International Journal of Osteoarchaeology

Physical Impairment and Care Estimation in Medieval Estremoz (Portugal): A Bioarchaeological Perspective

Ana Curto^{1,2,3} | Célia Lopes^{3,4} | Anne-France Maurer^{1,2} | Teresa Fernandes^{3,4}

¹HERCULES Laboratory, University of Évora, Évora, Portugal | ²IN2PAST, Associate Laboratory for Research and Innovation in Heritage, Arts, Sustainability and Territory, Évora, Portugal | ³Department of Biology, University of Évora, Évora, Portugal | ⁴Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal

Correspondence: Ana Curto (ana.curto@uevora.pt)

Received: 12 May 2025 | Revised: 25 August 2025 | Accepted: 2 September 2025

Funding: This work was supported by the Fundação para a Ciência e a Tecnologia (UIDB/04449/2020, UIDP/04449/2020, and LA/P/0132/2020).

Keywords: diet | disability | health | inequalities | physiological stress | stable isotopes

ABSTRACT

This study aims to compare diet and skeletal health indicators between individuals with varying degrees of physical impairment and the general adult population from medieval Estremoz, Portugal, to assess their health status and their survival outcomes. Skeletal remains from 41 male adult individuals, including 8 with physical impairments and 33 from the general population, were analyzed. The impairment of these individuals was described, and their need for care was inferred considering the guidelines of the Index of Care and the Bioarchaeology of Disability approach. Skeletal lesions, physiological stress indicators, and estimated diet (using stable isotope analysis of bone collagen) were compared between individuals with and without signs of physical impairment. Individuals with physical impairments did not exhibit more frequent or more severe skeletal indicators of physiological stress or trauma than the general population. The survival into adulthood with good health of individuals with physical abnormalities or limiting conditions suggests consistent care, particularly in childhood and as needed throughout life. This study provides evidence that individuals with disabilities in medieval Estremoz do not seem to have been excluded from the community. These findings contribute to broader discussions on social support, resilience, and caregiving in historical populations. The sample size of impaired individuals is small, and osteological preservation may limit the identification of subtle stress indicators. Future work should explore disabilities and caregiving practices in other medieval populations, incorporating stable isotopic analysis to compare their adult and childhood diet with the general population.

1 | Introduction

Although evidence of care for the sick and impaired exists across cultures and historical periods (e.g., Phillips and Sivilich 2006; Tornberg and Jacobsson 2018; Dittmar et al. 2023) and even among other human species (e.g., Lordkipanidze et al. 2005) and nonhuman primates (e.g., Boesch et al. 2010), such care is not universal (Iezzoni 2011). Even today, for instance, individuals with disabilities in the United States experience poorer health outcomes, lower levels of education, reduced income, and higher unemployment rates compared to their nondisabled

peers (Iezzoni 2011). Even where intervention was likely unavailable, support must have been provided, underlining the principle that the absence of cure does not preclude the presence of care (Micarelli et al. 2024). This perspective aligns with broader discussions in the bioarchaeology of care framework, particularly the osteobiographical approaches that foreground care as a relational, socially embedded process. Although empathy and altruism may have deep evolutionary roots, as suggested by research on primates (e.g., Boesch et al. 2010), this does not guarantee consistent caregiving across all social, cultural, or historical contexts (Dettwyler 1991).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). International Journal of Osteoarchaeology published by John Wiley & Sons Ltd.

Disability is a complex concept to define in bioarchaeology, as it is a socially constructed category, culturally specific, variable across time and space, and typically leaving no direct trace in the skeleton (Metzler 2013; Reid-Cunningham 2009; Tarlow 2000). Impairment, by contrast, refers to a more tangible medical or anatomical condition that may limit an individual's physical capabilities and is, in some cases, observable in the skeletal record. This distinction underpins the bioarchaeological value of studying impairment as a material proxy for investigating broader social attitudes toward disability. Inferring impairment and, more cautiously, disability from human remains allows bioarchaeologists to access a broader dimension of past human experiences, highlighting how individuals with physical limitations may have lived within their social and cultural environments (Roush 2017).

Tilley and Oxenham (2011), Tilley and Cameron (2014), and Tilley (2015) pioneered a "bioarchaeology of care" framework, later expanded by Bohling et al. (2022a) into a population-scale "Bioarchaeology of Disability" approach. Their work demonstrates that funerary treatment depended on community beliefs rather than impairment alone (Bohling et al. 2022a, 2023).

Although case studies remain central to the field (e.g., Keenleyside 2003), recent work emphasizes population-level analyses (e.g., Bohling et al. 2022a; Dittmar et al. 2023; Schrenk and Tremblay 2022). This broader scale is particularly informative for identifying patterns of systemic inclusion or exclusion, allowing researchers to assess whether impaired individuals experienced differential access to care, nutrition, or social participation. In this study, we adopt such an approach by comparing skeletal stress indicators and diet between impaired and nonimpaired individuals in medieval Estremoz, Portugal, to assess health disparities that go beyond survival alone.

2 | Historical Context

Medieval Portuguese society was shaped by a worldview deeply influenced by religiosity, where health and illness were interpreted as manifestations of divine grace or punishment. The state of the body, whether healthy or afflicted, was seen as a reflection of the soul's condition, corresponding to virtuous or sinful behavior (Oliveira 2015). Until the late 15th century, disability was predominantly regarded as a curse or divine retribution, reinforcing significant social stigma. Individuals with severe impairments, particularly those unable to work, were frequently marginalized and relegated to begging (Moreno 1985). Official records from the 14th century distinguish between "false beggars," deemed able-bodied and expected to work, and "true beggars," who were physically incapable of self-support. In 1349, King Afonso IV issued a decree stating that only those who were "old, crippled, blind, sick, and others [...] who have no bodies fit for any service" could legitimately beg (Moreno 1985, 30). This framework highlights the strong entanglement between religious, cultural, and socioeconomic factors in shaping the treatment and perception of illness and disability.

