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“There, where the olive tree gives up, is where the Mediterranean ends.  

The tree of light is the nature and culture of the Mediterranean.”  

George Duhamel 
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PREFACE 

This dissertation is submitted in partial fulfillment of the requirements for the Doctoral 

Degree in Food Sciences. It encompasses the results of my Ph.D. research conducted at the 

NOVA School of Science and Technology, NOVA University Lisbon, and the University of Évora. 

Olive oil, one of the most iconic food products of the Mediterranean diet, has been widely 

studied due to its nutritional and organoleptic properties. However, issues related to its quality, 

safety, and sustainability, particularly contaminants and volatile compounds, remain critical ar-

eas of research. This dissertation addresses these challenges to advance knowledge about olive 

oil and improve its production and consumption, contributing to food quality and safety. 

 

The dissertation is organized as follows: 

1. General Introduction to Olive Oil 

An overview of olive oil, highlighting its historical, economic, and nutritional importance, 

as well as the current challenges related to its production and quality. 

2. Volatile Organic Compounds in Olive Oil: Organoleptic Perception and Shelf-Life 

This chapter focuses on the volatile compounds in olive oil responsible for its sensory 

properties and shelf-life. The paper "Early Identification of Olive Oil Defects throughout 

Shelf Life" is one of the publications resulting from this research, addressing the early 

identification of defects throughout the olive oil shelf life. 

3. Antioxidants: Nutraceutical Properties of Olive Oil 

This chapter explores the antioxidant properties of olive oil, their health implications, and 

the development of methods to increase their concentration. The method developed 

reflects the innovative advancements in this field, aiming to enhance the nutraceutical 

qualities of olive oil. 

4. Phthalates: Plasticizers in Olive Oil 
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The presence of phthalates in olive oil, due to the use of plastics during its production 

and packaging, is a significant issue for food safety. The paper "A Critical Review of An-

alytical Methods for the Quantification of Phthalates Esters in Two Important European 

Food Products: Olive Oil and Wine" discusses analytical methodologies for quantifying 

these contaminants. The article "Analysis of Plasticizer Contamination Throughout Olive 

Oil Production" presents the results of the analysis of plasticizer contamination through-

out olive oil production. 

 

I hereby affirm that, as the first author of the aforementioned manuscripts, I made a 

major contribution to the research and experimental work conducted, the interpretation of the 

results, and the preparation of these publications submitted during the Ph.D. project. The cop-

yright of the publications has been transferred to the editors, and these articles are reproduced 

with the permission of the original publishers and subject to the copy restrictions imposed by 

them. 

This work reflects the collective effort of several institutions and collaborators, to whom 

I am immensely grateful. Throughout this journey, I have sought not only to advance science 

but also to contribute to the improvement of olive oil quality and safety, ensuring that this 

essential food continues to play a vital role in healthy and sustainable diets. 
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ABSTRACT 

In the plant kingdom, many fruits and seeds provide edible oils. However, olive oil, 

often referred to as "liquid gold," is the most important and widely used in the Mediterranean 

diet. Its nutritional value is considered to be twice that of cereals and ten times greater than 

that of wine. It is estimated that approximately 3 million tons of olive oil are consumed world-

wide every year. 

This doctoral thesis focused on the study of olive oil, addressing three main themes 

aimed at deepening the understanding of this food matrix, from its chemical composition to 

the factors affecting its quality and safety. 

The first theme investigated the evolution of volatile organic compounds throughout 

the shelf life of olive oil, focusing on markers associated with positive attributes and sensory 

defects. A robust method was developed using solid-phase microextraction in headspace 

mode (HS-SPME), coupled with gas chromatography and mass spectrometry (GC/MS). This 

method allowed the identification of significant variations in the levels of volatile organic com-

pounds (VOCs), particularly those derived from the lipoxygenase (LOX) pathway, over time. 

Principal component analysis (PCA) revealed a clear distinction between the volatile profiles of 

extra virgin olive oils and deteriorated oils. The relationship between E-2-hexenal and acetic 

acid proved to be a potential indicator for predicting the sensory disqualification of olive oil 

based on the evolution of volatile compounds during storage. 

The second theme explored the potential of olive oil as a nutraceutical product, em-

phasizing the antioxidants hydroxytyrosol and tyrosol, both recognized for their health-pro-

moting properties. A method was developed to efficiently extract these compounds from the 

by-products of olive oil production. These compounds were concentrated and added to the 

final olive oil, resulting in enriched olive oil and a concentrated antioxidant extract with func-

tional applications. 
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The third theme focused on the presence of plasticizers in olive oil, aiming to identify 

and quantify phthalate esters. Through a critical review, various analytical methods used for 

quantifying phthalates in olive oils and wines were evaluated, discussing analytical challenges 

and mitigation strategies. Additionally, a study was conducted to monitor contamination by 

plasticizers, including 23 phthalates and 9 phthalate substitutes, throughout the olive oil pro-

duction and storage process. Using liquid-liquid extraction with hexane/methanol and analysis 

by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS), with detection 

limits ranging from 0.001 to 0.103 mg/kg, it was observed that plasticizer levels progressively 

increased as olive oil went through production stages. The main sources of contamination were 

identified, highlighting the importance of minimizing plastic use along the production line and 

during storage. Diisononyl phthalate (DINP) was the most prevalent compound, found at con-

centrations exceeding the migration limits established by the European Union in some olive 

oils. 

The results presented in this thesis contribute to a deeper understanding of the quality, 

safety, and functional potential of olive oil, offering practical solutions to optimize its produc-

tion and preservation, as well as promoting its valorization as a high-value-added food prod-

uct. 

Keywords: Olive Oil, Volatile Organic Compounds (VOCs), Sensory Quality, Shelf Life, Antioxi-

dants, Hydroxytyrosol, Tyrosol, Plasticizers, Phthalates.
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RESUMO 

No reino vegetal, inúmeros frutos e sementes são fontes de óleos comestíveis. Entre 

eles, destaca-se o azeite, frequentemente chamado de "ouro líquido", que ocupa uma posição 

central na dieta mediterrânica. O seu valor nutritivo é estimado como sendo duas vezes supe-

rior ao dos cereais e dez vezes maior do que o do vinho. Estima-se que, anualmente, cerca de 

3 milhões de toneladas de azeite sejam consumidas em todo o mundo. 

A presente tese de doutoramento centrou-se no estudo do azeite, abordando três te-

máticas principais que visam aprofundar o conhecimento sobre esta matriz alimentar, desde a 

sua composição química até a fatores que afetam a sua qualidade e segurança. 

No primeiro tema, foi investigada a evolução dos compostos orgânicos voláteis ao 

longo da vida útil do azeite, com foco nos marcadores associados aos atributos positivos e 

defeitos sensoriais. Foi desenvolvido um método robusto utilizando microextração em fase 

sólida em espaço de cabeça (HS-SPME) acoplada à cromatografia gasosa e espectrometria de 

massas (GC/MS), que permitiu identificar variações significativas nos níveis de compostos or-

gânicos voláteis (COVs), especialmente os derivados da via lipoxigenase (LOX), ao longo do 

tempo. A análise por componentes principais (PCA) revelou uma clara distinção entre os perfis 

voláteis de azeites virgem extra e de azeites deteriorados. A relação entre o E-2-hexenal e o 

ácido acético demonstrou ser um possível indicador para prever a desqualificação sensorial do 

azeite com base na evolução dos compostos voláteis durante o armazenamento.  

O segundo tema explorou o potencial do azeite como um produto nutracêutico, com 

ênfase nos antioxidantes, hidroxitirosol e tirosol, ambos reconhecidos pelas suas propriedades 

benéficas para a saúde. Foi desenvolvido um método que permite a extração eficiente destes 

compostos a partir dos subprodutos da produção de azeite. Estes compostos foram concen-

trados e adicionados ao azeite final, resultando num azeite enriquecido e num extrato antioxi-

dante concentrado com aplicações funcionais. 
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O terceiro tema focou-se na presença de plastificantes no azeite, com o objetivo de 

identificar e quantificar ésteres de ftalato. Através de uma revisão crítica avaliou-se diversos 

métodos analíticos aplicados na quantificação de ftalatos em azeites e vinhos, discutindo-se 

os desafios analíticos e as estratégias de mitigação. Adicionalmente, foi conduzido um estudo 

que acompanhou a contaminação por plastificantes, 23 ftalatos e 9 substitutos de ftalatos ao 

longo do processo de produção e armazenamento do azeite. Através de extração líquido-lí-

quido com hexano/metanol e análise por cromatografia gasosa acoplada a espectrometria de 

massas (GC-MS/MS), com limite de deteção entre 0.001 to 0.103 mg/kg, observou-se que os 

níveis de plastificantes aumentavam progressivamente à medida que o azeite passava pelas 

etapas de produção. Foram identificadas as possíveis principais fontes de contaminação, des-

tacando a importância de minimizar o uso de plásticos tanto ao longo da linha de produção 

quanto no armazenamento. O diisononil ftalato (DINP) foi o composto mais prevalente, sendo 

encontrado em concentrações superiores aos limites de migração estabelecidos pela União 

Europeia em alguns azeites. 

Os resultados apresentados nesta tese contribuem para a compreensão aprofundada 

da qualidade, segurança e potencial funcional do azeite, oferecendo soluções práticas para 

otimizar a sua produção e conservação, além de promover a sua valorização como um alimento 

de elevado valor agregado. 

Palavas chave: Azeite, Compostos Orgânicos Voláteis (COVs), Qualidade Sensorial, Vida Útil, 

Antioxidantes, Hidroxitirosol, Tirosol, Plastificantes, Ftalatos.
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INTRODUCTION 

Olive oil is one of humanity's oldest and most valued food products, renowned for its 

unique chemical composition, nutritional and organoleptic properties, and culinary versatility. 

Derived from the fruit of the olive tree (Olea europaea L.), it is primarily obtained 

through mechanical methods, without the need for chemical treatments, which preserves its 

natural characteristics. Extra virgin olive oil, in particular, is the purest and most prized form of 

the oil, standing out for its low acidity and high concentration of bioactive compounds, such 

as polyphenols and oleic acid.  

This food is not only an essential gastronomic ingredient but also a key component of 

cultural and historical practices that have shaped various societies. 

1.1 Olive Oil and the Mediterranean Diet: A Millennial Heritage 

The history of olive oil dates back more than 6,000 years, with records indicating that the 

olive tree was one of the first trees cultivated by humans. The earliest evidence of its use comes 

from the Eastern Mediterranean region, encompassing territories that today include the Middle 

East and Asia Minor. The Egyptians, for instance, used olive oil in religious rituals and as a 

cosmetic, while the ancient Greeks associated it with the gods, considering it a gift from the 

goddess Athena [1–5]. 

In Ancient Greece, olive oil was a symbol of status and a highly valued commodity, used 

in religious ceremonies, as fuel for lamps, and as a base for medicinal ointments [3,6]. During 

the Roman period, the production and trade of olive oil expanded significantly, driven by the 

introduction of more advanced agricultural techniques and the establishment of trade routes 



 2 

connecting the Mediterranean to distant regions. The Romans also popularized its use in cook-

ing, solidifying it as an essential food [7]. 

With the decline of the Roman Empire, olive oil production experienced a period of stag-

nation in some regions but remained vibrant in others, especially in areas influenced by Arab 

culture. During the Middle Ages, the Arabs contributed to the spread of cultivation and extrac-

tion techniques, ensuring the continuity of olive oil traditions. The Renaissance and the rise of 

European trade brought olive oil back into prominence, exporting it to new regions and inte-

grating it into diverse cultural practices [8]. 

Thus, olive oil became a symbol of Mediterranean culture, representing not only a staple 

food but also an identity element for the region's communities. Globalization and advances in 

production technology have allowed olive oil to transcend Mediterranean borders, reaching 

international markets and gaining an increasingly broad audience[9]. 

Over the centuries, olive oil has solidified its position as a fundamental ingredient of the 

Mediterranean diet, recognized by UNESCO as Intangible Cultural Heritage of Humanity [10]. 

This diet, characterized by high consumption of fruits, vegetables, whole grains, fish, and olive 

oil as the primary fat source, is widely considered one of the healthiest in the world [11,12]. 

Scientific studies associate this diet with a significant reduction in the risk of cardiovascular 

diseases, type 2 diabetes, and certain types of cancer, as well as promoting longevity and qual-

ity of life [13–15]. These benefits are largely attributed to olive oil's chemical composition [16–

18]. Oleic acid, the main fatty acid in olive oil, helps regulate cholesterol levels, while polyphe-

nols have antioxidant and anti-inflammatory properties that protect against oxidative stress 

and cellular aging [19–22]. 

Beyond nutrition, the connection between olive oil and the Mediterranean diet repre-

sents a cultural and historical link rooted in traditional agricultural practices and the lifestyle of 

Mediterranean populations. Today, olive oil transcends borders, appreciated globally as a func-

tional food that combines tradition, flavor, and health benefits [23–27]. 

1.2 Characterization of the Olive Oil Sector: Global and National 

Perspectives  

The olive oil sector is one of the most emblematic in the food industry, representing 

centuries of tradition and innovation. Globally, production is heavily concentrated in the Med-

iterranean basin, led by countries like Spain, Italy, Portugal, and Greece, which together 
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dominate the world market, accounting for approximately 50% of global production (Figure 1) 

[28]. Recently, however, olive cultivation has expanded to non-traditional regions, such as Latin 

America, Australia, and the United States, driven by the growing appreciation of olive oil for its 

nutritional, functional, and sensory qualities [29,30]. 

 

 

Figure 1. Olive oil production during the 2022/2023 season: contribution of countries to global production, includ-

ing the European Union (right), and production exclusively within European Union countries (left) [28]. 

In Portugal, olive oil holds a prominent position in both food culture and the economy, 

being recognized as one of the world's leading producers. In 2022/2023, Portugal produced 

1.375 million hectoliters of olive oil (approximately 126 thousand tons). And this amount is 

expected to increase, with projections for the 2024/2025 season indicating that Portugal is 

expected to produce 195 thousand tons of olive oil [28]. With a long tradition dating back to 

Roman times, the country combines traditional cultivation and extraction methods with tech-

nological innovations, resulting in high-quality olive oils known for their complex flavors and 

aromas [31]. 

The Alentejo region stands out as the main producer, contributing about 84% of national 

production, supported by favorable climatic conditions and the adoption of modern agricul-

tural practices (Figure 2) [32]. This balance between tradition and modernity has significantly 

increased the productivity and quality of Portuguese olive oil, enhancing its prominence in 

international markets [33–35]. 
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Figure 2. Olive oil production in Portugal by geographical location (agricultural region) in 2023 [32]. 

