

1 **Population-specific bycatch risks in two vulnerable anadromous clupeids: insights**
2 **from otolith microchemistry**

3 David J. Nachón¹, Alejandro Pico-Calvo¹, Françoise Daverat², Rufino Vieira-Lanero¹,
4 Rosa M. Crujeiras³, Ana F. Belo⁴, Catarina S. Mateus^{4,5}, Bernardo Quintella⁶, Pedro R.
5 Almeida^{4,5}, Carlos Antunes^{7,8}, Gilles Bareille⁹, Cristophe Péchéyran⁹, Fanny Claverie⁹,
6 Patrick Lambert¹⁰, Géraldine Lasalle¹⁰ & Fernando Cobo¹

7 ¹Departamento de Zooloxía e Antropoloxía Física, Facultade de Bioloxía, Universidade
8 de Santiago de Compostela, Campus Vida, C/Lope Gómez de Marzoa, s/n, 15782,
9 Santiago de Compostela.

10 ²UMR ECOBIOP, 1224, Institut National de Recherche pour l’Agriculture, l’alimentation
11 et l’Environnement—INRAE, UPPA, 173 Route de Saint-Jean-de-Luz, Saint-Pée-sur-
12 Nivelle 64310, France.

13 ³Galician Center for Mathematical Research and Technology, CITMA, Universidade de
14 Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain.

15 ⁴MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research
16 Network, Universidade de Evora, Evora, Portugal

17 ⁵Departamento de Biología, Universidade de Évora, Évora, Portugal.

18 ⁶Departamento de Biología Animal, Facultade Ciências, Universidade de
19 Lisboa/MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic
20 Research Network.

21 ⁷CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental,
22 Universidade do Porto, 4450-208 Matosinhos, Portugal.

23 ⁸Aquamuseu do Rio Minho, 4920-290 Vila Nova de Cerveira, Portugal

24 ⁹University of Pau and the Adour Region, E2S UPPA, CNRS, IPREM, MIRA, Pau,
25 France.

26 ¹⁰Institut National de Recherche pour l’Agriculture, l’alimentation et l’Environnement—
27 INRAE, UR EABX, 33612 Cestas, France.

28 **Corresponding author:**

29 David José Nachón García. Departamento de Zooloxía e Antropoloxía Física, Facultade
30 de Bioloxía, Universidade de Santiago de Compostela, Campus Vida, C/Lope Gómez de
31 Marzoa, s/n, 15782, Santiago de Compostela. davidjose.nachon@gmail.com

32

33

34 **Funding information:**

35 This work was supported by the project *DiadES—Assessing and enhancing ecosystem*
36 *services provided by diadromous fish in a climate change context* (EAPA_18/2018),
37 funded by the INTERREG Atlantic Area program. Additional funding was provided by
38 the project *IMARDEALOSAS—Evaluación de las “capturas incidentales” de Alosa alosa*
39 *y Alosa fallax por la flota costera de Galicia: análisis del problema, sensibilización y*
40 *proposición de medidas de gestión y protección*, supported by the Biodiversity
41 Foundation of the Ministry for Ecological Transition and the Demographic Challenge,
42 through the Pleamar Programme, co-financed by the European Maritime and Fisheries
43 Fund (EMFF). This work was also supported by Portuguese National Funds through FCT
44 — Foundation for Science and Technology through MARE’s base funding
45 (UIDB/04292/2020, <https://doi.org/10.54499/UIDB/04292/2020>) and MARE’s strategic
46 program (<https://doi.org/10.54499/UIDP/04292/2020>), through project LA/P/0069/2020
47 granted to the Associate Laboratory ARNET (<https://doi.org/10.54499/LA/P/0069/2020>)
48 and through the FCT doctoral grant attributed to Ana F. Belo (SFRH/BD/123434/2016).

49

50 **Abstract**

51 Otolith microchemistry analysis revealed that bycatch of European shads—all shad
52 *Alosa alosa* (L. 1758) and twaite shad *Alosa fallax* (Lacépède 1803)—in western Iberian
53 commercial fisheries removes individuals from a wide array of natal origins, with the
54 most abundant source rivers suffering the heaviest losses. Spatial variation in bycatch risk
55 was evident: specific marine areas exhibited high natal-origin diversity, reflecting
56 complex dispersal. *A. alosa* showed extensive medium- and long-distance movements—
57 including rare longitudinal displacements along the Cantabrian slope—and greater natal
58 origin diversity than *A. fallax*, whose dispersal was largely restricted to middle-distance,
59 latitudinal migrations. In both species, bycatches were dominated by the most abundant
60 continental populations—Mondego and Minho for *A. alosa*, and Ulla and Minho for *A.*
61 *fallax*—suggesting that these rivers function as source populations exporting individuals
62 to sink populations through marine dispersal. Despite their differing dispersal ranges, both
63 species displayed dual resident-dispersive contingents coexisting within the same
64 populations, reflecting an interplay of river proximity, philopatry and resource
65 availability. The stronger philopatry and constrained range of *A. fallax* imply heightened
66 vulnerability to localized bycatch pressure near natal rivers, whereas *A. alosa*'s broader
67 dispersal and higher origin diversity expose multiple populations to risk at a regional
68 scale. These species-specific dispersal capacities and metapopulation structures critically
69 shape bycatch vulnerability. Incorporating natal-origin and dispersal data into
70 transnational, ecosystem-based management—such as targeted temporal or spatial
71 fishing restrictions at mixing hotspots—will be essential to safeguard metapopulation
72 dynamics, mitigate bycatch mortality, and maintain ecological connectivity among
73 European shad populations.

74 **Keywords:** *Alosa* spp., bycatch hotspots, Iberian coast, metapopulation dynamics, natal
75 origin, trace markers

76 **Introduction**

77 Bycatch, the incidental capture of non-target species in marine commercial and artisanal
78 fisheries, is a major threat to marine ecosystems (Davies *et al.*, 2009; Gray and Kennelly,
79 2018). Depending on its fate, bycatch can be classified as landed bycatch (retained for
80 consumption or sale) or discards (returned to the sea, alive or dead; Gray and Kennelly,
81 2018). This issue affects a wide range of marine fauna, including birds, turtles, marine
82 mammals, and fish species, and poses a considerable challenge to conservation efforts
83 (Barreiro *et al.*, 2025; Bethoney *et al.*, 2017; Chuenpagdee *et al.*, 2003). In addition,
84 effects of bycatch may interact with the ongoing climate change, creating new ecological
85 interactions and compounding existing anthropogenic threats (Hazen *et al.*, 2018;
86 Poloczanska *et al.*, 2013). Among the species affected by bycatch, anadromous fish—
87 those migrating from marine habitats to rivers to spawn (McDowall, 1988, 2001)—are
88 particularly of relevance, as many are classified as protected, endangered or threatened
89 (PETS; ICES, 2022) and are experiencing global population declines (Limburg and
90 Waldman, 2009). These species play a key role in maintaining ecosystem connectivity by
91 transporting marine-derived nutrients to freshwater habitats, supporting nutrient cycling
92 and food web dynamics (Hall *et al.*, 2012; Poulet *et al.*, 2022). Their depletion disrupts
93 vital ecological processes/cycles, jeopardizing and leading to the loss of ecosystem
94 services that benefit both local human communities and the broader environment across
95 territories and administrative boundaries (Almeida *et al.*, 2023; Ashley *et al.*, 2023; Hall
96 *et al.*, 2012; Limburg and Waldman, 2009; Poulet *et al.*, 2022). Beyond their role in
97 ecosystem functioning, the anadromous clupeids allis shad *Alosa alosa* (L. 1758) and
98 twaite shad *Alosa fallax* (Lacépède 1803), collectively known as European shads, are
99 ecologically and socio-economically significant. Historically, they have supported inland
100 commercial and recreational fisheries, providing provisioning services such as protein

101 supply, cultural heritage, and traditional fisheries embedded in local folklore (Almeida *et*
102 *al.*, 2023; Ashley *et al.*, 2023). However, their populations have declined dramatically,
103 raising concerns about their conservation and the sustainability of related human
104 activities.

105 *Alosa alosa* and *A. fallax*, once widespread from Scandinavia to Morocco and the
106 Mediterranean Sea, have experienced significant declines in both distribution range and
107 abundance along the Atlantic coast (Baglinière, 2000). Consequently, the sustainability
108 of their inland commercial and recreational fisheries came into question, leading to
109 increasing academic and fisheries management interest in their conservation (Braga *et al.*,
110 2022; Elie *et al.*, 2000; Mota *et al.*, 2015; Rougier *et al.*, 2012; Stratoudakis *et al.*, 2016).

111 Notably, the collapse of major European populations, such as those in the Gironde-
112 Garonne-Dordogne system in France (Rougier *et al.*, 2012) and the Minho River system
113 on the Spain-Portugal border (Mota *et al.*, 2015), underscores the severity of their decline.

114 These declines are attributed to cumulative human impacts throughout their life cycle.

115 While anthropogenic impacts in freshwater habitats are well-documented (Aprahamian
116 *et al.*, 2003; Limburg and Waldman, 2009; Taverny *et al.*, 2000a), the effects of
117 anthropogenic mortality at sea, where *A. alosa* and *A. fallax* migrate to feed and grow for
118 several years, remain underexplored (Aprahamian *et al.*, 2010; Davies *et al.*, 2020; King
119 and Roche, 2008; Nachón *et al.*, 2016; Trancart *et al.*, 2014). The declining status of
120 European shad populations necessitates a thorough understanding of their specific threats.

121 Both *Alosa* species exhibit vulnerability to bycatch due to their schooling behaviour,
122 especially when aggregating to begin the spawning migrations and reliance on
123 coastal/estuarine habitats that extensively overlap with fishing operations (King and
124 Roche, 2008; Maitland and Lyle, 2005; OSPAR, 2009). Consequently, European shad
125 bycatch has been widely documented across their distribution range over multiple

126 decades (ICES, 2014; King and Roche, 2008; La Mesa *et al.*, 2015; Nachón *et al.*, 2016;
127 Sabatié, 1993; Trancart *et al.*, 2014). The resulting loss of pre-reproductive individuals
128 may critically impair juvenile recruitment, further exacerbating population declines, a
129 particularly severe consequence for the semelparous *A. alosa* (King and Roche, 2008).
130 Nevertheless, comprehensive assessments of bycatch magnitude and demographic
131 impacts remain scarce, hampered by inconsistent reporting protocols across EU Member
132 States and persistent species misidentification (Baglinière *et al.*, 2003; DiadSea Interreg
133 Atlantic Area project; Nachón *et al.*, 2016; OSPAR, 2009).
134 In this context, the mixing of shad populations at sea and in coastal habitats remains to
135 be known (Nachón *et al.*, 2020). Shad populations are defined by their native rivers,
136 where adults spawn and juveniles migrate during their first year of life to marine habitats
137 to feed and grow for several years (Aprahamian *et al.*, 2003; Baglinière *et al.*, 2003;
138 Taverny and Elie, 2001). Upon reaching maturity, individuals return to their natal rivers
139 to reproduce, maintaining genetic and ecological connectivity across generations,
140 although a proportion stray into non-natal rivers (more frequently between neighbouring
141 river basins), facilitating gene flow and demographic exchange between populations
142 (Alexandrino *et al.*, 2006; Jolly *et al.*, 2012; Martin *et al.*, 2015; Rougemont *et al.*, 2022;
143 Sabatino *et al.*, 2022). During the marine phase, some individuals remain near the mouths
144 of their natal rivers, while others disperse hundreds of kilometres away alongside the
145 coast (Nachón *et al.*, 2020). This variability in dispersal behaviour highlights the
146 complexity of population mixing at sea and raises questions about its implications for
147 connectivity and conservation. Such heterogeneity in movement prompts the use of
148 intrinsic ‘natural tags,’ notably otoliths—calcified ear stones in teleost fishes—to resolve
149 fine-scale connectivity. Certain trace elements and isotopes accrete continuously in
150 otolith growth layers in proportion to ambient water chemistry, especially in freshwater

151 environments (Campana and Thorrold, 2001; Daverat *et al.*, 2016; Walther and Thorrold,
152 2006). Because these metabolically inert structures retain distinct natal-water signatures
153 in their cores, they provide a retrospective record of both natal origin and subsequent
154 dispersal patterns (Campana and Thorrold, 2001; Daverat *et al.*, 2011; Martin *et al.*,
155 2013a, b; Nachón, 2017; Walther *et al.*, 2008). Otolith microchemistry—through Sr/Ca,
156 Ba/Ca and $^{87}\text{Sr}/^{86}\text{Sr}$ ratios as natal tracers—has proven useful for tracing the natal origins
157 of individuals in *A. alosa* and *A. fallax* (Martin *et al.*, 2015; Nachón *et al.*, 2020; Randon
158 *et al.*, 2018), offering a promising approach for examining population behaviour at sea
159 and providing insights into the impact of bycatch on these species. In this context,
160 understanding the effects of bycatch on the connectivity and diversity of natal origins is
161 critical for informing conservation strategies. Therefore, this study aims to: (1) investigate
162 the population connectivity and natal origins of *A. alosa* and *A. fallax* using otolith
163 microchemistry from bycaught individuals; (2) infer whether bycatch impacts differ
164 among populations; and (3) discuss the conservation implications and outline future
165 directions for management strategies.

166 **Materials and Methods**

167 **Origin of bycatch European shad samples**

168 This study examines European shad specimens bycaught in small-scale coastal fisheries
169 along the western Iberian coast and subsequently landed at fish markets located near the
170 vessels' home ports. As these fisheries generally operate close to their landing harbours
171 (Nachón *et al.*, 2016, 2022a, b), the recorded bycatch locations are assumed to reflect
172 ecologically relevant marine habitats used by European shads (Nachón *et al.*, 2022c, d).
173 A total of 120 specimens were opportunistically acquired between February 2017 and
174 March 2021 (Table 1), spanning from Spain's Ártabro Gulf to Portugal's Mondego estuary
175 (Figueira da Foz; Figure 1).

176 In the laboratory, species identification was conducted through gill raker counts on the
177 first branchial arch following Alexandrino *et al.* (2006), confirming 89 *A. alosa* and 31
178 *A. fallax* individuals. Most specimens ($n=95$: 64 *A. alosa* and 31 *A. fallax*) represented
179 bycatch from Galician inshore gillnet fisheries targeting commercial species—e.g.,
180 European sea bass *Dicentrarchus labrax* (L. 1758), European hake *Merluccius*
181 *merluccius* (L. 1758), acquired through first-sale records at four fish markets A Coruña,
182 Malpica, Fisterra, and A Guarda (Table 1 and Figure 1). Fisheries context can be found
183 in Nachón *et al.* (2016). The remaining 25 *A. alosa* individuals were obtained from
184 specimens caught as bycatch in commercial fixed gillnets operating near Figueira da Foz
185 (Mondego estuary, Portugal) during February-March 2017 (Table 1 and Figure 1).
186 Otoliths were extracted from the cephalic regions of bycaught specimens following the
187 protocol described in Martin *et al.* (2015). These otoliths were then processed to
188 reconstruct dispersal trajectories and natal origins, providing valuable biological data for
189 bycatch impact assessment while preventing further exploitation of these vulnerable
190 species—an approach that addresses key ethical concerns in threatened species research.

191 **Natal origin baseline: water and juvenile tracers**

192 In this study, we expanded the microchemical datasets for French and Portuguese rivers,
193 originally analysed by Randon *et al.* (2018), by adding newly collected water samples
194 and juvenile otoliths (Table 2). Because elemental uptake from water into otoliths is
195 mediated by physiological and environmental processes (Campana, 1999; Campana and
196 Thorrold, 2001; Kalish, 1989), we need to calibrate this water–otolith relationship using
197 paired water and juvenile-otolith samples. Such calibration is crucial for predicting otolith
198 signatures in rivers where juvenile sampling is impractical—both due to challenges of
199 early-life sampling and the species’ sensitive conservation status.

