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Cross- and auto-correlation in early vision
Horace Barlow1,* and David L. Berry2

1Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
2Departamento de Fı́sica, Universidade de Évora, 7002 554 Évora, Portugal

Neurons that respond selectively to the orientation of visual stimuli were discovered in V1 more than 50

years ago, but it is still not fully understood how or why this is brought about. We report experiments

planned to show whether human observers use cross-correlation or auto-correlation to detect oriented

streaks in arrays of randomly positioned dots, expecting that this would help us to understand what

David Marr called the ‘computational goal’ of V1. The streaks were generated by two different methods:

either by sinusoidal spatial modulation of the local mean dot density, or by introducing coherent pairs of

dots to create moiré patterns, as Leon Glass did. A wide range of dot numbers was used in the randomly

positioned arrays, because dot density affects cross- and auto-correlation differently, enabling us to infer

which method was used. This difference stems from the fact that the cross-correlation task is limited

by random fluctuations in the local mean density of individual dots in the noisy array, whereas the

auto-correlation task is limited by fluctuations in the numbers of randomly occurring spurious pairs

having the same separation and orientation as the deliberately introduced coherent pairs. After developing

a new method using graded dot luminances, we were able to extend the range of dot densities that could

be used by a large factor, and convincing results were obtained indicating that the streaks generated

by amplitude modulation were discriminated by cross-correlation, while those generated as moiré

patterns were discriminated by auto-correlation. Though our current results only apply to orientation

selectivity, it is important to know that early vision can do more than simple filtering, for evaluating

auto-correlations opens the way to more interesting possibilities, such as the detection of symmetries

and suspicious coincidences.

Keywords: auto-correlation; symmetry; pinwheels; simple cells; complex cells; cortical hierarchy
1. INTRODUCTION
In this paper, we report results from psychophysical

experiments using human observers that strongly suggest

there are two different mechanisms for discriminating

orientation in early vision. Hubel & Wiesel [1,2] discov-

ered that most of the neurons of V1 were highly

selective, not only for the position in the visual field of a

visual stimulus, but also for other properties: a particular

neuron only responds to a visual stimulus whose orien-

tation, direction of motion and spatial frequency

content lie within particular ranges whose mean values

and widths vary from neuron to neuron. As well as disco-

vering the orientation and motion selectivity of neurons in

primary visual cortex, Hubel & Wiesel [1,2] also noted

that there were two classes, which they named simple

and complex cells. Subsequent work on different species,

and work using awake, behaving, animals, has compli-

cated the picture, but it is generally agreed that simple

cells have smaller receptive fields than complex cells,

have more direct inputs from LGN afferents and behave

in a linear manner that can be explained in terms of the

excitatory and inhibitory zones of their receptive fields

[3,4]. It is also widely accepted that the simple cells act

as tuned spatial filters having a wide range of peak sensi-

tivities to position, orientation and spatial frequency, and

that they do this by having neurons with a Gabor-like

receptive field that are cross-correlated with the patches

of the image that overlie each receptive field.
r for correspondence (hbb10@cam.ac.uk).
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Complex cells tend to have larger receptive fields and

to combine information from different parts of them in

more complex ways [5–8]; they are more often direction-

ally selective to motion than simple cells, and may be

divisible into many different subcategories, possibly

better described as a range of hybrids rather than just

two contrasting types ([9]; but [10] do not fully subscribe

to this interpretation). Hubel & Wiesel introduced the

idea that the complexity of receptive field properties was

increased in V1 and other visual areas by repeated trans-

formations of the type exemplified by the simple cell/

complex cell transition [2,7], though they recognized that

the inability to be more precise about the nature of such

hierarchical transformations made it seriously incomplete.

We think this is the crux of the problem, and it has added

interest because the discovery of pinwheels [11,12] is

leading to a wealth of new information about the connec-

tions between neurons in V1; these organized connections

must surely be doing more than the very simple task

allotted to them in the diagrams illustrating Hubel &

Wiesel’s hierarchy, but what does this extra work achieve?

