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Abstract

Query reformulation techniques optimize user queries to better align with documents, thus
improving the performance of Information Retrieval (IR) systems. Previous methods have
primarily focused on query expansion using techniques such as synonym replacement
to improve recall. With the rapid advancement of Large Language Models (LLMs), the
knowledge embedded within these models has grown. Research in prompt engineering has
introduced various methods, with prompt chaining proving particularly effective for com-
plex tasks. Directly prompting LLMs to reformulate queries has become a viable approach.
However, existing LLM-based prompt methods for query reformulation often introduce
irrelevant content into reformulated queries, resulting in decreased retrieval precision and
misalignment with user intent. We propose a novel approach called Hierarchical Prompt
Chaining for Query Reformulation (HiPC-QR). HiPC-QR employs a two-step prompt
chaining technique to extract keywords from the original query and refine its structure by
filtering out non-essential keywords based on the user’s query intent. This process reduces
the query’s restrictiveness while simultaneously expanding essential keywords to enhance
retrieval effectiveness. We evaluated the effectiveness of HiPC-QR on two benchmark
retrieval datasets, namely MS MARCO and TREC Deep Learning.The experimental results
show that HiPC-QR outperforms existing query reformulation methods on large-scale
datasets in terms of both recall@10 and MRR@10.

Keywords: query reformulation; keyword expansion; keyword filtering; prompt chain

1. Introduction

In information retrieval (IR) systems, users’ queries often suffer from issues such
as lexical mismatches (e.g., “mobile phone” vs. “mobile device”), semantic ambiguity
(e.g., “Java” referring to either a programming language or coffee beans), or overly re-
strictive constraints (e.g., “ultra-thin laptops under $500 released after 20 January 2025”).
These factors can lead to low relevance in retrieval results or even zero-result scenarios. To
address this challenge, query reformulation techniques have been developed to enhance
the effectiveness of original queries through methods such as query expansion, structural
simplification, and constraint relaxation, with the goal of bridging the gap between user
intent and document content.

To address lexical mismatches between queries and documents, traditional pseudo-
relevance feedback (PRF) methods, such as Relevance Model 3 (RM3), enhance queries by
selecting terms from initially retrieved relevant documents [1,2]. For semantic ambiguity,
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researchers utilize pretrained word embeddings trained on large corpora to produce context-
aware representations, enabling precise semantic term expansion [3-5]. Additionally, deep
neural ranking models based on BERT effectively capture semantic relationships between
queries and documents, further reducing semantic mismatches [6-9].

Recent advancements in LLMs [10,11] have opened up new opportunities for devel-
oping innovative query reformulation strategies [12]. These methods employ LLMs’ gen-
erative capabilities through prompting to directly produce alternative query variants [13]
or suggest additional keywords to augment original queries [14] or to generate pseudo-
relevant documents that are concatenated with the original query—either by repeating
the query multiple times in the case of sparse retrieval or by inserting an [SEP] token in
dense retrieval—and increase relevance [15]. Despite these advancements, most research
continues to focus on lexical and semantic challenges, with relatively little attention given to
addressing overly restrictive constraints. Moreover, current approaches often fail to address
the overly restrictive constraints commonly found in complex queries. For instance, while
Google’s search engine successfully answers 94.3% of simple queries (Level 1), it manages
only 9.2% of highly complex queries (Level 3) [16]. Research on everyday search behaviors
also highlights the presence of structurally complex queries, making their effective handling
a critical research direction [17].

To address the aforementioned challenges, we propose HiPC-QR, a prompt chain-
based query reformulation framework designed to enhance the quality of rewritten
queries through fine-grained and multi-step prompt strategies. We validate the effec-
tiveness of our approach on two benchmark datasets, namely MS MARCO [18] and
TREC Deep Learning [19].

The framework consists of two core modules: a keyword extraction module and
a keyword filtering and expansion module. The keyword extraction module leverages
the semantic understanding capabilities of LLMs to identify salient information from the
original query, thereby reducing noise and preventing the inclusion of irrelevant content;
building upon this, the keyword filtering and expansion module selectively removes overly
restrictive keywords and introduces semantically relevant expansion terms, allowing for
a broader query scope while maintaining alignment with the user’s original intent. By
integrating these two modules, HiPC-QR is capable of generating rewritten queries that
are both semantically faithful and contextually comprehensive.

The main contributions of this paper are as follows:

* A novel strategy for controlled query reformulation: We introduce HiPC-QR, a con-
ceptual approach that addresses the limitations of complex queries by distinguishing
between constraining and non-constraining keywords. This strategy enables precise
simplification (via removal of overly restrictive constraints) and targeted enhancement
(via expansion of flexible keywords).

* A practical two-step prompt chaining framework to realize HiPC-QR: Building on
the above strategy, we design a concrete two-stage LLM-driven framework. In the
first step, the model extracts query keywords and their semantic roles; in the second
step, it selectively filters or expands keywords based on these roles. This framework
ensures that the conceptual strategy can be effectively implemented in practice without
causing semantic drift.

The structure of the paper is as follows: Section 2 reviews related studies on traditional
query reformulation and the use of LLMs for query reformulation, Section 3 presents the
proposed method in detail, Section 4 covers the experimental setup and implementation
details, Section 5 analyzes the experimental results, and, finally, Section 6 concludes the
paper and outlines future work.
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2. Related Work

This section reviews related work on query reformulation. The first subsection presents
traditional query reformulation approaches, while the second focuses on reformulation
techniques based on LLMs.