200 The original calibrations from Randon *et al.* (2018)—focused on *A. alosa* juveniles—
201 were reinforced with fresh water and otolith collections from the Mondego River
202 (Portugal, Table 2), where we sampled upstream and downstream of a rehabilitated fish-
203 pass dam to evaluate connectivity-mediated recruitment success (see Belo *et al.*, 2021 for
204 rehabilitation details). Juveniles were captured following Martin *et al.* (2015), using
205 purse-seine nets in upper-estuarine and freshwater reaches during seaward migration,
206 ensuring natal origin confirmation prior to marine entry (Walther *et al.*, 2008). To extend
207 the calibration to *A. fallax*, we incorporated archived juvenile otoliths from the Ulla and
208 Minho rivers (Galicia, Spain)—originally sampled in Nachón *et al.* (2016) and housed in
209 the University of Santiago de Compostela (USC) collection (Table 2). We also added
210 archived *A. fallax* juvenile otoliths from systematic sampling programs in the Garonne
211 and Dordogne basins (Table 2), stored at the National Institute for Agricultural Research
212 and the Environment (INRAE) research institute in Cestas (Bordeaux, France).
213 Regarding water chemistry, we reinforced reference coverage from Randon *et al.* (2018)
214 and extended our spatial scope to the Cantabrian-slope rivers in Spain and to the Vouga,
215 Mondego, and Tagus systems in Portugal (Table 2). Because the Vouga and Mondego
216 systems traverse contrasting geologies with markedly different Sr-isotope signatures, we
217 divided each into two segments (Mondego 1 & 2; Vouga 1 & 2; see Figure 1) rather than
218 averaging across the entire watershed. For the Mondego River specifically, we sampled
219 immediately upstream and downstream of its first rehabilitated barrier—thereby linking
220 river-segment water chemistry to juvenile-otolith microchemistry in each reach. Water
221 samples were collected between May and September—spanning the spawning and post-
222 spawning seasons—following Martin *et al.* (2015), and targeted areas adjacent to known
223 or potential spawning grounds.

224 Although our calibration incorporated French rivers, natal-origin assignments of
225 bycaught adults were confined to the Iberian Peninsula (Figure 1). This spatially explicit
226 framework spanned 560 km of the Atlantic façade (Tagus River to Ártabro Gulf) and
227 another 560 km along the Cantabrian coast (Ártabro Gulf to Bidasoa River at the Spain-
228 France border), thereby encompassing both core regional distribution areas and typical
229 dispersal ranges of both species (Jolly *et al.*, 2012; Martin *et al.*, 2015; Mota *et al.*, 2016;
230 Nachón *et al.*, 2019a, b). This spatial framework is specifically tailored to assign adults
231 accidentally caught in the coastal waters of northwestern Iberia to their natal rivers.

232 **Ethical Statement**

233 European shad bycaught specimens acquired from fish markets were already deceased
234 upon landing, eliminating any need for live animal experimentation. By treating otoliths
235 as post-mortem “black-box” records, we extract maximal life-history information to
236 reveal the impacts of bycatch on threatened European shad populations.

237 *Alosa alosa* juveniles from the Mondego River (Portugal) were captured during scientific
238 sampling campaigns under authorization from the Instituto da Conservação da Natureza
239 e das Florestas (ICNF; Licença 226/2020/CAPT). Sampling was conducted with rigorous
240 attention to fish welfare and restricted to the minimum number of specimens necessary
241 to achieve the study’s objectives. Otolith analyses were focused on individuals collected
242 upstream and downstream of a rehabilitated dam to assess both habitat reconnection and
243 bycatch impacts. To further reduce live captures, we incorporated existing juvenile-
244 otolith microchemistry datasets for *A. alosa* and archived *A. fallax* otoliths. We also
245 employed statistical models to generate “virtual” juveniles for under-sampled rivers.
246 Finally, all otolith microchemistry data directly inform targeted conservation measures
247 aimed at minimizing bycatch mortality and strengthening population resilience.

248

249 **Water and otolith microchemistry analysis**

250 As established previously in studies by Martin *et al.* (2015), Nachón *et al.* (2020), and
251 Randon *et al.* (2018), the elements Sr and Ba (in relation to Ca) and the isotopic ratios
252 ($^{87}\text{Sr}/^{86}\text{Sr}$) were selected as key markers for determining the natal origin of European
253 shads. Elemental concentrations of Ca, Sr, and Ba in both water and otoliths were
254 analysed using solution-based Inductively Coupled Plasma Mass Spectrometry (ICP-
255 MS). Isotopic ratios ($^{87}\text{Sr}/^{86}\text{Sr}$) were determined using a Nu-Plasma Multi-Collector ICP-
256 MS. Otolith material was extracted with a femtosecond laser, tracing two C-shaped
257 specular trajectories 40 microns from the core and 60 microns wide. Detailed protocols
258 for water and otolith analysis are described in Martin *et al.* (2013a) and Martin *et al.*
259 (2015), respectively. Regarding water samples from the Lima, Vouga, Mondego, and
260 Tagus rivers, collected in 2019 and 2020, they were analysed by the Central Analysis
261 Laboratory of Aveiro University. The same standards and methodologies were applied as
262 in previous studies, ensuring comparison and consistency. Sr, Ca, and Ba were quantified
263 using ICP-OES (Jobin Yvon Activa M), following the ISO 11885 standard, while isotopic
264 ratios ($^{87}\text{Sr}/^{86}\text{Sr}$) were determined using ICP-MS (Thermo X Series).

265 **Natal origin assignment model for European shad bycatch at sea**

266 Natal origin assignment for shads caught at sea involved three main steps: (1) developing
267 a regression model for tracer concentrations in juvenile otoliths, (2) selecting, training,
268 and validating the most effective classification model, and (3) calculating the probabilities
269 of natal origin for each adult individual of both species. These steps are detailed below.

270 **1. Regression model for tracer concentrations in juvenile otoliths**

271 We developed a model relating water chemistry (Sr/Ca, Ba/Ca, and $^{87}\text{Sr}/^{86}\text{Sr}$ isotope
272 ratios) to juvenile otolith signatures using data from rivers where both water samples and
273 juvenile specimens were available. The $^{87}\text{Sr}/^{86}\text{Sr}$ isotope ratios in otoliths ratios proved

274 particularly valuable for natal origin assignment, as they precisely reflect stream water
275 values without trophic fractionation (Kennedy *et al.*, 2000; Martin *et al.*, 2013a),
276 providing unambiguous local-scale discrimination of European shad populations (Martin
277 *et al.*, 2015; Nachón *et al.*, 2020; Randon *et al.*, 2018).
278 For Sr and Ba concentrations, we applied linear regression models based on established
279 water-otolith relationships (Martin *et al.*, 2013a; Walther and Thorrold, 2008). Model
280 validation was performed using Sr/Ca and Ba/Ca ratios in a synthetic dataset,
281 incorporating data from Randon *et al.* (2018). For Sr/Ca, regressions were highly
282 significant in both *A. alosa* (F-test; $F = 44.96$, d.f. = 5, P -value = 0.001, $R^2 = 0.88$) and
283 *A. fallax* (F-test; $F = 21.68$, d.f. = 2, P -value = 0.042, $R^2 = 0.88$). For Ba/Ca, regression
284 models explained biologically meaningful proportion of variance (*A. alosa*: F-test; $F =$
285 5.67, d.f. = 5, P -value = 0.063, $R^2 = 0.44$; *A. fallax*: F-test; $F = 12.58$, d.f. = 2, P -value =
286 0.072, $R^2 = 0.79$), though these relationships were marginally non-significant at $\alpha = 0.05$.
287 This pattern likely reflects both the high natural variability of barium in otoliths (Bareille
288 *et al.*, 2024; Martin *et al.*, 2013a; Walther *et al.*, 2008) and limited sample sizes for some
289 rivers. Despite the lack of statistical significance, we retained Ba/Ca models because: (1)
290 Barium provides complementary spatial information to strontium (Bareille *et al.*, 2024;
291 Martin *et al.*, 2013a; Walther *et al.*, 2008), (2) The R^2 values (0.44-0.79) indicate
292 biologically meaningful effects (Cohen, 1988; Nakagawa and Cuthill, 2007), and (3)
293 multi-tracer integration increases assignment accuracy (Martin *et al.*, 2013a; Walther *et*
294 *al.*, 2008). While Ba/Ca alone shows limited discriminatory power, its combined use with
295 other tracers reduces misclassification risks in variable environments. The variance
296 structure of Ba/Ca was therefore incorporated into synthetic datasets to maintain
297 methodological consistency across all tracers. These models generated the reference data
298 needed for natal origin assignment in marine-bycaught shads. For rivers with only water

299 chemistry data (Table 2), we created synthetic datasets of 60 juvenile otoliths per river,
300 assuming a normal distribution ($X \sim N(\mu_i, \sigma_i)$) where μ_i (mean) and σ_i (standard
301 deviation) were derived from rivers with paired water-otolith measurements (Table 2).
302 Model parameters, calculated as sample estimates of mean and standard deviation, were
303 derived exclusively from rivers where both water chemistry data and juvenile otolith
304 samples were available (Table 2). When available juvenile otoliths numbered fewer than
305 60 specimens per river, we augmented biological samples with simulated data using
306 identical protocols to ensure methodological uniformity. Dissimilarities in microchemical
307 otolith composition among different rivers were then quantified using Canberra distance
308 (Lance and Williams, 1966, 1967).

309 **2. Model selection, training and validation**

310 An exploratory analysis was conducted to compare the performance of four classification
311 algorithms (Naïve Bayes, Quadratic Discriminant Analysis—QDA, Random Forest, and
312 Stagewise Additive Modelling with a Multi-class Exponential loss function—SAMME)
313 for assigning natal origin to European shad bycatch adults. As no significant differences
314 were found in average classification accuracy, QDA was selected due to its effectiveness
315 and lower computational cost. QDA is particularly suitable for classification tasks with
316 moderate sample sizes and has been shown to perform well while maintaining relatively
317 low computational requirements (e.g., Friedman, 1989; Hastie *et al.*, 2009; Smoliński *et*
318 *al.*, 2020).

319 The model was trained using 70% of available juvenile samples, with the remaining 30%
320 reserved for validation. To optimise performance, cross-validation with repeated
321 subsampling was applied on the training dataset, enabling selection of the optimal
322 hyperparameters. Specifically, five repetitions of 10-fold cross-validation were
323 performed to ensure robust model selection and mitigate overfitting, as recommended by

324 Hastie *et al.* (2009). This cross-validation approach was applied to the training dataset,
325 while the test dataset (comprising the remaining 30% of the samples) was used to estimate
326 accuracy and assess the model's practical performance.

327 **3. Bycatch European shads' natal rivers allocation**

328 After adjusting and validating the classification model, the probabilities of natal origin
329 for each adult individual of both species were calculated. We established three probability
330 thresholds (80%, 65%, and 50%) to assess prediction confidence across a range of
331 reliability. Adults meeting or exceeding a threshold were assigned to the corresponding
332 natal river, while specimens with probabilities below the 50% threshold were classified
333 as unknown due to insufficient assignment confidence. The use of multiple thresholds
334 allows us to evaluate the robustness of the model and identify specimens with lower
335 assignment confidence, which could provide insights into potential regional patterns in
336 misclassification. To characterise the spatial movements of bycaught individuals,
337 displacement direction (latitudinal or longitudinal) and distance from the inferred natal
338 river to the approximate bycatch location were classified. Straight-line distances were
339 estimated from the river mouth to the midpoint of the corresponding fish market's bycatch
340 locations. Distance classes followed the categories proposed by Martin *et al.* (2015), with
341 the addition of an ultra-short range (<20 km) to capture finer-scale movements.

342 All analyses were conducted using R version 4.4.3 (R Core Team, 2025). Full computer
343 codes and data necessary to replicate the analyses and produce the results reported in the
344 manuscript are available in the otoshad repository (Anonymous, 2025).

345 **Results**

346 **Natal origin baseline: water and juvenile tracers**

347 Canberra distance analysis of strontium (Sr/Ca), barium (Ba/Ca), and the $^{87}\text{Sr}/^{86}\text{Sr}$ isotope
348 ratio revealed significant microchemical differentiation between juveniles from different

349 river systems (Figure 2). Canberra distance analysis demonstrated systematic
350 microchemical differentiation across spatial scales.

351 At the regional level, granitic rivers of the Atlantic coast (Tambre to Tagus) showed
352 pronounced divergence from calcareous systems of the Cantabrian slope (Bidasoa to Eo),
353 with 71% of inter-group comparisons exhibiting distances >1.8 (40% at 2.4–3.0; 31% at
354 1.8–2.4). The Tagus River constituted a striking exception—its sedimentary geology
355 produced signatures akin to Cantabrian calcareous rivers (Pas, Deva, Sella, Nalón), with
356 distances of 0.6–1.2 (9% of comparisons). While these values reflect closer geochemical
357 affinity than typical inter-group pairs, they remain diagnostically distinguishable. At the
358 individual river scale, 81.25% of pairwise comparisons showed strong differentiation
359 (distances >1.2), with 61.25% falling within the 1.8–3.0 range. Intermediate distances
360 (1.2–1.8) accounted for 24.6% of cases, while only 14.13% exhibited low differentiation
361 (0.6–1.2). Crucially, the minimal-distance category (0–0.6; 2.09% of comparisons) was
362 restricted to immediately adjacent systems (e.g., Oiartzun-Urumea, Deva-Sella), where
363 microchemical overlap poses negligible ecological consequences. This systematic
364 variation confirms that bedrock geology, specifically the differentiation between granite
365 and sedimentary substrates, rather than geographic proximity, primarily drives otolith
366 microchemical fingerprints. However, within these broad geological categories, smaller-
367 scale variability likely arises from the heterogeneity of substrates within different
368 catchment areas.

369 The differentiation was consistent across species, with similar microchemical patterns
370 observed in juvenile *A. alosa* (Figures 3a-b-c) and *A. fallax* (Figures 4a-b-c). The $^{87}\text{Sr}/^{86}\text{Sr}$
371 isotope ratio emerged as the most effective river discriminator, revealing a clear
372 biogeochemical gradient: Cantabrian slope rivers consistently showed values <0.710 ,
373 while Atlantic façade rivers typically exceeded 0.715 (with rare exceptions). Barium

374 concentrations, while variable within individual rivers, enhanced discrimination when
375 combined with strontium and its isotope ratios. Notably, Cantabrian slope rivers exhibited
376 greater microchemical homogeneity compared to the Atlantic façade, reinforcing the
377 geological basis of these regional fingerprints.

378 **Model performance and bycatch European shads' natal rivers allocation**

379 The classification model demonstrated high predictive accuracy after 50 resampling
380 iterations (5 repetitions of 10-fold cross-validation), ensuring robustness. In the training
381 subset, classification accuracies were $94.76 \pm 0.02\%$ for *A. alosa* (Figure 5a-b) and
382 $96.83 \pm 0.01\%$ for *A. fallax* (Figure 5c-d). These results were closely mirrored in the
383 validation subset, with accuracies of 94.44% and 94.72%, respectively, indicating strong
384 generalisation capacity. The consistency between training and validation results suggests
385 that the model effectively captures microchemical variations among river systems while
386 minimising overfitting.

387 All bycaught individuals were successfully assigned to their natal rivers, with probability
388 thresholds of 50% for *A. alosa* (Figure 6a and Table 3) and 65% for *A. fallax* (Figure 6b
389 and Table 4), achieving 100% assignment rates. The highest threshold (80%) confirmed
390 high-confidence assignments for the vast majority of specimens: 88.76% of *A. alosa*
391 (79/89) and 90.32% of *A. fallax* (28/31). This demonstrates robust model performance,
392 with only a small fraction of specimens (11.6% and 8.8%, respectively) showing
393 intermediate probability values (50-80%).