Estremoz, a medieval town in the Alentejo region of Portugal, occupied a strategically significant location near the Spanish border. Its elevated position offered extensive visual control over the surrounding territory, making it a desirable site for royal settlement and defense (Liberato 2012). First mentioned in 1211 and recorded as a small settlement with a church in 1250 (Silveira 1797), Estremoz was granted a royal charter in 1258. The town initially developed within the fortified castle and expanded rapidly in the late 13th century with the creation of the Santiago neighborhood (Liberato 2012). Its location placed it in the second line of defense for Lisbon and at the crossroads of major regional routes connecting Lisbon, Mérida, Santarém, and Évora (Figure 1). This strategic value contributed to its urban growth, royal privileges, and political importance.

Beyond its military and administrative relevance, Estremoz supported a diverse and productive agricultural economy. Historical sources describe extensive cultivation and livestock farming (Coelho 2023). Food production supported both subsistence and trade, and a variety of locally available resources are attested (Silveira 1797). Grain storage pits, milling infrastructure, and ovens suggest organized processing and bread production (Coelho 2023). Together, these elements point to a resource-stable community with strong economic integration and close ties to the Crown.

3 | The Rossio Marquês de Pombal Osteological Collection, Estremoz

The osteological assemblage includes 141 individuals from 84 graves dated to the 13th–15th centuries (Fernandes and Costa 2007). The full extent of the cemetery remains unknown, and the lack of an excavation report, with only grave drawings preserved, constrains our understanding of the site. Burials followed Christian rites, mostly in rock-cut anthropomorphic graves without grave goods. At least 17 graves were reused, often containing adults and children, possibly representing family units.

Osteological evidence suggests that this population experienced relatively low levels of physiological stress and generally favorable health (Curto et al. 2025). The assemblage has an unusually high number of individuals over 44 years old (Figure 1), possibly indicating good health and survivability. The frequency of skeletal markers, such as *cribra orbitalia* and *cribra cranii*, is low, suggesting adequate nutritional access and low exposure to chronic stressors (see Curto et al. 2025 for more details).

Nonadults displayed limited evidence of growth disruption (Curto et al. 2025), supporting the idea of a stable early-life environment. The few cases of mostly healed periosteal lesions further reinforce the impression of low frailty and resilience to disease. Interestingly, males exhibited slightly more stress indicators than females, possibly due to differences in early-life experiences or origins; some males may have been nonlocal (Curto et al. 2025). This is supported by stable isotope data, with a few, mainly male, individuals exhibiting distinct $\delta^{13}C$ and $\delta^{15}N$ values, possibly from different dietary inputs or geographic origins.

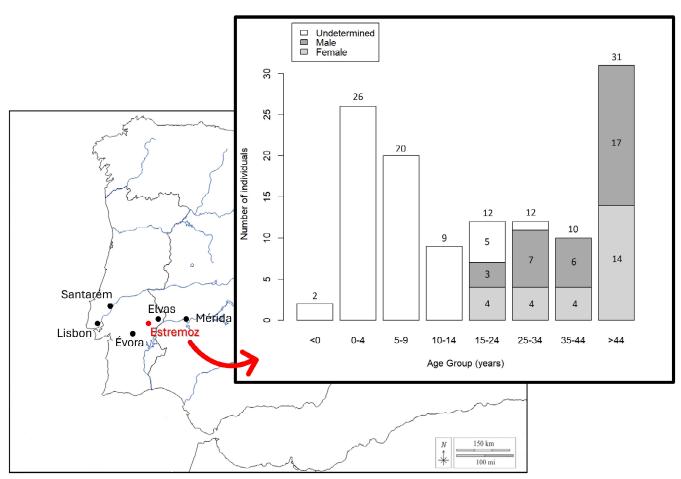


FIGURE 1 | Location of Estremoz in the Iberian Peninsula and distribution of individuals from the Estremoz osteological collection by age group and sex. Adapted from Curto et al. (2025). [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 | List of skeletons considered as having a physical impairment and the main pathology or lesion related to the impairment. A more detailed description of the lesions and pathologies can be consulted in the Supporting Information.

Skeleton ID	Sex	Age	Pathology/ Lesion	Trauma	Tibiae's periosteal lesion	Cribra orbitalia	Cribra cranii	References
RMPE-28oss1	Male	Adult	Kyphosis	_	_	No	No	_
RMPE-69	Male	30-45 years old	Slipped femoral head	Yes	_	No	No	_
RMPE-73	Male	30-45 years old	Klippel-Feil syndrome	No	No	No	No	Fernandes and Costa (2007)
RMPE-75	Male	30-45 years old	Talipes equinovarus	No	No	_	No	Curto and Fernandes (2022)
RMPE-112	Male	Adult	Assymetric sacrum	No	No	No	No	_
RMPE-117	Male	25–35 years old	Sliped femoral head	Yes	No	No	No	Fernandes et al. (2017)
RMPE-119	Male	20–20 years old	Assymetric humerii	No	No	_	No	_
RMPE-121	Male	23–57 years old	Madura foot	Yes	No	_	_	Curto and Fernandes (2016)
General male as	ssemblag	ge			4/25	6/25	1/31	Curto et al. (2025)

10991212, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/o.a.70040 by Cochrane Portugal, Wiley Online Library on [25/09/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/corns-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Cerative Commons License

TABLE 2 | Summary of the care estimation provided following the recommendations of Tilley and Cameron (2014) and Bohling et al. (2022a). More detailed information about each individual can be found in the Supporting Information.

					Estimated duration			Estimated duration of the		Differential	
Individual ID	Impairment description	Visibility	Functional limitation	Symptoms	of the impairment	Activities affected	Likely care requirements	provided care	Survival implication	burial treatment	Notes
RMPE- 28oss1	Spinal deformities, reduced dorsal lordosis, kyphosis, possible congenital	Yes	Yes— mobility, posture, upper body movement	Likely chronic pain, fatigue, stiffness	Long-term (congenital or developmental)	Mobility, lifting, walking, prolonged sitting/ standing	Adaptation, workload adjustment, possible assistance	Long-term	Lived to adulthood, suggests functional adaptation	N _O	Possible congenital syndrome; limited reconstruction due to commingling
RMPE-69	SCFE, hip arthrosis, vertebral degeneration, healed trepanation	Partial— gait and trepanation scar	Yes— mobility, balance, lifting	Chronic pain, stiffness, possible metabolic symptoms	Long-term (adolescent onset)	Walking, lifting, uneven terrain navigation	Support with mobility and recovery, workload adaptation	Likely intermittent with episodic support	Survived major surgery and long-term impairment	No	Evidence of care posttrepanation
RMPE-73	Klippel-Feil syndrome, Sprengel deformity, possible Goldenhar	Yes— craniofacial and spinal anomalies	Yes—upper body and neck mobility	Pain, stiffness, possible fatigue, sensory issues	Lifelong (congenital)	Neck rotation, lifting, hygiene, dressing	Assistance with ADLs, workload adjustment	Lifelong	Survived into adulthood with visible anomalies	N _o	Likely experienced social and functional limitations
RMPE-75	Talipes equinovarus (clubfoot), knee arthrosis, possible genetic syndrome	Yes—gait and foot/ knee anomalies	Yes—walking, prolonged activity	Chronic joint pain, stiffness, fatigue	Lifelong (congenital)	Walking, manual labor, carrying loads	Mobility support, physical assistance	Lifelong	Reached adulthood, adapted gait	°Z	Crutch use inferred from wrist changes