2.1. Traditional Query Reformulation Methods

Traditional query reformulation methods primarily modify user queries by expand-
ing the vocabulary of the original query. Numerous experiments have validated the
effectiveness of such an approach [20]. Following the advancement of IR, early query
reformulation techniques relied on classical retrieval models, such as BM25 [21], which
assess relevance based on exact match statistical features, including term frequency (TF)
and document length. These methods typically utilize relevance-based language models,
including RM3 [22], Rocchio’s algorithm [23], and DFR Bol query expansion [24], selecting
terms from top-ranked documents retrieved for the original query as feedback. Beyond
query expansion, document expansion has also been explored. This technique predicts
pseudo-queries for documents; for instance, Doc2Query [25] trains a sequence-to-sequence
model to generate questions that the input document may answer, appending these queries
to the original document for indexing.

Additionally, learned sparse retrieval models, such as SPLADE [26] and uniCOIL [27],
focus on learning highly sparse representations while maintaining nearest-neighbor search
efficiency; by incorporating explicit sparse regularization and applying log saturation
effects to term weights, these models significantly improve retrieval effectiveness. The
advancement of dense neural networks [6,28] has significantly contributed to the field
of query reformulation, making pretrained embeddings a widely adopted approach for
capturing complex semantics in query rewriting. For instance, BERT-QE [29] is a BERT-
based query expansion model that leverages contextual understanding and fine-grained
selection mechanisms to improve query expansion effectiveness while mitigating mismatch
issues, thereby enhancing retrieval performance.

Query reformulation methods combining PRF with dense neural networks have been
widely studied. These methods enhance query representations by leveraging feedback
from initial retrieval results. For example, ColBERT-PRF [30,31] incorporates feedback
embeddings into queries, ANCE-PRF [32] concatenates queries with feedback passages, and
Vector-PRF [33] combines text-based and vector-based PRF approaches. All these methods
aim to refine query representations, improving re-ranking and retrieval performance.

2.2. Query Reformulation Using Large Language Models

In recent years, LLMs based on deep learning have achieved breakthrough advance-
ments in natural language processing (NLP). Some studies have explored applying LLMs
to query reformulation in IR system, aiming to generate diverse query variants that better
capture users” underlying intent. For instance, Query2Doc [15] employs few-shot prompt-
ing to guide LLMs in generating relevant documents, which are then concatenated with
the original query. INTER [34] refines IR by synergizing retrieval models (RMs) and LLMs;
specifically, the RM component expands query information using LLM-generated knowl-
edge, while the LLM component enhances prompts with documents retrieved by the RMs.
HyDE [35] is an LLM-based query expansion method that generates hypothetical document
embeddings to enable zero-shot dense retrieval, eliminating the need for relevance labels;
however, it is susceptible to LLM hallucinations, where generated hypothetical documents
may contain factual inaccuracies. To mitigate this hallucinations, GRM [36] introduces a
relevance assessment model, such as a scoring mechanism, to filter out LLM-generated
documents with no relevance to the query. Unlike previous models that enhance queries



Information 2025, 16, 790

40f18

with LLM-generated documents, LameR [37] employs PREF. It first retrieves documents
using the original query and then uses LLMs to generate answers from the top-n results.
These answers replace the original query for subsequent retrieval, mitigating hallucinations
but depending on initial retrieval effectiveness. Mackie et al. [38] proposed Generative and
Pseudo-Relevant Feedback (GRF), which uses LLMs to generate feedback documents for
query reformulation independently of initial retrieval quality; GRF integrates traditional
PRF by expanding queries with retrieved documents and optimizes retrieval performance
through Weighted Reciprocal Rank Fusion (WRRF).

In addition to directly prompting LLMs to generate query-related documents, several
researchers have explored the use of LLMs to produce diverse query variants. For instance,
GenQREnsemble [39] is a simple yet effective approach for query expansion. It uses ten
diverse but semantically equivalent prompts to instruct an LLM to generate keywords
relevant to the original query. The generated keywords from all prompts are aggregated
and concatenated with the original query to form an expanded version for retrieval. This
ensemble strategy can effectively unlock the latent knowledge of LLMs, leading to more
robust query reformulation results. Jagerman [12] utilized eight distinct prompt types
to exploit the capabilities of general-purpose LLMs without the need for training or fine-
tuning. These templates are applied in various scenarios, including zero-shot, few-shot,
and chained reasoning tasks. The results indicate that chained reasoning prompts hold sig-
nificant potential for query expansion. Inspired by chain-of-thought (CoT) prompting [40],
prompt chaining [41] extends this idea by facilitating the decomposition of complex tasks
into multiple subtasks through a series of sequential prompts, where each step depends
on the output generated by its predecessor. While chain-of-thought prompting aims to
elicit internal reasoning within a single prompt (e.g., “Let’s think step by step”), prompt
chaining extends this idea by decomposing a complex task into a sequence of functionally
distinct prompts, where each step produces a structured output for the next.

A common theme among existing query reformulation approaches is their focus on
query expansion—either by appending keywords or phrases to the original query or by
generating pseudo-relevant documents to enrich context. While these methods effectively
increase lexical coverage and improve recall, they often risk diluting the original query
intent, especially when irrelevant or redundant terms are introduced.

Our approach follows the prompt chaining paradigm, implementing a two-step frame-
work for query reformulation by first extracting keywords and evaluating their constraint
level and then adaptively filtering overly restrictive terms to prevent null retrieval and
expanding less constraining ones to improve recall, thereby balancing query focus and
retrieval coverage.

3. Methodology

This chapter outlines the methodology of our proposed approach. We begin by
presenting an overview of the query reformulation framework based on prompt chaining.
Following this, we delve into the details of keyword extraction and filtering and expansion.
Each subsection provides a clear description of the respective processes and their roles in
the overall system.