A vast amount of information about the physiology and

anatomy of V1 has now been acquired, and has been

incorporated in neural models of early vision, such as

energy models of motion analysis [13–15] and norma-

lization models of cortical responses [6]. These are

satisfactory in some ways, but not in others. We cannot

embark on a fair, critical, review, but our approach is

largely motivated by the failure of the above models to

provide insight into early vision at the level of compu-

tational theory. David Marr [16] suggested this was the
This journal is q 2010 The Royal Society

mailto:hbb10@cam.ac.uk
http://rspb.royalsocietypublishing.org/


2 H. Barlow & D. L. Berry Correlation in early vision

 on December 16, 2010rspb.royalsocietypublishing.orgDownloaded from 
first, and clearly in his view the most important, of the

three levels at which information-processing mechanisms

have to be understood; he defined it as the level asking

‘What is the goal of the computation, why is it appropri-

ate, and what is the logic of the strategy by which it can be

carried out?’.

We thought it might be possible to answer some

of these questions by psychophysical experiments on

human subjects, and the first question we chose to ask

concerned the mechanism of selectivity for orientation.

We think this is the most distinctive of the new types of

pattern selectivity to appear in V1, and therefore designed

psychophysical tests that we hoped would answer the fol-

lowing specific computational question: ‘Does V1 use

cross-correlation, or auto-correlation, to detect oriented

streaks in a noisy image?’ The first possibility arises

from the widely accepted suggestion, described above,

that simple cells act as oriented spatial filters. For auto-

correlation the situation is different, because there is no

well-tested physiological example of its occurrence.

Reichardt [17] introduced the radical idea that it is an

important mechanism for detecting motion in the early

stages of the visual pathway in the beetle Chlorophanus,

but later developments of this model have tended to

regard it as cross-correlation in the spatio-temporal

domain, thus obscuring the original connection with

auto-correlation [13–15]. Glass [18] suggested that the

moiré effects generated by coherently oriented pairs in

otherwise randomly positioned dots were a direct demon-

stration that the human visual system also computes local

auto-correlations at an early level; but for many, the

absence of a well-tested physiological example remains a

problem, even though this cannot be taken as proof that

it does not occur.

The results of our psychophysical measurements

turned out to be even more interesting than we expected,

for they clearly indicate that either cross- or auto-corre-

lation can be used, depending on how the appearance

of orientation had been generated.

The distinction between cross-correlation and auto-

correlation is crucial for our argument, so we repeat

here the definitions from Haralick & Shapiro [19], and

we shall follow this usage ourselves. Cross-correlation g,

normalized for two-dimensional images, is given by

g ¼ 1

N

X

x;y

ðIðx; yÞ � �I ÞðT ðx; yÞ � �T Þ
sIsT

; ð1:1Þ

and it gives a measure of the similarity between a fixed,

predetermined template T(x,y) and the pixel values in a

patch of the image I(x,y) covering the same positions,

each containing N pixels; Ī and T̄ denote the means and

sI and sT denote the standard deviations of I(x,y) and

T(x,y), respectively. This is profoundly different from

auto-correlation a, given by

a ¼ 1

N

X

x;y

ðIðx; yÞ � �I ÞðIðx� u; y� vÞ � �I Þ
s2

I

: ð1:2Þ

This gives a measure of the similarity between the pixel

values, whatever they happen to be, of one patch of the

image and those of another patch shifted by u in x and

v in y. Notice that auto-correlation does not specify

what it is that is similar. It can thus be considered as a
Proc. R. Soc. B
coincidence or symmetry detector, something that detects

the abstract property of similarity or sameness, but does

not discriminate between different examples of it: for

these particulars, the response is invariant. These charac-

teristics cannot be detected by cross-correlation alone, for

it will be seen from expression (1.1) that the contributions

to g from every particular location in a pattern are influ-

enced by the value at the corresponding position in the

template, but are not influenced by the concurrent contri-

butions from all other locations in the pattern. Two input

patterns that differed only in the joint input values at two

different locations would necessarily have the same total

value of g, for none of the separate contributions to g

are determined by joint values at pairs of input positions.

The difference between these two operations (sometimes

called first and second order for cross- and auto-correlation,

respectively) is important for understanding why changes

in the mean dot density of random dot patterns result in

such different effects. It is because, for cross-correlation,

only one of the variables whose products are summed has

a random component, whereas for auto-correlation, both

have. Thinking along these lines has its antecedents in

Bela Julesz’s conjecture that humans cannot distinguish

between textures with identical second-order statistics,

which was made in 1962. He later claimed that he had dis-

proved it [20], but we think it set the fashion for considering

the order of the statistical analysis required for perceptual

discriminations, and that it is correct in the slightly modified

form we shall give later.