(Continues)

	uo	ely 1re	ry d ity	rial; ct 1s
Notes	Poor preservation limits confirmation	Severe trauma likely required care	Asymmetry likely influenced daily activity	Unusual burial; may reflect high status
Differential burial treatment	No	Yes— perimortem amputations; possibly as punitive treatment	No	Yes—buried with 30; may suggest higher status or an outsider
Survival implication	Adapted functionally	Survived major injury and SCFE	Adapted structurally	Survived chronic illness and surgery
Estimated duration of the provided care	Long- term or intermittent	Likely intermittent with episodic support	Likely intermittent	Long-term
Likely care requirements	Minor support, adaptation	Recovery support, mobility aid	Task adaptation	Long-term support, infection care
Activities affected	Bending, lifting, walking	Walking, lifting, coordination	Lifting, overhead or bilateral tasks	Walking, labor, hygiene
Estimated duration of the impairment	Likely congenital or developmental	Medium- long term	Lifelong or developmental	Long-term (chronic infection)
Symptoms	Likely discomfort, impaired posture	Pain, stiffness, impaired coordination	Muscle imbalance, discomfort, reduced coordination	Chronic pain, swelling, fatigue
Functional limitation	Yes— posture, spinal loading	Yes—mobility, bimanual tasks	Yes—bilateral arm use, posture	Yes—mobility, prolonged activity
Visibility	Yes—likely visible through limping or altered posture	Yes—amputations	Partial—shoulder height difference	Yes— limping, possible head scar
Individual Impairment ID description	Asymmetrical sacrum and os coxae, misaligned SI joint	SCFE, healed radial fracture, hand and foot amputation (perimortem)	Marked humeral asymmetry, vertebral facet asymmetry	Mycetoma in foot, spinal changes, trepanation
Individual ID	RMPE-112	RMPE-117	RMPE-119	RMPE-121

10991212, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/oa.70040 by Cochrane Portugal, Wiley Online Library on [25/09/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Three young males recovered from this graveyard, presenting evidence of *perimortem* limb amputation, have been interpreted as possible victims of judicial mutilation, a punitive practice historically documented for certain crimes (Fernandes et al. 2017). Such findings support the notion that physical impairment was not only stigmatized but, at times, actively inflicted as a form of social control and punishment. Other case studies from this osteological assemblage include a male with Klippel-Feil Syndrome (Fernandes and Costa 2007), another one with clubfoot (Curto and Fernandes 2022), and one with a fungal infection (Curto and Fernandes 2016).

Overall, the combination of high adult longevity, low prevalence of skeletal pathologies, and consistent dietary signatures reflects a relatively healthy population. This likely resulted from favorable socioeconomic conditions, food security, and limited exposure to severe pathogens or malnutrition.

4 | Sample and Methodology

This study examines eight males exhibiting skeletal evidence of physical impairment (Table 1) from a 13th–15th century Christian cemetery in Estremoz, Portugal, and compares their diet and skeletal indicators of physiological stress with the remaining males from the same site (N=31) who were previously studied (Curto et al. 2025). Four of the impaired individuals had already been described in earlier publications (Fernandes and Costa 2007; Curto and Fernandes 2016; Fernandes et al. 2017; Curto and Fernandes 2022) with lesion descriptions and differential diagnoses; however, they were reanalyzed in the present study.

Sex, age-at-death, and morphometric data were previously reported in Curto et al. (2025). Periosteal lesions on tibiae were scored following Steckel et al. (2006) (score ≥ 2), and *cribra orbitalia* and *cribra cranii* were recorded when porous lesions (score ≥ 1) were present (Rinaldo et al. 2019). Full methodological details are in Curto et al. (2025).

Adult diet was assessed using previously published carbon and nitrogen isotope data from rib collagen (Curto et al. 2025), which were further explored here to investigate potential dietary differences between impaired and nonimpaired males. As part of the new analyses in this study, we recorded the number of macroscopic enamel hypoplasias (LEH) per tooth, considering the maximum number per tooth as a proxy for the number of episodes of physiological stress during crown development. Canines, due to their extended formation period (AlQahtani et al. 2010), were used to estimate the age at which stress events occurred. This was done by measuring the distance from the cemento-enamel junction (CEJ) to each LEH defect and applying the regression formula provided by Cares Henriquez and Oxenham (2019). The first LEH was considered as a proxy of the earliest physiological stress episode. In addition to documenting the age of individual LEH, we calculated a mean hypoplasia age per individual, defined as the average of all estimated LEH formation ages recorded on the canine. This was then averaged across groups (e.g., impaired vs. nonimpaired males). Although we acknowledge that each hypoplastic groove reflects a unique stress event, the purpose of calculating the mean age was not to replace this chronological resolution but rather to explore broader tendencies in the timing of physiological stress. Specifically, we aimed to assess whether individuals with impairments tended to experience

TABLE 3 | Descriptive statistics of skeletal indicators of health and mean values for the individuals with impairment and the other males without signs of impairment.