394 Assignment results revealed contrasting patterns between species (Figures 7 and 8 and
395 Tables 5 and 6). Natal-origin diversity in fish markets was significantly higher for *A.*
396 *alosa* (mean = 7, range = 4-12) than for *A. fallax* (mean = 3, range = 2-3). For *A. alosa*,
397 diversity varied substantially among markets: A Coruña, Fisterra and A Guarda showed
398 the lowest diversity (4 origins each), Figueira da Foz intermediate diversity (9 origins),

399 and Malpica the highest diversity (12 origins; Figure 7). The Mondego River represented
400 both the most frequent and ubiquitous natal origin (present in all markets), followed by
401 the Minho River (absent only from A Coruña). Most individuals exhibited latitudinal
402 movements along the Atlantic coast, while longitudinal movements along the Cantabrian
403 slope were less common (Table 7). Most displacements fell within the middle (100–300
404 km) and long (300–700 km) distance categories. Ultra-short movements (<20 km) were
405 recorded only in the southern fish markets (A Guarda and Figueira da Foz), which are
406 located at the mouths of the Minho and Mondego rivers, respectively—sites with well-
407 established populations of these species. In contrast, individuals landed in the northern
408 markets (e.g., Fisterra and Malpica) tended to originate from more distant rivers. In
409 contrast, *A. fallax* exhibited limited variation, with only four natal origins identified:
410 Nalón, Ulla, Minho, and Tagus rivers. In Malpica, only two of these origins were
411 observed, compared to three in A Coruña and A Guarda (Figure 8). The Ulla River was
412 the dominant natal origin in northern fish markets (A Coruña, Malpica), while the Minho
413 River prevailed in the southern market (A Guarda). Interestingly, although the Tagus
414 River is located south of the fish markets, its signal appeared only in the northernmost
415 markets. Conversely, the Nalón River, situated to the northeast, was detected exclusively
416 in the southernmost market. Spatial displacement patterns were more constrained than in
417 *A. alosa*, reflecting the lower natal-origin diversity observed across fish markets. Most
418 individuals exhibited latitudinal movements along the Atlantic coast, while longitudinal
419 movements along the Cantabrian slope were rare and limited to a single individual in A
420 Guarda (Table 8). Middle-distance displacements (100–300 km) predominated in the
421 northern markets of A Coruña and Malpica, accounting for over 60% of cases in both. In
422 contrast, bycatch in A Guarda showed a more heterogeneous pattern: 60% of individuals
423 displayed ultra-short movements (<20 km), corresponding to the proximity of the Minho

424 River population, while the remaining individuals were split between short (20–100 km)
425 and long-distance (300–700 km) categories.

426 **Discussion**

427 To the best of our knowledge, this is the first study to explicitly link population mixing,
428 marine dispersal capacities, and metapopulation functioning with bycatch vulnerability
429 in European shads. Our results show that bycatch exposure is population-specific and
430 structured by patterns of connectivity and dispersal, rather than random. Bycatch
431 disproportionately impacts core populations, potentially altering metapopulation stability
432 and source–sink dynamics. These findings underscore the importance of incorporating
433 population structure and movement ecology into risk assessments and conservation
434 planning for wide-ranging migratory species.

435 **Spatial patterns and species-specific patterns in natal origin of bycatch individuals**

436 Our findings revealed spatial and species-specific differences in bycatch risk, as indicated
437 by natal-origin diversity across marine areas and/or fishing markets. *Alosa alosa*
438 exhibited the highest diversity of natal origins in Malpica and Figueira da Foz, while *A.*
439 *fallax* peaked in A Coruña and A Guarda. Despite their geographical proximity, these
440 critical bycatch zones showed clear species-specific segregation. Nevertheless, both
441 species displayed maximal natal-origin diversity at opposite ends of the study area,
442 suggesting a shared pattern of latitudinal coastal diffusion. This coastal diffusion pattern
443 echoes findings in European shad populations along the French Atlantic coast (Nachón *et*
444 *al.*, 2020), as well as for other *Alosa* species, such as Alewife *Alosa pseudoharengus*
445 (Wilson 1811) and Blueback herring *Alosa aestivalis* (Mitchill 1814) along the US
446 Atlantic coast (Hasselman *et al.*, 2016), and American shad *Alosa sapidissima* (Wilson
447 1811) along the coast of Maine, USA, and Nova Scotia, Canada (Walther and Thorrold,
448 2010). Such distributional patterns likely reflect a complex interplay of riverine

449 proximity, trophic resource availability, and density-dependent processes (Sánchez-
450 Hernández *et al.*, 2017; Schlosser, 1998; Taverny and Elie, 2001; Thorrold *et al.*, 2001),
451 though the precise drivers warrant further investigation.

452 Clear interspecific differences in both natal origin diversity and dispersal patterns were
453 evident. *Alosa alosa* exhibited greater natal-origin diversity and more extensive marine
454 displacements than *A. fallax*. *A. alosa* more frequently undertook middle- and long-
455 distance movements, including rare longitudinal displacements along the Cantabrian
456 slope, whereas *A. fallax* was largely restricted to latitudinal movements over middle
457 distances. This contrast aligns with previous findings indicating that *A. alosa* functions as
458 a broader metapopulation, with lower philopatry and greater dispersal capacity than *A.*
459 *fallax* (Jolly *et al.*, 2012; Martin *et al.*, 2015; Nachón *et al.*, 2020; Randon *et al.*, 2018;
460 Rougemont *et al.*, 2022; Sabatino *et al.*, 2022; Taillebois *et al.*, 2020), as well as a wider
461 distribution, particularly along the Cantabrian coast (Aprahamian *et al.*, 2015; Barber-
462 O'Malley *et al.*, 2022; Doadrio *et al.*, 2011; Mota *et al.*, 2016; Nachón *et al.*, 2016, 2019a,
463 b; Wilson and Veneranta, 2019). In general, the most frequent or dominant natal origins
464 of *A. alosa* were more widely distributed across the study area than those of *A. fallax*. For
465 *A. alosa*, Mondego and Minho origins were prevalent near the mouths of their respective
466 rivers but were also detected throughout the entire coast—especially those from the
467 Mondego River, which dominated all marine areas. By contrast, *A. fallax* displayed a
468 more spatially structured pattern: Ulla River origins were most frequent in the northern
469 marine areas near the Ulla estuary, while Minho River origins predominated in the
470 southernmost area, near the Minho mouth. However, *A. fallax* individuals assigned to the
471 Tagus River appeared in northern marine areas, suggesting that some *A. fallax* contingents
472 may also undertake broader coastal dispersal. A similar duality in spatial behaviour
473 appears to be present in both species, though more pronounced in *A. alosa*. These patterns

474 reflect the dual resident–dispersive structure previously described by Nachón *et al.* (2020)
475 for European shads along the Bay of Biscay (France), where both contingents coexisted
476 within the same population. Certain assignments, however, demand cautious
477 interpretation—notably *A. alosa* individuals attributed to the Ulla River, a system
478 currently recognized as monospecific for *A. fallax* (Nachón *et al.*, 2016). These cases may
479 reflect microchemical overlap between populations rather than true anomalies in species
480 distribution. Nonetheless, the broader patterns observed offer valuable insights into how
481 bycatch pressure interacts with species-specific dispersal traits to structure population
482 connectivity across marine space.

483 **Population mixing, metapopulation dynamics and management implications**

484 The predominance of Mondego and Minho River origins in *Alosa alosa* bycatch,
485 contrasted with Minho and Ulla River origins for *A. fallax*—consistent with these being
486 recognized the most abundant populations for each species (Mota *et al.*, 2015, 2016;
487 Nachón *et al.*, 2016; Stratoudakis *et al.*, 2016)—suggests that these populations may play
488 distinct roles within their respective metapopulation functioning. Interestingly, the Tagus
489 River emerged as a relevant contributor to *A. fallax* bycatch—an unexpected finding
490 given its distance from the fishing grounds and the assumed poor or uncertain status of
491 its populations (Almeida *et al.*, 2023; Costa *et al.*, 2001)—underscoring the importance
492 of further investigating marine population mixing and metapopulation dynamics. Within
493 a metapopulation dynamics—particularly relevant for *A. alosa* (Randon *et al.*, 2018) and
494 likely operating at a more regional scale for *A. fallax* (Jolly *et al.*, 2012; Martin *et al.*,
495 2015; Sabatino *et al.*, 2022)—these more abundant populations likely function as source
496 populations, exporting individuals to sink populations through marine dispersal. Their
497 higher abundance may drive a diffusion effect, whereby a greater absolute number of
498 emigrants leads to broader spatial dispersion. This diffusion effect has been previously

499 identified in the French coast of the Bay of Biscay, where the dominant European shad
500 continental populations in the 1980s exhibited substantial marine dispersion due to their
501 higher abundance (Nachón *et al.*, 2020). Consequently, these populations are more
502 frequently encountered by fisheries, increasing their susceptibility to bycatch. Although
503 these populations are supposed to be relatively abundant, the disproportionate bycatch
504 pressure raises concerns about their long-term viability. Smaller or less abundant
505 populations, with their limited numbers, may be more vulnerable to local extirpation due
506 to bycatch. However, if the expansion of more successful natal origins is contributing to
507 the spread of individuals into smaller populations, this could result in a natural mixing
508 process, where larger populations colonize the rivers of less abundant stocks.
509 However, it is important to note that bycatch pressure is not always proportional to the
510 relative abundance of populations. For example, Hasselman *et al.* (2016) found that
511 bycatch mortality in other *Alosa* species, such as *A. pseudoharengus* and *A. aestivalis*,
512 was disproportionately assigned to more depleted populations. This suggests that more
513 abundant populations are not necessarily the most affected by bycatch. Rather, it is those
514 populations in a more vulnerable state that may suffer the most significant impacts,
515 regardless of their relative abundance. The relationship between bycatch and population
516 depletion remains complex, and it is unclear whether these populations were already in a
517 depleted state before the study or whether bycatch is contributing to their decline. These
518 uncertainties further highlight the need for careful consideration of the status and
519 dynamics of populations when evaluating bycatch impacts. Studies on species with
520 complex population structures, such as Atlantic cod *Gadus morhua* L. 1758 in the Baltic
521 Sea, show that mixing between different populations complicates stock assessments and
522 fisheries management (Hüssy *et al.*, 2016). Treating distinct cod stocks as a single unit
523 can mask their different dynamics, highlighting the need for tailored management

524 strategies, particularly for species like European shads with metapopulation structures.

525 Likewise, Puncher *et al.* (2018) discussed similar challenges in managing migratory

526 species such as Atlantic bluefin tuna *Thunnus thynnus* (L. 1758), which exhibit population

527 differentiation across wide geographical areas. These examples underscore the

528 importance of considering spatial dynamics and population structure when developing

529 effective fisheries management strategies, especially for species like shad, where bycatch

530 can significantly impact long-term population health.

531 These species-specific differences in bycatch composition have important implications

532 for conservation and management. Notably, the more constrained spatial distribution of

533 *A. fallax*, with stronger philopatry, suggests that this species may be more vulnerable to

534 localized bycatch pressure, particularly in regions close to its natal rivers. Conversely, *A.*

535 *alosa*'s broader dispersal and higher natal-origin diversity across the fishing zones

536 indicate a more widespread vulnerability to bycatch, potentially impacting populations at

537 a regional scale. This contrast highlights the complexity of bycatch risk management:

538 species with greater dispersal may be affected by fishing pressures across larger areas,

539 while more philopatric species may face disproportionate impacts in specific zones.

540 Furthermore, *A. alosa* is less polymorphic, phenotypically plastic, and more vulnerable

541 to anthropogenic pressures throughout its life cycle than *A. fallax* (Baglinière, 2000),

542 contributing to its poorer conservation status in the study countries (Mota *et al.*, 2016;

543 Nachón *et al.*, 2016, 2019a, b; Stratoudakis *et al.*, 2016). Bycatch impacts are unevenly

544 distributed, with the most affected populations being those of *A. alosa* from the Mondego

545 and Minho rivers. These populations are critical for both ecological and socioeconomic

546 reasons, as they are among the last to support artisanal inland fisheries (Almeida *et al.*,

547 2023; Azeiteiro *et al.*, 2021; Braga *et al.*, 2022; Stratoudakis *et al.*, 2023). To remain a

548 viable species for commercial exploitation in the region, it is essential to implement

549 management measures that consider both the spatial distribution of bycatch risk and the
550 vulnerability of specific populations. The restoration efforts in the Mondego River, which
551 have improved connectivity and facilitated access to upstream habitats (Belo *et al.*, 2021),
552 demonstrate the potential for recovery. However, incidental capture threatens to reverse
553 these advances by removing individuals born in recolonized habitats, as observed in our
554 study. Consequently, integrated management strategies are essential to ensure the long-
555 term recovery and sustainability of shad populations.

556 **Methodological framework: considerations and future directions**

557 Our findings should be interpreted within the strategic framework of this study's design,
558 which prioritized spatial and biological relevance during a critical life-history phase. By
559 aligning sampling with the onset of spawning migration, when adult shads aggregate near
560 major river mouths (La Mesa *et al.*, 2015; Nachón *et al.*, 2016; Taverny and Elie, 2001;
561 Trancart *et al.*, 2014), we aimed to capture population connectivity during this
562 ecologically pivotal period. The ~400 km coastal coverage focused on key bycatch
563 hotspots and fish markets—areas where fishing activity directly overlaps with essential
564 European shad marine habitats (Nachón *et al.*, 2022a, b, c, d)—particularly near the Ulla,
565 Minho, and Mondego rivers, which sustain the region's most stable populations of both
566 species (Belo *et al.*, 2021; Mota *et al.*, 2015; Nachón *et al.*, 2016; Stratoudakis *et al.*,
567 2016, 2023).

568 For geochemical assignments, we leveraged the diagnostic power of $^{87}\text{Sr}/^{86}\text{Sr}$ ratios as
569 ideal spatial markers, given their ability to reflect distinct bedrock geologies while
570 remaining stable over ecological timescales and precisely reflecting stream water values
571 without trophic fractionation (Kennedy *et al.*, 2000; Loewen *et al.*, 2015; Martin *et al.*,
572 2013a; Zimmerman *et al.*, 2013). Complementary Sr/Ca and Ba/Ca ratios enhanced
573 discrimination precision, building on established methodologies (Fontaine *et al.*, 2025;

574 Martin *et al.*, 2013b, 2015; Nachón *et al.*, 2020; Randon *et al.*, 2018). Our fluvial baseline
575 was specifically designed to capture the regular dispersal ecology of both species (Jolly
576 *et al.*, 2012; Martin *et al.*, 2015; Nachón *et al.*, 2020; Randon *et al.*, 2018; Sabatino *et al.*,
577 2022), ensuring reliable discrimination of natal origins. At regional scales, the marked
578 geological contrast between the granitic Atlantic coast ($^{87}\text{Sr}/^{86}\text{Sr} > 0.715$) and
579 calcareous/sedimentary Cantabrian coast ($^{87}\text{Sr}/^{86}\text{Sr} < 0.710$) provided robust spatial
580 resolution. At finer scales, while natal river differentiation can be more challenging due
581 to overlapping of $^{87}\text{Sr}/^{86}\text{Sr}$ chemical signatures, the combined use of isotopic ($^{87}\text{Sr}/^{86}\text{Sr}$)
582 and elemental tracers (Sr/Ca and Ba/Ca ratios) allowed for a reliable assignment,
583 particularly for core natal systems like the Ulla, Minho, and Mondego rivers.
584 Conservative probability thresholds and QDA-based classification—selected for its
585 balance between computational efficiency and performance—yielded high assignment
586 accuracy (94.76–96.83%). This high precision was maintained even considering potential
587 chemical signature overlap in some regions, one of the primary uncertainties in natal river
588 assignments (Fontaine *et al.*, 2025). Collectively, this approach provides a robust yet
589 nuanced framework for evaluating broad-scale bycatch impacts across distinct natal
590 origins during critical life stages. However, given the inherent variability in geochemical
591 signatures across river basins (Bareille *et al.*, 2024; Martin *et al.*, 2013a) and the spatial
592 dispersal of individuals throughout their life cycle (Jolly *et al.*, 2012; Martin *et al.*, 2015;
593 Nachón *et al.*, 2020; Randon *et al.*, 2018; Sabatino *et al.*, 2022), continued refinement of
594 these methods is necessary to further improve resolution and assignment confidence.
595 Our findings offer a concise snapshot of a complex and dynamic fisheries management
596 issue. Future research should focus on developing quantitative models that link bycatch
597 patterns to riverine population distribution, structure, and abundance. The use of non-
598 invasive tools such as environmental DNA (eDNA), particularly valuable for detecting

599 rare or threatened migratory species (Antognazza *et al.*, 2019, 2021; Bhendarkar *et al.*,
600 2025), could enhance our ability to establish such links between freshwater distribution
601 and/or abundance and marine dispersal. Expanding the spatial and temporal scope of
602 studies and investigating differences across size and age classes as well as fishing gear
603 types, could help assess how bycatch impacts vary across regions, seasons, and life-
604 history stages, thereby refining management strategies. Additionally, given the complex
605 hybridization dynamics between these sister species (Taillebois *et al.*, 2020; Rougemont
606 *et al.*, 2022), future studies should evaluate the impact of bycatch on hybrid individuals,
607 which have been observed alongside *A. alosa* and *A. fallax* along the Galician coast
608 (Nachón *et al.*, 2022a, b, c, d). Understanding the natal origins and ecological role of
609 hybrids will be crucial for assessing their conservation status and adaptive potential.
610 Ultimately, integrating these insights into spatially explicit conservation strategies will be
611 key to mitigating bycatch effects. This includes implementing targeted management
612 measures that account for population-specific dispersal patterns and bycatch hotspots.