(a) Choosing the tasks

The plan of our experiment was to measure the ability

of the human visual system to discriminate regular,

patterned features presented in arrays of randomly

positioned dots. The threshold strength of the signal for

the regular feature changes when the mean density of the

randomly positioned dots in the array is changed, but the

expected relationship between the two differs according

to whether cross- or auto-correlation is used for the dis-

crimination. Conversely, we can infer which mechanism

is being employed by observing which relationship is

being followed. We therefore wanted two test tasks having

the following appearances and ranges of adjustment:

(a) they should look as similar as possible, for if they

were readily distinguishable by subjective appearance

at threshold stimulus strengths, the change of

method from cross- to auto-correlation or vice

versa might involve higher cognitive processes;

(b) the signal strength of the test patterns must be adjus-

table in order to determine thresholds;

(c) the noise that limits detection by cross- or auto-

correlation must also be variable; for both tasks, we

achieved this by varying the initial mean numbers

of dots allotted to each pixel position in the arrays,

before introducing the regular feature whose

threshold was to be measured.

We chose to test cross-correlation by measuring

thresholds for detecting the oriented streaks induced by

low-amplitude sinusoidal spatial modulations of dot den-

sity in random dot patterns, partly because we already

knew that this followed the inverse square-root of unmo-

dulated dot density over a considerable range, as expected

http://rspb.royalsocietypublishing.org/


 modulation = 100%  coherence = 100%

 modulation = 60%  coherence = 62%

 modulation = 29%  coherence = 32%

modulation = 0% coherence = 0%

(a) (e)

(b) ( f )

(c) (g)

(d) (h)

Figure 1. The similarity of streaks produced by weakly

modulated gratings and low coherence Glass patterns. The
gratings (a–d), produced by sinusoidally modulating the
expected number of dots per pixel position in arrays of ran-
domly positioned dots, and the Glass patterns (e–h),
produced by coherently pairing a fraction of dots in arrays

of otherwise randomly positioned dots, show easily dis-
tinguishable streaks at high values of modulation and
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theoretically for cross-correlation (see eqn (8) in [21]),

but also because we suspected that the streakiness

would look very similar to that induced by coherent dot

pairs in Glass patterns [18]. These moiré patterns

would form a natural partner-task for testing auto-

correlation, and it has already been found that, over a

limited range, the coherence threshold stays nearly

constant with changes of dot density, as expected if

auto-correlation is used [22,23].

Some of the test patterns generated for these tasks are

shown in figure 1 and illustrate that, at signal strengths

just above threshold; it is not easy to discriminate between

streaks caused by dot density modulation and streaks

caused by Glass pairs. It is also clear that there are no pro-

blems with grading signal strength; therefore, requirement

(a) and (b) above are at least partially met. For the noise

level (c), we have assumed that the standard deviation of

dot density, when this is expressed as the mean number of

dots per pixel, l, is equal to the square root of this mean,

and this was confirmed by our simulations for all the

conditions encountered in these experiments (see §2).

Note, however, that the noise when discriminating by

auto-correlation is not the same as the noise when discri-

minating by cross-correlation, because it depends upon

the standard deviation of the number of spurious pairs

having properties indistinguishable from the deliberately

introduced coherent pairs, rather than upon the standard

deviation of local dot density.

When calculating theoretical limits and doing computer

simulations, we are primarily interested in how well a pro-

posed mechanism or model collects together and uses the

statistical information that the visual system has been pre-

sented with and is needed to perform the task. What

matters, then, is not simply how signal strength at the

output varies with signal strength at the input under differ-

ent conditions, but how signal-to-noise ratios attainable at

the output compare with the signal-to-noise ratios attain-

able at the input under different conditions. It is the

statistical efficiency of the process that matters, not just

the signal strength. We have, however, kept our simulations

as simple as possible, and have not introduced factors such

as the intrinsic noise of neurons; we do not doubt that there

are conditions where this is important, but for simplicity

we chose in the first place to avoid such conditions.