3.1. Query Reformulation Framework Based on Prompt Chaining

To improve the retrieval efficiency and relevance of natural language queries, we
propose a query reformulation method based on a two-step prompt chain. The overall
framework of this method is shown in Figure 1, which consists of two key steps: keyword
extraction and keyword filtering and expansion.
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Figure 1. Hierarchical Prompt Chaining for Query Reformulation (HiPC-QR) architecture. Numbers
@D-@ indicate the procedural steps in the query reformulation process: (D) input original query and
Prompt 1 to the LLM, @) extract keywords, 3 input keywords, query, and Prompt 2 to the LLM, and
@ perform filtering and expansion to generate a reformulated query.

Specifically, for the original query, denoted as qp, we first leverage the powerful
semantic understanding capability of the LLM. By designing specific prompt templates,
we instruct the LLM to identify and extract keywords that are semantically most relevant
to the original query. This results in a set of representative keywords K : {ky,k,...,kn},
where the number of extracted keywords may vary across different queries. The keyword
extraction process can be represented by Equation (1):

K:{ky,...,kn} = LLM(prompty,qo) (1)

Then, we combine the keyword set K extracted in the previous step with the
original query gy to form a new query g. This concatenation process is defined as
follows in Equation (2):

qx = concat(qo, K, sep ="|") ()

The resulting g; serves as the reformulated query string, and subsequent filter-
ing/expansion operations are effectively applied to its components (g9 and K).

In this way, we aim to preserve the core semantics of the original query during
reformulation by focusing on extracted key terms, thereby minimizing interference from
irrelevant information and providing semantically focused input for the next step.

In the query reformulation module, specifically in the constraint filtering and keyword
expansion step, we utilize the LLM to assess the necessity of each keyword in relation to
the original query. For each keyword k;, if the LLM determines that expansion is needed,
we create an expansion set K; : {kj1, kip, ..., ki, }, where m is the number of expanded terms
and differs for each k;. Moreover, if the LLM identifies a keyword as having restrictive
constraints, it is considered for removal, and its corresponding expansion set becomes the
empty set. This entire process is encapsulated by Equation (3), which formalizes both the
expansion and filtering mechanisms.

kiv,kip, ... kim}, ifk; € i
K; = LLM(prompty, qo,k;) = Tin, kio im } 1 i {e'xpa.nsmn} 3)
, if k; € {filtering}

Finally, we linearly combine the original query with the processed keyword set to
generate the reformulated query g,. This process can be represented by Equation (4):

n
ar=q0+ Y_K; 4)
iz
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Through this approach, we not only expand the scope of the query but also prevent
excessive expansion, thereby ensuring the relevance and accuracy of the retrieval results.

3.2. Keyword Extraction

Unlike traditional query expansion methods, which typically rely on initial query
results or external knowledge bases to replace or expand keywords, our approach focuses
on extracting the most accurate core keywords from the original query to better represent
the user’s query intent. By leveraging the powerful semantic understanding capabilities
of LLMs, we can precisely identify and extract the core concepts most relevant to the
query intent.

To achieve this, we began with an initial prompt template instructing the LLM to
identify “focus on core concepts”. However, through iterative testing and refinement, we
found that explicitly guiding the LLM to “the main key terms from the query” improved
the relevance and conciseness of the extracted keywords. Our final prompt template is
shown in Table 1.

Although we use a single, manually refined prompt formulation based on iterative
trials during development, it is carefully designed to elicit consistent and meaningful
keyword outputs from the LLM. No post-processing is applied to the LLM output; instead,
we rely on the model’s strong semantic understanding capabilities to return high-quality
keywords. To validate the effectiveness of our prompt design, we conducted a qualitative
assessment by manually inspecting the keywords extracted for ten randomly selected
queries. This evaluation confirmed that the prompt successfully guided the LLM to extract
concise and representative terms that were closely aligned with the original query intent.

Table 1. The final version of the prompt template for Prompt 1 (keyword extraction).

Content Purpose

Direct the model to identify
Instruction “Extract the main key terms” semantically central elements
in the query.

Ensure structured output, facilitating

Output Format  “Keywords: <keywords> further processing and analysis.

3.3. Keyword Filtering and Expansion

The second stage of our framework focuses on refining the extracted keyword set
through a structured process of filtering overly restrictive terms and expanding semantically
relevant ones. This step aims to enhance the flexibility of the query while preserving its
core intent, thereby improving retrieval effectiveness.

To achieve this, the second prompt template is designed to explicitly instruct the LLM
to perform two key tasks:

e Constraint Detection: Identify and relax overly specific spatiotemporal or numerical
constraints (e.g., precise timestamps, narrow location ranges) that may unnecessarily
limit the retrieval scope.

*  Semantic Expansion: Recognize terms with high semantic relevance to the original
query and suggest meaningful synonyms or related expressions that preserve the
intent while increasing coverage.

Our final prompt template is shown in Table 2.
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Table 2. The final version of the prompt template for Prompt 2 (keyword filtering and expansion).

Content Purpose

“Perform rigorous constraint
detection on the query to identify and
optimize overly specific
Instruction 1 spatiotemporal /numerical Constraint detection.
constraints (e.g., excessively precise
temporal or spatial limitations) while
preserving essential core conditions.”

“Identify any key terms that can be
replaced with synonyms or related

nstruction terms, considering the original intent

Semantic expansion.

of the query.”
Output Format Reformulated query: ; Ensure structur.ed output, fac1.htat1ng
<reformulated query> further processing and analysis.