						LEH	
Skeleton ID		Sex	x	Tibia length (mm)	Number of LEH per tooth	Age of the 1st LEH (in years)	Mean age of the LEH (in years)
RMPE		Male	$\bar{x} \pm \sigma$	354.35 ± 20.19	3.48 ± 1.24	3.02 ± 0.58	3.65 ± 0.39
(Nonimpaired)			N	20	23	19	19
Impairment	RMPE-28oss1	Male		_	2	3.24	3.67
	RMPE-69	Male		367.00	0	_	_
	RMPE-73	Male		360.00	2	3.89	4.28
	RMPE-75	Ma	le	344.00	3	3.31	3.95
	RMPE-112	Ma	le	_	2	_	_
	RMPE-117	Ma	le	_	4	3.16	3.31
	RMPE-119	Ma	le	355.00	4	2.02	4.21
	RMPE-121	Male		_	2	_	_
	Mean			356.50 ± 9.68	2.38 ± 1.30	3.12 ± 0.68	3.64 ± 0.49
	Mann-Whitney	W	-	43	137	40	49
	<i>U</i> test (impaired vs. nonimpaired)	p val	ue	0.85	0.04	0.62	0.94

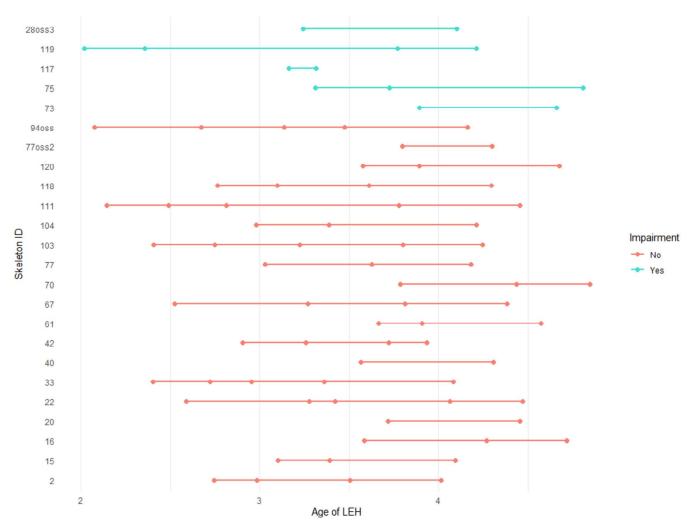


FIGURE 2 | Estimated ages at formation of linear enamel hypoplasias (LEH) in individuals with and without skeletal impairments. Each line represents one individual and the points indicate distinct episodes of physiological stress during crown development. [Colour figure can be viewed at wileyonlinelibrary.com]

stress episodes earlier or later in childhood compared to their peers.

To assess developmental stress, tibial length was used as a stature proxy, given its sensitivity to environmental and nutritional factors (e.g., Jantz and Jantz 1999; Bogin and Varela-Silva 2010).

Nonparametric tests evaluated differences between impaired and nonimpaired males (N=8 and N=31, respectively), with the aim of testing whether individuals with skeletal impairments exhibited significantly different patterns of physiological stress or dietary intake. This analysis explores the hypothesis that impaired individuals may have experienced greater stress exposure in childhood and/or adulthood due to their condition.

Impairment was defined as skeletal conditions likely to affect physical function and daily life, identified through macroscopic analysis and palaeopathological assessment. The evaluation followed the methodological frameworks outlined by Tilley and Cameron (2014) and Bohling et al. (2022a), which were adapted to ensure clarity and accessibility for a wider audience.

From Tilley and Cameron's (2014) bioarchaeology of care approach, three criteria were used to infer care: (1) survival with a condition that would likely limit autonomy; (2) functional impact inferred through clinical parallels; and (3) a model of care derived from the estimated physical limitations. Specifically, the Index of Care methodology assesses impairment impact on essential and instrumental activities of daily living (e.g., feeding, hygiene, and mobility), duration (short, medium, or long term), and probable care requirements (e.g., provisioning, assistance, and accommodation). Where appropriate, constants of care (e.g., hygiene, feeding, and monitoring) were used to explore potential caregiving scenarios.

From Bohling et al. (2022a), the definition of physical impairment required that the condition be visible (externally noticeable), functional (affecting movement or self-sufficiency), or symptomatic (e.g., pain and fatigue), with likely social implications. Impairments were categorized based on estimated duration: congenital, definitively long-term, medium-to-long term, or end of life. Only impairments with visible or functional impacts were included, as these are more likely to have influenced identity and required adaptation or support. Clinical

literature supported the differential diagnosis and informed assumptions about the condition's impact and potential need for care.

Together, these frameworks allowed us to evaluate each case systematically, balancing osteological evidence with clinical and sociocultural context to assess whether the individual may have required support within their community.

As all individuals with signs of impairment in this study are male, comparisons were made exclusively with the general male sample from Estremoz. This approach was adopted to minimize potential bias related to sexual dimorphism in skeletal morphology and physiology. Previous analyses of the Estremoz collection (Curto et al. 2025) suggest that males and females may exhibit differing patterns in skeletal stress markers and body size. By restricting comparisons to males, we aimed to ensure more accurate and internally consistent assessments of impairment-related differences.

5 | Results and Discussion

5.1 | Impaired Individuals Versus General Population

Table 1 shows a list of the skeletons considered as having a physical impairment and Table 2 exhibits a summary of the lesions and estimated care provided to these individuals. A full description of these can be found in the Supporting Information, including figures illustrating the unpublished cases (Figures S1–S3).

All were male and showed no higher frequency or severity of skeletal stress or trauma than the broader sample (Tables 1 and 3). Fewer than half had trauma (3/7; RMPE-28oss1 excluded due to limited preservation), and two cases resulted from medical procedures. None exhibited tibial periosteal lesions (N=6), cribra orbitalia (N=5), or cribra cranii (N=7), despite at least six having impairments since childhood (Table 2). Periosteal lesions are nonspecific indicators of stress, often associated with repetitive biomechanical strain (e.g., Franklyn and Oakes 2015), vitamin deficiencies (e.g., Weston 2011), and pathogen-related infections (e.g., Klaus 2014). Their presence, particularly when active, can serve as a broad marker of disease, whether chronic or acute, as well as physiological stress. The presence of cribra orbitalia and cribra cranii can represent social and economic inequalities (e.g., Biehler-Gomez et al. 2023). In this study, their absence among impaired individuals does not imply the absence of disease or hardship, because many infectious and metabolic conditions leave no skeletal trace (Wood et al. 1992). However, the lack or low frequency of these lesions may tentatively suggest that these individuals were not exposed to the prolonged or recurrent stressors typically required for such skeletal manifestations to form and persist.