The usual method of generating noisy dot arrays using

randomly positioned dots has a serious limitation that we

call occlusion: except at very low dot densities, a signifi-

cant fraction of the dots programmed for a particular

location will have no effect, because that location has

already been occupied by a previously programmed dot.

The way this was overcome by using graded dot

intensities will be described in §2.

coherence, but these become practically indistinguishable at
values approaching threshold (19.75% modulation for
gratings, 24.1% coherence for Glass patterns). To improve

reproduction, black dots on a white background are used
instead of the white or graded dots on a black background
used in the experiments. A mean value, l, of 0.1 dots per
pixel was used with the streaks tilted 458 left of vertical.
The patterns should be observed at ca 50 cm to give the

same spatial frequency and dot separation as those in the
experiments (see §2). Any streaks observed in the patterns
at zero modulation or coherence are due to unintended dot
alignments occurring by chance, and these set the theoretical

lower limit for streak detection.
2. METHODS
(a) Observers and apparatus

The procedures used were entirely non-invasive and were

approved by the local ethics committee. The observers

were the two authors plus another experienced psychophysi-

cist, all having normal or corrected-to-normal vision. Aided

by a chin rest, observers viewed the stimuli binocularly at

100 cm in a darkened, quiet, room. The stimuli were circular

with a diameter of 200 pixels and were presented on a

19 inch CRT monitor (CTX EX951F) (1024 � 768 pixels,
Proc. R. Soc. B
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0.34 mm [H] � 0.34 mm [V] per pixel, 85 Hz frame rate).

The maximum luminance of the monitor was 92.4 cd m22

and was calibrated and linearized by constructing a look-up

table. The programs were written in MATLAB using the

psychophysics toolbox extension [24].

(b) Stimulus generation

Examples of the types of patterns used in the experiments are

shown in figure 1. The dots making up these patterns occupy

a single pixel position within a circular region of 200 pixels

diameter and had luminances controlled by an 8 bit D/A con-

verter. Dot densities are expressed as the mean expected

number of dots per pixel position. To generate the gratings,

each pixel within the array was designated a probability

determined by the eventual two-dimensional sinusoidal pat-

tern required, and numbers of dots determined for the

required values of mean dot density were then distributed

accordingly within the array. These gratings, with a spatial

frequency of 7.44 cycles per degree, were oriented at 458
either to the left or right of vertical. To generate the Glass

patterns, pairs of dots, with a dot separation of 8.3 arcmin,

were placed at random within the circular region, with the

pairs tilted at 458 either to the left or right of vertical.

In the initial experiments using only white dots, each pixel

in the array held either zero or one dot, corresponding to black

or white. For the main psychophysical experiments and simu-

lations, we used pixels whose luminances could be varied,

having values increasing linearly with the number of times a

particular pixel position had been chosen to contain a dot,

and these we called ‘graded dots’. For each value of mean

dot density, Mp, we calculated the expected standard devi-

ations of the number of dots per pixel, sp, and devoted the

whole range of pixel luminances to cover the range (Mp+
2 � sp). The output of the D/A converter was set to produce

a luminance increasing linearly with the number of dots held

by each particular pixel. Thus, the pixels occupied by (Mp þ
2 � sp) or more dots were set at white, those occupied by

(Mp 2 2 � sp) or less dots were set to black and intermediate

values were assigned the appropriate grey value. This assign-

ment of dot luminances was chosen in order to improve the

fidelity of the visual system’s computations of cross- and

auto-correlations, on the assumption that the system responds

linearly to luminances in the range covered by the graded dots.

(c) Threshold determination

We used a modified staircase procedure. Up to eight stair-

cases for eight different mean dot densities were run

simultaneously in random order until 20 stimuli had been

presented on each staircase. A small fixation dot positioned

at the centre of the stimulus area, together with a short

beep, occurred 500 ms before each stimulus, which lasted

160 ms. The observer indicated on the keyboard whether

he or she saw left or right tilting streaks, or was uncertain,

and received auditory feedback for correct or incorrect

responses, but none for signals of uncertainty. The response

time was unlimited, but in practice lasted a second or two.