The valorization of national olive oil reflects not only its exceptional quality but also the 

growing interest in sustainable products with territorial identity. This context reinforces the im-

portance of the sector for the Portuguese economy and consolidates Portugal's image as a 

producer of excellence on the global stage. 

1.3 The Olive: Composition and Existing Varieties 

The olive, a drupe fruit of the olive tree (Olea europaea L.), is essential for olive oil pro-

duction and is widely consumed directly, either raw or after curing and fermentation processes 

that enhance its flavor and texture. This fruit has a unique chemical composition that makes it 

highly valued in gastronomy and the food industry. Structurally, the olive comprises three main 

layers: the epicarp, mesocarp, and endocarp. The epicarp, or skin, protects the fruit from exter-

nal factors and is rich in phenolic compounds that determine its coloration, ranging from green 

to black, while also contributing antioxidant properties. The mesocarp, or pulp, makes up the 

majority of the fruit, serving as the primary source of lipids, especially monounsaturated fatty 

acids like oleic acid, as well as water, sugars, and dietary fibers, all essential for the yield and 

quality of olive oil. The endocarp, the hard layer surrounding the seed, can be ground during 

processing, marginally influencing the bioactive compound profile of the oil [36–39]. 
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Detailed chemical composition highlights the importance of the olive. Water constitutes 

50% to 75% of the fruit's weight, while lipids account for 15% to 30%, with a notable emphasis 

on the benefits of oleic acid. Carbohydrates represent 4% to 6%, present as simple sugars and 

fibers. Phenolic compounds provide bitter flavor and antioxidant properties, with their concen-

tration varying according to ripeness. The fruit is also rich in vitamins and minerals, such as vit-

amin E, iron, calcium, and potassium, which promote bone, cardiovascular, and antioxidant 

health benefits [36–39]. 

The diversity of olive varieties is a striking aspect. It is estimated that there are hundreds 

of cultivars worldwide, each with specific characteristics of flavor, texture, color, and uses. In 

Portugal, for instance, there are around 30 native varieties, adapted to the climatic conditions 

of different regions. The most well-known varieties include Cobrançosa, Cordovil, Galega Vul-

gar, and Verdeal, each with distinct characteristics in terms of productivity, yield, and sensory 

profile [5,40,41]. 

For example, Cobrançosa, originating from Trás-os-Montes, is highly productive and re-

sistant to diseases and adverse climatic conditions. Its oil is balanced, with bitter and pungent 

notes when the olives are harvested green, becoming sweeter and milder in mature harvests. 

Cordovil, typical of Alentejo, is widely used for both oil and table olives. Its oil has an intense 

fruity profile with prominent green notes and moderate bitterness [40,41]. 

Galega Vulgar is the most widespread variety in Portugal, accounting for about 80% of 

the national olive groves. Despite its moderate yield, its oil stands out for its mild and sweet 

flavor, with notes of dried fruits and ripe apple. Verdeal, cultivated in Alentejo and Trás-os-

Montes, offers high productivity and yield, resulting in oils with a persistent fruity profile, 

marked bitterness, and pungency [40,41]. 

International varieties, such as Arbequina from Catalonia, also gain prominence. Known 

for its rusticity and adaptability, Arbequina allows for high planting densities. Its oil is fresh and 

fruity, ranging from spicy and green when harvested early to sweet and mild in late harvests 

[40]. 

Beyond genetic variety, factors such as climate, soil, cultivation techniques, and ripeness 

stage directly impact olive properties [42–50]. Ripeness, for example, influences both chemical 

composition and sensory profile: green fruits have higher phenolic compound concentrations 

and a more bitter flavor, while ripe fruits contain higher oil content and a milder flavor [47]. 

Understanding olive composition and diversity is essential to optimize the production 

of high-quality oils and direct consumption of the fruit. This approach is fundamental to 
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meeting the growing demands of the global market, which values nutritious, sensory-appeal-

ing, and sustainable products. 

1.4 Olive Oil Production 

The production of olive oil is a process that combines tradition and innovation, reflecting 

the diversity of olive varieties and their specific characteristics. Each stage, from harvesting to 

extraction, plays a crucial role in defining the quality and sensory profile of the oil. In Portugal, 

where olive cultivation is deeply rooted, production methods have evolved over centuries, in-

tegrating modern and sustainable practices that balance yield and quality. This focus extends 

not only to the oil itself but also to the utilization of its by-products, such as olive pomace, 

which has gained prominence for its beneficial properties and contributions to sustainability 

(Figure 3). 

 

Figure 3. Representative diagram of an olive oil production line. 

The harvesting of olives is the first and one of the most critical stages, as the timing of 

the harvest significantly influences the quality of the oil. High-quality olive oil is obtained from 

freshly harvested olives, free from pests and diseases, and picked at the optimal stage of ripe-

ness. Greener olives produce oils with more bitterness and pungency, as well as being richer in 

polyphenols, while ripe olives yield milder, sweeter oils. Harvesting can be done manually, us-

ing poles and nets, or mechanically, with vibrating machines that shake the fruits off the trees, 

always prioritizing the preservation of the fruit's integrity [51–53]. 
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After harvesting, the olives are quickly transported to the mill to avoid degradation pro-

cesses, such as enzymatic and microbial fermentations, which can lead to defects like musty or 

winey aromas [54,55]. At the mill, the olives are carefully sorted to remove leaves, branches, 

and damaged fruits, ensuring that only high-quality olives are processed. The efficiency of this 

operation is crucial to prevent impurities from altering the organoleptic profile of the oil [2,56]. 

The next step is washing, where the olives are cleaned to remove impurities such as dust 

and pesticide residues before being crushed [57]. During the milling process, the olives are 

transformed into a homogeneous paste composed of pulp, pit, and skin, which is then sub-

jected to malaxation. This process involves gently heating and slowly mixing the paste, allowing 

the oil droplets to coalesce, separating them from the solid and aqueous phases [58]. 

Malaxation must be carried out at controlled temperatures below 27°C (cold extraction) 

to classify the resulting oil as extra virgin and preserve its organoleptic and nutritional charac-

teristics. Malaxation at higher temperatures can increase yield but compromises aromatic com-

pounds and antioxidants [59,60]. After malaxation, the paste undergoes oil extraction, a critical 

stage where the oil is separated from the paste through centrifugation - an efficient method 

that has replaced traditional hydraulic pressing [56]. This process also produces olive pomace, 

a by-product consisting of the solid remnants after extraction, including residual pulp, pit frag-

ments, and traces of oil and water [61]. 

Olive pomace, once discarded, has become a valuable resource in various sectors [62–

64]. This by-product is rich in bioactive compounds, particularly antioxidants like hydroxytyro-

sol, one of the most potent polyphenols found in nature [65–67]. This compound exhibits anti-

inflammatory, antimicrobial, and oxidative stress-protective properties and is extensively stud-

ied for its potential health benefits, including the prevention of cardiovascular and neuro-

degenerative diseases. Currently, hydroxytyrosol has numerous applications in the pharmaceu-

tical, cosmetic, and food industries [68–72]. 

In addition to its beneficial properties, olive pomace plays an important role in promoting 

a circular economy model. Its applications include residual oil extraction, biomass production 

for energy generation, organic fertilizers, and even the development of functional ingredients 

for animal feed [73–77]. Recent studies explore the use of pomace for recovering high-value 

compounds, such as hydroxytyrosol, through green extraction technologies, reinforcing its en-

vironmental and economic relevance [66,78,79]. 

After extraction and the separation of olive pomace and wastewater, the oil still contains 

some impurities, such as residual water and solid particles, which can be removed during de-

cantation and filtration stages. Decantation occurs by gravity, while filtration, often optional, 
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ensures that the oil is free of solid residues, improving its stability and appearance. Some pro-

ducers choose to market unfiltered oils, valued for their rustic appearance and intense flavor. 

However, filtered oils tend to have greater stability and shelf life [80–82]. 

The olive oil is then stored in stainless steel tanks under controlled conditions, protected 

from light, oxygen, and temperature fluctuations, which can accelerate product degradation. 

Exposure to air and light can oxidize the oil, causing rancidity and loss of sensory and antioxi-

dant properties [83–85]. 

Finally, the oil can be bottled in appropriate containers, such as dark glass bottles, cans, 

or opaque plastic packaging, which protect the contents from light and heat [85]. Labels pro-

vide information about the type of oil (extra virgin, virgin, etc.), origin, and often the sensory 

profile, helping consumers identify the product [86–88]. 

Quality control must be carried out at every stage of production, ensuring that the oil 

meets the rigorous criteria required to be classified as extra virgin or virgin. Physicochemical 

analyses, such as acidity and peroxide index tests, along with sensory evaluations by expert 

panels, ensure that the final oil complies with expected quality standards [89]. 

The olive oil production process, which combines traditional techniques with technolog-

ical innovations, is fundamental for obtaining high-quality oils, respecting the characteristics 

of olive varieties, and meeting the demands of a consumer market that values fresh, authentic, 

and exceptionally flavorful products. 

1.5 Chemical Composition of Olive Oil 

The chemical composition of olive oil is highly variable, influenced by factors such as 

olive variety, fruit ripeness, environmental conditions, cultivation region, processing methods, 

and storage practices. Like other vegetable oils, olive oil comprises two main fractions: the 

saponifiable fraction, which constitutes the majority of its mass, and the unsaponifiable frac-

tion, present in smaller amounts but with significant functional relevance [36,90]. 

The saponifiable fraction, accounting for approximately 97% to 99% of the total olive oil 

mass, is water-insoluble and predominantly composed of triglycerides, which determine the 

oil's physical and metabolic properties. This fraction also contains free fatty acids, which directly 

influence product acidity, along with small amounts of phospholipids, green pigments, and 

glucosides. The predominance of monounsaturated fatty acids, such as oleic acid, in this frac-

tion is one of the factors responsible for the health benefits associated with olive oil consump-

tion [91,92]. 
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In contrast, the unsaponifiable fraction, representing around 1% to 3% of the compo-

sition, contains a wide variety of bioactive compounds, including hydrocarbons, sterols, waxes, 

triterpenic alcohols, carotenoids, tocopherols, polyphenols, and volatile substances. Despite its 

smaller proportion, this fraction plays a crucial role in olive oil quality, influencing its oxidative 

stability, organoleptic properties, and nutritional value. Additionally, compounds in the unsa-

ponifiable fraction are often used as indicators in assessing olive oil quality and authenticity 

[91,92]. 

Olive oil quality is a priority for both producers and consumers [93]. To ensure the de-

livery of a premium product, commercial and food standards have been established to regulate 

the sector. These regulations aim to prevent fraud, eliminate adulteration, and ensure accurate 

labeling information, enhancing consumer trust [88,89]. 

In the commercial context, the chemical composition of olive oil plays a crucial role in 

its classification. Regulation (EU) No. 1308/2013 specifies three main categories for olive oils 

intended for human consumption [88]. These categories consider parameters such as sensory 

analyses conducted by specialized panels and acidity levels, ensuring that products meet 

global market demands and consumer expectations. Generally: 

• Extra Virgin Olive Oil 

High-quality olive oil with good organoleptic characteristics, a score equal to or 

greater than 6.5 (on a scale of 0 to 10), no defects (median of defects [Md] = 0), 

a median fruitiness (Mf) greater than 0, and acidity less than or equal to 0.8% as 

oleic acid. 

• Virgin Olive Oil 

Olive oil that may present slight defects in smell and taste, with an organoleptic 

score of at least 5.5 (on a scale of 0 to 10), a median of defects (Md) of 3.5 or less, 

a median fruitiness (Mf) greater than 0, and acidity not exceeding 2% as oleic 

acid. 

• Lampante Olive Oil  

Virgin olive oil with abnormal organoleptic characteristics, a median of defects 

(Md) above 3.5, a median fruitiness (Mf) equal to 0, and acidity exceeding 2%. 

This oil is typically destined for refining or industrial transformation. 

These categories establish a rigorous classification system designed to guarantee olive 

oil quality, provide greater transparency and trust to consumers, and protect product authen-

ticity in the global market. 
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 Saponifiable Fraction 

The saponifiable fraction of olive oil is primarily composed of acylglycerols, with triacyl-

glycerols being the most abundant, followed by smaller proportions of monoglycerides (less 

than 0.25%) and diglycerides (1.0% to 2.8%) [92] compounds result from the binding of fatty 

acids to glycerol and may vary due to processes such as incomplete biosynthesis or hydrolytic 

reactions. Although mono- and diglycerides are present in small quantities, they are relevant 

for quality assessment and detecting potential adulteration [94]. 

The predominant triacylglycerols in olive oil are presented in Table 1. These lipids, along 

with free fatty acids, play an essential role in defining the chemical properties of olive oil and 

indirectly influence its sensory characteristics through their degradation or interaction with 

other compounds [92,95]. 

 

Table 1. Composition of triacylglycerols in olive oil established by Regulation (EU) 2022/2104 [92]. 

Composition of triacylglycerols (%) 

Triolein (OOO) 40.0–59.0 

Palmitodiolein (POO) 12.0–20.0 

Linoleodiolein (LOO) 12.5–20.0 

Palmitooleolinolein (PLO) 5.5–7.0 

Stearodioleoyl (OOS) 3.0–7.0 

 

The lipid composition of olive oil features a balance of saturated fatty acids (5% to 15%), 

monounsaturated fatty acids (55% to 85%), and polyunsaturated fatty acids (4% to 21%) [92]. 

This lipid profile contributes to its nutritional properties, with oleic acid being particularly no-

table for its high oxidative stability, making olive oil a healthy and functional choice[96,97]. 

Monounsaturated fatty acids, such as oleic acid, are fundamental to the cardiovascular benefits 

of olive oil consumption[13,15]. 

The main fatty acids in olive oil are listed in Table 2, including oleic acid (C18:1), linoleic 

acid (C18:2), palmitic acid (C16:0), stearic acid (C18:0), and linolenic acid (C18:3). 

 

Table 2. Fatty acid composition of olive oil by International Olive Council [98]. 

Composition of fatty acids (% m/m methyl esters) 

Oleic (C18:1) 55.0–83.0 

Palmitic (C16:0) 7.5–20.0 
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Linoleic (C18:2) 2.5–21.0 

Stearic (C18:0) 0.5–5.0 

Palmitoleic (C16:1) 0.3–3.5 

Linolenic (C18:3) ⩽1.0 

Arachidic (C20:0) ⩽0.60 

Heptadecenoic (C17:1) ⩽0.6 

Eicosenoic (C20:1) ⩽0.50 

Heptadecanoic (C17:0) ⩽0.40 

Myristic (C14:0) ⩽0.03 

Behenic (C22:0) ⩽0.20 

Lignoceric (C24:0) ⩽0.20 

 

The composition of fatty acids is relatively constant qualitatively but varies quantita-

tively depending on factors such as olive variety, ripeness, climate, and technological processes 

[46,50,99]. For instance, warmer regions favor higher linoleic acid content, while cooler climates 

promote a higher proportion of oleic acid [100,101]. 