The hierarchical nature of HiPC-QR lies in the ordered dependency between its two
stages: extraction of keywords (Stage 1) informs the subsequent filtering and expansion
decisions (Stage 2), thereby creating a structured pipeline that avoids the uncontrolled
transformations often observed in end-to-end approaches. This decoupled design ensures
that keyword semantics are explicitly modeled before rewriting occurs, which enhances
both the interpretability and controllability of the reformulation process.

To further illustrate the query reformulation process and the effectiveness of our
prompt chain structure, we present an example in Table 3; the table provides a step-by-step
breakdown of how an original query is transformed into a more generalized and optimized
version through keyword extraction and constraint optimization.

As shown in Table 3, the original query is first broken down into its key components
through keyword extraction. This step ensures that only the most relevant information is
retained for further processing. In the second step, the extracted keywords are subjected to
constraint optimization and synonym identification. This involves relaxing overly specific
constraints, such as the exact time range, and replacing key terms with more general or
related concepts. The final reformulated query, “US stock price (performance) fluctuations
(upward /downward trends) yesterday (last trading day)”, demonstrates the effectiveness
of this approach. By removing unnecessary specificity and incorporating synonyms, the
query becomes more flexible and better suited for retrieval purposes while still preserving
the original intent.

Although the system currently relies on a single, carefully refined prompt
formulation—developed through extensive experimentation and validation during the
design phase—we believe that this approach offers a clear and interpretable mechanism for
query reformulation. It is particularly effective in mitigating issues such as low retrieval
relevance or even zero-result scenarios caused by overly restrictive constraints.
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Table 3. Query reformulation process and prompt chain structure.
Original_Query US stock price fluctuations between 3:15 PM and 3:30 PM yesterday
Given the original query: {original_query}, extract the main key terms.
Step 1 prompt Return a list of the key terms or important concepts from the query.
Keywords: <keywords>
Keywords [US, stock price, fluctuations, yesterday, 3:15 PM-3:30 PM]

Given the original query: {original_query} and the extracted key terms:
{keywords}, perform the following tasks:

1. Perform rigorous constraint detection on the query to identify and
optimize overly specific spatiotemporal /numerical constraints (e.g., exces-
sively precise temporal or spatial limitations) while preserving essential
core conditions. 2. Identify any key terms that can be replaced with syn-
onyms or related terms, considering the original intent of the query.
Reformulated query: <reformulated query>

Step 2 prompt

US stock price (performance) fluctuations (upward/downward trends)

Reformulated query yesterday (last trading day).

4. Experimental Setup

This section provides a detailed introduction to the datasets, evaluation methods,
system implementation details, and baseline models used for comparison. Through a
rigorous experimental setup, we aim to validate the effectiveness of HiPC-QR in IR tasks.

4.1. Datasets and Evaluation Metrics

To comprehensively assess the performance of our proposed framework, we employ
two widely used benchmark datasets along with a set of standard evaluation metrics.

MS MARCO, the Microsoft Machine Reading Comprehension dataset [18], is a large-
scale retrieval corpus designed to advance deep learning applications in IR. It contains
over 8.8 million passages and more than 500,000 query—passage pairs, providing a vast
amount of training data for retrieval models. Additionally, the dataset reserves 6980 queries
as a development set (Dev set) for evaluating retrieval performance. Due to its scale
and diversity, MS MARCO serves as a key benchmark for measuring system recall and
ranking accuracy in retrieval tasks. Our study focuses on this development set to assess the
effectiveness of our proposed method.

To further evaluate retrieval systems under multi-level relevance scenarios, we also
adopt the DL, TREC Deep Learning dataset [19]. This dataset is derived from MS MARCO
web queries and relevant documents and features multi-level relevance judgments pro-
vided by NIST assessors, where each query—-document pair is labeled on a scale from
0 (non-relevant) to 3 (highly relevant). Such annotations are richer than binary relevance
schemes and are commonly referred to as hierarchical annotations in information retrieval.
Specifically, the DL19 dataset contains 43 topics, while the DL20 dataset expands this to
52 topics. Both datasets primarily consist of fact-based queries, aiming to test a model’s
ability to accurately and comprehensively retrieve relevant information from large-scale
document collections. In our evaluation, these graded annotations are leveraged differently
depending on the metric: for nDCG, all relevance levels are used directly, while for metrics
such as recall, we follow common practice by applying a threshold and treating documents
with relevance levels of 2 or higher as relevant.

We adopt the following four evaluation metrics to measure the retrieval effectiveness:
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¢  R@IK: This metric measures the proportion of relevant documents retrieved among
the top 1000 results, as defined in Equation (5). A higher R@1K indicates better
coverage of the retrieval system.

|{relevant documents N top-1000 retrieved documents }|

R@1K =
|relevant documents|

(5)

*  MRR@10: This metric evaluates the ranking quality by measuring the reciprocal
rank of the first relevant document within the top 10 retrieved results, as defined in
Equation (6), where rank, denotes the rank position of the first relevant document for
query g within the top 10 results and |Q| is the total number of queries. If no relevant
document is found within the top 10, ﬁ is taken as 0. A higher MRR@10 score
indicates better ranking performance.

1lel
MRR@10 = 0l )

q=1

(6)

rankq

e MAP (Mean Average Precision): MAP is defined as the mean of the average precision
(AP) values across all queries:
Q|

MAP — - Y AP, )
Q&
where | Q| is the total number of queries and AP, is the average precision for query g:

i, Precision@i - Rel(i)

|relevant documents in result|”

AP, 8)
In Equation (8), Precision@i denotes the precision at rank 7 and Rel(7) is an indicator
function equal to 1 if the document at position i is relevant (otherwise, it is equal to 0).

e NDCG@10 (Normalized Discounted Cumulative Gain at 10): This metric evaluates
ranking quality by considering both the relevance and position and is calculated using
two equations: Equation (9) defines DCG@10, while Equation (10) provides the specific
form of NDCG@10 as the ratio of DCG@10 to the ideal IDCG@10. In Equation (9), rel;
is the relevance score of the document at rank i, and in Equation (10), IDCG@10 is the
ideal DCG value obtained from a perfect ranking.