Reversal points on each staircase were corrected by half a

step value according to the direction of the reversal, and

these were used to estimate thresholds and their standard

errors. There were usually 6–12 reversals on a staircase,

and if the false-positive rate was higher than 5 per cent, or

the number of reversals on a staircase was below 6, the results

were rejected. Other details of the procedure were

conventional.
Proc. R. Soc. B
(d) Simulations

In the simulations presented here, we generated the dot

arrays in the same way as they had been generated for the

gratings and Glass patterns in the experiments. We then set

the parameters for cross- and auto-correlation at their opti-

mum values for the tasks in hand. For cross-correlation,

this required the template to be matched exactly to the

size, shape, spatial frequency, phase and orientation of the

test patterns, and for auto-correlation, it required the com-

plete test pattern to be multiplied by its copy shifted by

one Glass pair separation in the direction of the separation.

The simulation programs computed decision variables at nar-

rowly spaced intervals of dot density for the expressions g and

a in equations (1.1) and (1.2) for samples of gratings and

Glass patterns. For comparison with experimental thresholds,

we determined the modulation or coherence for which the

discriminability index d 0 given by d 0 ¼ (MSN 2 MN)/sN, is

equal to 2, where MSN is the mean of the distribution of values

of cross- or auto-correlations determined for sample populations

at specified values of modulation or coherence. MN and sN

are the means and standard deviations of equivalent

distributions of sample populations for zero modulation or

coherence (i.e. noise-alone stimuli).

When the dot density is low and ungraded white dots are

being used, it can be assumed that the numbers of dots in

single pixels are Poisson distributed, and therefore the stan-

dard deviation of dot numbers in any single pixel, or

designated subset of pixels, is equal to the square root of the

mean dot number, or sum of dot numbers. However, some

of the test arrays are large and contain significant fractions

of all the dots, and they may not be simple sums of the dots

in individual pixels, but weighted sums, which are not in gen-

eral Poisson distributed. We have done many of the

simulations in two ways, first using the assumption that the

standard deviations of the noise-alone means are equal to

the square roots of the mean numbers of dots they contain,

and second by generating large samples of such distributions

and measuring their standard deviations directly. The assump-

tion that they would be equal to the square root of the mean

number of dots turned out to be a good approximation, pro-

vided that only low values (below about 50%) of modulation

and coherence were used. Thus, the assumption that the stan-

dard deviations of dot numbers in any test array is equal to the

square root of the mean of the number of dots it contains is a

good approximation under the conditions of these experiments.
3. RESULTS
Figure 2 shows the result of the first experiment: log

thresholds were measured for amplitude-modulated

gratings and varying coherence Glass patterns as

functions of log(l), using white, ungraded, dots. As gener-

ally expected from previous results (e.g. [21,23]), the

results show slopes (using log/log coordinates) quite close

to 20.5 for modulation thresholds at low dot densities,

and quite close to zero for coherence thresholds also at

low dot densities, but they both then deviate upwards

from the expected values (see best-fitting lines of slopes

20.5 or 0 calculated for the first four points). The range

of validity was thus limited to a 30-fold range of dot den-

sities. At low values, it was subjectively clear to the

observer that cognitive factors tended to be used for

making the judgments, and this discouraged attempts to

extend the test range downwards. However, the upper

http://rspb.royalsocietypublishing.org/
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Figure 2. Log thresholds for detecting the orientations of

streaks produced by (a) gratings or (b) Glass patterns, as
functions of log dot densities, using ungraded, white, dots.
The points are the thresholds for three subjects determined
by a staircase method, with error bars equal to 2� s.e. The

straight lines were given the theoretically expected slopes of
(a) 20.5 and (b) 0, and were computed best fits to the first
four points only. They clearly become unsatisfactory fits
when log(l) reaches about 20.5, thus limiting to about
30-fold the range of dot densities over which the theoretical

expectations are followed. See text for further discussion.
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Figure 3. Same as figure 2, but using graded dots. When
using graded dots, log threshold versus log dot density
relations for (a) gratings and (b) Glass patterns become
straight lines of characteristic slope (dashed regression lines

and filled symbols) that match those of ideal models using
cross- and auto-correlation (black lines). Threshold results
for ungraded white dots are carried over from figure 2
(unfilled symbols), and results for ideal models using

ungraded white dots (grey lines curving upwards) are also
shown. The means and standard errors of the slopes of the
main regression lines are 20.482+0.016 and 20.024+
0.010, close to those expected theoretically (20.5 and 0).
The ideal models using graded dots accurately follow the

theoretical slopes of 20.5 and 0. For ideal detectors, the
area of the detector was matched to the area of the target
stimulus, but no such matching was possible for the psycho-
physical results; more information is therefore needed to
estimate absolute efficiencies (see text).
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limit for the range of validity appears to be due to a quite

different effect—that of occlusion, explained below.