 Unsaponifiable Fraction  

Although the unsaponifiable fraction represents only about 2% of olive oil's total mass, 

it plays a crucial role in the product's nutritional, biological, and sensory value. This fraction 

comprises diverse compounds such as hydrocarbons, sterols, tocopherols, pigments, and phe-

nolic compounds, which contribute to oxidative stability, organoleptic characteristics, and 

health benefits (Table 3) [17,91,92].  

 

Table 3. Main unsaponifiable fractions of olive oil, their components, functions/importance, and approximate per-

centage of the total unsaponifiable matter [102,103]. 

Fraction Components Function/Importance % 

Hydrocarbons Squalene 
Antioxidant, precursor of bioactive 

compounds 
30-50 

Sterols β-sitosterol, campesterol, 

stigmasterol 

Cholesterol-lowering, authenticity 

markers for olive oil 
15 

Triterpenic 

Alcohols 
Erythrodiol, uvaol 

Anti-inflammatory and antioxidant 

properties 
10 

Higher Fatty 

Alcohols 

C22 (behenic), 

C24 (lignoceric) 
Quality and authenticity markers n.s. 

Carotenoid 

Pigments 
β-carotene, lutein 

Contribute to the color of olive oil, 

antioxidant properties 
25-45 
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Tocopherols α-tocopherol (Vitamin E) 
Natural antioxidant, protects 

against lipid oxidation 

Phenolic 

Antioxidants 

Hydroxytyrosol, tyrosol, 

oleuropein 

Protect against free radicals, pro-

vide health benefits 

Volatile 

Compounds 

Aldehydes, ketones,  

alcohols, esters 

(e.g., hexanal, E-2-hexenal) 

Contribute to the characteristic 

aroma and flavor of olive oil 

Others 

Non-volatile 

phenolic compounds,  

altered-nucleus sterols 

(adulteration markers) 

Indicators of olive oil purity and 

quality 

 

Hydrocarbons, the main constituents of this fraction (30–50%), include saturated, un-

saturated, linear, and branched compounds. These are by-products of the plant's natural me-

tabolism, associated with fatty acid biosynthesis, and are found in higher concentrations in 

green olives compared to ripe ones [17,92,102]. Squalene stands out for its metabolic im-

portance, serving as a precursor to sterols and triterpenic alcohols and participating in self-

oxidation mechanisms that contribute to olive oil's oxidative stability [104]. 

Sterols constitute approximately 15% of the unsaponifiable fraction, with β-sitosterol 

being the predominant compound [92]. During olive maturation, sterol concentrations gradu-

ally decrease. Other sterols, such as stigmasterol and campesterol, are also present and play 

antioxidant roles essential to olive oil's chemical stability [17,104]. 

Phenolic compounds in olive oil play a key role in protecting against oxidative pro-

cesses and enhancing sensory quality. These include phenolic alcohols (e.g., hydroxytyrosol, 

tyrosol, and hydroxytyrosol acetate), phenolic acids (e.g., vanillic, syringic, p-coumaric, and caf-

feic acids), flavonoids (e.g., luteolin and apigenin), lignans (e.g., pinoresinol and (+)-ace-

topinoresinol), and secoiridoids (e.g., oleuropein, oleacein, oleocanthal), wich are unique to the 

Oleaceae family. Furthermore, tocopherols, particularly α-tocopherol, are prominent phenolic 

antioxidants, preventing lipid oxidation reactions [105–107]. 

The concentration of phenolic compounds in olive oil is influenced by factors such as 

olive variety, ripeness, and processing and storage conditions. These compounds are recog-

nized not only for their antioxidant contribution but also for antimutagenic properties and 

protective effects against cardiovascular diseases, cancer, and oxidative stress [47,105–109]. 

Olive oil also contains fat-soluble vitamins, such as vitamins A, D, K, and E, with α-

tocopherol accounting for about 95% of total tocopherols. These vitamins play a vital role in 
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protecting polyunsaturated fatty acids from oxidation, indirectly influencing olive oil's aroma 

and stability [92,110,111]. 

The pigments present, such as chlorophylls (a and b), pheophytins (a and b), and carot-

enoids (e.g., lutein and β-carotene), not only give olive oil its color but also exhibit antioxidant 

activity in the absence of light. However, when exposed to light, they may act as pro-oxidants, 

impacting olive oil's oxidative stability. The concentration of these pigments varies depending 

on olive variety, ripeness, and environmental conditions [92,112–115]. 

The interaction between polyphenols, tocopherols, and carotenoids is fundamental to 

ensuring olive oil's oxidative stability while enhancing its antioxidant and anticancer properties. 

These compounds also play an essential role in maintaining organoleptic characteristics, such 

as bitterness and pungency, indicative of high product quality [116,117]. 

1.6 Selection and Quality of Olive Oil 

High-quality olive oil is, essentially, a natural "juice" extracted from fresh and healthy 

fruits harvested at their optimal ripeness. It is crucial to avoid any treatment or handling that 

may alter the oil's chemical composition, both during the extraction process and throughout 

the storage period. The final quality reflects a synergy of various factors, including climatic 

conditions, soil characteristics, and the care applied during extraction and storage processes, 

highlighting the importance of an integrated and rigorous approach across the entire produc-

tion chain. 

Another important aspect is the differentiation among olive varieties and their impact on 

olive oil quality. Different cultivars produce oils with unique sensory profiles, encompassing 

variations in color, aroma, and flavor [118]. However, these organoleptic differences do not 

necessarily indicate variations in quality. The official classification of olive oil, as defined by the 

International Olive Council (IOC) and the European Economic Community (EEC), relies on tech-

nical criteria that recognize and value this diversity, allowing oils with distinct characteristics to 

be equally categorized as products of excellence. 

The quality of olive oil results from a complex interaction between chemical, technolog-

ical, sensory, and natural factors. Specific regulations, such as Regulation (EU) No 2022/2104, 

which complements Regulation (EU) No 1308/2013, along with the IOC guidelines, establish 

mandatory parameters for quality evaluation [88,89]. These include acidity level, peroxide 

value, ultra-violet (UV) spectrophotometric analysis, lipid profile, and sensory analysis, all of 

which ensure a trustworthy and high-quality product for consumers. 



 14 

In addition to regulatory parameters, other attributes, such as polyphenol content, den-

sity, viscosity, and even visual aspects like color, play a fundamental role in the oil’s stability 

and market acceptance. These factors influence the product's profile but primarily affect con-

sumer perception and preference. 

 Physicochemical Characteristics 

1.6.1.1 Acidity 

Acidity in olive oil is a chemical parameter that reflects the level of free fatty acids pre-

sent in the product. These acids are formed by the hydrolysis of triglycerides, a process trig-

gered by the action of lipase enzymes when the olive tissue is damaged [119]. Such damage 

can result from factors like insect infestation, fungal diseases, delayed harvesting, improper 

storage, suboptimal or delayed extraction methods, and even contact between the oil and 

water after extraction [120–122]. 

Although acidity is often associated with olive oil quality, it does not directly affect 

flavor within regulated levels, as acidity is imperceptible to taste within the normal regulatory 

thresholds for consumer oils. In practice, superior-quality oils usually exhibit lower acidity, 

which correlates with healthy olives harvested at the optimal time and processed appropriately. 

Acidity is measured as the amount of oleic acid (in grams) per 100 grams of oil [9]. 

According to European regulations, olive oil is classified based on its acidity level as 

extra virgin olive oil if the free acidity is equal to or less than 0.8 grams of free oleic acid per 

100 grams, as virgin olive oil if the free acidity is equal to or less than 2 grams of free oleic acid 

per 100 grams, and as lampante olive oil if the free acidity exceeds 2 grams of free oleic acid 

per 100 grams. The latter is unsuitable for direct consumption and requires refining [89]. 

Acidity, besides being an indicator of fruit quality and the production process, reflects 

the level of care taken with raw materials throughout the production chain. However, it is im-

portant to note that low acidity alone does not guarantee a complex or striking organoleptic 

profile; an oil may be technically flawless yet sensorially unremarkable. Conversely, oils with 

slightly higher acidity can exhibit intense and notable aroma and flavor characteristics. 

1.6.1.2 Peroxide Value 

The peroxide value is a key parameter for assessing the initial oxidation state of olive 

oil. It measures the presence of peroxides, compounds formed during the oxidation of oils and 
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fats through the action of oxygen. Even in small concentrations, these compounds can nega-

tively impact the oil's flavor, contributing to undesirable attributes like rancidity [123,124]. 

This parameter is expressed in milliequivalents of active oxygen per kilogram of oil (meq 

O₂/kg) and is regulated by a maximum limit of 20 meq O₂/kg for virgin oils, as established by 

Regulation (EU) 2022/2104. Values exceeding this threshold indicate that the oil is unsuitable 

for human consumption [89]. 

A high peroxide value may indicate issues in handling the olives or paste during extrac-

tion or improper storage of the final oil. Moreover, monitoring this parameter provides insights 

into the degradation of natural antioxidants, such as tocopherols and polyphenols, which are 

critical for the stability and quality of the oil. Thus, determining the peroxide value is essential 

for assessing both the initial quality of the product and its expected durability during storage 

[123,124]. 

1.6.1.3 Ultraviolet Absorbance 

The analysis of ultraviolet (UV) absorbance is a crucial tool for evaluating the quality 

and authenticity of olive oil. This method detects oxidized compounds, both primary and sec-

ondary, which may signal undesirable changes in the product. Measurements are conducted 

at specific wavelengths, with coefficients expressed as K232, K270, and ΔK. 

Conjugated hydroperoxides, indicative of primary oxidation, show maximum absorp-

tion at 232 nm, while secondary oxidation products, such as aldehydes and ketones, absorb at 

other wavelengths. Conjugated dienes and trienes, associated with more advanced chemical 

changes, display maximum absorbance at 270 nm. According to regulations, the maximum 

limits for extra virgin oils are 2.5 for K232, 0.22 for K270, and 0.01 for ΔK. For virgin oils, the limits 

are 2.6, 0.25, and 0.01, respectively, with lower values indicating higher quality [89]. 

In addition to evaluating oxidation, UV spectrophotometry is often used to identify po-

tential adulterations, as olive oil absorbs significantly less ultraviolet radiation at wavelengths 

between 208 and 210 nm compared to other vegetable oils. This method also provides valua-

ble information about the oil's conservation state and any changes resulting from technologi-

cal processing. Therefore, UV absorbance analysis is essential for ensuring the integrity and 

quality standards of the product [125,126]. 

1.6.1.4 Rancidity or Oxidative Stability 

Oxidative stability is a critical parameter for evaluating the quality of oils and fats. This 

attribute is not solely dependent on the chemical composition or the quality of raw materials 
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but also reflects the conditions to which the product has been exposed during processing and 

storage until the time of analysis. 

To determine this parameter, the induction period is used, measuring the time required 

for oxidation to begin. Samples are subjected to controlled conditions of accelerated oxidation, 

including elevated temperatures, increased oxygen exposure, and constant agitation, simulat-

ing extreme degradation scenarios. Stability is often assessed using the Rancimat equipment, 

which performs this analysis in a standardized and efficient manner, measuring the oil's re-

sistance to oxidation. 

The susceptibility of olive oil to oxidation is directly related to the degree of unsatura-

tion of the fatty acids in its triglycerides. Higher unsaturation levels increase the propensity for 

oxidation. Oxidative stability is thus one of the most relevant quality indicators, particularly for 

oils used as ingredients in other products, as it directly influences manufacturing processes, 

sensory characteristics, and the shelf life of final products [95,124,127–130]. 

1.6.1.5 Sterols and Triterpenic Alcohols 

Sterols constitute an important fraction of the unsaponifiable composition of olive oil 

and play a significant role in its characterization. Virgin olive oil contains various types of sterols 

with a specific composition, which allows for the identification of potential adulterations with 

other oils [131–134]. Additionally, phytosterols offer significant health benefits, helping to re-

duce plasma cholesterol levels and consequently preventing diseases such as arteriosclerosis 

and coronary conditions. The primary sterols found in virgin olive oil include β-sitosterol, Δ5-

avenasterol, campesterol, stigmasterol, and Δ7-stigmastenol [17,104].  

Refined olive oils and olive pomace oil exhibit total sterol values different from those 

found in virgin olive oils, where the minimum sterol content is 1000 mg/kg, as established by 

Regulation (EU) 2022/2104 [89]. 

Among triterpenic alcohols, compounds biosynthesized from fatty acids, the pentacy-

clic structures stand out, particularly two diols characteristic of the olive epicarp: erythrodiol 

and uvaol [134]. During the extraction process with solvents such as hexane, used in olive pom-

ace oil, these compounds dissolve and are found in greater abundance in the skins and seeds 

of the olive than in its pulp. The maximum permissible content of these compounds in extra 

virgin and virgin olive oils is 4.5 g per 100 g of oil [89]. High levels of erythrodiol and uvaol may 

indicate the addition of olive pomace oil to virgin olive oil. Furthermore, an increase in these 

compounds in virgin olive oils can suggest practices such as a second extraction of the paste 

or the use of excessive pressures during processing [133–136]. 
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1.6.1.6 Fatty Acids 

The analysis of fatty acids in olive oil is essential for identifying non-characteristic com-

pounds that may indicate adulterations [136–138]. Examples include myristic acid (C14:0, found 

in coconut oil), linolenic acid (C18:3, present in linseed oil), arachidic acid (C20:0, typical of 

peanut oil), eicosenoic acid (C20:1, common in rapeseed oil), behenic acid (C22:0, also in pea-

nut oil), and lignoceric acid (C24:0, derived from peanut oil). 

According to Regulation (EU) 2022/2104, in addition to established limits for the afore-

mentioned acids, specific limits have been set for trans isomers of oleic acid, linoleic acid, and 

linolenic acid, collectively known as trans isomers. The sum of trans oleic isomers and the sum 

of trans linoleic and trans linolenic isomers must not exceed 0.05 g per 100 g of oil for extra 

virgin and virgin olive oils [89]. These compounds can be produced by illicit industrial processes 

that aim to disguise the addition of oils from other origins to olive oil. Such processes alter the 

composition of fatty acids, increasing the proportion of trans isomers. Thus, elevated levels of 

these isomers serve as reliable indicators of adulterations or fraud, such as the blending of 

virgin olive oils with refined oils. 