613 Conclusion

614 This study highlights how bycatch in European shads is shaped by natal origin and
615 dispersal behaviour, disproportionately affecting individuals from core, productive
616 populations and areas of high natal diversity, particularly in estuarine and coastal zones
617 under intense fishing pressure. These patterns involve exchanges between riverine and
618 marine populations across different countries, transcending political boundaries. Given
619 the widespread nature of bycatch across the species' distribution range (ICES, 2014; King
620 and Roche, 2008; La Mesa *et al.*, 2015; Nachón *et al.*, 2016; Sabatié, 1993; Trancart *et*
621 *al.*, 2014), this study provides a foundation for expanding similar approaches to other
622 regions and emphasizes the need for transnational, ecosystem-based management like
623 DiadES (2024) and DiadSea Interreg Atlantic Area project initiatives. Effective

624 conservation must integrate freshwater and marine components—often overlooked in
625 current frameworks (Verhelst *et al.*, 2021)—and prioritize critical habitats such as river
626 mouths and feeding grounds. Habitat-based functionality models, linking population
627 functionality with habitat suitability (Dambrine *et al.*, 2023), and mechanistic species
628 distribution models such as GR3D, which account for straying, reproductive strategies,
629 and oceanic distribution (Poulet *et al.*, 2023), offer promising avenues to improve bycatch
630 mitigation through natal-origin-informed restrictions. Initiatives like voluntary avoidance
631 programs emphasize the importance of fisher participation in bycatch reduction
632 (Bethoney *et al.*, 2017), with cooperation among fishermen, ecologists, and authorities
633 critical for sustainable fisheries, especially in areas with limited fisher organization
634 (Stratoudakis *et al.*, 2020).

635 **Acknowledgements**

636 This work was supported by the project *DiadES—Assessing and enhancing ecosystem*
637 *services provided by diadromous fish in a climate change context* (EAPA_18/2018),
638 funded by the *INTERREG Atlantic Area programme*. Additional funding was provided by
639 the *IMARDEALOSAS project*, supported by the *Biodiversity Foundation of the Ministry*
640 *for Ecological Transition and the Demographic Challenge*, through the *Pleamar*
641 *Programme*, co-financed by the *European Maritime and Fisheries Fund (EMFF)*. We are
642 grateful to the fish markets and fishermen's associations and fishermen that collaborated
643 in this study: A Coruña, Malpica, Fisterra, A Guarda, and Figueira da Foz. Special thanks
644 to their representatives, who facilitated the acquisition of specimens, mediated with
645 fishermen, and addressed logistical issues related to fish storage: Nacho (A Coruña),
646 Francisco (Malpica), Carlos (Fisterra), Manuel (A Guarda) and Júlio (Figueira da Foz).
647 We also thank Patrick Lambert and Philippe Jatteau at INRAE (Cestas, Bordeaux) for
648 generously providing *A. fallax* juvenile otoliths from systematic sampling in the Garonne
649 and Dordogne basins, housed in the INRAE otolith collection.

650

651

652 **Contributions**

653 **D. J. N.:** Conceptualization, methodology, validation, formal analysis, investigation, data
654 curation, writing—original draft, writing—review and editing, visualization, project
655 administration, supervision; **A. P.:** Methodology, validation, formal analysis, data
656 curation, visualization, writing—review and editing; **F. D.:** Conceptualization,
657 methodology, investigation, writing—review and editing, supervision, project
658 administration; **R. V-L.:** Investigation, visualization, writing—review and editing; **R. C.:**
659 Validation, writing—review and editing; **A. F. B.:** Investigation, data curation, writing—
660 review and editing; **C. S. M.:** Investigation, writing—review and editing; **B. R. Q.:**
661 Investigation, writing—review and editing; **P. R. A.:** Writing—review and editing, funding
662 acquisition, project administration; **C. A.:** Investigation, funding acquisition; **G. B.:**
663 Validation, investigation, writing—review and editing; **C. P.:** Investigation, validation,
664 resources; **F. Cl.:** Investigation, validation, resources; **P. L.:** Writing—review and editing,
665 funding acquisition, project administration; **G. L.:** Writing—review and editing, funding
666 acquisition, project administration, supervision; **F. C.:** Conceptualization, funding
667 acquisition, project administration, supervision. All authors have read and approved the
668 final version of the manuscript.

669

670 **References**

671 Alexandrino, P., Faria, R., Linhares, D., Castro, F., Le Corre, M., Sabatié, R., Baglinière,
672 J. L., & Weiss, S. (2006). Interspecific differentiation and intraspecific substructure in
673 two closely related clupeids with extensive hybridization, *Alosa alosa* and *Alosa fallax*.
674 *Journal of Fish Biology*, **69**, 242–259. <https://doi.org/10.1111/j.1095-8649.2006.01289.x>

675 Almeida, P. R., Mateus, C. S., Alexandre, C. M., Pedro, S., Boavida-Portugal, J., Belo, A.
676 F., Pereira, E., Silva, S., Oliveira, I., & Quintella, B. R. (2023). The decline of the
677 ecosystem services generated by anadromous fish in the Iberian Peninsula.
678 *Hydrobiologia*, **850(12)**, 2927–2961. <https://doi.org/10.1007/s10750-023-05179-6>

679 Anonymous (2025). Data and codes of the manuscript "Population-specific bycatch risks
680 in two vulnerable anadromous clupeids: insights from otolith microchemistry." Zenodo
681 Digital Repository, (V2.0). <https://doi.org/10.5281/zenodo.15462157>

682 Antognazza, C. M., Britton, J. R., De Santis, V., Kolia, K., Turunen, O. A., Davies, P.,
683 Allen, L., Hardouin, E. A., Crundwell, C., & Andreou, D. (2021). Environmental DNA
684 reveals the temporal and spatial extent of spawning migrations of European shad in a
685 highly fragmented river basin. *Aquatic Conservation: Marine and Freshwater
686 Ecosystems*, **31(8)**, 2029–2040. <https://doi.org/10.1002/aqc.3601>

687 Antognazza, C. M., Britton, J. R., Potter, C., Franklin, E., Hardouin, E. A., Gutmann
688 Roberts, C., Aprahamian, M., & Andreou, D. (2019). Environmental DNA as a non-
689 invasive sampling tool to detect the spawning distribution of European anadromous shads
690 (*Alosa* spp.). *Aquatic Conservation: Marine and Freshwater Ecosystems*, **29(1)**, 148–152.
691 <https://doi.org/10.1002/aqc.3010>

692 Aprahamian, M., Alexandrino, P., Antunes, C., Cobo, F., King, J., Lambert, P., Martin, J.,
693 Mota, M., Nachón, D. J., & Silva, S. (2015). Shads state of the art. In P. R. Almeida & E.
694 Rochard (Eds.), *ICES Report of the Workshop on Lampreys and Shads (WKLS)*, 27–29

695 November 2014, Lisbon, Portugal, ICES CM 2014/SSGEF:13 (pp. 46–105). International
696 Council for the Exploration of the Sea, Copenhagen. Available at: <https://ices->
697 library.figshare.com/articles/report/Report_of_the_Workshop_on_Lampreys_and_Shads
698 _WKLS_/18613613?file=33391082 (last accessed 15 April 2025).
700 Aprahamian, M. W., Aprahamian, C. D., Baglinière, J. L., Sabatié, R., & Alexandrino, P.
701 (2003). *Alosa alosa and Alosa fallax spp.: Literature review and bibliography*. (R&D
702 Technical Report W1-014/TR). Environment Agency, Bristol. Available at:
703 <https://assets.publishing.service.gov.uk/media/5a7c543840f0b62dffde1617/sw1-014-tr->
704 e-e.pdf (last accessed 15 April 2025).
705 Aprahamian, M. W., Aprahamian, C. D., & Knights, A. M. (2010). Climate change and
706 the green energy paradox: the consequences for twaite shad *Alosa fallax* from the River
707 Severn, UK. *Journal of Fish Biology*, **77**(8), 1912–1930. <https://doi.org/10.1111/j.1095->
708 8649.2010.02775.x
709 Ashley, M., Murillas, A., Muench, A., Marta-Pedroso, C., Rodwell, L., Rees, S., Rendle,
710 E., Bašić, T., Copp, G. H., Díaz, E., Nachón, D. J., Lambert, P., & Lassalle, G. (2023). An
711 evidence base of ecosystems services provided by diadromous fish in the European
712 Atlantic Area. *Ecosystem Services*, **64**, 101559.
713 <https://doi.org/10.1016/j.ecoser.2023.101559>
714 Azeiteiro, U. M., Pereira, M. J., Soares, A. M., Braga, H. O., Morgado, F., Sousa, M. C.,
715 Dias, J. M., & Antunes, C. (2021). Dynamics of two anadromous species in a dam
716 intersected river: analysis of two 100-year datasets. *Fishes*, **6**(2), 21.
717 <https://doi.org/10.3390/fishes6020021>
718 Baglinière, J. L. (2000). Le genre *Alosa* sp. In J. L. Baglinière & P. Elie (Eds.), *Les aloses*
719 (*Alosa alosa et Alosa fallax spp.*). *Écobiologie et variabilité des populations* (pp. 3–30).
Paris: CEMAGREF-INRA Editions.

720 Baglinière, J. L., Sabatié, M. R., Rochard, E., Alexandrino, P., & Aprahamian, M. W.

721 (2003). The allis shad *Alosa alosa*: Biology, ecology, range, and status of populations.

722 *American Fisheries Society Symposium*, **35**, 85–102.

723 Barber-O'Malley, B., Lassalle, G., Lambert, P., & Quinton, E. (2022). Dataset on

724 European diadromous species distributions from 1750 to present time in Europe, North

725 Africa and the Middle East. *Data in Brief*, **40**, 107821.

726 <https://doi.org/10.1016/j.dib.2022.107821>

727 Bareille, G., Vignon, M., Chappaz, A., Fontaine, A., Tabouret, H., Morat, F., Martin, J.,

728 Aymes, J.C., Daverat, F., Pécheyran, C., & Donard, O. (2024). Freshwater fish otoliths

729 record signals from both water and physiological processes: new insights from Sr/Ca and

730 Ba/Ca ratios. *Canadian Journal of Fisheries and Aquatic Sciences*, **81**, 223–240.

731 <https://doi.org/10.1139/cjfas-2022-0030>

732 Barreiro, M., Abad, E., Antelo, L. T., Fernández, J. C., Pereira, C., Ovalle, J. C., Pérez

733 Martín, R. I., & Valeiras, J. (2025). Development of smart electronic observation onboard

734 technologies for more sustainable fisheries management. *Frontiers in Marine Science*,

735 **12**, 1545718. <https://doi.org/10.3389/fmars.2025.1545718>

736 Belo, A. F., Cardoso, G., Pereira, E., Quintella, B. R., Mateus, C. S., Alexandre, C. M.,

737 Batista, C., Telhado, A., Quadrado, M. F., & Almeida, P. R. (2021). Fish pass use by shads

738 (*Alosa alosa* L. and *Alosa fallax* [Lacépède, 1803]): Implications for monitoring and

739 management. *Ecohydrology*, **14**(5), e2292. <https://doi.org/10.1002/eco.2292>

740 Bethoney, N. D., Schondelmeier, B. P., Kneebone, J., & Hoffman, W. S. (2017). Bridges

741 to best management: effects of a voluntary bycatch avoidance program in a mid-water

742 trawl fishery. *Marine Policy*, **83**, 172–178. <https://doi.org/10.1016/j.marpol.2017.06.003>

743 Bhendarkar, M., Claver, C., Mendibil, I., Fraija-Fernández, N., Nachón, D. J., Davison,

744 P. I., Bašić, T., O'Leary, C., Roche, W. K., Azpiroz, I., Acolas, M-L., Lekuona, A., Ardaiz,

745 J., Díaz, E., Lambert, P., Lassalle, G., & Rodríguez-Ezpeleta, N. (2025). Lessons learned
746 from applying eDNA surveying to diadromous fish detection across the north-east
747 Atlantic region. *bioRxiv*, 2025–01. <https://doi.org/10.1101/2025.01.31.635873>

748 Braga, H. O., Bender, M. G., Oliveira, H. M., Pereira, M. J., & Azeiteiro, U. M. (2022).
749 Fishers' knowledge on historical changes and conservation of Allis shad-*Alosa alosa*
750 (Linnaeus, 1758) in Minho River, Iberian Peninsula. *Regional Studies in Marine Science*,
751 **49**, 102094. <https://doi.org/10.1016/j.rsma.2021.102094>

752 Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms
753 and applications. *Marine Ecology Progress Series*, **188**, 262–297.
754 <https://doi.org/10.3354/meps188263>

755 Campana, S. E., & Thorrold, S. R. (2001). Otoliths, increments, and elements: keys to a
756 comprehensive understanding of fish populations? *Canadian Journal of Fisheries and*
757 *Aquatic Sciences*, **58(1)**, 30–38. <https://doi:10.1139/f00-177>

758 Chuenpagdee, R., Morgan, L. E., Maxwell, S. M., Norse, E. A., & Pauly, D. (2003).
759 Shifting gears: assessing collateral impacts of fishing methods in US waters. *Frontiers in*
760 *Ecology and the Environment*, **1(10)**, 517–524. [https://doi.org/10.1890/1540-9295\(2003\)001\[0517:SGACIO\]2.0.CO;2](https://doi.org/10.1890/1540-9295(2003)001[0517:SGACIO]2.0.CO;2)

761 Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). New
762 York, NY: Lawrence Erlbaum Associates.

763 Costa, M. J., Almeida, P. R., Domingos, I. M., Costa, J. L., Correia, M. J., Chaves, M. L.,
764 & Teixeira, C. M. (2001). Present status of the main shads' populations in Portugal.
765 *Bulletin Français de la Pêche et de la Pisciculture*, **(362-363)**, 1109–1116.
766 <https://doi.org/10.1051/kmae:2001040>

767 Dambrine, C., Lambert, P., Elliott, S., Boavida-Portugal, J., Mateus, C. S., O'Leary, C.,
768 Pauwels, I., Poole, R., Roche, W., Van den Bergh, E., Vanoverbeke, J., & Lassalle, G.

770 (2023). Connecting population functionality with distribution model predictions to
771 support freshwater and marine management of diadromous fish species. *Biological
772 Conservation*, **287**, 110324. <https://doi.org/10.1016/j.biocon.2023.110324>

773 Daverat, F., & Martin, J. (2016). Microchemical and schlerochronological analyses used
774 to infer fish migration. In P. Morais & F. Daverat (Eds.), *An Introduction to Fish
775 Migration* (pp. 149–168). Boca Raton: CRC Press. <https://doi.org/10.1201/b21321>

776 Daverat, F., Martin, J., Fablet, R., & Pécheyran, C. (2011). Colonisation tactics of three
777 temperate catadromous species, eel *Anguilla anguilla*, mullet *Liza ramada* and flounder
778 *Platyichthys flesus*, revealed by Bayesian multielemental otolith microchemistry
779 approach. *Ecology of Freshwater Fish*, **20**, 42–51. [https://doi.org/10.1111/j.1600-0633.2010.00454.x](https://doi.org/10.1111/j.1600-
780 0633.2010.00454.x)

781 Davies, P., Britton, R. J., Nunn, A. D., Dodd, J. R., Crundwell, C., Velterop, R.,
782 Ó'Maoiléidigh, N., O'Neill, R., Sheehan, V., Stamp, T., & Bolland, J. D. (2020). Novel
783 insights into the marine phase and river fidelity of anadromous twaite shad *Alosa fallax*
784 in the UK and Ireland. *Aquatic Conservation: Marine and Freshwater Ecosystems*, **30**(7),
785 1291–1298. <https://doi.org/10.1002/aqc.3343>

786 Davies, R. W., Cripps, S. J., Nickson, A., & Porter, G. (2009). Defining and estimating
787 global marine fisheries bycatch. *Marine Policy*, **33**(4), 661–672.
788 <https://doi.org/10.1016/j.marpol.2009.01.003>

789 DiadES (2024). *A Transnational and Non-Sectoral Approach to Diadromous Fish Species
790 Management*. Available at: [https://diades.eu/wp-
791 content/uploads/2024/03/DiadES_policy_brief.pdf](https://diades.eu/wp-
791 content/uploads/2024/03/DiadES_policy_brief.pdf) (last accessed 16 April 2025)

792 DiadSea Interreg Atlantic Area project. DiadSea project. Available at:
793 <https://www.atlanticarea.eu/discover-our-projects/approved-projects/diadsea> (last
794 accessed 15 April 2025).