Tibial length, a proxy for growth-related physiological stress (e.g., Jantz and Jantz 1999; Bogin and Varela-Silva 2010), was only below the sample mean in RMPE-75, the male with club-foot (Table 2). On average, males with impairments had similar tibia length ($356.5 \pm 9.68 \, \text{mm}$, N = 4, Table 3) to those without

 $(354.4\pm20.19\,\mathrm{mm},\,N=20,\,\mathrm{Table}\,\,3)$. This suggests that impairments were not consistently linked to growth deficits resulting from early-life physiological stress. Linear growth is sensitive to factors such as infection, nutrition, and psychosocial conditions during childhood (e.g., Jantz and Jantz 1999; Bogin and Varela-Silva 2010), and smaller body size, which reflects chronic undernutrition and stress (Fried et al. 1998), correlates with increased mortality during epidemics (DeWitte and Hughes-Morey 2012). At Estremoz, the absence of reduced tibial length may point to adequate caregiving, reduced exposure to early-life adversity, or higher social buffering, enabling individuals with impairments to reach adult stature despite physiological challenges.

Males with impairments exhibited a significantly lower frequency of linear enamel hypoplasias (LEH; Table 3) (2.4 ± 1.30) , N=8) than those without impairments (3.5 ± 1.24, N=23; p=0.04), suggesting fewer episodes of physiological stress during childhood. Only RMPE-117 and RMPE-119 presented LEH counts above the male mean (Table 3). In general, most LEH events occur between 2.5 and 4.5 years of age. On average, most of the individuals without impairment had their first LEH slightly earlier than those with impairment; these individuals had their first stress period after 3 years old, with the exception of RMPE-119 (Figure 2). Their stress periods also appear more concentrated in time, compared to those without impairment, who exhibit a wider spread of LEH ages, possibly reflecting prolonged or repeated stress. The mean age at formation was comparable between impaired (3.6 \pm 0.49, N = 5) and nonimpaired males (3.7 \pm 0.39, N=19), corresponding to the typical weaning period (2-4 years; Miszkiewicz 2015), when individuals are particularly vulnerable to nutritional stress, dietary transitions, and pathogen exposure. These patterns are consistent with findings by Lorentz et al. (2021), who reported hypoplasia peaks during developmental windows of elevated stress risk. LEH formation reflects systemic disruptions during enamel development, associated with malnutrition, infection, or toxin exposure and has been linked to reduced longevity (Boldsen 2007). The lower LEH frequency in impaired males may reflect mitigating environmental or social factors, such as improved care or nutrition, particularly during critical developmental periods. However, this pattern may also reflect a selection effect: Individuals with both physical impairments and high early-life stress may have been less likely to survive into adulthood and thus are underrepresented in the sample. Additionally, congenital anomalies and impairments are harder to detect in nonadult skeletons due to incomplete expression or poor preservation. Cross-population standardization of LEH analysis could further clarify whether such trends reflect localized health conditions or broader postnatal stress responses.

Isotopic data of the overall population was previously discussed in Curto et al. (2025) with regard to the faunal baseline. Results indicate a primarily terrestrial adult diet, with possible contributions from C₄ plants and/or aquatic resources (Curto et al. 2025; Figure 3). Similar average δ^{13} C and δ^{15} N values were observed between individuals with (δ^{13} C $\bar{x}=-18.2\%\pm0.36\%$; δ^{15} N $\bar{x}=11.0\%\pm1.05\%$; N=6) and without impairments (δ^{13} C $\bar{x}=-18.1\%\pm0.48\%$; δ^{15} N $\bar{x}=11.0\%\pm0.87\%$; N=12). This indicates that individuals with physical impairments likely had access to comparable dietary resources, suggesting their social integration in terms of food provisioning and an absence of

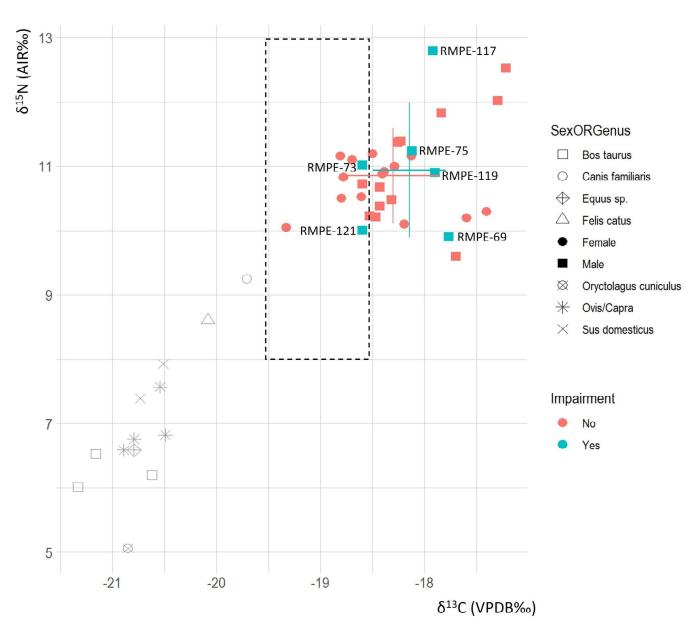


FIGURE 3 | Stable isotope values of fauna and human bone collagen. Lines indicate the mean and standard deviation for the general population (males and females; $\delta^{13}C = -18.29\% \pm 0.48\%$; $\delta^{15}N = 10.85\% \pm 0.73\%$) and those with impairment ($\delta^{13}C = -18.15\% \pm 0.36\%$; $\delta^{15}N = 10.97\% \pm 1.05\%$). The dashed rectangular area indicates expected values for the trophic level increases from the maximum and minimum values of the analyzed fauna (except the carnivores). [Colour figure can be viewed at wileyonlinelibrary.com]

marked dietary stratification based on physical ability. Similar patterns have been documented in France for a woman diagnosed with Treacher Collins syndrome and associated deafness, whose diet did not differ from that of the broader population and who exhibited no skeletal indicators of maltreatment (Miclon et al. 2021).