Additionally, ethyl esters of fatty acids should not exceed 35 mg/kg for extra virgin olive 

oil [89]. This limit is important for ensuring the authenticity and purity of the product, as higher 

levels of ethyl esters could indicate the presence of refined oils or improper processing. 

1.6.1.7 Fatty Acids in Position 2 

The ratio of saturated to unsaturated fatty acids can be used to characterize the olive 

oil cultivar, as the fatty acid profile is largely influenced by the fruit’s characteristics. Factors 

such as climate, irrigation practices, and fruit maturity also significantly impact the composition 

of fatty acids and triacylglycerols [139–141]. 

Additionally, the analysis of the fatty acid profile is useful for detecting the presence of 

esterified oils in olive oil. In natural olive oils, saturated fatty acids in triglycerides are predom-

inantly attached to glycerol at positions 1 and 3, while position 2 is mostly occupied by un-

saturated fatty acids. This specific distribution is related to the biosynthesis of triglycerides 

during oil formation in the fruit [141]. 

In contrast, the industrial synthesis of triacylglycerols (esterification) does not distin-

guish between saturated and unsaturated fatty acids, resulting in a higher proportion of satu-

rated fatty acids at position 2. This difference can be used as an indicator of adulteration or the 

presence of non-natural oils in olive oil [142]. According to Regulation (EC) No. 1989/2003, the 

maximum permitted limit of these compounds in virgin olive oils is 1.5 g per 100 g of oil [143]. 
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1.6.1.8 Waxes 

Regulation (EU) 2022/2104 establishes guidelines for determining wax content in olive 

oil and defines concentration limits. For extra virgin and virgin olive oils, the wax content must 

not exceed 150 mg/kg [89]. Waxes are compounds naturally present in olives, consisting of 

esters of fatty acids and long-chain alcohols, distinct from glycerol. These compounds are pri-

marily found in the epicarp of olives, and during the extraction process, some waxes are trans-

ferred to the oil. 

When olive oil is adulterated with olive pomace oil, there is a significant increase in wax 

content. This is because the solvent used in olive pomace oil extraction, such as hexane, dis-

solves a greater quantity of waxes, which remain in the oil after the solvent evaporates. Con-

sequently, wax content analysis is an effective tool for identifying the addition of olive pomace 

oil to olive oil, enabling the detection of potential fraud or adulteration [136,144]. 

1.6.1.9 Aliphatic Alcohols 

The primary aliphatic alcohols present in olive oil include docosanol, tetracosanol, hex-

acosanol, and octacosanol [92]. These compounds are present in significantly higher concen-

trations in olive pomace oil compared to virgin olive oil . According to some studies, elevated 

levels of total aliphatic alcohols in certain olive oils are primarily attributed to their free (non-

esterified) form. This phenomenon may result from adverse climatic conditions, such as pro-

longed drought periods [145]. 

1.6.1.10 Tocopherols 

Tocopherols (such as α-tocopherol, a form of vitamin E) are important antioxidant com-

ponents in olive oil. They are part of the unsaponifiable fraction of vegetable oils and fats, 

along with phytosterols [92]. Their multiple nutritional benefits are widely recognized and doc-

umented in the literature. 

Tocopherols, associated with vitamin E properties, act as antioxidants, protecting body 

tissues from the harmful effects of free radicals generated during normal metabolism. Among 

tocopherols, α-tocopherol exhibits the highest biological activity. Although α-tocopherol is the 

most abundant and biologically relevant, analyzing other homologs is also significant. For in-

stance, γ-tocopherol is believed to offer superior protection against harmful radicals, such as 

peroxynitrite, which causes damage to various cellular molecules, including DNA and proteins, 

due to its oxidative properties [17,103,146]. 
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Thus, tocopherols are analyzed as indicators of olive oil quality and stability, being 

monitored to characterize the oils and verify their authenticity and freshness [94,133,147]. 

However, there are no specific regulatory limits for their presence. 

1.6.1.11 Polyphenols 

Phenolic compounds are secondary metabolites of plants, widely recognized for their 

structural diversity and broad phylogenetic distribution. In olives, four main classes of phenolic 

compounds stand out: phenolic acids, phenolic alcohols, flavonoids, and secoiridoids [92]. 

These compounds play essential roles in defining the sensory characteristics of olives and olive 

oils and in protecting against auto-oxidation and photo-oxidation processes [148,149]. 

The composition and concentration of phenolic compounds can vary significantly de-

pending on the fruit's degree of maturity, influencing its quality both quantitatively and quali-

tatively [51]. Prominent phenolic compounds in olive oil include tyrosol, hydroxytyrosol, 

oleuropein, caffeic acid, and p-coumaric acid [92]. 

These compounds, in addition to playing a crucial role in the oxidative stability of olive 

oil due to their antioxidant properties, also contribute to various health benefits [16]. Although 

European legislation does not directly set limits for the levels of phenolic compounds in olive 

oil, their presence is indicative of quality. For instance, Regulation (EU) 432/2012 allows health 

claims for olive oils containing at least 5 mg of hydroxytyrosol and its derivatives, such as the 

oleuropein and tyrosol complex, per 20 g of olive oil, underscoring their importance in enhanc-

ing the product’s value [150,151].  

The polyphenolic compounds of olive oils, such as hydroxytyrosol and tyrosol, will be 

further explored in Section 3 of this dissertation. 

 Organoleptic Characteristics 

The organoleptic evaluation is an indispensable procedure for determining the sensory 

quality of virgin olive oils and is one of the fundamental criteria for their classification as extra 

virgin, virgin, or lampante. This process complements physicochemical analyses, providing a 

comprehensive view of olive oil characteristics, particularly concerning sensory attributes such 

as fruitiness (green or ripe), bitterness, and pungency, as well as the identification of potential 

sensory defects [152–155]. 

Regulated by the European Union through Regulation (EU) 1348/2013, the organolep-

tic evaluation follows a standardized protocol to ensure the uniformity and reliability of results. 

This regulation establishes detailed criteria for the composition and functioning of tasting 
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panels, the method of sensory analysis, and the certification requirements for laboratories re-

sponsible for conducting these assessments [89,156]. 

The prescribed method involves sensory analysis conducted by trained tasters orga-

nized into officially recognized panels. Results are based on a sensory scale that evaluates the 

intensity of positive attributes, such as fruitiness, and potential defects, such as rancidity or 

mustiness, which compromise the product's quality. This system ensures that only oils meeting 

the required standards can be classified into superior categories. 

Thus, organoleptic evaluation is a crucial tool for ensuring the authenticity, quality, and 

market value of olive oils while protecting consumers from fraud or inferior-quality products. 

The organoleptic classification of olive oils will be further explored in Section 2 of this 

dissertation. 

1.7 Packaging and Storage of Olive Oil: Impacts on Quality and 

Product Safety 

After extraction and characterization, packaging and storage are fundamental steps in 

preserving the chemical, sensory, and nutritional properties of olive oil. The unsaponifiable 

fraction, phenolic compounds, tocopherols, and pigments, as previously discussed, play essen-

tial roles in olive oil stability and are sensitive to environmental factors such as light, oxygen, 

and temperature. Therefore, selecting appropriate packaging materials and storage conditions 

is crucial to maintaining product quality over time [157,158]. 

Olive oil is particularly vulnerable to lipid oxidation, which can lead to rancidity and the 

loss of beneficial compounds, reducing its nutritional and commercial value. This degradation 

is accelerated by exposure to light, high temperatures, and contact with oxygen. Additionally, 

pro-oxidant compounds, such as chlorophylls, can catalyze oxidation reactions when exposed 

to light, emphasizing the need for effective protective strategies during storage [124]. 

Packaging materials play a vital role in shielding olive oil from external factors. Dark or 

opaque glass bottles, coated metal containers, and polymeric packaging materials with oxygen 

barriers are widely used due to their ability to minimize exposure to light and oxygen. Studies 

have shown that inadequate packaging accelerates olive oil degradation, negatively affecting 

its aroma, flavor, and antioxidant properties [83–85,158,159]. 

Storage conditions are equally critical for preserving olive oil quality. Elevated tempera-

tures increase the rate of oxidation reactions, while the presence of oxygen can trigger 
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autoxidation processes. For this reason, storage in cool, dark, and humidity-controlled envi-

ronments is recommended to slow these reactions and maintain oxidative stability [158,159]. 

The effectiveness of packaging and storage strategies is directly linked to the preserva-

tion of bioactive compounds, such as phenolics and tocopherols, and the maintenance of olive 

oil's characteristic sensory profile. Recent research highlights that modern technologies, such 

as modified atmospheres and multifunctional packaging barriers, can offer superior protection 

and extend product shelf life [160,161]. 

 Thus, studying the interaction between packaging type, storage conditions, and the 

chemical stability of olive oil is crucial to ensuring the delivery of a high-quality product to 

consumers, preserving both its sensory attributes and health benefits. 

On the other hand, in the context of olive oil, prolonged contact with plastic packaging 

can lead to contamination by phthalates, which may compromise product quality and pose 

health risks [162–164]. 

The presence of phthalates in food is an increasing concern due to their potential mi-

gration from packaging materials. Phthalates are esters of phthalic acid widely used as plasti-

cizers in polymers such as PVC, providing flexibility and durability to various products, including 

plastic food and beverage packaging. In the case of olive oil, its lipophilic composition makes 

it particularly susceptible to absorbing these compounds during storage, especially under con-

ditions of heat, light, and prolonged contact [162,165]. 

This issue extends beyond product integrity to public health, as phthalates are classified 

as endocrine disruptors. These compounds have been linked to adverse effects on the repro-

ductive system, hormonal imbalances, and potential impacts on child development [166–169]. 

International regulations, such as those imposed by the EFSA (European Food Safety 

Authority), establish limits for phthalates in food-contact materials, encouraging the use of 

safer alternatives such as glass or metal for olive oil storage [170,171]. 

However, beyond packaging, other elements throughout the olive oil production chain 

are potential sources of phthalate contamination, including harvesting nets, transport bags or 

containers, processing mats, O-rings, hoses, and seals. 

Understanding the impact of phthalates on the quality and safety of olive oil is essential 

to improving production, packaging, and storage processes, ensuring a high-quality product 

while minimizing risks to consumer health. 

The presence of plasticizers in olive oil will be explored in more detail in Section 4 of this 

dissertation. 
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2  

 

VOLATILE ORGANIC COMPOUNDS 

2.1 Sensory Analysis  

Sensory analysis is an essential tool in evaluating food quality, being crucial for under-

standing the interactions between chemical stimuli and human senses, especially smell and 

taste (Figure 4). These two senses, known as chemical senses, play complementary roles in the 

perception of flavors and aromas [172–175]. 

 

Figure 4. Illustration depicting the mechanisms of olfactory and taste perception, adapted [176]. 

Olfactory perception is triggered by odor molecules that, even in extremely low concen-

trations, can interact with receptors in the olfactory epithelium, located in the nasal cavity. For 
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a substance to be detected by smell, its molecules must have specific physicochemical charac-

teristics, such as volatility, water solubility, or liposolubility. These factors allow the molecules 

to reach the sensory receptors, interacting with the cells of the olfactory epithelium through 

the mucus that covers it [177]. Substances like aldehydes, ketones, and polyphenols found in 

olive oil are responsible for stimulating sensory receptors and contributing to its organoleptic 

characteristics, such as aroma, flavor, and color [178]. 

Taste, on the other hand, occurs through the taste buds located on the tongue, which 

recognize compounds present in food and send signals to the brain. The brain, through inte-

grative centers, combines information from smell and taste, allowing a complete and complex 

sensory experience [179]. 

2.2 Positive and Negative Attributes of Olive Oil 

In sensory analysis of olive oil, these principles are applied to identify the intensity of 

positive and negative attributes of the product using trained taster panels. The process begins 

with olfactory evaluation, followed by tasting, during which taste and tactile impressions are 

observed. European Union regulations, such as Regulation (EU) 1348/2013, define specific 

guidelines for conducting these sensory tests, including scoring criteria and standardized tast-

ing forms [156].  

 Positive Attributes 

Positive attributes highlight desirable characteristics associated with high-quality olive 

oils, obtained from healthy and fresh fruit:  

• Fruity: A set of olfactory sensations characteristic of oils from healthy olives, 

whether green or ripe, perceived through direct or retronasal pathways. 

• Bitter: An elementary taste associated with oils made from green or early matur-

ing olives, perceived by the caliciform taste buds on the back of the tongue. 

• Pungent: A tactile sensation of sharpness, especially in the throat, typical of oils 

extracted at the beginning of the harvest, predominantly from green olives. 

 Negative Attributes 

On the other hand, negative attributes indicate defects that compromise the quality of 

olive oil and may result from inadequate production, storage, or handling processes: 
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• Fusty/muddy sediment: A flavor characteristic of oils obtained from improperly 

stored olives, leading to anaerobic fermentation, or oils in prolonged contact 

with decanted matter. 

• Musty-humid-earthy: A flavor resulting from contamination by molds, yeasts, or 

dirt due to improper storage of olives. 

• Winey-vinegary-acid-sour: A flavor reminiscent of wine or vinegar, caused by 

aerobic fermentation, leading to the formation of compounds like acetic acid 

and ethanol. 

• Rancid: A flavor resulting from advanced oxidation processes. 

• Frostbitten olives: Characteristic of oils produced from olives frozen on the tree. 

• Heated or Burnt: Resulting from excessive heating during thermal malaxation. 

• Hay-wood: A flavor typical of oils from dried olives. 

• Rough: A dense, pasty mouthfeel in older oils. 

• Greasy: A flavor reminiscent of diesel or mineral oils. 

• Vegetable water: A flavor acquired by prolonged contact with fermenting wa-

ters. 

• Brine: A flavor associated with olives preserved in brine. 

• Metallic: A flavor reminiscent of metals, resulting from prolonged contact with 

metal surfaces. 

• Esparto: Characteristic of olives pressed in new esparto mats. 

• Grubby: A flavor from olives infested with larvae of the olive fly (Bactrocera 

oleae). 

• Cucumber: A flavor caused by prolonged hermetic storage, associated with the 

formation of compounds such as 2,6-nonadienal. 

Thus, sensory evaluation uses human senses as measurement tools to detect and classify 

the aforementioned attributes. This process is fundamental for commercially classifying olive 

oil and its market value. 

2.3 Volatile Organic Compounds 

Volatile organic compounds (VOCs) are key elements in defining the aroma and flavor of 

olive oil, composing what is commonly referred to as flavour in English or flaveur in French. 