795 Doadrio, I., Perea, S., Garzón-Heydt, P., & González, J. L. (2011). *Ictiofauna continental*
796 *española. Bases para su seguimiento*. Madrid: DG Medio Natural y Política Forestal,
797 MARM.

798 Elie, P., Taverny, C., Mennesson-Boisneau, C., & Sabatié, M. R. (2000). L'exploitation
799 halieutique. In J. L. Baglinière & P. Elie (Eds.), *Les aloses (Alosa alosa et Alosa fallax*
800 *spp.). Écobiologie et variabilité des populations* (pp. 199–226). Paris: CEMAGREF-
801 INRA Editions.

802 Friedman, J. H. (1989). Regularized discriminant analysis. *Journal of the American*
803 *statistical association*, **84(405)**, 165–175.
804 <https://doi.org/10.1080/01621459.1989.10478752>

805 Fontaine, A., Vignon, M., Tabouret, H., Holub, A., Barranco, G., Bosc, S., Caux, I.,
806 Nachón, D. J., Elso, J., Caballero, P., Pecheyran, C., & Bareille, G. (2025). Inter-annual
807 dispersal stability within the Atlantic salmon metapopulation from the Bay of Biscay.
808 *Fisheries Research*, **284**, 107323. <https://doi.org/10.1016/j.fishres.2025.107323>

809 Gray, C. A., & Kennelly, S. J. (2018). Bycatches of endangered, threatened and protected
810 species in marine fisheries. *Reviews in Fish Biology and Fisheries*, **28(3)**, 521–541.
811 <https://doi.org/10.1007/s11160-018-9520-7>

812 Hall, C. J., Jordaan, A., & Frisk, M. G. (2012). Centuries of anadromous forage fish loss:
813 consequences for ecosystem connectivity and productivity. *BioScience*, **62(8)**, 723–731.
814 <https://doi.org/10.1525/bio.2012.62.8.5>

815 Hasselman, D. J., Anderson, E. C., Argo, E. E., Bethoney, N. D., Gephard, S. R., Post, D.
816 M., Schondelmeier, B. P., Schultz, T. F., Willis, T. V., & Palkovacs, E. P. (2016). Genetic
817 stock composition of marine bycatch reveals disproportional impacts on depleted river
818 herring genetic stocks. *Canadian Journal of Fisheries and Aquatic Sciences*, **73(6)**, 951–
819 963. <https://doi.org/10.1139/cjfas-2015-0402>

820 Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction* (2nd ed.). New York, NY: Springer.

822 <https://doi.org/10.1007/978-0-387-84858-7>

823 Hazen, E. L., Scales, K. L., Maxwell, S. M., Briscoe, D. K., Welch, H., Bograd, S. J.,

824 Bailey, H., Benson, S. R., Eguchi, T., Suzy, H. D., Costa, D. P., Crowder, L. B., &

825 Lewison, R. L. (2018). A dynamic ocean management tool to reduce bycatch and support

826 sustainable fisheries. *Science advances*, **4**(5), eaar3001.

827 <https://doi.org/10.1126/sciadv.aar3001>

828 Hüssy, K., Hinrichsen, H. H., Eero, M., Mosegaard, H., Hemmer-Hansen, J., Lehmann,

829 A., & Lundgaard, L. S. (2016). Spatio-temporal trends in stock mixing of eastern and

830 western Baltic cod in the Arkona Basin and the implications for recruitment. *ICES Journal of Marine Science*, **73**(2), 293–303. <https://doi.org/10.1093/icesjms/fsv227>

831 ICES (2014). *Report of the Working Group on Bycatch of Protected Species (WGBYC)*. Report ICES CM 2014/ACOM:28, Copenhagen. Available at: https://ices-library.figshare.com/articles/report/Report_of_the_Working_Group_on_Bycatch_of_Protected_Species_WGBYC_19282769 (last accessed 15 April 2025).

833 ICES (2015). *Report of the Workshop on Lampreys and Shads (WKLS)*, ICES CM 2014/SSGEF:13, Lisbon. Available at: https://ices-library.figshare.com/articles/report/Report_of_the_Workshop_on_Lampreys_and_Shads_WKLS_18613613 (last accessed 15 April 2025).

834 ICES (2022). *ICES Roadmap for bycatch advice on protected, endangered and threatened species* (2022). ICES Technical Guidelines. Report. Available at: https://ices-library.figshare.com/articles/report/ICES_Roadmap_for_bycatch_advice_on_protected_endangered_and_threatened_species_2022_19657167/1?file=35854196 (last accessed 15 April 2025).

845 Jolly, M. T., Aprahamian, M. W., Hawkins, S. J., Henderson, P. A., Hillman, R.,

846 O'Maoiléidigh, N., Maitland, P. S., Piper, R., & Genner, M. J. (2012). Population genetic

847 structure of protected allis shad (*Alosa alosa*) and twaite shad (*Alosa fallax*). *Marine*

848 *Biology*, **159**, 675–687. <https://doi.org/10.1007/s00227-011-1845-x>

849 Kalish, J. M. (1989). Otolith microchemistry: validation of the effects of physiology, age

850 and environment on otolith composition. *Journal of Experimental Marine Biology and*

851 *Ecology*, **132**, 151–178. [https://doi.org/10.1016/0022-0981\(89\)90126-3](https://doi.org/10.1016/0022-0981(89)90126-3)

852 Kennedy, B. P., Blum, J. D., Folt, C. L., & Nislow, K. H. (2000). Using natural strontium

853 isotopic signatures as fish markers: methodology and application. *Canadian Journal of*

854 *Fisheries and Aquatic Sciences*, **57(11)**, 2280–2292. <https://doi.org/10.1139/f00-206>

855 King, J. J., & Roche, W. K. (2008). Aspects of anadromous Allis shad (*Alosa alosa*

856 Linnaeus) and Twaite shad (*Alosa fallax* Lacépède) biology in four Irish Special Areas of

857 Conservation (SACs): Status, spawning indications and implications for conservation

858 designation. In S. Dufour, E. Prévost, E. Rochard, & P. Williot (Eds.), *Fish and diadromy*

859 *in Europe: Ecology, management, conservation* (pp. 145–154). Springer Netherlands.

860 https://doi.org/10.1007/978-1-4020-8548-2_15

861 La Mesa, G., Annunziatellis, A., Filidei Jr, E., & Fortuna, C. M. (2015). Modeling

862 environmental, temporal and spatial effects on twaite shad (*Alosa fallax*) by-catches in

863 the central Mediterranean Sea. *Fisheries Oceanography*, **24(2)**, 107–117.

864 <https://doi.org/10.1111/fog.12093>

865 Lance, G. N., & Williams, W. T. (1966). Computer programs for hierarchical polythetic

866 classification ('similarity analysis'). *The Computer Journal*, **9(1)**, 60–64.

867 <https://doi.org/10.1093/comjnl/9.1.60>

868 Lance, G. N., & Williams, W. T. (1967). A general theory of classificatory sorting
869 strategies: 1. Hierarchical systems. *The Computer Journal*, **9**(4), 373–380.
870 <https://doi.org/10.1093/comjnl/9.4.373>

871 Lassalle, G., Trancart, T., Lambert, P., & Rochard, E. (2008). Latitudinal variations in age
872 and size at maturity among allis shad *Alosa alosa* populations. *Journal of Fish Biology*,
873 **73**(7), 1799–1809. <https://doi.org/10.1111/j.1095-8649.2008.02036.x>

874 Limburg, K. E., & Waldman, J. R. (2009). Dramatic declines in North Atlantic
875 diadromous fishes. *BioScience*, **59**(11), 955–965.
876 <https://doi.org/10.1525/bio.2009.59.11.7>

877 Loewen, T. N., Reist, J. D., Yang, P., Koleszar, A., Babaluk, J. A., Mochnacz, N., &
878 Halden, N. M. (2015). Discrimination of northern form Dolly Varden Char (*Salvelinus*
879 *malma malma*) stocks of the North Slope, Yukon and Northwest Territories, Canada via
880 otolith trace elements and $^{87}\text{Sr}/^{86}\text{Sr}$ isotopes. *Fisheries Research*, **170**, 116–124.
881 <https://doi.org/10.1016/j.fishres.2015.05.025>

882 Maitland, P. S., & Lyle, A. A. (2005). Ecology of Allis shad *Alosa alosa* and Twaite shad
883 *Alosa fallax* in the Solway Firth, Scotland. *Hydrobiologia*, **534**, 205–221.
884 <https://doi.org/10.1007/s10750-004-1571-1>

885 Martin, J., Bareille, G., Bérail, S., Pécheyran, C., Daverat, F., Bru, N., Tabouret, H., &
886 Donard, O. (2013a). Spatial and temporal variations in otolith chemistry and relationships
887 with water chemistry: a useful tool to distinguish Atlantic salmon *Salmo salar* parr from
888 different natal streams. *Journal of Fish Biology*, **82**(5), 1556–1581.
889 <https://doi.org/10.1111/jfb.12089>

890 Martin, J., Bareille, G., Berail, S., Pécheyran, C., Gueraud, F., Lange, F., Daverat, F., Bru,
891 N., Beall, E., Barracou, D., & Donard, O. (2013b). Persistence of a southern Atlantic
892 salmon population: diversity of natal origins from otolith elemental and Sr isotopic

893 signatures. *Canadian Journal of Fisheries and Aquatic Sciences*, **70**, 182–197.

894 <https://doi.org/10.1139/cjfas-2012-0284>

895 Martin, J., Rougemont, Q., Drouineau, H., Launey, S., Jatteau, P., Bareille, G., Berail, S.,

896 Pécheyran, C., Feunteun, E., Roques, S., Clavé, D., Nachón, D. J., Antunes, C., Mota, M.,

897 Réveillac, E., & Daverat, F. (2015). Dispersal capacities of anadromous Allis shad

898 population inferred from a coupled genetic and otolith approach. *Canadian Journal of*

899 *Fisheries and Aquatic Sciences*, **72(7)**, 991–1003. <https://doi.org/10.1139/cjfas-2014-0510>

900

901 McDowall, R. M. (1988). *Diadromy in fishes: Migrations between freshwater and marine*

902 *environments*. Londres, Uk: Croom Helm.

903 McDowall, R. M. (2001). Anadromy and homing: two life-history traits with adaptive

904 synergies in salmonid fishes? *Fish and Fisheries*, **2(1)**, 78–85.

905 <https://doi.org/10.1046/j.1467-2979.2001.00036.x>

906 Mota, M., Bio, A., Bao, M., Pascual, S., Rochard, E., & Antunes, C. (2015). New insights

907 into biology and ecology of the Minho River Allis shad (*Alosa alosa* L.): contribution to

908 the conservation of one of the last European shad populations. *Reviews in Fish Biology*

909 and Fisheries, **25**, 395–412. <https://doi.org/10.1007/s11160-015-9383-0>

910 Mota, M., Rochard, E., & Antunes, C. (2016). Status of the diadromous fish of the Iberian

911 Peninsula: Past, present and trends. *Limnetica*, **35(1)**, 1–18.

912 <https://doi.org/10.23818/limn.35.01>

913 Nachón, D. J. (2017). *Dinámica poblacional y microquímica de los otolitos de las*

914 *poblaciones de saboga, Alosa fallax (Lacépède, 1803), de los ríos Ulla y Miño* (Doctoral

915 thesis, Universidade de Santiago de Santiago de Compostela, Spain).

916 <https://doi.org/10.13140/RG.2.2.18821.35044>

917 Nachón, D. J., Bareille, G., Drouineau, H., Tabouret, H., Taverny, C., Boisneau, C., Berail,
918 S., Pécheyran, C., Claverie, F., & Daverat, F. (2020). 1980s population-specific
919 compositions of two related anadromous shad species during the oceanic phase
920 determined by microchemistry of archived otoliths. *Canadian Journal of Fisheries and*
921 *Aquatic Sciences*, **77**(1), 164–176. <https://doi.org/10.1139/cjfas-2018-0444>

922 Nachón D. J., Mota M., Antunes C., Servia M. J., & Cobo F. (2016). Marine and
923 continental distribution and dynamic of the early spawning migration of twaite shad
924 (*Alosa fallax* (Lacépède, 1803)) and allis shad (*Alosa alosa* (Linnaeus, 1758)) in the
925 north-west of the Iberian Peninsula. *Marine and Freshwater Research*, **67**, 1229–1240.
926 <https://doi.org/10.1071/MF14243>

927 Nachón, D. J., Pico, A., Vieira-Lanero, R., Barca, S., Cobo, M. d. C., & Cobo, F. (2022a).
928 Analysis of Bycatches of Two Related Anadromous Shad Species in Fisheries along the
929 Galician Atlantic Coast (NW Iberian Peninsula, Southwest Europe). *Biology and Life*
930 *Sciences Forum*, **13**(1), 57. <https://doi.org/10.3390/blsf2022013057>

931 Nachón, D. J., Pico, A., Vieira-Lanero, R., Barca, S., Cobo, M. d. C., & Cobo, F. (2022c).
932 Biology and Ecology of Two Anadromous Species of the Genus *Alosa* (*A. alosa* and *A.*
933 *fallax*) in the Galician Coastal Marine Environment Based on Bycatch Individuals:
934 Proposals for the Improvement of Their Protection and Management. *Biology and Life*
935 *Sciences Forum*, **13**(1), 55. <https://doi.org/10.3390/blsf2022013055>

936 Nachón, D. J., Vieira-Lanero, R., Barca, S., Pico, A., Cobo, M. d. C., & Cobo, F. (2022b).
937 Análisis de las capturas incidentales y de los descartes de dos especies anádromas del
938 género *Alosa* (*A. alosa* y *A. fallax*) efectuados por la flota costera de Galicia. In M. Rey-
939 Méndez, J. Fernández Casal, M. A. Lastres, N. González-Henríquez, & X. A. Padín
940 (Eds.), *Foro dos Recursos Mariños e da Acuicultura das Rías Galegas* (pp. 173–179).
941 Santiago de Compostela: Foroacui.

942 Nachón, D. J., Vieira-Lanero, R., Barca, S., Pico, A., Cobo, M. d. C., & Cobo, F. (2022d).

943 Biología y ecología de dos especies anádromas del género *Alosa* (*A. alosa* y *A. fallax*) en

944 el medio marino costero gallego a partir de los datos aportados por las capturas

945 accidentales: propuestas para la mejora de su protección y gestión. In M. Rey-Méndez, J.

946 Fernández Casal, M. A. Lastres, N. González-Henríquez, & X. A. Padín (Eds.), *Foro dos*

947 *Recursos Mariños e da Acuicultura das Rías Galegas* (pp. 181–188). Santiago de

948 Compostela: Foroacui.

949 Nachón, D. J., Vieira, R., & Cobo, F. (2019a). Sábalo – *Alosa alosa*. In P. López, J. Martín,

950 & F. Cobo (Eds.), *Enciclopedia Virtual de los Vertebrados Españoles*. Museo Nacional

951 de Ciencias Naturales, Madrid. Available at: <http://www.vertebradosibericos.org/peces/aloalo.html> (last accessed 15 April 2025).