10 orel; _q
DCG@10 =) —— )
i; log, (i+1)
DCG@10
NDCG@10 = DCGelo (10)

The NDCG@10 metric is particularly effective for datasets with multilevel relevance
annotations (e.g., DL19 and DL20), where documents are assigned graded relevance
scores (e.g., 0: not relevant; 1: marginally relevant; 2: relevant; 3: highly relevant).

The four metrics complement each other by evaluating different dimensions of retrieval
performance. R@1K focuses on coverage of relevant documents among the top 1000 results,
MRR@10 evaluates the ranking quality by rewarding early retrieval of the first relevant
document, MAP considers both precision and recall across the entire ranked list, and
NDCG@10 incorporates graded relevance levels to account for multi-level annotations.

4.2. LLM Deployment and Retrieval Configuration

Due to regional restrictions on commercial APIs and limited computational resources,
we conduct our experiments using locally deployed open-source LLMs to ensure re-
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producibility and practical applicability. We implemented the proposed prompt chain-
ing strategy using two large language models: Meta-LLaMA 3.1-8B-Instruct [42] and
DeepSeek-R1-8B [43]. All models were deployed on a single GPU A5000 server to ensure
consistent hardware conditions.

To enhance output stability and improve experimental reproducibility, we applied
uniform inference settings across both models. Specifically, temperature controls the
randomness of token sampling by scaling the logits before softmax (lower values make
outputs more deterministic, while higher values increase diversity), and top_p (nucleus
sampling) restricts generation to the smallest set of tokens whose cumulative prob-
ability exceeds p, balancing coherence and diversity. In addition, frequency_penalty
decreases the likelihood of repeating tokens that have already appeared frequently,
while presence_penalty discourages reusing tokens that have appeared at least once.
In our experiments, we set temperature = 0.1 to reduce randomness while maintain-
ing fluency, top_p = 0.9 to allow sampling from the most probable subset, and
frequency_penalty = 0 and presence_penalty = 0 since repetition was already minimized
through structured prompting.

The prompt chaining strategy was applied in the same manner to both models, guiding
them through a multi-step reasoning process with a fixed output format (e.g., “Keywords:
<keywords>" and “Reformulated query: <reformulated query>"), ensuring consistent
and structured responses. This implementation emphasizes our focus on evaluating the
effectiveness of the designed prompting strategy, rather than comparing the intrinsic
capabilities of the individual LLMs.

In the BM25-based retrieval system (used for both our method and all comparison
methods), we utilize Pyserini’s BM25 parameter tuning method [44] to optimize the R@1K
performance. A grid search approach is applied to fine-tune the BM25 model parameters
on five different 10k-sample subsets, which were randomly selected using the Linux
shuffle command. The final selected parameters for the BM25 model were k; = 0.82,
b = 0.68. The BM25 ranking function computes the relevance score between a query and
a document based on term frequency and document length normalization and is defined
by Equation (11), where f(gq, D) represents the term frequency of word g in the document
D, |D| is the length of the document, avgd! denotes the average length of the document
in the corpus, and ki and b are hyperparameters controlling term saturation and length
normalization, respectively.

BM25(D,Q) = f IDF(g;) x 4, D) - (ks +1) (11)

= f(gi, D)+ ki - (1= b+ bzloh)

4.3. Comparison Methods

To comprehensively verify the effectiveness of HiPC-QR, we selected several com-
monly used query reformulation and expansion methods as baseline comparisons. All
methods were evaluated using the same BM25 base retrieval system with fixed parameters
(k1 = 0.82, b = 0.68), ensuring a fair comparison.

RM3 [22] is a feedback-based query expansion method. Its core principle involves
analyzing high-frequency relevant terms in the initial retrieval results and using these
terms to expand the original query, thereby improving its coverage. In our experiments,
we fine-tune the following RM3 parameters:

*  fb_terms, the number of candidate expansion terms (search range: 5-95, step size: 5);

*  fb_docs, the number of feedback documents (search range: 5-50, step size: 5);

e original_query_weight, the weight of the original query in the expanded version
(search range: 0.2-0.8, step size: 0.1).
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Although RM3 can improve recall, the introduction of expansion terms may increase noise,
sometimes leading to lower precision than expected.

Rocchio [23] is a vector space model (VSM) query reformulation technique based on
relevance feedback. It refines the query vector by adjusting it with weighted information
from both relevant and non-relevant documents, thus better reflecting users’ true intent.
In this study, we adopt the default Rocchio weighting parameters in Pyserini, using it
as an extended version of BM25. Although Rocchio enhances query representation, its
performance heavily depends on the quality of the initial retrieval results.

GRF, Generative Relevance Feedback [38], is an LLM-based query reformulation
method that does not rely on initial retrieval results. Instead, it expands and optimizes the
original query by constructing diverse generative subtasks, such as Keywords, Entities,
Queries, Summary, and Essay. To ensure a direct comparison with the HiPC-QR method,
we selected two GRF subtasks: GRF_Keywords and GRF_Queries. We used the queries
generated by these subtasks as input for the BM25 retrieval model.

GenQREnsemble [39] employs ten semantically equivalent but syntactically diverse
prompts to elicit query-relevant keywords from an LLM. The generated keywords from
all prompts are aggregated via union and concatenated with the original query to form an
expanded version for retrieval. We apply GenQREnsemble using the same locally deployed
LLMs (DeepSeek and Llama) and the same BM25 retriever with identical configurations
as used in our proposed HiPC-QR method. This ensures a fair comparison, isolating the
impact of the query reformulation strategy.