These terms encompass the combined sensations of odor and taste perceived in the mouth, 

which is particularly relevant in the context of olive oil, where these interactions define the 

product's sensory quality. 

Approximately 150 volatile compounds have been identified in olive oil, belonging to 

various chemical classes such as hydrocarbons, alcohols, aldehydes, esters, phenols, 
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oxygenated terpenes, and furanoids.  Most of these compounds are formed by the oxidative 

degradation of unsaturated fatty acids present in olive oil. This process occurs primarily 

through the action of lipoxygenase enzymes, which catalyze the formation of C6 aldehydes 

and alcohols, contributing green and fruity notes to the oil. Examples include hexanal and E-

2-hexenal, which are considered quality markers due to their impact on aroma [155,180–182]. 

However, non-enzymatic chemical reactions, such as spontaneous lipid oxidation, can 

also generate VOCs. Compounds formed in this way, such as hexanal in high concentrations, 

are often associated with sensory defects like rancid odor. Furthermore, microbial activity un-

der inadequate storage conditions can also contribute to the formation of undesirable com-

pounds, resulting in unpleasant aromas [181–184]. 

In summary, the aromatic profile of olive oil arises from a combination of different path-

ways and metabolic processes, as illustrated in Figure 5. 

 

Figure 5. Main pathways involved in the formation of the volatile aroma profile of olive oil, adapted [154,182]. 

 Sensory Characteristics and Contribution of VOCs 

Volatile compounds have low molecular mass, generally below 300 Da, and volatilize 

easily at room temperature. The most common are C5 and C6 (with 5 and 6 carbon atoms in 

their structure), such as hexanal, E-2-hexenal, hexanol, isopentanol, 2-penten-1-ol, and pen-

tanal, often associated with positive notes of freshness and fruitiness. However, the presence 

of compounds like hexanal in high concentrations can indicate advanced oxidation, resulting 

in undesirable aromas like rancidity. Other compounds, present at lower concentrations, are 
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also found, such as 1-octen-3-ol, E-2-octenal, nonanal, and limonene, which contribute to 

earthy, mushroom-like, green and citrus notes [54,92,116,124,182,185,186]. 

Although the concentration of these compounds in olive oil is relatively low, their con-

tribution to the aroma is significant due to the high olfactory potency of many of them. Thus, 

a fundamental concept is that of odor activity, which relates the concentration of a compound 

to its detection threshold by smell. Odor activity is calculated by dividing the concentration of 

the compound in the olive oil by its odor threshold, which is the lowest concentration at which 

the compound can be detected by the human nose [187].  

For example, E-2-hexenal at a concentration of 6670 µg/g has an odor activity of 16, 

while 1-penten-3-one at a very low concentration of 26 µg/g has a much higher odor activity 

of 36. This means that despite its lower concentration, 1-penten-3-one has a much stronger 

sensory impact due to its higher olfactory potency. Generally, the higher the odor activity, the 

more pronounced the aroma of the compound, meaning that a higher odor activity corre-

sponds to a stronger perception of the scent [188]. 

Moreover, volatile compounds that are not directly detected by smell can play crucial 

roles as precursors or intermediates in the formation of other aromatic compounds. Thus, even 

substances present below the perception threshold can indirectly influence the sensory quality 

of olive oil. 

The formation and composition of volatile compounds in olive oil depend on several 

factors related to the fruit’s characteristics, processing methods, and storage conditions. 

Among the main factors, the following stand out: 

• Cultivar and Agronomic Conditions: Different olive cultivars produce oils with dis-

tinct volatile profiles. This variation can be attributed to genetic differences that 

influence fatty acid composition and enzymatic activity. Additionally, environ-

mental conditions such as climate, soil, and cultivation practices also play a sig-

nificant role [189–192]. 

• Fruit Maturity Stage: The level of ripeness of the olives is a key determinant of the 

volatile composition of olive oil. During the climacteric period, there is an increase 

in the synthesis of aromatic compounds, driven by ethylene production and the 

activation of enzymes responsible for forming volatiles. Olives harvested at the 

optimal maturity stage tend to produce oils with more balanced sensory notes 

[49,118,193].  

• Processing Methods: Processing stages, such as crushing the olives and thermal 

malaxation (heat-assisted kneading), play key roles in releasing enzymes that 
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catalyze the formation of VOCs. The time and temperature applied during these 

stages can significantly alter the aroma of the oil: higher temperatures or exces-

sive times can lead to the degradation of desirable compounds and the formation 

of undesirable ones [194,195]. 

• Storage and Conservation: Improper storage of olives before processing can pro-

mote undesirable fermentations and the formation of compounds that compro-

mise the quality of the oil. Furthermore, storing the final oil is also critical: expo-

sure to oxygen, light, and high temperatures accelerates oxidation reactions, re-

ducing both sensory and nutritional quality [159,183,186,196]. 

Thus, understanding the mechanisms leading to the formation of volatile compounds 

allows for the optimization of extraction and storage processes to maximize the quality of olive 

oil. By aligning chemical knowledge with industrial practice, it is possible not only to preserve 

but also to enhance the positive sensory attributes of olive oil, ensuring a high-quality product 

with added market value. 

2.4 Factors of Deterioration 

Lipid oxidation is one of the main factors compromising the quality and stability of olive 

oil, being a spontaneous and inevitable process that affects its sensory, nutritional character-

istics, and shelf life. This phenomenon occurs due to the interaction of unsaturated fatty acids 

with reactive oxygen species, and is influenced by factors such as light, heat, the presence of 

oxygen and metals, as well as enzymatic processes. It can occur through auto-oxidation, photo-

oxidation, and enzymatic oxidation [124,196,197]. 

Auto-oxidation is a chain process initiated by contact with oxygen, leading to the for-

mation of hydroperoxides, which are the first products of oxidation. The degradation of hy-

droperoxides generates aldehydes and ketones, responsible for unpleasant odors and flavors, 

compromising the organoleptic and nutritional properties of olive oil [124]. 

In photo-oxidation, exposure to light, especially ultraviolet radiation, activates pigments 

like chlorophyll, triggering reactions that consume the available oxygen. This process is accel-

erated during storage in the presence of light, resulting in the formation of compounds that 

degrade both sensory and nutritional quality [124,198]. 

Enzymatic oxidation, catalyzed by enzymes like lipoxygenases, primarily occurs during 

processing or when the olive fruit is damaged (Figure 6) [124].  
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Figure 6. Scheme of the enzymatic oxidation process of linolic and linolenic acids - Lipoxygenase pathway. ADH: 

alcohol dehydrogenase; AAT: alcohol acyltransferase. Adapted [178,199,200]. 



 30 

This mechanism utilizes polyunsaturated fatty acids, such as linoleic and linolenic acids, 

to form volatile compounds. Lipoxygenase is responsible for producing volatile compounds 

like hexanal and Z-3-hexenal, derived from 13-hydroperoxide, and Z-3-nonenal and Z,Z-3,6-

nonadienal, originating from 9-hydroperoxide. These C6 and C9 aldehydes contribute charac-

teristic vegetal aromatic notes, such as "green," "herb," "cucumber," and "pear." Later, through 

enzymatic action, these aldehydes are transformed into short-chain alcohols and esters, con-

tributing to the unique sensory profile of the olive oil [154,181,182,199,201,202]. 

From a biological perspective, the lipoxygenase pathway is a plant defense mechanism 

against stressors such as mechanical damage, extreme temperatures, and pathogen attacks. In 

high-quality olive oils, this pathway is responsible for the generation of volatile compounds, 

such as aldehydes, esters, alcohols, and ketones, which provide positive attributes like "green" 

and "fruity" aromas [203,204]. 

Other factors can also deteriorate olive oil. Heat (temperatures above 20°C) accelerates 

the formation of peroxides, while metals catalyze rancidity and can add metallic flavors to the 

oil. Prolonged exposure to oxygen intensifies oxidation, further compromising its quality. 

Thus, the sensory profile of olive oil can be compromised, presenting sensory defects. 

The most common defects include "fusty", "mold", "winey-vinegary", and "rancid." The first 

three are typically associated with poor storage of olives before extraction, while rancidity re-

sults from oxidation or faulty storage of the oil [185]. 

After numerous studies, each of these defects has a more or less defined volatile profile. 

These sensory defects are responsible for the acceptability of olive oils, and when detected, 

the oil can be classified as lampante, meaning it is deemed unsuitable for direct consumption 

and is instead intended for refining or other industrial uses. 

Oxidative processes and sensory defects compromise both the sensory attributes and 

the nutritional composition of olive oil, leading to the loss of essential fatty acids and fat-

soluble vitamins. To minimize these impacts, it is essential to adopt measures such as good 

practices in harvesting and storing olives before extraction, storing in opaque and airtight con-

tainers to reduce exposure to light and oxygen, strictly controlling temperature during storage, 

and using natural antioxidants to delay the oxidation process. 

Understanding and mitigating the factors that promote oxidation and sensory defects 

is essential for ensuring the quality of olive oil, guaranteeing consumer acceptance, and ex-

tending its shelf life. 
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2.5 Analysis of VOCs 

The analysis of volatile organic compounds (VOCs) in extra virgin olive oil (EVOO) is cru-

cial for quality control, as these compounds are responsible for the sensory characteristics of 

the product. However, VOC analysis in EVOO is not yet recognized or standardized by Euro-

pean Union regulations or the International Olive Council (IOC). The growing demand for fast 

and efficient methods has favored sensory approaches that provide immediate responses, such 

as "suitable/unsuitable" or "pleasant/unpleasant," at the expense of more detailed methods 

based on chemical identification [205]. 

The EVOO matrix presents significant analytical challenges due to the presence of hun-

dreds of VOCs in concentrations ranging from trace levels to tens of milligrams per kilogram. 

These compounds belong to different chemical classes with varying polarities and volatilities, 

which increases the complexity of analysis and may lead to the loss of compounds during 

sample preparation [181,201]. 

The typical VOC analysis process in EVOO involves an initial sampling step to isolate and 

pre-concentrate the volatile compounds, followed by separation, identification, and quantifi-

cation. The sampling step is considered the main bottleneck of the analytical procedure, with 

a direct impact on the quality of the results. Various methods have been developed over the 

past decades, allowing for the identification of hundreds of compounds [181]. Among these, 

headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) 

and mass spectrometry (MS) stands out as the most widely used approach for VOC analysis in 

EVOO [181,206,207]. 

HS-SPME is a solvent-free, fast, cost-effective technique that is easily adaptable to auto-

mation. Widely used in food analysis, this methodology is effective for pre-concentrating 

(semi)volatile compounds, acting as a bridge between static and dynamic headspace methods. 

The method is based on the adsorption of VOCs onto a fiber coating exposed to the free space 

of the sample, and its efficiency depends on the partitioning equilibrium between the oil matrix, 

the free space, and the fiber [181,189,207,208]. 

The distribution coefficients of VOCs between these phases determine the extraction ef-

ficiency, with analytical conditions adjusted according to the study's objective. For example, 

higher temperatures may intensify extraction but also induce the formation of unwanted arti-

facts. Although effective, HS-SPME has limitations, such as competition between compounds 

during adsorption onto the fiber, which can affect the accuracy of quantification. To minimize 

these effects, it is essential to select appropriate analytical conditions. The DVB/CAR/PDMS 
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fiber coating is widely recognized as the most efficient for VOCs in EVOO due to its high sen-

sitivity and balanced absorption capacity [181,209,210]. 

Additionally, HS-SPME coupled with GC offers further advantages, such as low detection 

limits, operational simplicity, and feasibility in both manual and automated systems. These fac-

tors make the technique particularly suitable for analyzing complex matrices like EVOO [181]. 

Other analytical approaches include comprehensive two-dimensional gas chromatog-

raphy (GC × GC), which combines two columns of different polarities, providing greater sepa-

ration capacity and high sensitivity when coupled with mass spectrometry (GC × GC/MS). This 

technique allows for high-throughput screening and the creation of detailed profiles, organiz-

ing analyte patterns and homologous series logically on the two-dimensional chromatogram, 

which facilitates data interpretation [181,211–213]. 

Methods such as GC x GC-TOFMS, GC/MS, GC-FID, and GC-olfactometry (GC-O) are used 

in VOC analysis, each with specific advantages for different analytical objectives. However, the 

lack of uniformity in quantification methods complicates the comparison of results between 

studies, posing a challenge for harmonizing data and standardizing analyses [181]. 

2.6 Considerations and Objectives 

Although advanced analytical techniques are widely employed, integrating fast, cost-ef-

fective methods that do not rely on trained sensory panels can offer a balance between effi-

ciency and scientific accuracy. This hybrid approach could contribute significantly to standard-

izing VOC analyses in EVOO, optimizing quality control, and enhancing the product's compet-

itiveness in the market. 

Given the impact of volatile organic compounds (VOCs) on the sensory profile and qual-

ity of extra virgin olive oil (EVOO), the research developed as part of this thesis focused on the 

detailed analysis of these compounds, aiming to better understand the factors affecting their 

evolution and their relationship with sensory defects over shelf life. 

The results were consolidated in the scientific article titled "Early Identification of Olive 

Oil Defects throughout Shelf Life" published in the journal Separations in 2024. This work pre-

sents the development and application of a robust analytical methodology, based on HS-

SPME-GC/MS, for identifying VOCs associated with positive and negative attributes of EVOO. 

Furthermore, it proposes using the ratio between specific compounds as a predictive tool for 

the sensory declassification of olive oils. 
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In parallel, a study was conducted (data not shown in this dissertation) on the evolution 

of pheophytins and pyropheophytins, as chlorophylls are converted into pheophytins during 

the extraction and aging processes, which can subsequently transform into pyropheophytins. 

However, it was not possible to establish a direct correlation between the concentrations and 

percentages of the different pheophytins and either the sensory data or the chemical markers 

related to the shelf life of the oil. Pheophytins did not show a correlation with shelf life or 

sensory panel evaluations of EVOO, suggesting they may be not reliable markers for determin-

ing shelf life. 

The full article follows, which forms a chapter of this thesis and reflects the contribution 

of this research to advancing scientific understanding in VOC analysis and quality control of 

extra virgin olive oil.
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3  

 

ANTIOXIDANTS 

 

3.1 Olive Oil as a Nutraceutical Product 

Since ancient times, products derived from the olive tree have been esteemed for their 

remarkable nutritional and therapeutic benefits. As early as 400 B.C., Hippocrates, regarded as 

the father of Western medicine, recommended the use of fresh olive juice to treat mental ill-

nesses and applied poultices of crushed olives to heal ulcers. These products have traditionally 

been used to treat skin infections due to their emollient and healing properties, combat colds, 

herpes, and infections of the digestive and urinary tracts thanks to their antimicrobial proper-

ties, and address ulcers, stomach pains, and liver issues due to their anti-inflammatory effects 

[3,214]. Furthermore, their potent antioxidant and anti-inflammatory actions make them effec-

tive in preventing and treating chronic diseases such as cardiovascular conditions, cancer, and 

neurodegenerative disorders, where oxidative and inflammatory processes play a critical role 

[215–218]. 