In figure 2, the upward deviations from the predicted

relations start when log(l) � 21, and are easily signifi-

cant when log(l) � 0, corresponding to values for l

itself of 0.1 and 1, respectively. With our method of gen-

erating white dots, if two or more dots are allocated to a

pixel, still only one is shown, and any excess allocations

are occluded, having no effect whatever on the display.

Calculation shows that the probability of two or

more dots occurring in a single pixel exceeds 0.05 when

l � 0.355, or log(l) � 20.45, and since occluded dots

cannot help the observer to see oriented streaks,

occlusion provides a satisfactory explanation for the

experimental thresholds rising at this point.

To test this explanation, figure 3a,b show threshold

measurements like those of figure 2, but using graded

dots. The results using ungraded white dots have been

copied over from figure 2. Two points are immediately

obvious: first, up to a value of log(l) � 20.5, the results

using graded dots agree well with those using white dots;

second, the results using graded dots demonstrate good

approximations to the predicted inverse square root and

constant coherence threshold relationships far above the

value of log(l) � 20.5, the agreements both holding

over 1000-fold ranges of dot density.
Proc. R. Soc. B
Figure 3 also shows the results of simulations for ideal

detectors using cross-correlation and auto-correlation

(black lines). For graded dots, these have slopes of

20.5 and 0, accurately following the theoretical

predictions. The grey lines curving upwards show the

results for ungraded white dots, confirming that the simu-

lations, like human observers, are affected by occlusion

when the targets use ungraded white dots.

We think the slopes for ideal cross-correlation and

auto-correlation in figure 3 add support to the hypothesis

that either method can be used for detecting the orien-

tations of streaks. The fact that avoiding occlusion has

such a dramatic effect in extending the ranges for which

these relationships hold, and the fact that it works for

the ideal simulations as well as for the human observers,

strengthens the case.

As shown in figure 3, our current simulations have

thresholds about 25 per cent of those of our observers

for cross-correlation, and about 8 per cent of those for

auto-correlation. This could be taken to indicate that

http://rspb.royalsocietypublishing.org/
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our ideal simulations are able to do a much better job of

interpreting the information in the stimulus dots than the

real visual system is able to do. This would, however, be

misleading, because the ideal systems have an advantage

over the natural system: their parameters are matched to

the parameters of the stimulus, whereas the real system’s

parameters cannot be adjusted by the experimenter. An

alternative would be to match the parameters of the

stimulus to those of the natural system but we do not

yet know their values. The main such parameter is likely

to be the target area over which the information contained

in the positions of the dots can be combined efficiently to

give the correct impressions of the orientations of the

streaks. This area is likely to be much less than the

15 deg2 provided by the full test area, so when making

the comparison of figure 3, the ideal system has a great

advantage over the real system because it uses the whole

test area. This advantage should be reduced when a smal-

ler test area is used, and this was found to be the case, but

further experiments are needed to obtain proper estimates

of optimal statistical efficiencies and the conditions under

which they are obtained.
4. DISCUSSION
(a) Comparisons with earlier results

The psychophysical results of figure 3 clearly indicate that

early vision uses cross-correlation to detect the oriented

streaks produced in random dot arrays by sinusoidal

spatial modulation of dot density, whereas it uses auto-

correlation to detect the oriented streaks produced by

coherent pairs, as in translational Glass patterns. The ear-

lier studies referred to above had suggested that this was

the case, but the technique for using graded dots to

avoid occlusion at high dot densities leads to much

more convincing experimental results. Notice that the

technique for generating the graded dot displays was

designed to improve the fidelity of the visual system’s

computations of cross- and auto-correlations, so the fact

that it works so well adds confidence to our belief that

our psychophysical procedures genuinely test the use of

these two types of computation.