5. Experimental Results and Analysis

As mentioned, we compared the performance of our proposed two-step prompt
chaining method HiPC-QR against both traditional query reformulation techniques and
recent LLM-based baselines across three datasets: DL.19, DL20, and Dev (MS MARCO Dev).
RM3 and Rocchio represent classical query expansion methods based on pseudo-relevance
feedback and vector space modeling, respectively, while GRF_Queries and GRF_Keywords
serve as prompt-based query variant generation methods using LLMs. We also evaluate
GenQREnsemble, which uses an ensemble of diverse prompts to generate and aggregate
keywords for query reformulation, as a representative LLM-based baseline. As detailed
in Section 3, the HiPC-QR framework adopts a two-step prompt chaining strategy: in
step 1, the LLM extracts semantically relevant keywords from the original query and, in
step 2, these keywords serve as intermediate reasoning cues to guide the generation of
a reformulated query. The framework was implemented using both the LLaMA-3.1-8B-
Instruction and DeepSeek-R1-8B models.

5.1. Analysis of Experimental Results

Table 4 presents the obtained results, where (L) and (D) refer to the LLaMA and
DeepSeek models, respectively, and “—1” and “—2” indicate the two stages of HiIPC-QR:
“—1" for keyword extraction and “—2" for query reformulation using those keywords as rea-
soning cues. It can be observed that HiPC-QR-1 (D) achieves the best overall performance
across most metrics and datasets. On DL20, it achieves MAP = 0.312, an improvement of
+0.081 over GRF_Queries (0.231); on Dev, it achieves R@1K = 0.880, surpassing Rocchio
(0.873) by +0.007. GenQREnsemble (D) achieves the highest recall on DL19 and DL20 with
R@1K scores of 0.807 and 0.833, respectively, which we attribute to its ensemble-based key-
word expansion strategy that generates a large and diverse set of keyword variants. This
extensive lexical expansion aligns well with the BM25 retrieval mechanism, which heavily
relies on term matching and term frequency. By introducing more relevant terms into the
query, GenQREnsemble increases the likelihood of overlapping with matching documents,
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thereby enhancing retrieval coverage. However, its performance on ranking-sensitive
metrics such as MAP and ndcg@10 remains suboptimal, suggesting that the unfiltered ag-
gregation of keywords may introduce noise, which dilutes query focus and harms ranking
quality. Notably, the Step1 strategy of HiPC-QR also yields higher recall, suggesting that
using focused keywords can effectively bridge lexical gaps in BM25 retrieval. Meanwhile,
HiPC-QR-2 (L) attains the highest MRR@10 of 0.2178 on Dev, indicating stronger early
precision and better ranked results, which are valuable for real-world applications.

In contrast, GRF-based LLM variants underperform across most settings
(e.g., GRF_Keywords attains R@1K = 0.6482 on DL19), likely due to lack of structured
reasoning in prompt design.

Traditional methods such as Rocchio and RM3 still provide notable gains over BM25,
but fall short compared to structured LLM prompting. These results confirm the effec-
tiveness of our two-step HiPC-QR framework, which uses a prompt chain approach. It is
especially effective when paired with high-reasoning-capacity LLMs like DeepSeek-R1.

Table 4. Evaluation of the proposed HiPC-QR framework against classical and LLM-based query
reformulation methods.

Model

DL19 DL20 Dev
MAP NDGC@10 R@1K MAP NDGCe@10 R@l1K MRR@10 R@1K

Retrieval Baseline

BM25 0.290 0.497 0.745 0.288 0.488 0.803 0.187 0.857
Query Reformulation Methods

RM3 [22] 0.334 0.515 0.795 0.302 0.492 0.829 0.165 0.870
Rocchio [23] 0.340 0.528 0.795 0.312 0.491 0.833 0.168 0.873
GRF_Queries [38] 0.272 0.455 0.729 0.231 0.373 0.637 —— ——
GRF_Keywords [38] 0.190 0.349 0.648 0.201 0.314 0.572 —— ——
GenQREnsemble (L) 0.222 0.375 0.667 0.203 0.349 0.646 —— ——
GenQREnsemble (D) 0.327 0.513 0.807 0.279 0.465 0.833 - ——
HiPC-QR-1 (L) 0.302 0.509 0.750 0.307 0.513 0.821 0.203 0.865
HiPC-QR-2 (L) 0.289 0.485 0.756 0.282 0.477 0.793 0.218 0.777
HiPC-QR-1 (D) 0.324 0.542 0.801 0.312 0.511 0.816 0.202 0.880
HiPC-QR-2 (D) 0.311 0.500 0.783 0.299 0.477 0.819 0.212 0.760

Note: L = LLaMA, D = DeepSeek. “-1” and “-2” refer to the two steps of our proposed HiPC-QR framework.
In step 1, the LLM extracts semantically relevant keywords from the original query; in step 2, these keywords
are used as intermediate reasoning cues to generate the reformulated query. Bold values indicate the best
results per column.

To further analyze the retrieval performance differences between the two strategies
within the HiPC-QR framework, we plot the Recall@K and MRR@k curves at various
K values on the MS MARCO Dev dataset, as shown in Figure 2. The figure presents the
performance of four variants, including HiPC-QR-1 (L) and HiPC-QR-2 (L) under the
LLaMA model and HiPC-QR-1 (D) and HiPC-QR-2 (D) under the DeepSeek model. Here,
“—1"” and “—2" refer to the keyword extraction and query reformulation stages, respectively,
and (L)/(D) indicate the underlying LLM backbone.

