2) and (5), we have
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From the hypothesis, 
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for n large enough. Then, .])](21)[21[(=
21 n

m
ccmn zskz    So, 

0lim  mn
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z , iff 1|)(21||21|
21

 sk cc  . As in the previous case, 

1|)(21|
21

 cc  , so the complete synchronization of the bidirectionally 

coupled maps happens if (6) is verified.

�
3. Duffing application
Consider two identical bidirectionally coupled Duffing oscillators, [12].
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.            (7)

We consider parameter values for which each uncoupled (k = 0) oscillator 
exhibits a chaotic behavior, so if they synchronize, that will be a chaotic 
synchronization. A basic tool is to do an appropriate Poincaré section. In our 
case, we did a section defined by y = 0, since it is transversal to the flow, it 
contains all fixed points and captures most of the interesting dynamics. In a 
previous work we have found in the parameter plane ),(   regions U and B
where the first return Poincaré  map behaves like a unimodal map and like a
bimodal map respectively, see [4].
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Figure 1. Bifurcation diagram for nx as a function of  04.0,001.0k , and 

parameter values, in the unimodal region.

Figure 2. x versus y in the bimodal case for )719.0,5.0(),(  for increasing k.

Fig. 1 shows the bifurcation diagram for nx as a function of  04.0,001.0k ,

for parameter values for which the Poincaré  map behaves like a unimodal.

We computed the kneading sequences, the kneading determinant and the 
topological entropy for some values of the parameters ),(  , see [2] and [4]. 

The synchronization will occur when yx  . See in Fig.2 the evolution of x

versus y for k=0.008, 0.014, 0.016, 0.018, 0.022, 0.023, 0.048, 0.061, 0.097.

4. Symbolic Dynamics
From Table 1 we verify that, as the coupling parameter k grows and the two 
coupled maps begin to synchronize, the number of initial equal symbols in 
the x and y symbolic sequences, grows also and the distance previously 
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defined, decreases. We have verified the same situation for others values of 
the ),(   parameters. This gives numerical evidence of the quality of the 
synchronization between the two oscillators.

Kneading sequences for x and y k n
Sx : RLRRRLRLRRRLRRRLRRRLRLRLRRRLRL 0.00601
Sy : RLRRRLRRRLRRRLRRRLRRRLRRRLRRRL 7
Sx : RLRRRRRLRRRLRRRLRRRLRRRLRRRLRL 0.05
Sy : RLRRRLRLRLRLRRRLRRRLRLRRRLRRRL 5
Sx : RLRRRLRLRLRLRRRLRRRLRLRLRLRLRL 0.06
Sy : RLRRRLRLRRRLRRRLRRRLRLRLRLRLRL 9
Sx : RLRRRLRLRLRRRLRRRLRRRLRRRLRRRL 0.064
Sy : RLRRRLRLRLRLRLRRRLRRRLRLRRRLRR 11
Sx : RLRRRLRLRRRLRRRLRLRLRLRRRLRRRL 0.065
Sy : RLRRRLRLRRRLRRRLRRRLRLRLRLRLRL 17
Sx : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 0.07
Sy : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 30
Sx : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 0.08
Sy : RLRRRLRLRRRLRRRLRLRRRLRRRLRRRL 30
Table 1: Symbolic sequences Sx and Sy, with n identical initial symbols, 
for the bidirectional coupled Duffing oscillators, for some values of the 
coupling parameter k, with )3578.0,4.0(),(  fixed.

The number of symbols used in information transmission depends on the 
limitation of the channel capacity [13]. Only finitely precise synchronization 
is achievable when oscillators are joined by channel with limited capacity. 
On this basis, we established in Definition 2.1 and 2.2. finitely precise 
synchronization with symbolic dynamics. 

5. Conclusions
Doing Poincaré  sections in the system of two coupled Duffing oscillators, we 
obtained regions U and B where the Poincaré  map behaves like a unimodal 
and bimodal map respectively. By a result from Milnor and Thurston [8] it is 

known that every m-modal map f : I = [a,b] ⊂ R→I, with growth rate s and 

positive topological entropy htop( f ) (logs = htop( f )) is topologically semi-
conjugated to a p+1 piecewise linear map T, with mp  , defined on the 

interval J = [0,1], with slope ±s everywhere and htop( f ) =htop(T)  = log s. 
Motivated by this fact, we study the synchronization of piecewise linear 
unimodal and bimodal maps and obtained the results in theorems 2.1 and 2.2
expressing the synchronization interval in terms of the topological entropy of 
the coupled maps. From the previous theorems we may also verify that the 
bidirectional coupled maps begin to synchronize at half the coupling 
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parameter for the unidirectional case. We relate the synchronization with 
symbolic dynamics, namely, defining a distance between the kneading 
sequences and defining n-symbolic synchronization. 
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