We shall not understand the full significance of there

being two computational methods for distinguishing orien-

tation until we find out whether there are similar

dichotomies for the other main computations thought to

occur in early vision—those for motion, stereopsis and

perhaps colour. It is also important to determine whether,

as we believe, they both occur at a single level, or whether

the two components occur at successive levels in early

vision, for example V1 for cross-correlation and V2 for

auto-correlation, but a conclusive answer to this question

is likely to need a neuro-physiological approach.

As far as we know, there are no experimental results

that conflict directly with ours, though some may at first

appear to do so. Dakin [25], for example, suggests that

cross-correlation alone can detect Glass patterns, but he

does not appear to have made quantitative comparisons

to support his claim. It is also not clear whether his

tests were aimed (as ours were) at the first of the two

stages involved in detecting Glass patterns—that of

detecting coherent pairs—or at the second stage, that of

detecting whether the pattern of coherence is transla-

tional, radial, circular or hyperbolic. There is also a lack
Proc. R. Soc. B
of positive evidence for auto-correlation in the neuro-

physiological analysis of responses to paired dots by

Smith et al. [26], but while these results show good evi-

dence for cross-correlation, we do not think that any of

them challenge our evidence that auto-correlations are

also computed in early vision.

We are not aware of any other studies that have tested

for the occurrence of auto-correlation in early vision by

the method described here. It would certainly be interest-

ing to know whether measurements of signal-to-noise

ratios in energy models [13–15] can mimic the results

shown in figure 3.
(b) Significance of auto-correlation

If auto-correlation, or an equivalent wavelet computation,

does occur, this must be important for it makes possible

the discrimination of classes of patterns defined by joint

properties of pairs of pixels. As pointed out in §1, the pro-

ducts that contribute to the value of a cross-correlation

are all between single pixel values and a pre-specified tem-

plate-weighting factor: the contributions of a particular

pixel do not vary according to the simultaneous contri-

bution of other pixels, and cross-correlation alone is

therefore blind to second-order statistical differences

between patterns of pixels. On the other hand it is quite

different for auto-correlations; they are formed solely

from the products of the values of two image pixels, so

differences in the frequencies of joint events are certainly

expected to cause distinguishable differences in a.

This has an enormous effect in increasing the total

number of patterns that could, in principle, be distin-

guished from each other by auto-correlation, compared

with the number distinguishable by cross-correlation

alone, and this immediately suggests an explanation for

the explosive increase in the number of neurons per

incoming afferent neuron that occurs when the visual

pathway enters the cortex. This explosive increase has

long been known to occur [27], and the ratio of cortical

neurons to input afferent fibres has more recently been

shown to reach the astonishing figure of 10 000 : 1 in

the foveal projection of macaques [28].

Surely this explosive expansion must indicate that

a radically different form of computation is being employed,

and we think this is likely to be the systematic exploitation

of auto-correlation in the cerebral cortex to discover

second-order features in input patterns. In other words,

the conjecture Julesz [20] made in 1962 and later withdrew

was very nearly right: he should have said ‘The general

ability to distinguish between patterns with different

second-order statistics only becomes possible in the cerebral

cortex, through its systematic use of auto-correlation’.

Because of the expansion, it is reasonable to expect

that there is a huge number of different complex cells

each connected to the same, or nearly the same, set of

simple cells, but differing in the detailed pattern of their

connections. If these differences amount to specifying

different displacements (u,v) in equation (1.2) for a

large number of different auto-correlations a, then we

would have an array of elements that is, in effect, looking

for pre-specified auto-correlations in the filtered input

from the image, and these might be the functional corre-

lates of the geometrical arrangements that Ben-Shahar &

Zucker [29] describe.

http://rspb.royalsocietypublishing.org/
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Our search for the computational goal of early vision

has produced some evidence that auto- as well as cross-

correlation is used in the pinwheels of V1 to detect

higher order regularities in the visual input, such as sym-

metries and suspicious coincidences. Perhaps William

James [30] was right in claiming that, in his words, ‘the

sense of sameness is the very keel and backbone of our

thinking’, and in that case the computational goal of V1

may turn out to be closer to that of the cerebral cortex

as a whole than has been generally recognized.
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