952 Nachón, D. J., Vieira, R., & Cobo, F. (2019b). Saboga – *Alosa fallax*. In P. López, J.

953 Martín, & F. Cobo (Eds.), *Enciclopedia Virtual de los Vertebrados Españoles*. Museo

954 Nacional de Ciencias Naturales, Madrid. Available at: <http://www.vertebradosibericos.org/peces/alofal.html> (last accessed 15 April 2025).

955 Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical

956 significance: A practical guide for biologists. *Biological Reviews*, **82**(4), 591–605.

957 <https://doi.org/10.1111/j.1469-185X.2007.00027.x>

958 OSPAR (2009). Background Document for Allis Shad *Alosa alosa*. *Biodiversity Series*.

959 Available at: http://qsr2010.ospar.org/media/assessments/Species/P00418_Allis_shad.pdf (last

960 accessed 15 April 2025).

961 Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore,

962 P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern,

963 B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing,

967 F., Thompson, S. A., & Richardson, A. J. (2013). Global imprint of climate change on
968 marine life. *Nature Climate Change*, **3**(10), 919–925.
969 <https://doi.org/10.1038/nclimate1958>

970 Poulet, C., Barber-O'Malley, B. L., Lassalle, G., & Lambert, P. (2022). Quantification of
971 land–sea nutrient fluxes supplied by allis shad across the species' range. *Canadian*
972 *Journal of Fisheries and Aquatic Sciences*, **79**(3), 395–409. <https://doi.org/10.1139/cjfas-2021-0012>

973 Poulet, C., Lasalle, G., Jordaan, A., Limburg, K. E., Nack, C. C., Nye, J. A., O'Malley,
974 A., Barber-O'Malley, B. L., Stich, D. S., Waldman, J. R., Zydlowski, J., & Lambert, P.
975 (2023). Effect of straying, reproductive strategies, and ocean distribution on the structure
976 of American shad populations. *Ecosphere*, **14**(2), e4712.
977 <https://doi.org/10.1002/ecs2.4712>

978 Puncher, G. N., Cariani, A., Maes, G. E., Van Houdt, J., Herten, K., Cannas, R.,
979 Rodríguez-Ezpeleta, N., Albaina, A., Estonba, A., Lutcavage, M., Hanke, A., Rooker, J.,
980 Franks, J. S., Quattro, J. M., Basilone, G., Fraile, I., Laconcha, U., Goñi, N., Kimoto, A.,
981 Macías, D., Alemany, F., Deguara, S., Zgozi, S., Garibaldi, F., Oray, I., K., Karakulak, F.,
982 S., Abid, N., Santos, M. N., Addis, P., Arrizabalaga, H., & Tinti, F. (2018). Spatial
983 dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea
984 revealed using next-generation sequencing. *Molecular Ecology Resources*, **18**(3), 620–
985 638. <https://doi.org/10.1111/1755-0998.12764>

986 Randon, M., Daverat, F., Bareille, G., Jatteau, P., Martin, J., Pecheyran, C., & Drouineau,
987 H. (2018). Quantifying exchanges of Allis shads between river catchments by combining
988 otolith microchemistry and abundance indices in a Bayesian model. *ICES Journal of*
989 *Marine Science*, **75**(1), 9–21. <https://doi.org/10.1093/icesjms/fsx148>

991 Rougemont, Q., Perrier, C., Besnard, A. L., Lebel, I., Abdallah, Y., Feunteun, E.,
992 Réveillac, R., Lasne, E., Acou, A., Nachón, D. J., Cobo, F., Evanno, G., Baglinière, J. L.,
993 & Launey, S. (2022). Population genetics reveals divergent lineages and ongoing
994 hybridization in a declining migratory fish species complex. *Heredity*, **129**(2), 137–151.
995 <https://doi.org/10.1038/s41437-022-00547-9>

996 Rougier, T., Lambert, P., Drouineau, H., Girardin, M., Castelnau, G., Carry, L.,
997 Aprahamian, M. W., Rivot, E., & Rochard, E. (2012). Collapse of allis shad, *Alosa alosa*,
998 in the Gironde system (southwest France): environmental change, fishing mortality, or
999 Allee effect?. *ICES Journal of Marine Science*, **69**(10), 1802–1811.
1000 <https://doi.org/10.1093/icesjms/fss149>

1001 Sabatié, M. R. (1993). *Recherches sur l'écologie et la biologie des aloses au Maroc* (*Alosa*
1002 *alosa* *Linné, 1758* et *Alosa fallax* *Lacépède, 1803*): *exploitation et taxonomie des*
1003 *populations atlantiques, bioécologie des aloses de l'oued Sebou* (Doctoral thesis,
1004 Université de Bretagne Occidentale, France).

1005 Sabatino, S. J., Faria, R., & Alexandrino, P. B. (2022). Genetic structure, diversity, and
1006 connectivity in anadromous and freshwater *Alosa alosa* and *A. fallax*. *Marine Biology*,
1007 **169**(1), 1–14. <https://doi.org/10.1007/s00227-021-03970-4>

1008 Sánchez-Hernández, J., Gabler, H. M., & Amundsen, P. A. (2017). Prey diversity as a
1009 driver of resource partitioning between river-dwelling fish species. *Ecology and*
1010 *Evolution*, **7**(7), 2058–2068. <https://doi.org/10.1002/ece3.2793>

1011 Schlosser, I. J. (1998). Fish recruitment, dispersal, and trophic interactions in a
1012 heterogeneous lotic environment. *Oecologia*, **113**(2), 260–268.
1013 <https://doi.org/10.1007/s004420050377>

1014 Smoliński, S., Schade, F. M., & Berg, F. (2020). Assessing the performance of statistical
1015 classifiers to discriminate fish stocks using Fourier analysis of otolith shape. *Canadian*

1016 *Journal of Fisheries and Aquatic Sciences*, **77(4)**, 674–683. <https://doi.org/10.1139/cjfas-2019-0251>

1018 Stratoudakis, Y., Antunes, C., Correia, C., Belo, A. F., & Almeida, P. R. (2023). Riverine
1019 communities and management systems for anadromous fisheries in the Iberian Peninsula:
1020 global strategy, local realities. *Reviews in Fish Biology and Fisheries*, **33(3)**, 875–892.
1021 <https://doi.org/10.1007/s11160-022-09742-7>

1022 Stratoudakis, Y., Correia, C., Belo, A. F., & Almeida, P. R. (2020). Improving participated
1023 management under poor fishers' organization: Anadromous fishing in the estuary of
1024 Mondego River, Portugal. *Marine Policy*, **119**, 104049.
1025 <https://doi.org/10.1016/j.marpol.2020.104049>

1026 Stratoudakis, Y., Mateus, C. S., Quintella, B. R., Antunes, C., & Almeida, P. R. (2016).
1027 Exploited anadromous fish in Portugal: suggested direction for conservation and
1028 management. *Marine Policy*, **73**, 92–99. <https://doi.org/10.1016/j.marpol.2016.07.031>

1029 Taillebois, L., Sabatino, S., Manicki, A., Daverat, F., Nachón, D. J., & Lepais, O. (2020).
1030 Variable outcomes of hybridization between declining *Alosa alosa* and *Alosa fallax*.
1031 *Evolutionary applications*, **13(4)**, 636–651. <https://doi.org/10.1111/eva.12889>

1032 Taverny, C. (1991). *Contribution à la connaissance de la dynamique des populations*
1033 *d'aloises (Alosa alosa L. et Alosa fallax Lacépède), dans le système fluvio-estuarien de la*
1034 *Gironde: pêche, biologie et écologie. Étude particulière de la dévalaison et de l'impact*
1035 *des activités humaines* (Doctoral thesis, Université de Bordeaux 1, France).

1036 Taverny, C., Belaud, A., Elie, P., & Sabatié, M. R. (2000a). Influence des activités
1037 humaines. In J. L. Baglinière & P. Elie (Eds.), *Les aloises (Alosa alosa et Alosa fallax*
1038 *spp.). Écobiologie et variabilité des populations* (pp. 227–248). Paris: INRA-
1039 CEMAGREF.

1040 Taverny, C., Cassou-Leins, J. J., Cassou-Leins, F., & Elie, P. (2000b). De l'œuf à l'adulte
1041 en mer. In J. L. Baglinière & P. Elie (Eds.), *Les alooses (Alosa alosa et Alosa fallax spp.)*.
1042 *Écobiologie et variabilité des populations* (pp. 93–124). Paris: INRA-CEMAGREF.
1043 Taverny, C., & Elie, P. (2001). Répartition spatio-temporelle de la grande alose *Alosa*
1044 *alosa* (Linné, 1766) et de l'aloise feinte *Alosa fallax* (Lacépède, 1803) dans le Golfe de
1045 Gascogne. *Bulletin Français de la Pêche et de la Pisciculture*, **362/363**, 803–821.
1046 <https://doi.org/10.1051/kmae:2001020>

1047 Thorrold, S. R., Latkoczy, C., Swart, P. K., & Jones, C. M. (2001). Natal homing in a
1048 marine fish metapopulation. *Science*, **291(5502)**, 297–299.
1049 <https://doi.org/10.1126/science.291.5502.297>

1050 Trancart, T., Rochette, S., Acou, A., Lasne, E., & Feunteun, E. (2014). Modeling marine
1051 shad distribution using data from French bycatch fishery surveys. *Marine Ecology
1052 Progress Series*, **511**, 181–192. <https://doi.org/10.3354/meps10907>

1053 Verhelst, P., Reubens, J., Buysse, D., Goethals, P., Van Wichelen, J., & Moens, T. (2021).
1054 Toward a roadmap for diadromous fish conservation: the Big Five considerations.
1055 *Frontiers in Ecology and the Environment*, **19(7)**, 396–403.
1056 <https://doi.org/10.1002/fee.2361>

1057 Walther, B. D., & Thorrold, S. R. (2006). Water, not food, contributes the majority of
1058 strontium and barium deposited in the otoliths of a marine fish. *Marine Ecology Progress
1059 Series*, **311**, 125–130. <https://doi.org/10.3354/meps311125>

1060 Walther, B. D., & Thorrold, S. R. (2008). Continental-scale variation in otolith
1061 geochemistry of juvenile American shad (*Alosa sapidissima*). *Canadian Journal of
1062 Fisheries and Aquatic Sciences*, **65(12)**, 2623–2635. <https://doi.org/10.1139/F08-164>

1063 Walther, B. D., & Thorrold, S. R. (2010). Limited diversity in natal origins of immature
1064 anadromous fish during ocean residency. *Canadian Journal of Fisheries and Aquatic
1065 Sciences*, **67(10)**, 1699–1707. <https://doi.org/10.1139/F10-08>

1066 Walther, B. D., Thorrold, S. R., & Olney, J. E. (2008). Geochemical signatures in otoliths
1067 record natal origins of American shad. *Transactions of the American Fisheries Society*,
1068 **137(1)**, 57–69. <https://doi.org/10.1577/T07-029.1>

1069 Wilson, K., & Veneranta, L. (2019). Data-limited diadromous species – review of
1070 European status. ICES Cooperative Research Reports (CRR) No. 348. Available at:
1071 [https://ices-library.figshare.com/articles/report/Data-
1072 limited_diadromous_species_review_of_European_status/18624041?file=33403097](https://ices-library.figshare.com/articles/report/Data-limited_diadromous_species_review_of_European_status/18624041?file=33403097)
1073 (last accessed 16 April 2025).

1074 Zimmerman, C. E., Swanson, H.K., Volk, E.C., & Kent, A. J. (2013). Species and life
1075 history affect the utility of otolith chemical composition for determining natal stream of
1076 origin for Pacific salmon. *Transactions of the American Fisheries Society*, **142(5)**, 1370–
1077 1380. <https://doi.org/10.1080/00028487.2013.811102>
1078

1079 **Figure captions**

1080 **Figure 1.** Study area along the western Iberian coast (northeastern North Atlantic),
1081 showing fish-market landing sites where bycatch specimens of Allis shad *Alosa alosa* (L.
1082 1758) and Twaite shad *Alosa fallax* (Lacépède 1803) were obtained. Ellipses coloured by
1083 market indicate the approximate coastal capture locations, with sample counts for each
1084 species (Aa = *Alosa alosa*; Af = *Alosa fallax*). Major rivers on the Atlantic and Cantabrian
1085 coasts of the Iberian Peninsula where these species have been reported (Barber-O’Malley
1086 *et al.*, 2022) are shown as potential natal sources and were included in the reference
1087 database for origin assignments. The Vouga and Mondego rivers are each divided into
1088 two segments (1 & 2) to reflect contrasting geologies and Sr-isotope signatures rather
1089 than averaging across the entire watershed.

1090 **Figure 2.** Canberra distance matrix among river systems based on combined juvenile
1091 otolith microchemical signatures (Sr/Ca, Ba/Ca and $^{87}\text{Sr}/^{86}\text{Sr}$) from Allis shad *Alosa alosa*
1092 (L. 1758) and Twaite shad *Alosa fallax* (Lacépède 1803). Rivers are ordered
1093 geographically from Cantabrian to Atlantic systems along both axes, with Mondego and
1094 Vouga rivers split into two segments to reflect contrasting $^{87}\text{Sr}/^{86}\text{Sr}$ signatures. Cell
1095 colours indicate the magnitude of Canberra distance according to the colour scale
1096 included within the figure.

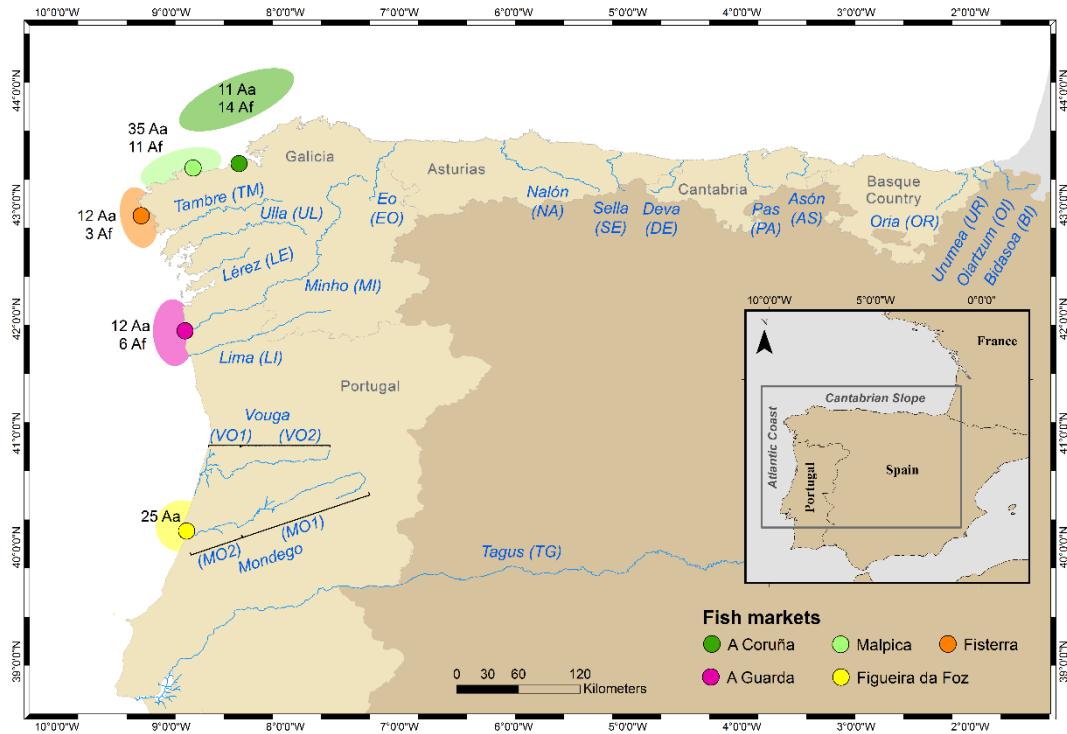
1097 **Figure 3.** Differentiation of juvenile otolith microchemical signatures in *Alosa alosa* (L.
1098 1758) across river systems based on Sr/Ca, Ba/Ca and $^{87}\text{Sr}/^{86}\text{Sr}$. Panels show (a) Sr/Ca vs
1099 Ba/Ca, (b) $^{87}\text{Sr}/^{86}\text{Sr}$ vs Ba/Ca, and (c) $^{87}\text{Sr}/^{86}\text{Sr}$ vs Sr/Ca. Juveniles (real and simulated; n
1100 = 60 per river) are colour-coded by river of origin, ordered geographically from the
1101 Cantabrian to the Atlantic coast. Colours follow the scale included in the figure.