The highest $\delta^{15}N$ value was observed in RMPE-117 (12.8%), an impaired individual with perimortem amputated hands and feet who may have been nonlocal (Fernandes et al. 2017), though no isotopic data confirm mobility or dietary profiles for the other amputees. The lowest $\delta^{15}N$ values among impaired individuals, yet still within the population range, were found in RMPE-69 (9.9%) and RMPE-121 (10.0%), two cases of trepanation (Figure S2 and Curto and Fernandes 2016), whereas RMPE-73 (KFS) and RMPE-75 (clubfoot) show $\delta^{15}N$ values near

the population mean (Figure 3). Elevated $\delta^{15}N$ values typically reflect greater consumption of terrestrial or aquatic animal protein (e.g., Ambrose and Norr 1993; Chisholm et al. 1982, 1983), potentially linked to socioeconomic status. In this sample, $\delta^{15}N$ variation does not correlate with physical impairment presence, severity, or duration.

Previous research indicates that frail children in past societies were often viewed as less valuable than healthy individuals, leading to parental detachment (Tilley and Oxenham 2011). In Medieval Europe, disabled children were sometimes perceived as "changelings" (Kuuliala 2011), potentially harming familial status and justifying abandonment (Lewis 2006). In medieval Portugal, congenital conditions—attributed to maternal or birth complications—often defied treatment, leaving sufferers reliant on divine intervention (Oliveira 2015). Nevertheless, care was

provided to children with physically limiting conditions like Klippel-Feil syndrome (KFS) and clubfoot. Despite their impairments, these individuals survived to adulthood without elevated physiological stress markers compared to peers in Estremoz, possibly due to enhanced childhood care, evidenced by fewer and later onset LEH.

Importantly, burial treatment did not differ markedly between impaired and nonimpaired individuals, reinforcing the argument that those with impairments were not socially excluded in death. Like recent studies (e.g., Cilione and Gazzaniga 2023; Bohling et al. 2022a; Bohling et al. 2022b; Bohling et al. 2023), our findings—including community burial—challenge the universal association of disability with exclusion in historical contexts.

This care may reflect Estremoz's favorable socioeconomic conditions (Curto et al. 2025), where stable resources facilitated support for vulnerable members, including preferential feeding or reduced labor demands. In historical contexts, communities with secure access to resources may have been more able and more inclined to support members with greater care needs. The generally low stress levels in the population further suggest protective social strategies (Curto et al. 2025). Parallels can be drawn with contemporary findings from the COVID-19 pandemic, where socioeconomic status significantly influenced health outcomes and mortality risk. Studies show that individuals from higher socioeconomic strata experienced lower mortality and better access to care during the pandemic, whereas more deprived populations faced disproportionate burdens due to structural inequalities (Mena et al. 2021; Khanijahani et al. 2021). This underscores how economic stability enables more equitable health outcomes, both historically and today.

6 | Limitations of the Study

Not all impairments leave skeletal traces; conditions like blindness or cognitive disabilities remain invisible in the record. Additionally, we are observing only those who survived into adulthood, who may have come from families with higher socioeconomic status and better access to care, thus biasing interpretations of social inclusion. The small sample size of impaired individuals and the lack of detailed contextual data (e.g., full excavation records) also limit broader generalizations. Finally, bone isotopic values capture long-term dietary trends but cannot detect short-term or episodic variation in nutrition. Although osteological and isotopic data offer indirect clues, estimating the nature and extent of care, or how individuals were socially treated, remains inherently challenging.

7 | Conclusion

Osteological evidence alone presents challenges in fully assessing past health conditions. The individuals studied required varying levels of care, potentially at different life stages, sometimes at a cost to caregivers' daily activities. This suggests a social framework that integrated impaired individuals with distinct identities. Notably, they displayed no greater physiological stress markers than their peers, enjoyed comparable adult diets

and stature, and received high-quality care despite physical limitations from congenital conditions. Early-life indicators such as lower frequencies of linear enamel hypoplasias and average tibial length further suggest that social buffering and resilience were present from childhood, not just in adulthood.

Even today, societal inclusion remains inconsistent. Comparing these findings with modern disparities underscores that certain dynamics of care and inclusion may have existed in the past, particularly in resource-stable communities. This highlights the enduring role of socioeconomic conditions in shaping support systems across the life course.

Future research on childhood dietary patterns could further clarify early-life treatment. Ultimately, these insights challenge assumptions about disability in history and invite reconsideration of how past practices might inform more equitable approaches today.

Acknowledgments

This work was supported by FCT—Fundação para a Ciência e a Tecnologia (https://doi.org/10.54499/2020.02110.CEECIND/CP1593/CT0005 and https://doi.org/10.54499/2022.03576.PTDC). The authors also acknowledge the financial support of the UIDB/04449/2020, UIDP/04449/2020, and LA/P/0132/2020 projects, funded by Fundação para a Ciência e a Tecnologia (FCT), Portugal. We would also like to thank the reviewers for their suggestions, which allowed us to improve our manuscript. Wiley and FCT/b-on have an agreement to cover the cost of your open access publishing. Please note: FCT/b-on strongly encourages you to apply a CC BY license to your article as this will amplify the article visibility and knowledge advancement, while reta

Ethics Statement

All analyses were conducted in accordance with Portuguese legislation governing archaeological human remains. The skeletal assemblage is curated at the University of Évora. Stable isotope analysis involved collagen extraction, with destructive sampling kept to a minimum and, whenever possible, using small bone fragments or previously detached material to reduce the impact on the specimens.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

AlQahtani, S. J., M. P. Hector, and H. M. Liversidge. 2010. "Brief Communication: The London Atlas of Human Tooth Development and Eruption." *American Journal of Physical Anthropology* 142, no. 3: 481–490.

Ambrose, S. H., and L. Norr. 1993. "Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate." In *Prehistoric Human Bone*, edited by J. B. Lambert and G. Grupe, 1–37. Springer Berlin Heidelberg.

Biehler-Gomez, L., A. Palamenghi, M. Baudu, et al. 2023. "Skeletal Markers of Physiological Stress as Indicators of Structural Violence: A Comparative Study Between the Deceased Migrants of the Mediterranean Sea and the CAL Milano Cemetery Skeletal Collection." *Biology* 12, no. 2: 335.