The first investigation into the potential nutraceutical properties of olive oil was con-

ducted by American biologist and physiologist Ancel Keys. In 1970, he introduced a compara-

tive dietary study across seven countries (the United States, Italy, the Netherlands, Greece, Fin-

land, Japan, and the former Yugoslavia), known as the "Seven Countries Study." This research 

provided compelling evidence that diets high in saturated fats increase the risk of coronary 

heart disease. The study found that the inhabitants of Crete had the lowest cardiovascular 

mortality rates, attributed to their predominant use of olive oil in cooking and seasoning, 
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contrasting with countries like Finland, where diets relied heavily on saturated fats such as 

butter and lard [219,220]. 

Subsequent, several studies suggest that these therapeutic properties of olive oil are 

largely attributed to its phenolic compounds [67,215,217,218,221–223]. 

3.2 Phenolic Compounds 

Phenolic compounds are secondary metabolites synthesized by plants, chemically char-

acterized by having an aromatic ring bonded to one or more hydroxyl groups. These com-

pounds can also be defined based on their metabolic origin, as they are derived from the shi-

kimate pathway, responsible for producing aromatic amino acids like phenylalanine and tyro-

sine, and from the metabolism of phenylpropanoids, which use phenylalanine as a precursor 

for synthesizing a wide range of phenolic compounds (Figure 7) [224]. These metabolites play 

essential roles in plants, including defense against predators and pathogens, protection against 

oxidative stress, and regulation of growth and developmental processes. The presence and 

diversity of phenolic compounds in plants reflect their importance in adapting to environmen-

tal conditions and interacting with their surroundings [222,225,226]. 

 

Figure 7. Schematic illustration depicting the biosynthetic pathways of phenolic compounds in olive fruits. G3-P: 

Glyceraldehyde 3-phosphate; DMAPP: Dimethylallyl diphosphate; IPP: Isopentenyl diphosphate; AC: Acetyl-CoA; 

MVAPP: Mevalonate diphosphate; GPP: Geranyl diphosphate; FPP: Farnesyl diphosphate; GGPP: Geranylgeranyl 
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pyrophosphate; PEP: Phosphoenolpyruvate; E4P: Erythrose 4-phosphate; 3,4-DHPEA-EDA: Oleacein. Adapted 

[227,228]  

Phenolic compounds can be classified into different groups based on the number of 

phenolic rings they possess and the molecular bonds present. Among the predominant phe-

nolic compounds in olives are secoiridoids (such as oleuropein and ligstroside derivatives), 

phenolic alcohols (hydroxytyrosol - HTyr and tyrosol - Tyr), phenolic acids (p-coumaric acid 

and vanillic acid), flavonoids (luteolin and apigenin), and lignans (pinoresinol and acetoxypi-

noresinol) [225]. 

A study by Alagna et al. analyzed the metabolic and transcriptional profiles of phenolic 

compounds during olive maturation, suggesting the main biosynthetic pathways of these mol-

ecules [228]. These metabolic pathways are highly complex, and the production of phenolic 

compounds can vary significantly in response to environmental stimuli. In general, these path-

ways are interconnected, allowing their conversion during fruit maturation, processing, and 

storage. Typically, these metabolic pathways lead to the hydrolysis of precursor compounds, 

resulting in the formation of HTyr or Tyr [224,225,229]. 

During olive oil production, some phenolic compounds remain unchanged, while others 

undergo transformations due to chemical and enzymatic reactions. These processes largely 

depend on the nature of the compounds, the ripeness of the fruits, and processing conditions. 

Consequently, the profile and concentrations of phenolic compounds in olive oil vary widely 

[224,230]. 

Among the phenolic compounds found in olives, oleuropein, belonging to the hydroxy-

tyrosol family, is the most abundant. This compound is linked to a sugar molecule (glucose) 

and reaches high concentrations during fruit development [231,232]. Ligstroside, its structural 

equivalent containing a tyrosol unit, is also significant. In virgin olive oil, the aglycones of 

oleuropein and ligstroside (compounds that have lost their sugar molecules) and their deriva-

tives, mainly in oxidized forms, are present in higher quantities alongside their hydrolysis prod-

ucts, HTyr and Tyr [224]. 

During ripening, hydrolytic enzymatic activity reduces oleuropein and ligstroside con-

centrations while increasing hydrolysis products. Similar changes can occur during olive oil 

storage, resulting in higher concentrations of HTyr and Tyr due to hydrolysis of bound portions 

[224,229]. 

In virgin olive oil, phenols not only provide high oxidative stability, extending the 

product's shelf life and quality, but also directly influence its organoleptic properties, imparting 

characteristic flavors and aromas while contributing to nutritional benefits [108,224,233]. 



 60 

Unlike lipophilic phenols, found in various oils and fats, hydrophilic phenols are specific to 

virgin olive oil due to the unique characteristics of olives and the preservation of these com-

pounds during minimal extraction processes. In refined oils, these molecules are significantly 

reduced during the refining process [234]. 

The importance of virgin olive oil's phenolic compounds for human health has garnered 

significant interest, particularly for their association with protective effects against cardiovas-

cular and neurodegenerative diseases. These benefits are linked to the ability of phenols to act 

as antioxidants, neutralizing free radicals and preventing oxidative damage to cells 

[71,223,234,235]. 

 Hydroxytyrosol and Tyrosol 

Among the phenolic compounds in olive oil, HTyr and Tyr are the most widely recog-

nized for their health benefits and play an essential role in virgin olive oil. These substances are 

highly valued for their antioxidant and anti-inflammatory properties, which not only contribute 

to olive oil's stability but also promote beneficial effects on human health [68,71,218,236]. 

Hydroxytyrosol is a chemical compound with the IUPAC name 4-(2-hydroxyethyl)-1,2-

benzenediol. This alcohol is characteristically found in olives and other derivatives of the olive 

tree, either in free form or combined with various other natural compounds. Similarly, tyrosol 

or 4-(2-hydroxyethyl) phenol is another phenolic compound present in olives and their deriv-

atives. It has a chemical structure similar to hydroxytyrosol but lacks one hydroxyl group (OH) 

on the aromatic ring. (Figure 8) [237]. 

 

Figure 8. Chemical structures of hydroxytyrosol and tyrosol. 

After ingestion, HTyr and Tyr are absorbed in the gastrointestinal tract and rapidly dis-

tributed throughout the body, being detected in urine, plasma, and low-density proteins (LDL) 

particles, which highlights their high bioavailability. This pharmacokinetic profile demonstrates 

that, despite being rapidly metabolized, these compounds can exert significant beneficial ef-

fects before excretion [236,238–241]. 
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During digestion, precursor molecules such as oleuropein, oleuropein aglycone, olea-

cein, ligstroside, and oleocanthal are hydrolyzed, generating HTyr and Tyr as the main active 

metabolites. Their metabolism predominantly involves conjugation with sulfates and glucuron-

ides, making them more water-soluble and facilitating renal excretion [236,238–241]. 

Several studies have reported their pharmacological properties [236,242]. HTyr stands 

out for its strong antioxidant potential, derived from the presence of two ortho-hydroxyl 

groups on the benzene ring, which confer a high capacity to neutralize reactive oxygen species 

(ROS). This antioxidant activity protects cellular components such as lipid membranes, proteins, 

and DNA against oxidative damage. Although less potent, Tyr also acts as an antioxidant due 

to the hydroxyl group present on its aromatic ring, complementing HTyr's action. Furthermore, 

both compounds exhibit significant anti-inflammatory effects, modulating intracellular signal-

ing pathways that regulate the production of pro-inflammatory cytokines such as IL-1β, IL-6, 

and TNF-α, and inhibiting the activity of the cyclooxygenase-2 (COX-2) enzyme. These charac-

teristics are essential for preventing chronic diseases such as cardiovascular diseases, neuro-

degenerative disorders, type 2 diabetes, and cancer [236,238,243].  

The consumption of HTyr and Tyr is strongly associated with the prevention of cardio-

vascular diseases, as they protect LDL particles from oxidation, a key process in the formation 

of atherosclerotic plaques. Additionally, their anti-inflammatory actions help reduce the risk of 

atherosclerosis [236,238,244]. 

In the context of neurodegenerative diseases, HTyr demonstrates the ability to cross 

the blood-brain barrier, protecting neurons from oxidative and inflammatory damage, making 

it promising for preventing conditions such as Alzheimer's and Parkinson's diseases [223,245]. 

Regarding type 2 diabetes, both compounds help modulate oxidative stress and inflammation 

while improving insulin sensitivity [246]. In the case of cancer, HTyr and Tyr contribute to sup-

pressing tumor cell proliferation and reducing DNA damage caused by oxidizing agents 

[247,248]. 

Moreover, studies indicate that these phenols have an excellent safety profile, even at 

high doses, and are rapidly eliminated from the body, minimizing toxicity risks. The absence of 

bioaccumulation further reinforces their applicability in antioxidant therapies and the develop-

ment of nutraceuticals. Including these compounds in the regular consumption of virgin olive 

oil, a key component of the Mediterranean diet, underscores their relevance to human health 

and their contribution to preventing various pathologies [236,249]. 

Based on extensive scientific evidence, the European Food Safety Authority (EFSA) has 

recognized the benefits of phenolic compounds derived from olives, including the fruit, 
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processing wastewater, olive oil, Olea europaea L. extracts, and leaves. These compounds, 

standardized by their hydroxytyrosol content and its derivatives (including the oleuropein com-

plex), have been adequately characterized and associated with numerous positive health ef-

fects. These benefits include protecting LDL particles from oxidative damage, maintaining nor-

mal high-density lipoprotein (HDL) cholesterol levels in the blood, regulating blood pressure, 

anti-inflammatory properties, promoting upper respiratory tract health, supporting normal 

gastrointestinal function, and strengthening the body's defenses against external agents [150]. 

However, according to European Union Regulation 432/2012, for extra virgin olive oil 

to be marketed with nutritional or health claims related to these effects, it must contain at least 

5 mg of hydroxytyrosol and its derivatives (such as the oleuropein complex and tyrosol) per 20 

g of olive oil. Additionally, the legislation requires that the information provided to consumers 

highlights that the beneficial effects associated with consuming olive oil polyphenols are only 

obtained with a daily intake of 20 g of olive oil [151]. 

This requirement standardizes the minimum amount of these bioactive compounds 

and establishes clear guidelines for labeling, ensuring that the product offers sufficient con-

centrations to provide the claimed benefits. Thus, extra virgin olive oil meeting this criterion 

not only contributes to health promotion within the Mediterranean diet but also reinforces its 

status as a nutraceutical, enhancing its nutritional and functional value. 

While olive oil phenols, such as hydroxytyrosol and tyrosol, are widely recognized for 

their health benefits, their concentrations in commercial oils are highly variable. Studies con-

ducted on oils from different Portuguese olive varieties, indicated HTyr and Tyr concentrations 

(the sum of both) ranging from 2,027 mg to 10,973 mg per 20 g of oil (Table 4) [250]. 

 

Table 4. Concentration of Hydroxytyrosol (HTyr) and Tyrosol (Tyr) in Different Olive Oil Portuguese Cultivars. 

Vaues are expressed as mean ± standard deviation (SD) per 20 g of extra virgin olive oil (EVOO) [250]. 

Cultivar HTyr + Tyr (mg/20 g EVOO) 

Arbequina 2.027 ± 0.639 

Picual 7.105 ± 2.413 

Madural 2.255 ± 0.861 

Cordovil de Serpa 4.847 ± 0.567 

Cobrançosa 7.936 ± 3.767 

Verdeal Alentejana 7.014 ± 1.664 

Carrasquenha 1.787 ± 0.533 

Blanqueta 10.973 ± 4.425 

Galega Vulgar 3.520 ± 1.719 
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This variability reflects inherent differences in olive varieties, geographical origins, and 

factors such as processing and storage conditions [251,252]. 

It is estimated, however, that olive oil contains only about 1–2% of the total phenolic 

fraction available in the olive [253,254]. During processing, phenolic compounds are distrib-

uted among the aqueous, oily, and solid phases (pomace), with this distribution influenced by 

their specific solubilities [255]. 

While a small fraction is incorporated into the oily phase, about 53% of phenolic com-

pounds are lost in wastewater, and approximately 45% remain in pomace, the solid fraction 

generated during processing. This composition highlights the limitations in the amount of phe-

nolic compounds that can naturally transfer to olive oil, with concentrations ranging from 50 

to 1000 μg/g in oil, depending on the olive variety and extraction conditions [255,256]. 

Since most phenols remain in the by-products, these materials represent rich and un-

derutilized sources of bioactive compounds such as hydroxytyrosol, tyrosol, and other antiox-

idants. Studies indicate that pomace may contain hydroxytyrosol and tyrosol concentrations 

10 to 100 times higher than those found in olive oil [257]. This has sparked significant interest 

in developing strategies for recovering, separating, purifying, and concentrating these com-

pounds from pomace and other olive processing by-products, aiming to both enrich olive oil 

and create new products with high functional value. 

In addition to the economic value added to the olive oil sector, valorizing pomace and 

wastewater promotes sustainability by transforming industrial waste into sources of functional 

ingredients with applications in the food, pharmaceutical, and cosmetic industries. These initi-

atives increase the market presence of phenolic compounds and reinforce the relevance of 

olive oil and its derivatives in promoting health, while contributing to developing nutraceutical 

products and innovative solutions for utilizing by-products. 

3.3 Olive Pomace 

As previously mentioned, olive pomace, generated during olive oil extraction, is one of 

the most significant by-products of this industry. 

Currently, there are three main olive oil extraction systems: the classical system (presses) 

and continuous systems, which can operate in two or three phases (Figure 9) [258,259]. 
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Figure 9. Classical and continuous process used for olive oil extraction [258,259]. 

The three-phase system, despite being technologically advanced, uses large amounts of 

water, resulting in higher volumes of wastewater and reduced phenolic content in the olive oil. 

On the other hand, the two-phase system was developed as an alternative to reduce water 

consumption and liquid waste volumes, such as olive mill wastewater. This system does not 

add water to the process but generates olive pomace with a high moisture content [258–260]. 

For two-phase systems, approximately 80 kg of wet pomace is produced for every 20 kg of 

olive oil [261]. 