1102

1103 **Figure 4.** Differentiation of juvenile otolith microchemical signatures in Twaite shad
1104 *Alosa fallax* (Lacépède 1803) across river systems based on Sr/Ca, Ba/Ca and $^{87}\text{Sr}/^{86}\text{Sr}$.
1105 Panels show (a) Sr/Ca vs Ba/Ca, (b) $^{87}\text{Sr}/^{86}\text{Sr}$ vs Ba/Ca, and (c) $^{87}\text{Sr}/^{86}\text{Sr}$ vs Sr/Ca.
1106 Juveniles (real and simulated; $n = 60$ per river) are colour-coded by river of origin, ordered
1107 geographically from the Cantabrian to the Atlantic coast. Colours follow the scale
1108 included in the figure.

1109 **Figure 5.** Classification model performance for juvenile Allis shad *Alosa alosa* (L. 1758)
1110 and Twaite shad *Alosa fallax* (Lacépède 1803) across 50 resamples using the training
1111 subset. Panels a and c show the classification accuracy achieved in each cross-validation
1112 iteration. Panels b and d display the corresponding accuracy distributions, with the dashed
1113 line indicating the mean accuracy.

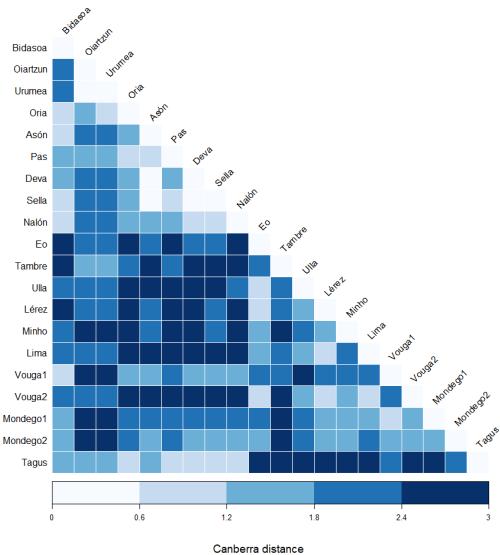
1114 **Figure 6.** Number of Allis shad *Alosa alosa* (L. 1758) and Twaite shad *Alosa fallax*
1115 (Lacépède 1803) specimens assigned to their natal rivers at three minimum assignment-
1116 probability thresholds (80 %, 65 %, and 50 %). Bars show the number of individuals
1117 meeting each threshold; those below each threshold were classified as “Unknown”.


1118 **Figure 7.** Natal-river assignments of adult bycatch Allis shad *Alosa alosa* (L. 1758)
1119 specimens at an 80 % assignment-probability threshold, displayed per fish market as
1120 donut charts. Donut slices are labelled with two-letter river abbreviations, and their
1121 angular widths correspond to the percentage of specimens assigned. River segments with
1122 assigned individuals appear in blue on the map; Vouga 2 is highlighted in grey as it's
1123 without assignments in comparison with its adjacent stretch (Vouga 1). Triangles—
1124 colour-coded by fish market—mark the approximate marine capture locations. Due to the
1125 map's scale and the catches' proximity to shore, the symbols may visually overlap the
1126 coastline, though all points are correctly placed just offshore.

1127 **Figure 8.** Natal-river assignments of adult bycatch Twaite shad *Alosa fallax* (Lacépède
1128 1803) specimens at an 80 % assignment-probability threshold, displayed per fish market
1129 as donut charts. Donut slices are labelled with two-letter river abbreviations, and their
1130 angular widths correspond to the percentage of specimens assigned. River segments with
1131 assigned individuals appear in blue on the map. Triangles—colour-coded by fish
1132 market—mark the approximate marine capture locations. Due to the map's scale and the
1133 catches' proximity to shore, the symbols may visually overlap the coastline, though all
1134 points are correctly placed just offshore.

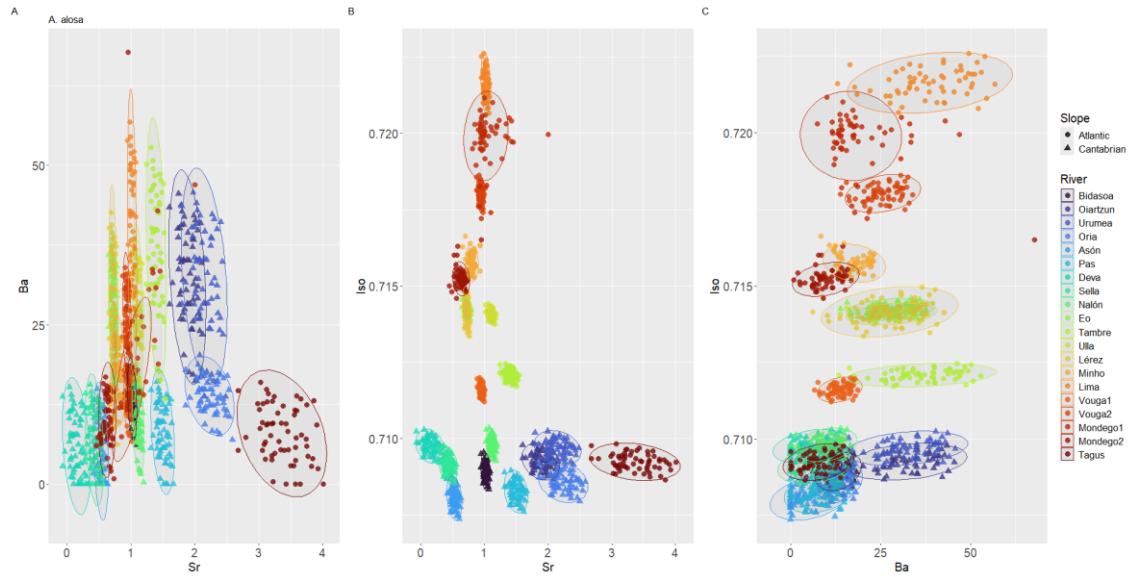
1135

1136


1137 **Figure 1**

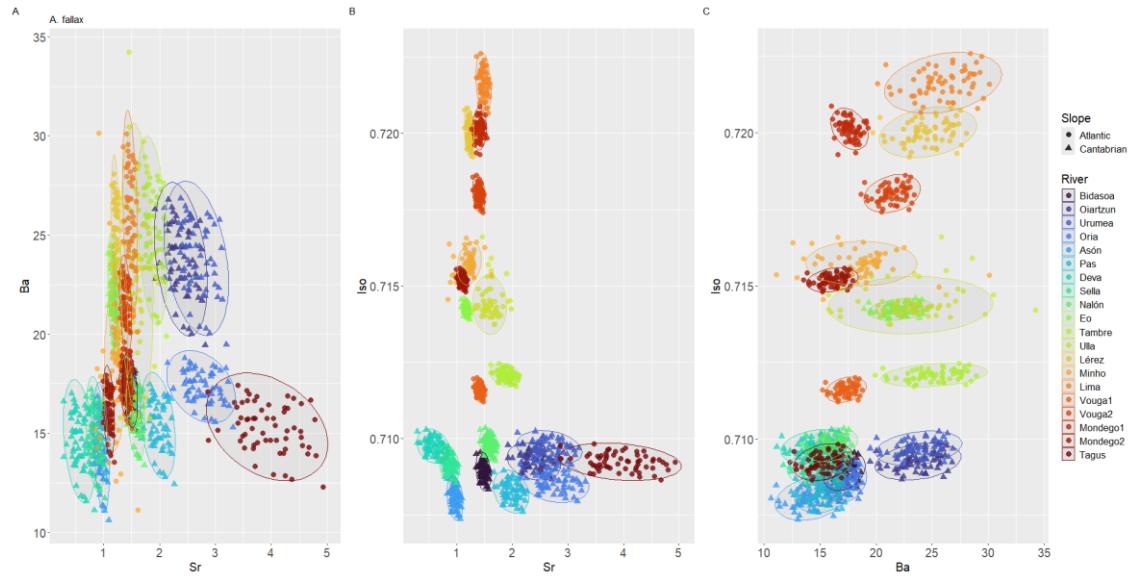
1138

1139


1140 **Figure 2**

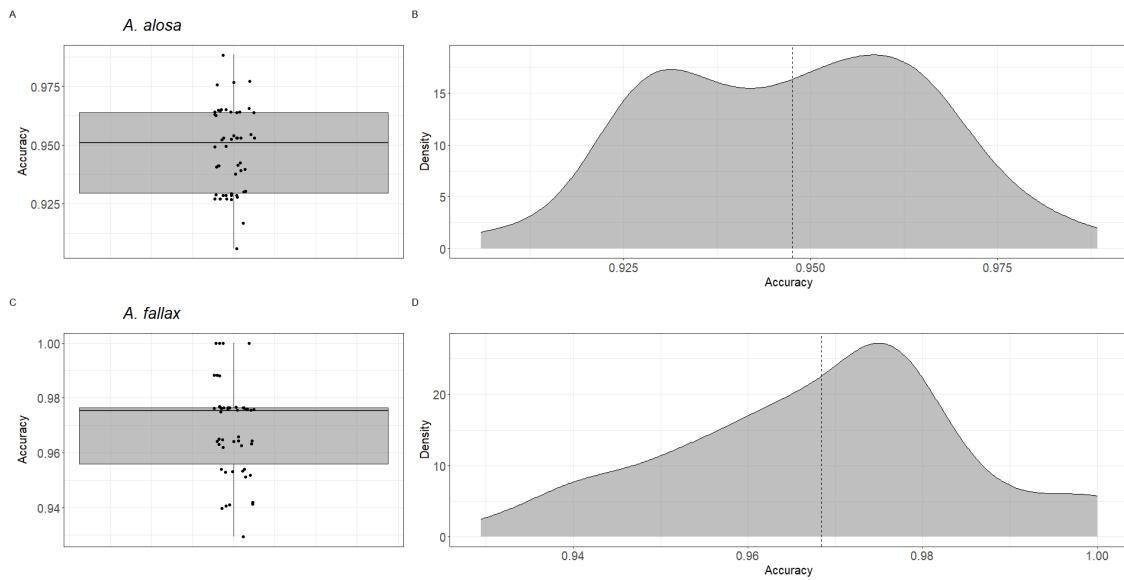
1141

1142


1143 **Figure 3**

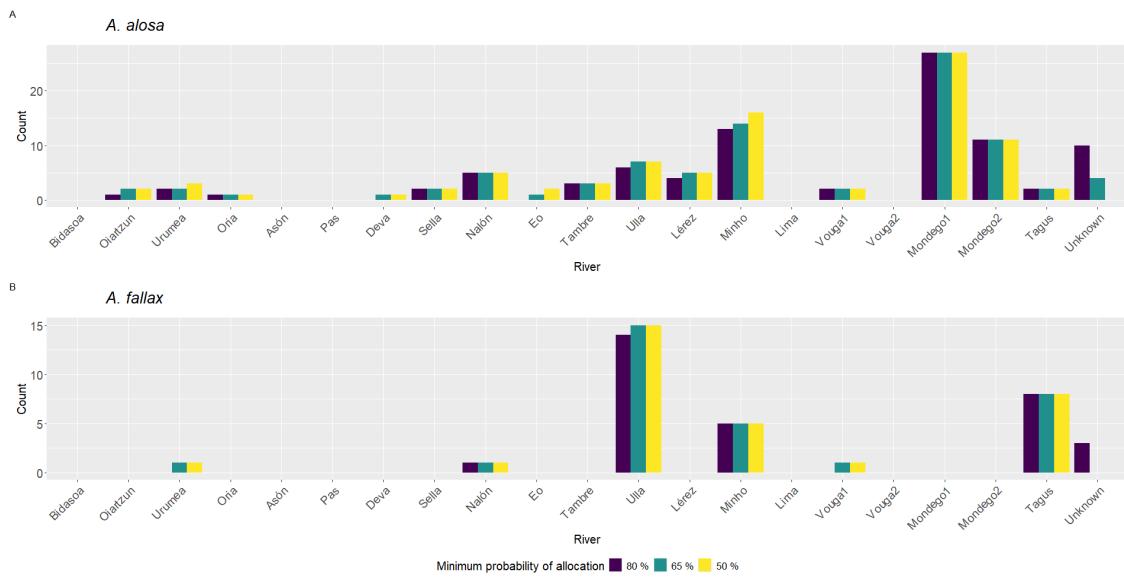
1144

1145


1146 **Figure 4**

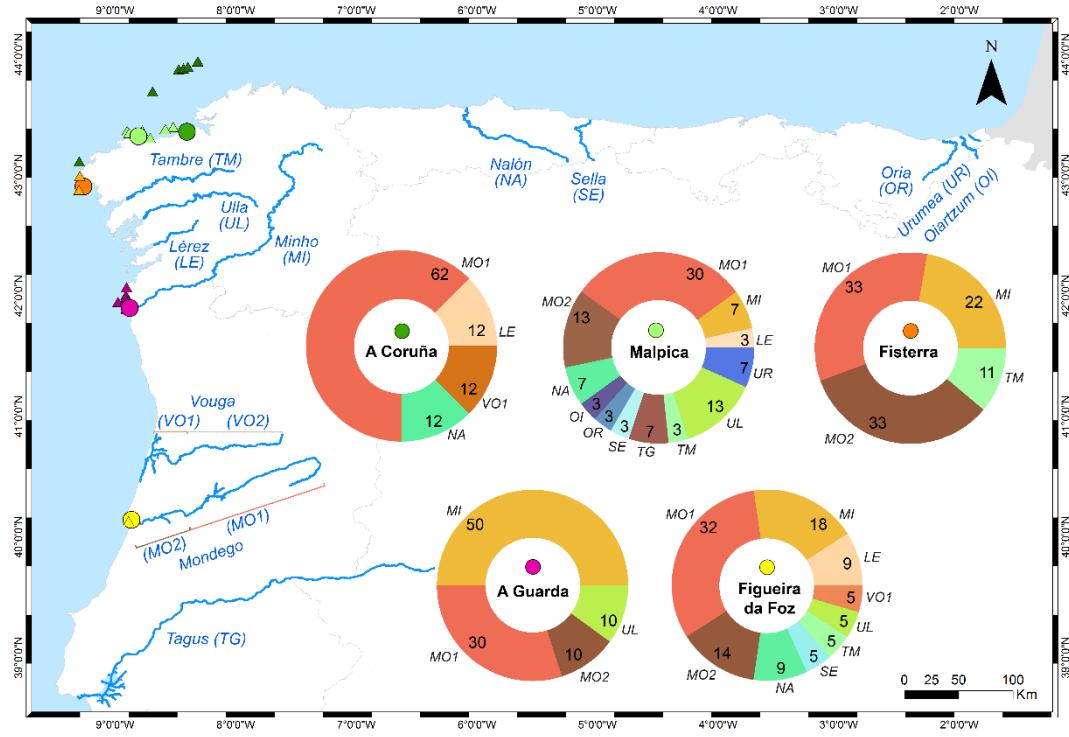
1147

1148


1149 **Figure 5**

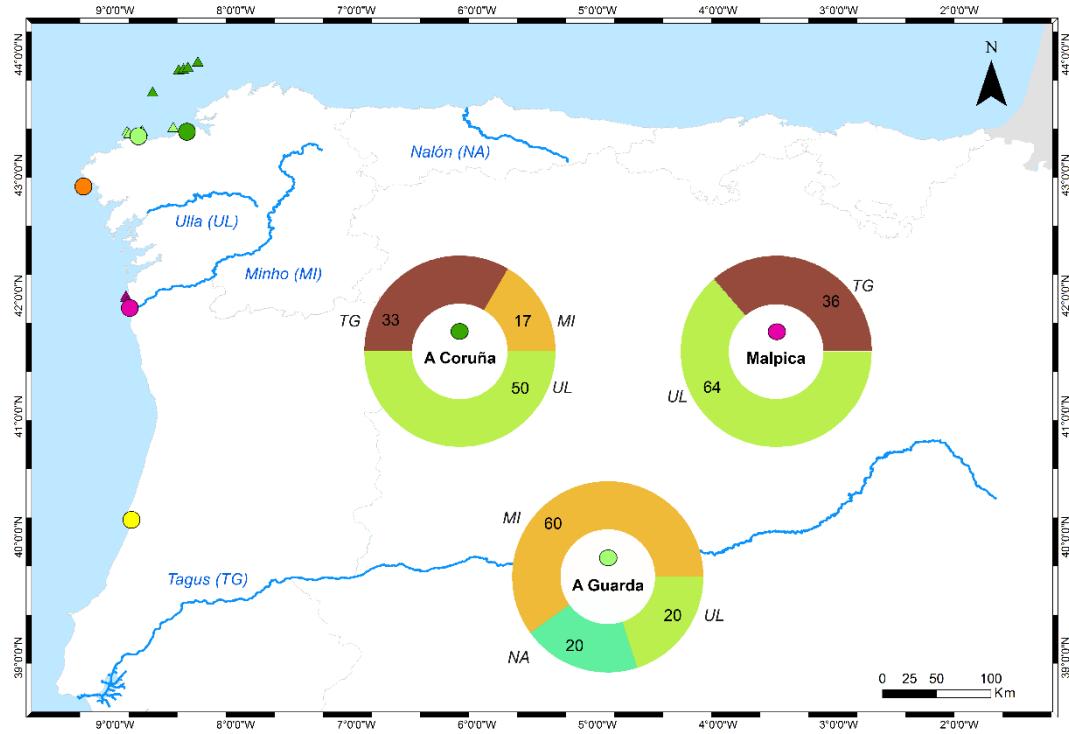
1150

1151


1152 **Figure 6**

1153

1154


1155 **Figure 7**

1156

1157

1158 **Figure 8**

1159

1160 **Table 1.** Number of bycaught individuals and biometric values (mean \pm S.D.) of Allis shad *Alosa alosa* (L. 1758) and Twaite shad *Alosa fallax* (Lacépède 1803) recorded at fish
 1161 markets, ordered latitudinally from north to south along the northwest Iberian Peninsula, with corresponding sampling dates (months and years).