It can be observed that in the lower K range (K = 5 to 15), HiPC-QR-2 (L) and
HiPC-QR-2 (D) outperform both variants of HiPC-QR-1 (L) and HiPC-QR-1 (D) across
all datasets in terms of recall. For example, on the Dev dataset, when K = 10, HiPC-QR-2 (L)
achieves a recall score of 0.4704, which is significantly higher than that of HiPC-QR-1 (L),
with a value of 0.4253. This indicates that the second-stage generation strategy is more ef-
fective in improving early retrieval performance, enabling BM25 to identify highly relevant
documents at top ranks.
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Figure 2. Recall@K and MRR@K on MS MARCO Dev using LLaMA and DeepSeek: HiPC-QR-1 and
HiPC-QR-2. (a,b) MRR@K comparison across stages; (c,d) Recall@K comparison across stages.

However, as K increases, the recall trend reverses. When K = 20, HiPC-QR-1 (L) and
HiPC-QR-1 (D) begin to outperform the two-step methods. For instance, HiPC-QR-1 (D)
reaches a Recall@1K of 0.8803, the highest among all methods, while HiPC-QR-2 (D)
achieves only 0.7596. Similar trends are observed on DL19 and DL20. This indicates that
the keyword concatenation strategy has better coverage at large K values, as it enhances
the prominence of key terms and improves overall recall.

This results may be due to the structural differences between the two query reformu-
lation strategies. The second-step generation method rewrites the original query using a
language model, removing restrictive terms and increasing semantic focus, which makes
it easier to retrieve highly relevant documents at early ranks. However, this process may
also compress or generalize the query, possibly leading to some semantically related but
peripheral content being missed and reducing recall at deeper ranks. In contrast, the first-
step method simply appends extracted keywords to the original query without altering its
structure, preserving all context and enriching it with salient terms. This helps trigger more
lexical matches in traditional retrieval systems (e.g., BM25), especially when K is large.

5.2. Ablation Study

To evaluate the role and synergy of the two key stages in HiPC-QR and to validate the
effectiveness of the prompt chain, we performed ablation studies using two LLMs: LLaMA
and DeepSeek. As shown in Table 5, the experimental results indicate that when only the
keywords extracted in the first stage were appended to the original query (HiPC-QR-1 (L)
and HiPC-QR-1 (D)), MRR@10 improved by 8.3% and 7.6%, respectively, compared to the
baseline of BM25. This demonstrates the effectiveness of the keyword extraction stage and
suggests that the extracted keywords provide valuable semantic signals for retrieval.
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Table 5. Ablation study.

Method MRR@10 R@1K
Baseline BM25 0.1874 0.8573
HiPC-QR-1 (L) 0.2030 0.8654
HiPC-QR-2 (L) /0 Hipc_ QR 1(L) 0.1551 0.7981
HiPC-QR-1 (D) 0.2017 0.8803
HiPC-QR-2 (D) 4/, ipc—QR1(D) 0.1106 0.6491
HiPC-QR-2 (D) .,/ ipc R -1(D) 0.2117 0.7596

In contrast, when the keywords extracted in the first stage are used as input prompts,
the LLM can more effectively perform the filtering and expansion strategy in the sec-
ond stage (HiPC-QR-2,,/gipc—qr—1)- Specifically, the model is prompted to classify the
keywords as follows: identify constraint-bearing terms (e.g., time, location, domain) and
determine whether they should be retained or relaxed based on context while expanding
non-constraint keywords to improve recall.

Compared to directly feeding the raw query into the LLM for rewriting, extracting
keywords first provides the model with a more structured and semantically clear input.
This step-by-step prompting approach improves the controllability and consistency of the
LLMs’ output. Experimental results show that this strategy achieves the best performance
in terms of MRR@10, indicating that the proposed prompt chain (HiPC-QR) strikes a better
balance between the retrieval comprehensiveness and accuracy by structuring the query
rewriting process.

In addition, both LLaMA and DeepSeek demonstrated consistent performance im-
provements, further validating the generality and robustness of our method
across different LLMs.

5.3. Comparison with Generative Methods

To further compare HiPC-QR with the GRF_Queries and GRF_Keywords, we con-
ducted a statistical analysis on the DL19 dataset, focusing on the NDCG@10 metric. We
chose NDCG®@10 as the primary evaluation metric because it effectively captures both the
relevance and ranking quality of the retrieved documents. Moreover, DL19 and DL20 are
multi-grade relevance datasets, making NDCG a more appropriate measure compared to
binary metrics such as Recall@10 or MRR@10. As shown in Table 6, the performance of
HiPC-QR is always superior to that of GRF_queries and GRF_keywords using both LLMs.

Table 6. Comparison of HiPC-QR and GRF-based methods on the DL19 dataset.

Improvement over Outperformed Queries
Method NDCG@10 GRE_Keywords (Count/%) Std Dev
GRF_Keywords  0.348714 — — 0.273745
HiPC-QR-1 (L) 0.509351 46.1% 28/65.1% 0.26014
HiPC-QR-1 (D)  0.542188 55.5% 31/72.1% 0.230846
Improvement over Outperformed Queries
Method NDCG@10 GRF_Queries (Count / %) Std Dev
GRF_Queries 0.455084 — — 0.306530
HiPC-QR-2 (L) 0.484772 6.5% 24/55.8% 0.266856
HiPC-QR-2 (D)  0.499916 9.9% 22/51.2% 0.266682

In addition to the statistical comparison, we present one representative example in
Table 7 to illustrate the reformulation behavior of HiPC-QR compared to GRE. This query
was randomly sampled from the DL19 test set and serves as a typical case demonstrating
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how HiPC-QR preserves user intent while relaxing overly restrictive constraints to improve
retrieval performance. The original query is “what is the most popular food in Switzerland”,
and we compare the query variants generated by GRF and HiPC-QR with both LLaMA
and DeepSeek.