Boesch, C., C. Bolé, N. Eckhardt, and H. Boesch. 2010. "Altruism in Forest Chimpanzees: The Case of Adoption." *PLoS ONE* 5, no. 1: e8901.

Bogin, B., and M. I. Varela-Silva. 2010. "Leg Length, Body Proportion, and Health: A Review With a Note on Beauty." *International Journal of Environmental Research and Public Health* 7, no. 3: 1047–1075.

Bohling, S., K. Croucher, and J. Buckberry. 2022a. "The Bioarchaeology of Disability: A Population-Scale Approach to Investigating Disability, Physical Impairment, and Care in Archaeological Communities." *International Journal of Paleopathology* 38: 76–94.

Bohling, S., K. Croucher, and J. Buckberry. 2022b. "An Exploration of the Changing Understandings of Physical Impairment and Disability in Early Medieval England: A Bioarchaeological, Funerary, and Historical Approach." *Church Archaeology* 22: 3–44.

Bohling, S., K. Croucher, and J. Buckberry. 2023. "Understanding Disability and Physical Impairment in Early Medieval England: An Integration of Osteoarchaeological and Funerary Evidence." *Medieval Archaeology* 67, no. 1: 73–114.

Boldsen, J. L. 2007. "Early Childhood Stress and Adult Age Mortality: A Study of Dental Enamel Hypoplasia in the Medieval Danish Village of Tirup." *American Journal of Physical Anthropology* 132, no. 1: 59–66.

Cares Henriquez, A., and M. F. Oxenham. 2019. "New Distance-Based Exponential Regression Method and Equations for Estimating the Chronology of Linear Enamel Hypoplasia (LEH) Defects on the Anterior Dentition." *American Journal of Physical Anthropology* 168, no. 3: 510–520.

Chisholm, B. S., D. E. Nelson, and H. P. Schwarcz. 1982. "Stable-Carbon Isotope Ratios as a Measure of Marine Versus Terrestrial Protein in Ancient Diets." *Science* 216, no. 4550: 1131–1132.

Chisholm, B. S., D. E. Nelson, and H. P. Schwarcz. 1983. "Marine and Terrestrial Protein in Prehistoric Diets on the British Columbia Coast." *Current Anthropology* 24, no. 3: 396–398.

Cilione, M., and V. Gazzaniga. 2023. "Conceptualizing Disabilities From Antiquity to the Middle Ages: A Historical-Medical Contribution." *International Journal of Paleopathology* 40: 41–47.

Coelho, A. M. 2023. "Recursos Naturais Como Instrumentos de Domínio e Negociação no Alentejo do Século XV." *Revista Territórios e Fronteiras* 16, no. 2: 37–52.

Curto, A., and T. Fernandes. 2016. "A Possible Madura Foot From Medieval Estremoz, Southern Portugal." *International Journal of Paleopathology* 13: 70–74.

Curto, A., and T. Fernandes. 2022. "Clubfoot and Its Implications for the Locomotion of a Medieval Skeleton From Estremoz, Portugal." *International Journal of Paleopathology* 38: 13–17.

Curto, A., V. Navarrete, A.-F. Maurer, C. B. Dias, and T. Fernandes. 2025. "Health and Well-Being in Medieval Estremoz, Portugal: Uncovering the Diet and Longevity of a Distinct and Thriving Community." *Journal of Archaeological Science: Reports* 62: 105011.

Dettwyler, K. A. 1991. "Can Paleopathology Provide Evidence for "Compassion"?" *American Journal of Physical Anthropology* 84, no. 4: 375–384.

DeWitte, S. N., and G. Hughes-Morey. 2012. "Stature and Frailty During the Black Death: The Effect of Stature on Risks of Epidemic Mortality in London, A.D. 1348–1350." *Journal of Archaeological Science* 39, no. 5: 1412–1419.

Dittmar, J. M., B. Mulder, A. Tran, et al. 2023. "Caring for the Injured: Exploring the Immediate and Long-Term Consequences of Injury in Medieval Cambridge, England." *International Journal of Paleopathology* 40: 7–19.

Fernandes, T., and C. Costa. 2007. "Klippel-Feil Syndrome With Other Associated Anomalies in a Medieval Portuguese Skeleton (13th–15th Century)." *Journal of Anatomy* 211, no. 5: 681–685.

Fernandes, T., M. Liberato, C. Marques, and E. Cunha. 2017. "Three Cases of Feet and Hand Amputation From Medieval Estremoz, Portugal." *International Journal of Paleopathology* 18: 63–68.

Franklyn, M., and B. Oakes. 2015. "Aetiology and Mechanisms of Injury in Medial Tibial Stress Syndrome: Current and Future Developments." *World Journal of Orthopedics* 6, no. 8: 577–589.

Fried, L. P., R. A. Kronmal, A. B. Newman, et al. 1998. "Risk Factors for 5-Year Mortality in Older Adults: The Cardiovascular Health Study." *Journal of the American Medical Association* 279, no. 8: 585–592.

Iezzoni, L. I. 2011. "Eliminating Health and Health Care Disparities Among the Growing Population of People With Disabilities." *Health Affairs (Project Hope)* 30, no. 10: 1947–1954.

Jantz, L. M., and R. L. Jantz. 1999. "Secular Change in Long Bone Length and Proportion in the United States, 1800–1970." *American Journal of Physical Anthropology* 110, no. 1: 57–67.

Keenleyside, A. 2003. "An Unreduced Dislocated Mandible in an Alaskan Eskimo: A Case of Altruism or Adaptation?" *International Journal of Osteoarchaeology* 13, no. 6: 384–389.

Khanijahani, A., S. Iezadi, K. Gholipour, S. Azami-Aghdash, and D. Naghibi. 2021. "A Systematic Review of Racial/Ethnic and Socioeconomic Disparities in COVID-19." *International Journal for Equity in Health* 20: 1–30.

Klaus, H. D. 2014. "Frontiers in the Bioarchaeology of Stress and Disease: Cross-Disciplinary Perspectives From Pathophysiology, Human Biology, and Epidemiology." *American Journal of Physical Anthropology* 155, no. 2: 294–308.

Kuuliala, J. 2011. "Sons of Demons: Children's Impairment and the Belief in Changelings in Medieval Europe (C. 1150–1450)." In *The Dark Side of Childhood in Late Antiquity and the Middle Ages: Unwanted, Disabled and Lost*, 71–93. Oxbow.