Fish market	Dates (months/years)	<i>A. alosa</i>				<i>A. fallax</i>			
		<i>N</i>	<i>L_T</i> (cm)	<i>M</i> (g)	Gill rakers (<i>n</i>)	<i>N</i>	<i>L_T</i> (cm)	<i>M</i> (g)	Gill rakers (<i>n</i>)
A Coruña	Ja-Fe-Mar/2021	11	54.6 \pm 8	1690.3 \pm 814.6	130.7 \pm 7.6	14	43.6 \pm 2.1	690.5 \pm 97.5	45.6 \pm 2.5
Malpica	Dec/2019; Oct/2020; Fe-Mar/2021	31	51.7 \pm 3.8	1404.7 \pm 386	128.5 \pm 6.6	11	44.4 \pm 3.3	776.2 \pm 203.4	48.6 \pm 4.6
Fisterra	Ja-Fe/2020	10	54 \pm 6.4	1843 \pm 403.6	132.9 \pm 6.3				
A Guarda	Ja-Fe-Mar/2021	12	49.8 \pm 4.5	1161 \pm 432.8	135.6 \pm 9.9	6	44.9 \pm 5.8	834.2 \pm 308.2	49.7 \pm 3.9
Figueira da Foz	Fe-Mar/2017	25	60.6 \pm 4.9	2378.8 \pm 642.3	125.5 \pm 12.2				
Total		89	54.5 \pm 6.5	1730.5 \pm 692.4	129.5 \pm 9.3	31	44.2 \pm 3.4	748.7 \pm 192.5	47.5 \pm 4

Abbreviations: S.D., standard deviation; Ja, January; Fe, February; Mar, March; Oct, October; Dec, December; *N*, number of samples; *L_T*, total length; *M*, mass; *n*, count.

1162

1163 **Table 2.** Number of water samples and juvenile otoliths used to build the natal-origin baseline for Allis shad *Alosa alosa* (L. 1758) and Twaite shad *Alosa fallax* (Lacépède
 1164 1803). Water samples and juvenile otoliths of *A. alosa* from French and Portuguese rivers (Randon *et al.*, 2018) were supplemented by new water samples and juvenile otoliths
 1165 of both species from rivers along the Cantabrian slope and Atlantic coast rivers of northwestern Iberian Peninsula. Rivers are listed from north to south; values indicate sample
 1166 counts by year.

Rivers	Water				<i>A. alosa</i>					<i>A. fallax</i>					
	2013	2017	2019	2020	2009	2011	2012	2013	2018	2020	2011	2012	2013	2014	2015
Blavet (FRA)	2									16					
Vilaine (FRA)	4									1					
Loire (FRA)	4									4					
Dordogne (FRA)	3									3					
Garonne (FRA)	6												8	6	
Bidasoa (SPA)		2			2								1	1	17
Oriartzun (SPA)		1													
Urumea (SPA)		1													
Oria (SPA)		2													
Asón (SPA)		1													
Pas (SPA)		1													
Deva (SPA)		2													
Sella (SPA)		1													
Nalón (SPA)		1													
Eo (SPA)		1													
Tambre (SPA)		1													
Ulla (SPA)	5										30	21			
Lérez (SPA)		1													
Minho (SPA-POR)	5					10	4	6					18	10	
Lima (POR)	1				3										
Vouga1 (POR)					2										
Vouga2 (POR)					1										
Mondego1 (POR)		7								17	21				
Mondego2 (POR)		3									16				
Tagus (POR)		3													

Abbreviations: FRA, France; SPA, Spain; POR, Portugal.

Note: The Mondego and Vouga rivers are each divided into two segments because they cross different geological layers with marked differences of Sr-isotope signatures.

1168 **Table 3.** Assignment of bycaught Allis shad *Alosa alosa* (L. 1758) specimens to their natal river
1169 (geographically ordered from north to south) at three minimum probability thresholds (80%, 65%, and
1170 50%). Values are shown as number of assigned individuals (N) and percentage (%).

Rivers	Probability thresholds					
	80%		65%		50%	
	N	%	N	%	N	%
Bidasoa	0	0%	0	0%	0	0%
Oiartzun	1	1.12%	2	2.25%	2	2.25%
Urumea	2	2.25%	2	2.25%	3	3.37%
Oria	1	1.12%	1	1.12%	1	1.12%
Asón	0	0%	0	0%	0	0%
Pas	0	0%	0	0%	0	0%
Deva	0	0%	1	1.12%	1	1.12%
Sella	2	2.25%	2	2.25%	2	2.25%
Nalón	5	5.62%	5	5.62%	5	5.62%
Eo	0	0%	1	1.12%	2	2.25%
Tambre	3	3.37%	3	3.37%	3	3.37%
Ulla	6	6.74%	7	7.87%	7	7.87%
Lérez	4	4.49%	5	5.62%	5	5.62%
Minho	13	14.61%	14	15.73%	16	17.98%
Lima	0	0%	0	0%	0	0%
Vougal	2	2.25%	2	2.25%	2	2.25%
Vouga2	0	0%	0	0%	0	0%
Mondego1	27	30.34%	27	30.34%	27	30.34%
Mondego2	11	12.36%	11	12.36%	11	12.36%
Tagus	2	2.35%	2	2.25%	2	2.25%
Unknown	10	11.24%	4	4.49%	0	0%
Total	79	88.76%	85	95.51%	89	100%

Abbreviations: N, number of individuals; %, percentage.

Note: “Unknown” comprises individuals whose maximum assignment probability fell below 50%. In the “Total” row, both N and % refer only to individuals correctly assigned at each probability threshold (i.e., “Unknown” individuals are excluded from these values).

1171

1172 **Table 4.** Assignment of bycaught Twaite shad *Alosa fallax* (Lacépède 1803) specimens to their natal river
1173 (geographically ordered from north to south) at three minimum probability thresholds (80%, 65%, and
1174 50%). Values are shown as number of assigned individuals (N) and percentage (%).

Rivers	Probability thresholds					
	80%		65%		50%	
	N	%	N	%	N	%
Bidasoa	0	0%	0	0%	0	0%
Oiartzun	0	0%	0	0%	0	0%
Urumea	0	0%	1	3.23%	1	3.23%
Oria	0	0%	0	0%	0	0%
Asón	0	0%	0	0%	0	0%
Pas	0	0%	0	0%	0	0%
Deva	0	0%	0	0%	0	0%
Sella	0	0%	0	0%	0	0%
Nalón	1	3.23%	1	3.23%	1	3.23%
Eo	0	0%	0	0%	0	0%
Tambre	0	0%	0	0%	0	0%
Ulla	14	45.16%	15	48.39%	15	48.39%
Lérez	0	0%	0	0%	0	0%
Minho	5	16.13%	5	16.13%	5	16.13%
Lima	0	0%	0	0%	0	0%
Vougal	0	0%	1	3.23%	1	3.23%
Vouga2	0	0%	0	0%	0	0%
Mondego1	0	0%	0	0%	0	0%
Mondego2	0	0%	0	0%	0	0%
Tagus	8	25.81%	8	25.81%	8	25.81%
Unknown	3	9.68%	0	0%	0	0%
Total	28	91.18%	34	100%	31	100%

Abbreviations: N, number of individuals; %, percentage.

Note: “Unknown” comprises individuals whose maximum assignment probability fell below 50%. In the “Total” row, both N and % refer only to individuals correctly assigned at each probability threshold (i.e., “Unknown” individuals are excluded from these values).

1175

1176

1177 **Table 5.** Assignment of bycaught Allis shad *Alosa alosa* (L. 1758) specimens to their natal river
1178 (geographically ordered from north to south), shown by fish market. Values are reported as number of
1179 assigned individuals (*N*) and percentage (%).

Rivers	Fish Markets											
	A Coruña		Malpica		Fisterra		A Guarda		Figueira da Foz		Total	
	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%
Bidasoa	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Oiartzun	0	0%	1	3.33%	0	0%	0	0%	0	0%	1	1.27%
Urumea	0	0%	2	6.67%	0	0%	0	0%	0	0%	2	2.53%
Oria	0	0%	1	3.33%	0	0%	0	0%	0	0%	1	1.27%
Asón	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Pas	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Deva	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Sella	0	0%	1	3.33%	0	0%	0	0%	1	4.55%	2	2.53%
Nalón	1	12.5%	2	6.67%	0	0%	0	0%	2	9.09%	5	6.33%
Eo	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Tambre	0	0%	1	3.33%	1	11.11%	0	0%	1	4.55%	3	3.80%
Ulla	0	0%	4	13.33%	0	0%	1	10%	1	4.55%	6	7.60%
Lérez	1	12.5%	1	3.33%	0	0%	0	0%	2	9.09%	4	5.06%
Minho	0	0%	2	6.67%	2	22.22%	5	50	4	18.18%	13	16.46%
Lima	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Vouga1	1	12.5%	0	0%	0	0%	0	0%	1	4.55%	2	2.53%
Vouga2	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Mondego1	5	62.5%	9	30%	3	33.33%	3	30%	7	31.82%	27	34.18%
Mondego2	0	0%	4	13.33%	3	33.33%	1	10%	3	13.64%	11	13.92%
Tagus	0	0%	2	6.67%	0	0%	0	0%	0	0%	2	2.53%
Total	8	100%	30	100%	9	100%	10	100%	22	100%	79	100%

Abbreviations: *N*, number of individuals; %, percentage

1180

1181

1182 **Table 6.** Assignment of bycaught Twaite shad *Alosa fallax* (Lacépède 1803) specimens to their natal river
1183 (geographically ordered from north to south), shown by fish market. Values are reported as number of
1184 assigned individuals (*N*) and percentage (%).

Rivers	Fish markets							
	A Coruña		Malpica		A Guarda		Total	
	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%
Bidasoa	0	0%	0	0%	0	0%	0	0%
Oiartzun	0	0%	0	0%	0	0%	0	0%
Urumea	0	0%	0	0%	0	0%	0	0%
Oria	0	0%	0	0%	0	0%	0	0%
Asón	0	0%	0	0%	0	0%	0	0%
Pas	0	0%	0	0%	0	0%	0	0%
Deva	0	0%	0	0%	0	0%	0	0%
Sella	0	0%	0	0%	0	0%	0	0%
Nalón	0	0%	0	0%	1	20%	1	3.57%
Eo	0	0%	0	0%	0	0%	0	0%
Tambre	0	0%	0	0%	0	0%	0	0%
Ulla	6	50%	7	63.64%	1	20%	14	50%
Lérez	0	0%	0	0%	0	0%	0	0%
Minho	2	16.67%	0	0%	3	60%	5	17.86%
Lima	0	0%	0	0%	0	0%	0	0%
Vougal	0	0%	0	0%	0	0%	0	0%
Vouga 2	0	0%	0	0%	0	0%	0	0%
Mondego1	0	0%	0	0%	0	0%	0	0%
Modengo2	0	0%	0	0%	0	0%	0	0%
Tagus	4	33.33%	4	36.36%	0	0%	8	28.57%
Total	12	100%	11	100%	5	100%	28	100%

Abbreviations: *N*, number of individuals; %, percentage

1185

1186 **Table 7.** Direction and distance travelled by bycaught Allis shad *Alosa alosa* (L. 1758) from inferred natal rivers to the approximate marine bycatch-location centroid, grouped
 1187 by fish market (north to south). Distances were measured as straight-line approximations (km) from the river mouth. Values are reported as number of assigned individuals (N)
 1188 and percentage (%).

Fish market	Displacement direction						Distance between natal river origin and bycatch approximate location									
	Individuals displaying latitudinal movements		Individuals displaying longitudinal movements				Ultra-short		Short		Middle		Long		Ultra-long	
	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%
A Coruña	8	10.13%	7	87.50%	1	12.50%	0	0%	0	0%	2	25%	6	75%	0	0%
Malpica	30	37.97%	23	76.66%	7	23.34%	0	0%	0	0%	8	26.70%	22	73.30%	0	0%
Fisterra	9	11.39%	9	100%	0	0%	0	0%	1	11.11%	2	22.22%	6	66.66%	0	0%
A Guarda	10	12.66%	10	100%	0	0%	5	50%	1	10%	4	40%	0	0%	0	0%
Figueira da Foz	22	27.85%	19	86.36%	3	13.64%	10	45.46%	1	4.55%	6	27.27%	4	18.18%	1	4.55%
Total	79	100%	68	86.08%	11	13.92%	15	18.98%	3	3.80%	22	27.85%	38	48.10%	1	1.27%

Note: “Latitudinal” movements follow the Atlantic coast; “Longitudinal” movements follow the Cantabrian slope. Distance classes: Ultra-short (<20 km), Short (20–100 km), Middle (100–300 km), Long (300–700 km), Ultra-long (>700 km).

Abbreviations: N, number of individuals; %, percentage

1189

1190

1191

1192 **Table 8.** Direction and distance travelled by bycaught Twaite shad *Alosa fallax* (Lacépède 1803) from inferred natal rivers to the approximate marine bycatch-location centroid,
 1193 grouped by fish market (north to south). Distances were measured as straight-line approximations (km) from the river mouth. Values are reported as number of assigned
 1194 individuals (*N*) and percentage (%).

Fish market	Displacement direction						Distance between natal river origin and bycatch approximate location									
	Individuals displaying latitudinal movements		Individuals displaying longitudinal movements				Ultra-short		Short		Middle		Long			
	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%	<i>N</i>	%		
A Coruña	12	42.86%	12	100%	0	0%	0	0%	0	0%	8	66.7%	4	33.3%	0	0%
Malpica	11	39.29%	11	100%	0	0%	0	0%	0	0%	7	63.6%	4	36.4%	0	0%
A Guarda	5	17.86%	4	80%	1	20%	3	60%	1	20%	0	0%	1	20%	0	0%
Total	28	100%	27	96.43%	1	3.57%	3	10.71%	1	3.57%	15	53.57%	9	32.14%	0	0%

Note: “Latitudinal” movements follow the Atlantic coast; “Longitudinal” movements follow the Cantabrian slope. Distance classes: Ultra-short (<20 km), Short (20–100 km), Middle (100–300 km), Long (300–700 km), Ultra-long (>700 km).

Abbreviations: *N*, number of individuals; %, percentage

1195

1196

1197

1198

1199

1200

1201

1202

1203