The GRF_Keywords method produced irrelevant or overly generic tokens such as
“List”, “Relevant”, and “Documents”, resulting in a poor NDCG@10 score of 0.2900. Although
the GRF_Queries generated multiple alternative phrasings (e.g., “famous Swiss food”, *Swiss
cuisine”), it achieved an NDCG@10 of 0.7744.

In contrast, our proposed method HiPC-QR-1, using both LLaMA and DeepSeek,
directly extracted relevant keyword phrases (e.g., “popular food, Switzerland”), resulting
in improved focus and clarity, each achieving 0.6170 in NDCG@10. Building upon these
intermediate keywords, the HiPC-QR-2 models further refined the query. The LLaMA
version introduced semantically rich expansions such as “dish” and “Swiss cuisine”, yielding
a significantly higher NDCG@10 of 0.9202. Notably, the DeepSeek-based HiPC-QR-2
achieved the highest score of 0.9355, demonstrating its superior capability in capturing
nuanced user intent through more precise reformulation (e.g., “the most famous foods in
Switzerland”). This demonstrates that our method offers distinct advantages in keyword
precision and effective query reformulation.

Table 7. Comparison of query samples between GRF and HiPC-QR from the DL19 dataset.

Method Query (ID:833860) Ndcg@10
Original Query what is the most popular food in switzerland 0.4827
GRF_Keywords Switzerland, Food, Popular, List, Relevant, Documents 0.2900

Swiss food, Swiss cuisine, Traditional Swiss food, Popular Swiss food,

Most popular Swiss food, famous Swiss food, best Swiss food 07744

GRF_Query

HiPC-QR-1 (L) what is the most popular food in switzerland|popular food, Switzerland  0.6170
HiPC-QR-2 (L) what is the most popular (food, dish) in (Switzerland, Swiss cuisine)? 0.9202
HiPC-QR-1 (D) what is the most popular food in switzerland|Switzerland, popular food ~ 0.6170
HiPC-QR-2 (D) What are the most famous foods (popular food) in Switzerland? 0.9355

5.4. Handling Constraints in Query Reformulation

User queries often contain constraints such as domain, time, or spatial limitations,
which can restrict the range of relevant results. As show in Table 8, the original query,
“what is a nonconformity? earth science”, is limited by the domain constraint of “earth science”,
potentially excluding relevant documents from related fields like geology. In step 2, by
removing the “earth science” constraint, the query scope is expanded, and the relevant
term “geologic nonconformity” is added, enhancing the comprehensiveness of the retrieval.
The value of MAP@1000 in Table 8 increases from 0.0043 for the original query to 0.5283,
indicating that our query reformulation method not only improves the effectiveness of
IR but also captures more cross-domain relevant information. While the recall rate is
improved, it may introduce some noise, affecting the precision of the retrieval results.
Therefore, balancing comprehensive retrieval while minimizing irrelevant results remains
a significant challenge for information retrieval systems.

Table 8. Case study of handling constraints in query reformulation from the DL20 dataset.

Method Query (ID:1116380) Map@1000
Original Query  what is a nonconformity? earth science 0.0043
HiPC-QR-1 (L)  what is a nonconformity? earth science | nonconformity, earth science 0.0051

HiPC-QR-2 (L)  what is a nonconformity (geologic nonconformity)? 0.5283
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6. Conclusions and Future Work

In this study, we propose HiPC-QR, a progressive two-step query reformulation
method using prompt chain and LLMs. Our approach consists of keyword extraction
followed by semantic constraint-based query reformulation, aiming to balance ranking
accuracy and recall performance. Through fine-grained query reformulation, our approach
enhances the accuracy and relevance of retrieval systems, demonstrating strong perfor-
mance particularly in metrics such as MRR@10 and R@10. Notably, in the Dev dataset
experiments, HiPC-QR demonstrated strong adaptability in large-scale retrieval tasks,
providing a solid foundation for its practical application in real-world scenarios.

It is worth noting that this two-stage prompting mechanism introduces additional
processing latency. Specifically, the end-to-end latency of the complete HiPC-QR pipeline
is approximately 7.46 s (LLaMA) and 10.03 s (DeepSeek), corresponding to two sequential
stages, namely step 1 (keyword extraction) and step 2 (keyword filtering and expansion),
both executed via the LLM. This latency is overwhelmingly dominated by the cost of LLM
inference.

In future research, we will focus on refining the methods for assessing keyword
constraint strength, aiming to improve the precision and robustness of the filtering and
expansion process. By developing more sophisticated criteria for determining whether
a keyword is overly restrictive or semantically beneficial, we can further enhance the
effectiveness of constraint-aware query reformulation.

To address the current latency bottleneck caused by LLM inference, we plan to investi-
gate model distillation, quantization, and lightweight architectures to accelerate inference
speed while preserving the effectiveness of the proposed method. These efficiency-oriented
optimizations are critical for real-world deployment in low-latency retrieval scenarios.

The proposed HiPC-QR method will be integrated with state-of-the-art retrieval mod-
els, such as deep learning-based ranking systems, to enhance overall retrieval performance.
We also aim to validate HiPC-QR on larger and more diverse benchmarks, such as BEIR [45],
to assess its generalization across domains.

Finally, we will develop refined reformulation strategies tailored to different query
types, aiming to minimize potential negative effects and achieve consistent performance
improvements across diverse user intents.
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