In general, it is estimated that the production of pomace is approximately four times 

higher than that of olive oil. In Portugal, during the 2022/2023 season alone, the production 

of 126 thousand tons of olive oil resulted in approximately 500 thousand tons of olive pomace 

[28]. On a global scale, the olive oil industry is estimated to produce about 30 million m³ of 

waste annually [262]. This significant waste generation, including olive mill wastewater and 

pomace, poses substantial environmental challenges, with pollution loads estimated to be 100 

to 200 times higher than those of domestic sewage [263]. 

Olive pomace consists of water, solid residues from the olives, such as pulp, peel, and 

fragments of pits, along with a significant proportion of phenolic compounds. Olive mill 

wastewater, typically an acidic effluent containing various dissolved and suspended sub-

stances, consists of 83-94% water, 4-18% organic matter (including lipids, sugars, organic acids, 
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nitrogenous substances, polyalcohols, pectins, tannins, and polyphenols), and 0.4-2.5% mineral 

salts, primarily potassium, sodium, carbonates, and phosphates [258,264]. 

The improper disposal of these wastes in the environment leads to serious ecological 

consequences. Soil pollution caused by phenolic compounds and fatty acids inhibits plant 

growth. Water contamination resulting from discharge into water bodies can lead to eutroph-

ication due to the high concentration of phosphorus and organic matter, promoting excessive 

algae growth and reducing the dissolved oxygen levels necessary for aquatic life. Additionally, 

waste degradation generates unpleasant odors, while phytotoxicity and low biodegradability, 

caused by the high presence of phenolic compounds, make treatment and proper reuse chal-

lenging [265,266]. 

Various approaches have been proposed to mitigate the environmental impacts of olive 

oil industry waste [258,267–269]. 

Physical processes are commonly used as a pretreatment step to remove suspended sol-

ids from olive mill wastewater. Thermal processes, effective for water removal and condensa-

tion of residues, have high operational costs. Advanced oxidation processes, while efficient in 

pollutant reduction, are similarly expensive. Physicochemical methods, such as neutralization, 

adsorption, and precipitation, offer more economical alternatives, though their effectiveness in 

reducing pollutant loads is limited. A more practical and economical solution for efficient re-

moval is the use of evaporation ponds or storage reservoirs. These involve low investment 

costs and near-zero operational costs. Under favorable climatic conditions, the complete evap-

oration of olive mill wastewater reduces the by-products to solid residues, which then require 

appropriate management. When olive mill wastewater is used for soil irrigation, employing a 

storage reservoir can significantly lower initial investment costs, although neutralizing the ef-

fluent increases operational expenses [258,267–269]. 

Olive pomace is also used as a raw material for producing pomace oil, a process that has 

advanced significantly in recent years. After its generation, the pomace undergoes drying to 

reduce its moisture content, an essential step for subsequent stages. The dried pomace is then 

physically processed into a granular mass suitable for oil extraction. Hexane, a solvent with a 

high capacity for dissolving the oil present in pomace, is used for this extraction. The final 

product of this process is pomace oil, which is sent to refineries, while the extracted pomace, 

after oil removal, is generally used as fuel in factories or sold. It can also be used as animal feed 

or fertilizer, among other applications [61]. 
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Despite the technical and financial challenges associated with these treatments, seeking 

solutions that are both sustainable and economically viable is essential for efficient waste man-

agement. 

Furthermore, reusing olive pomace and olive mill wastewater as sources of phenolic com-

pounds and other bioactives represents a strategic opportunity. This approach allows environ-

mental liabilities to be transformed into high-value-added products, with promising applica-

tions in the food, pharmaceutical, and cosmetic industries. 

 Extraction of Phenolic Compounds from Olive Pomace 

The extraction of phenolic compounds, such as hydroxytyrosol and tyrosol, from olive 

oil subproducts presents a technical challenge due to their low concentration in the oily phase 

and their greater solubility in water. However, various methods have been developed to per-

form this extraction efficiently. 

3.3.1.1 Solvent Extraction Methods 

Solvent extraction methods, such as liquid-liquid extraction (LLE) and solid-liquid ex-

traction, are widely used to obtain antioxidants from plant matrices like olive pomace. Com-

monly used solvents include ethanol, methanol, acetonitrile, or mixtures of water with metha-

nol or ethanol. The process involves mixing the pomace with the solvent, followed by agitation 

and settling, allowing phenolic compounds to migrate into the solvent phase. After phase sep-

aration, the phenolics can be recovered by solvent evaporation or other suitable methods, en-

suring the efficient extraction of these high value bioactives [270–275]. 

A study by Suárez et al. investigated optimizing phenolic extraction from olive by-prod-

ucts. The researchers suggested accelerated solvent extraction as a more efficient alternative 

to solid-liquid extraction using methanol/water (80:20 v/v) under atmospheric pressure, often 

preceded by ultrasonic or thermal treatments to enhance phenol solubility [274]. However, due 

to the restrictions of European Regulation 2009/32 on methanol use in food products, ethanol, 

considered safer, is increasingly used [276]. Studies like those by Lafka et al. have shown etha-

nol to be among the most suitable solvents for recovering phenolic compounds from olive mill 

wastewater (OMW), confirming the efficacy of supercritical CO₂ as an alternative for extracting 

highly antioxidant phenolics [275]. 

Bouaziz et al. highlighted the successful use of an ethanol-water mixture (70:30 v/v) to 

extract polyphenols from olive leaves, showing the potential of food-grade solvents for appli-

cations in the food industry [277]. Ethyl acetate, widely studied, has proven effective in 
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recovering phenolics after aerobic or anaerobic digestion, achieving recovery rates above 90% 

[278,279]. Kalogerakis et al. investigated the application of different solvents, including ethyl 

acetate, diethyl ether, and a combination of chloroform and isopropanol, for the recovery of 

antioxidants from OMW. Among the solvents analyzed, ethyl acetate once again stood out for 

its high antioxidant recovery rates combined with lower environmental impacts. The analysis 

further indicated that optimizing the process could reduce environmental impacts by up to 

29%, reinforcing the feasibility of this approach as a more sustainable alternative for extracting 

antioxidants from OMW [278]. Another "greener" alternative to conventional solvents for liq-

uid-liquid extraction is the use of ionic liquids, with extraction efficiencies above 90% for HTyr 

and TYyr [280]. 

Despite its broad application, solvent extraction faces challenges such as the use of 

large solvent volumes, safety concerns, and environmental impacts. While olive pomace, being 

semisolid, requires solvent extraction, technical alternatives like membrane filtration are viable 

for recovering phenolics from liquid by-products such as OMW, thereby avoiding the use of 

solvents during the extraction and purification of phenolic compounds. [275,281,282] 

3.3.1.2 Pressurized Liquid Extraction 

Pressurized Liquid Extraction (PLE) has been employed to recover phenolic compounds 

from olive washing water. This process uses organic solvents at high temperatures and pres-

sures and can combine static and dynamic conditions [271]. Acetonitrile, methanol, ethanol, 

ethyl acetate, and water are commonly used solvents. Methanol/water and ethanol/water mix-

tures are regarded as the most effective solvents for extracting phenolic compounds from 

OMW [270,274]. Compared to traditional extraction techniques, PLE offers advantages such as 

faster processing and reduced solvent volumes. 

3.3.1.3 Microwave-Assisted Extraction 

Microwave-assisted extraction (MAE) has also been applied to optimize the extraction 

of phenolic compounds. This method uses microwave radiation to heat the material uniformly, 

facilitating the release of phenolic compounds into the solvent, resulting in time and solvent 

savings, in addition to improving process efficiency [283–285]. 

3.3.1.4 Ultrasound-Assisted Extraction 

Ultrasound-assisted extraction (UAE) is an efficient and economically viable technique 

that does not require sophisticated equipment, making it an attractive option for small and 
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medium-sized industries. Ultrasound is used to enhance the efficiency of the process by facil-

itating cell rupture and promoting greater release of phenolic compounds. Among the main 

advantages of UAE are a significant reduction in extraction time and solvent consumption. The 

process is similar to liquid-liquid extraction (LLE), but it includes the application of ultrasonic 

waves to the olive oil, accelerating the transfer of phenolic compounds to the solvent [286–

288].  

A study by Jerman Klen et al. compared five extraction methods for phenolic com-

pounds from OMW, including filtration, SPE, liquid-liquid extraction, and ultrasound-assisted 

extraction, with and without lyophilization. The findings revealed that UAE produced the high-

est yields in total and individual phenols, making it a promising alternative to conventional 

solvent-based methods [289]. 

3.3.1.5 Microorganism-Assisted Extraction 

Microorganism-assisted extraction is an innovative approach where certain microor-

ganisms are used to hydrolyze phenolic glycosides and release free phenolic compounds, such 

as hydroxytyrosol and tyrosol. This process can be performed using enzymes or fermentation, 

transforming complex phenols into simpler and more bioactive forms. Fungal enzymes, which 

are environmentally sustainable, are particularly effective in treating olive mill wastewater. Var-

ious enzymes, such as cellulase, pectinase, and hemicellulase, can be applied to hydrolyze the 

structural components of plant cell walls, increasing their permeability and thus allowing high 

yields in the extraction of phenolic compounds [290]. Fungal treatment provides excellent re-

sults in terms of yield, time efficiency, and process sustainability [291,292]. However, industrial-

scale application is constrained due to the high cost of enzymes, and its reliance on environ-

mental factors such as dissolved oxygen, temperature, and nutrient availability [292]. 

3.3.1.6 Supercritical Extraction 

Supercritical extraction, especially with supercritical CO₂ combined with co-solvents like 

ethanol or methanol, has stood out as an efficient technique for extracting phenolic com-

pounds. Supercritical CO₂ is an attractive alternative to traditional solvents, as operating above 

the critical point allows for better separation of bioactive compounds without the risks associ-

ated with flammable and toxic solvents [285,293]. Additionally, CO₂ is non-toxic, non-explosive, 

and widely recognized as safe, making it ideal for the food industry and other sectors requiring 

clean and safe processes. This method is particularly advantageous due to its environmental 
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sustainability and low toxicity, ensuring efficient extraction and minimizing oxidation phenom-

ena that could compromise the final product's quality [294,295]. 

However, the main limitation of supercritical extraction lies in the high cost of the nec-

essary equipment, as the process requires high pressures, making large-scale implementation 

more expensive. This high cost may outweigh the technical benefits of the technique, restrict-

ing its adoption in some industries, despite its clear advantages in terms of efficiency and sus-

tainability [294,296]. 

3.3.1.7 Solid-Phase Extraction 

Solid-phase extraction (SPE) is an efficient method for recovering phenolic compounds, 

in which the compounds are retained on adsorbent materials, such as modified silica or poly-

mers, and subsequently eluted with appropriate solvents. This procedure is widely applied in 

the extraction of natural polyphenols, offering purer extracts, simplified protocols, shorter pro-

cessing times, easier automation, and reduced costs compared to conventional methods [297–

300]. Additionally, SPE can be effective in recovering more than 60% of the polyphenols from 

by-products like olive washing water, as shown in studies on the recovery of phenolic com-

pounds from this source [299–301]. One example of successful industrial application was the 

use of reverse-phase solid-phase extraction (RP-SPE), enabling the recovery of roughly one 

gram of purified hydroxytyrosol per liter of OMW [299]. 

Although SPE is promising for small-scale extraction and analytical purposes, it has limi-

tations when applied on a large scale, mainly due to the high cost of the process and potential 

solvent residue in the extract. This factor makes the method less viable for large industrial 

production volumes, although its benefits in terms of efficiency and operational simplicity con-

tinue to make SPE an attractive alternative in various scenarios [301]. 

3.3.1.8 Resin Adsorption Extraction 

Resin adsorption extraction uses materials like polymeric resins to capture phenolic 

compounds directly from olive oil or by-products like olive mill wastewater and pomace. The 

process involves passing olive oil or extract through an adsorbent resin, where phenolic com-

pounds adhere to the resin’s surface. After adsorption, the phenolic compounds can be eluted 

using appropriate solvents, such as ethanol [297,300–303]. 

Resin extraction offers significant advantages in terms of selectivity, allowing the recov-

ery of specific phenols while providing high efficiency in recovering these compounds from 

olive oil by-products. This process is simple, effective, and relatively cheap, making it an 



 70 

interesting alternative for industries seeking a more sustainable and cost-effective solution for 

extracting bioactive compounds [304]. 

The use of membranes for biophenol extraction from OMW is becoming increasingly 

popular due to its advantages over conventional methods. Membrane separation, which in-

cludes techniques such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and re-

verse osmosis (RO), has gained attention for its benefits compared to solvent extraction [305]. 

The main advantage of this process is its high efficiency, which allows phenolic com-

pounds to be separated based on their molecular weights, which is not possible with other 

methods. Membranes used, such as those for MF and UF, operate efficiently, requiring low 

energy consumption, with no need for additives, and providing easy scalability for industrial 

applications. These separation technologies are especially advantageous because they enable 

precise control over selectivity in recovering phenolic compounds from wastewater [305,306]. 

In practical application, several studies have demonstrated the effectiveness of using 

membranes for phenolic compound extraction from olive mill wastewater. Maurizio Servili et 

al. conducted an industrial application based on enzyme pre-treatment followed by a three-

phase membrane system, resulting in a significant reduction in pollutant load and recovery of 

phenolic compounds [303]. Hamza et al. evaluated an ecologically friendly pilot-scale process 

combining enzymes such as β-glucosidase from Aspergillus niger with membrane filtration. 

This process was effective in recovering hydroxytyrosol, a valuable phenolic compound, free 

from chemicals. Microfiltration (MF) removed 72.12% of chemical oxygen demand (COD), and 

ultrafiltration (UF) increased hydroxytyrosol concentration to 7.2 g/L [307]. 

Additionally, Cassano et al. applied an integrated membrane system to recover low 

molecular weight phenolic compounds from olive oil wastewater, using a sequence of UF fol-

lowed by NF. The reuse of olive mill water was an important feature of this study, highlighting 

the sustainability potential of the process [304]. On the other hand, D'Antuono et al. conducted 

a similar study, using membrane filtration to recover phenolic compounds from OMW from 

different olive cultivars. The process generated fractions with different phenol concentrations, 

with MF fractions containing 2.5–5.3 g/L phenols, while UF and NF fractions contained lower 

concentrations, ranging from 1.4–3.1 g/L and 0.4–1.6 g/L, respectively [308]. 