Lewis, M. E. 2006. The Bioarchaeology of Children: Perspectives From Biological and Forensic Anthropology. Cambridge University Press.

Liberato, M. 2012. "Núcleos Urbanos e Afirmaç~ao de Soberania no Alentejo Duocentista: O Caso de ESTREMOZ." In *La Historia Peninsular en los Espacios de Frontera: Las "Extremaduras Históricas" y la "Transierra" (Siglos XI–XV)*, 189. Servicio de Publicaciones.

Lordkipanidze, D., A. Vekua, R. Ferring, et al. 2005. "Anthropology: The Earliest Toothless Hominin Skull." *Nature* 434, no. 7034: 717–718.

Lorentz, K. O., S. A. Lemmers, C. Chrysostomou, et al. 2021. "First Permanent Molars With Accentuated Line Patterns: Assessment of Childhood Health in an Urban Complex of the Fifth Millennium Before the Present." *Archives of Oral Biology* 123: 104969.

Mena, G. E., P. P. Martinez, A. S. Mahmud, P. A. Marquet, C. O. Buckee, and M. Santillana. 2021. "Socioeconomic Status Determines COVID-19 Incidence and Related Mortality in Santiago, Chile." *Science* 372, no. 6545: e–abg5298.

Metzler, I. 2013. A Social History of Disability in the Middle Ages: Cultural Considerations of Physical Impairment. Routledge.

Micarelli, I., M. A. Tafuri, and L. Tilley. 2024. "Disability and Care in Western Europe During Medieval Times: A Bioarchaeological Perspective." *International Journal of Paleopathology* 44: 119–125.

Miclon, V., S. Bédécarrats, B. Laure, et al. 2021. "Disability in a Medieval Village Community: A Unique Case of Facial Dysmorphism." *International Journal of Paleopathology* 35: 22–28.

Miszkiewicz, J. 2015. "Linear Enamel Hypoplasia and Age-At-Death at Medieval (11th–16th Centuries) St. Gregory's Priory and Cemetery, Canterbury, UK." *International Journal of Osteoarchaeology* 25, no. 1: 79–87.

Moreno, H. B. 1985. Marginalidade e Conflitos Sociais em Portugal nos Séculos XIV e XV: Estudos de História. Presença.

Oliveira, A. R. 2015. O Dia-A-Dia em Portugal na Idade Média. A Esfera dos Livros.

Phillips, S. M., and M. Sivilich. 2006. "Cleft Palate: A Case Study of Disability and Survival in Prehistoric North America." *International Journal of Osteoarchaeology* 16, no. 6: 528–535.

Reid-Cunningham, A. R. 2009. "Anthropological Theories of Disability." *Journal of Human Behavior in the Social Environment* 19, no. 1: 99–111.

Rinaldo, N., N. Zedda, B. Bramanti, I. Rosa, and E. Gualdi-Russo. 2019. "How Reliable Is the Assessment of Porotic Hyperostosis and Cribra Orbitalia in Skeletal Human Remains? A Methodological Approach for Quantitative Verification by Means of a New Evaluation Form." *Archaeological and Anthropological Sciences* 11: 3549.

Roush, S. E. 2017. "Consideration of Disability From the Perspective of the Medical Model." In *Bioarchaeology of Impairment and Disability: Theoretical, Ethnohistorical, and Methodological Perspectives*, edited by J. F. Byrnes and J. L. Muller, 39–55. Springer International Publishing.

Schrenk, A., and L. Tremblay, eds. 2022. *Bioarchaeology of Care Through Population-Level Analyses*. University of Florida Press.

Silveira, A. H. 1797. "Memorias Annaliticas da Villa de Estremoz, Lente de Cânones na Universidade de Coimbra, do Concelho de Sua Magestade e Seu Dezembargador do Paço." In *António Henriques da Silveira e as Memórias Analíticas da Vila de Estremoz*, edited by T. Fonseca. Publicações do CIDEHUS.

Steckel, R. H., C. S. Larsen, P. W. Sciulli, and P. L. Walker. 2006. "The Global History of Health Project Data Collection Codebook."

Tarlow, S. 2000. "Emotion in Archaeology." *Current Anthropology* 41, no. 5: 713–746.

Tilley, L. 2015. "Accommodating Difference in the Prehistoric Past: Revisiting the Case of Romito 2 From a Bioarchaeology of Care Perspective." *International Journal of Paleopathology* 8: 64–74.

Tilley, L., and T. Cameron. 2014. "Introducing the Index of Care: A Web-Based Application Supporting Archaeological Research Into Health-Related Care." *International Journal of Paleopathology* 6: 5–9.

Tilley, L., and M. F. Oxenham. 2011. "Survival Against the Odds: Modeling the Social Implications of Care Provision to Seriously Disabled Individuals." *International Journal of Paleopathology* 1, no. 1: 35–42.

Tornberg, A., and L. Jacobsson. 2018. "Care and Consequences of Traumatic Brain Injury in Neolithic Sweden: A Case Study of Ante Mortem Skull Trauma and Brain Injury Addressed Through the Bioarchaeology of Care." *International Journal of Osteoarchaeology* 28, no. 2: 188–198.

Weston, D. A. 2011. "Nonspecific Infection in Paleopathology: Interpreting Periosteal Reactions." In *A Companion to Paleopathology*, edited by A. L. Grauer, 492–512. Wiley-Blackwell.

Wood, J. W., G. R. Milner, H. C. Harpending, et al. 1992. "The Osteological Paradox: Problems of Inferring Prehistoric Health From Skeletal Samples [and Comments and Reply]." *Current Anthropology* 33, no. 4: 343–370.

Supporting Information

Additional supporting information can be found online in the Supporting Information section. **Figure S1:** Lordosis (a) of RMPE-28. oss1 with the fifth lumbar vertebra fused ((b) anterior view; (c) posterior view) and brachycephaly (d). **Figure S2:** Superior view of the RMPE-69 femora, with and without slipped femoral head (a). Posterior view of the proximal left femur and corresponding radiography (b). Healed trepanation on the right parietal (c). **Figure S3:** Anterior view of the RMPE-112 asymmetric sacrum and os coxae. **Data S1:** Supporting Information.