Garcia-Castello et al. also evaluated an integrated membrane system for the recovery, 

purification, and concentration of polyphenols from olive mill wastewater (OMW). The pro-

posed system, which included microfiltration (MF), nanofiltration (NF), osmotic distillation (OD), 

and vacuum membrane distillation (VMD), successfully concentrated polyphenols in OMW. Mi-

crofiltration reduced TOC and suspended solids, recovering 78% of the initial polyphenol 
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content. Nanofiltration produced a polyphenol-rich solution, which was further concentrated 

by osmotic distillation, yielding approximately 0.5 g/L of polyphenols, primarily hydroxytyrosol 

[281]. 

Another relevant study by Zagklis et al. used reverse osmosis (RO) to concentrate phe-

nolic compounds, followed by treatment with adsorption and desorption resins such as XAD4, 

XAD16, and XAD7HP, to obtain a concentration of 378 g/L in gallic acid equivalents from raw 

OMW with 2.64 g/L phenols. This process not only increased phenol concentration but also 

reduced the pollutant load, with the potential organic load (COD) being reduced by 97%. These 

applications demonstrate that the use of membrane systems, when combined with additional 

treatments such as adsorption, is an effective and promising approach for recovering phenolic 

compounds and other bioactive compounds from OMW [309].  

These results reinforce the potential of membrane separation technologies as sustain-

able and efficient methods for treating and recovering valuable compounds from olive oil 

wastewater. The combined use of membrane filtration, enzymatic pre-treatments, and resin 

adsorption can not only increase yields of phenolic compounds but also reduce the environ-

mental impact associated with the disposal of OMW, providing a promising alternative for re-

using these by-products. 

3.4 Considerations and Objectives 

In summary, the use of by-products from the fruit and vegetable industry as sources of 

functional compounds has proven to be a promising area, with increasing interest in the ap-

plication of these compounds in food. The use of phenolic extracts from by-products for the 

formulation of new food products with health benefits has stood out. 

The recovery of these natural phenolic compounds is especially important due to their 

antioxidant properties, which help preserve quality and extend the shelf life of food products. 

This approach contributes to the creation of functional foods, transforming agro-industrial 

waste into valuable ingredients. 

Several studies have investigated the extraction of these compounds from different parts 

of the olive, such as leaves, due to the higher efficiency in the process and the better yields 

obtained. While directly adding pure phenolic compounds like hydroxytyrosol is a viable option 

for food enrichment, this approach does not tackle the problem of olive industry waste and is 

more suited to laboratory research than large-scale industrial applications. The incorporation 
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of these compounds into food products has been explored in various applications, focusing 

on increasing the functional value of foods. 

For example, the addition of phenolic extracts derived from olives to olive oils has proven 

to be an effective strategy to increase the antioxidant activity of these oils, which not only 

contributes to a significant extension of their shelf life but may also allow these oils to obtain 

a nutraceutical product label. As mentioned earlier, olive oil can contain between 2,027 mg to 

10,973 mg of hydroxytyrosol and tyrosol per 20g of oil. However, they rarely reach the amount 

required by EFSA (5 mg per 20g of oil) to be officially recognized with health claims. 

If it is possible to formulate an olive oil that meets this requirement, it could be marketed 

with nutritional and health claims recognized by EFSA. In this way, an olive oil formulated ac-

cording to these criteria would not only follow EFSA guidelines but also meet the nutraceutical 

criteria, enhancing its nutritional, functional, and economic value while maintaining the extra-

virgin oil classification by IOC. 

For olive oil producers, the possibility of highlighting the specific health benefits of olive 

oil offers a strategic marketing advantage. The formulation and certification of the product add 

value, serving as an important differentiator and a powerful tool to promote olive oil, especially 

in the competitive olive oil market. 

Thus, one of the main objectives of this dissertation was to extract phenolic compounds 

derived from olive pomace, in order to formulate an oil rich in hydroxytyrosol and tyrosol, 8 

mg per 20g of oil, ensuring that it meets EFSA’s guidelines until the end of the olive oil’s shelf 

life (12-18 months). The process is summarized in Figure 10 and described in the document 

submitted with the patent application. 

All analyses to monitor the levels of hydroxytyrosol and tyrosol in the concentrates ob-

tained from olive pomace, as well as in the oils before and after the addition of the concen-

trates, were carried out according to the method previously described in the literature. 
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Figure 10. Scheme of the production process of olive oil with high antioxidant content.   

HT: Antioxidants (Hydroxytyrosol and Tyrosol)
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3.5 Patent  

 

"Method for the Production of Olive Oil with a High Antioxidant 

Content and Antioxidant Concentrate" 

 

Inventors: Luís Silva Pinto, Marco Gomes da Silva and Flávia Freitas 

 

International Publication Number: WO 2024/095132 

International Order Number: PCT/IB2023/0609223 

 

International Publication Date: May 10th, 2024 
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ABSTRACT 

 

The present invention relates to a method of producing oil from 

olives, wherein the antioxidants of interest present in the ol-

ives can be practically used in full, without a substantial loss 

during the preparation of the oil, achieved by a first extraction 

of oil and a second extraction of the antioxidants present in 

the olives. The pomace, resulting from the grinding of the ol-

ives, is used to create a concentrate of antioxidants that is 

later added to, or mixed with, the oil to increase its antioxi-

dant content. The preparation of the concentrate involves re-

moving the antioxidants from the pomace by adding water to the 

pomace, forming a concentrated solution of antioxidants, this 

solution being evaporated under reduced pressure and at room 

temperature, so that there is no degradation of the antioxidants 

during the oil production method. 
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DESCRIPTION 

 

METHOD FOR THE PRODUCTION OF OIL WITH A HIGH ANTIOXIDANT CONTENT 

AND ANTIOXIDANT CONCENTRATE 

 

Technical Field of the Invention 

 

The present invention falls within the field of agro-industrial 

production methods, more specifically the invention refers to a 

method of producing olive oil with a high antioxidant content 

from olives and an antioxidant concentrate. 

 

Scope of Invention 

 

In the Mediterranean tradition, olive oil is a widely used gas-

tronomic component and therefore has a great economic importance 

in these countries. In addition to its taste, olive oil also has 

nutritious qualities that help the human body fight certain bi-

ochemical stresses, such as oxidative stress. 

 

It is known that olives have a large number of antioxidants, 

both in number and value, namely oleuropein, tyrosol and hydrox-

ytyrosol which, when ingested, help to mitigate the effects of 

oxidative species, toxic to humans. 

 

However, although the olives possess these compounds, they often 

do not make it to the final product, i.e., the olive oil, because 

during the olive oil production process, they are degraded, 

mainly due to the effects of high temperatures that degrade the 

antioxidant compounds, or because the process itself does not 

allow these compounds to reach the final product:  olive oil. 

This happens because, after the olives are milled, there is a 

separation between the oil and the pomace (a by-product of semi-
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solid or viscous consistency, formed by remains of pulp, olive 

skin or integument, crushed olive pit, water and olive oil), and 

a large percentage of the antioxidants, due to their hydrophilic 

character, remain in the pomace. 

 

There are, however, mechanical, or physical methods that allow 

the extraction of antioxidants from the pomace, which are then 

returned to the oil in consequent processing. 

 

That is precisely the goal of this invention, a method for ex-

tracting antioxidants from olives, obtaining a concentrate of 

antioxidants and then mixing them into olive oil. 

 

 

State of the art 

 

For the production of an olive oil that has higher levels of 

antioxidants in solution than those normally available in ready-

to-eat olive oil, there are several solutions described in the 

state of the art. 

 

The document EP1910257 describes a method of obtaining an anti-

oxidant concentrate from olive pomace, the method comprising the 

extraction of antioxidants from olive pomace by means of bio-

compatible solvents, with the antioxidants being subsequently 

separated from the solvents by nanofiltration and reverse osmo-

sis. This concentrate of antioxidants can later be added to olive 

oil. 

 

The document WO2016087428 describes a method of fortifying cook-

ing oils with hydroxytyrosol, wherein a concentrated solution 

with hydroxytyrosol is added to an edible oil, namely olive oil. 
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The document WO2018189730 describes an olive oil production 

method very similar to that of the present invention, a document 

that can be considered the closest state of the art. This method 

begins by grinding or crushing the olives, then separating the 

oil from the pomace by decantation. Thereafter, the olive oil is 

prepared by conventional means, while the pomace is used to 

create a concentrate of antioxidants. The water from the olives 

is removed from the pomace which has in its composition the 

antioxidants of the olive. This water is then concentrated by 

evaporation or reverse osmosis and is then added to the oil 

produced. At the end, the olive oil is decanted to remove excess 

water from the antioxidant concentrate. 

 

Advantages of the Invention 

 

The great advantage of this invention is that it allows to obtain 

a concentrate of antioxidants in quantities greater than those 

obtained by the methods referred to in the prior art documents. 

While in document WO 2018/189730 A1 the maximum amount of anti-

oxidants obtained reached 56,000 ppm, the method of the present 

invention attained 300,000 ppm of total antioxidants. This ad-

vantage is achieved by changes made to the concentration step of 

the antioxidant concentrate, wherein an additional evaporation 

step is performed at a pressure of less than 10 mbar and at a 

temperature below 30 °C.  This not only prevents the degradation 

of antioxidants at high temperatures, an event that occurs in 

the state of the art because evaporation occurs between 45°C and 

75°C, but also allows to expend less energy during the concen-

tration step. 

 

Another major advantage of the olive oil production method of 

the present invention is based on the step of mixing the anti-

oxidant concentrate into the oil. While in the state of the art 
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a large volume of the concentrate is mixed with the oil (6 mL 

per 1 L of oil), in the present invention a smaller quantity is 

mixed, equal to or less than 1.2 mL per 1 L of oil, this being 

the maximum amount of water dissolving in the oil because any 

higher amount that is placed in the oil separates from the oil, 

meaning that the final stage of decanting does not need to be 

carried out. 

 

One of the major differences between the state of the art and 

the present invention lies in the stage commonly called "2nd 

extraction" or "2nd pass olive oil". This step, usually carried 

out for the sake of economic profitability, is carried out so 

that the olive oil that is still in the pomace can be used. In 

the present invention, this step is carried out so that the 

antioxidants that are present in the pomace can be extracted and 

used, allowing that in a subsequent step the antioxidants are 

mixed or joined to the oil. 

 

Brief Description of the Drawings 

 

These and other characteristics can be easily understood through 

the attached drawings, which should be considered as mere exam-

ples and not restrictive in any way to the scope of the inven-

tion. In the drawings, and for illustrative purposes, the meas-

urements of some of the constituents may be exaggerated and not 

drawn to scale. The absolute dimensions and the relative dimen-

sions do not correspond to the actual relations for the reali-

zation of the invention. 

 

In a preferred embodiment: 

 

Figure 1 shows a simplified diagram of the olive oil production 

method of the present invention. 
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Detailed Description of the Invention 

 

By "antioxidants" it is meant the term known in the state of the 

art for compounds that inhibit the oxidation of other compounds. 

However, for the purposes of this invention, antioxidants are 

understood as antioxidants naturally present in olives, such as, 

in particular, but not limited to, the following compounds: 

oleuropein, hydroxytyrosol, tyrosol and other phenolic alcohols; 

phenolic acids, vitamin E and β-carotene; oleacein, oleocanthal 

and other secoiridoids; pinoresinol and other lignans; apigenin, 

luteolin and other flavones. 

 

By "polyphenols" it is meant the term used in the state of the 

art to refer generically to phenolic alcohols and phenolic acids 

present in olives. 

 

As will be clear to those skilled in the art, the application 

of the principles described here is not limited to the forms of 

implementation presented. Possible changes that may occur in the 

present invention, defined in number, remain within the scope of 

the present invention. 

 

Methods to produce olive oil or antioxidant concentrates accord-

ing to the principles described herein may comprise any number 

of the characteristics presented. Likewise, the principles de-

scribed herein can be applied to any method of producing olive 

oil or antioxidant concentrates. 

 

It will also be clear to those skilled in the art that, due to 

the nature of this invention, it can be applied to obtain a 

product with a high antioxidant content derived from any fruit, 

vegetable or seed, such as, but not limited to, olive oil, sun-

flower oil, corn oil, almond oil, safflower oil, palm oil, 
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soybean oil, and rapeseed oil, among others. 

 

According to the Figures, the present invention refers to a 

method for the production of olive oil with a high antioxidant 

content and to a method for the production of an antioxidant 

concentrate. 

 

The method of this invention begins with the choice of olives 

to be used in the method. Specifically, the olives must be of a 

variety that is known to be an olive presenting characteristics 

that allow the extraction of an amount of oil per olive that can 

be considered acceptable, as well as an antioxidant content that 

can be considered high. 

 

By amount of oil per olive that can be considered acceptable, 

it is understood a volume of oil greater than 10% of the total 

weight of the olive. An antioxidant content that can be consid-

ered high means an antioxidant content of more than 100 mg/kg. 

 

After the choice of the variety of the olives, where the state 

of ripeness of the olives of that variety has also been taken 

into account, the olives are harvested. In a preferred embodi-

ment, the ripeness index calculated from the Jaén index is less 

than or equal to 2. Olive leaves and other macroscopic impurities 

are then separated from the olives, and the olives can be washed 

afterwards, preferably at room temperature. 

 

Once the olives are selected, they are harvested, and the olive 

oil production method begins. The first step involves washing, 

followed by turning the olives into an olive paste. This trans-

formation is carried out by crushing the olives, in order to 

break the vacuoles of the olives that contain the oil. This step 

can be carried out by any means known in the state of the art, 
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such as especially, but not exclusively, milling, beating, 

pressing/separating, malaxation, among others. 

 

The crushing of the olives results in the production of a paste. 

This paste, in an embodiment, is then treated to promote a 

greater release of the oil from the olives, in order to optimize 

the efficiency of the separation or extraction step that occurs 

afterwards. The treatment of the paste includes any mechanical 

method suitable for this purpose, such as but not exclusively, 

beating the paste or mixing, among others.  

 

In the following step of separation or extraction, the olive oil 

is separated or extracted from the above-mentioned olive paste. 

This separation or extraction can be carried out by any means 

of the state of the art suitable for the separation of liquids 

and solids, especially, but not exclusively, decantation, fil-

tration or pressing, among others. From this step, olive oil and 

olive pomace are obtained. 

 

The oil, after the separation or extraction step, is processed 

by any method known in the state of the art. In a preferred 

embodiment, olive oil is separated from impurities and water, 

especially, but not exclusively, by centrifugation, decantation, 

filtration, among others. The oil is then stored in a deposit 

whose atmosphere is mostly made up of, preferably, an inert gas, 

such as, especially, but not exclusively, helium, nitrogen, ar-

gon, among others. 

 

Olive oil processing is always carried out at a temperature below 

30 °C, in all possible steps, preferably in an inert atmosphere. 

A temperature below 30°C, along with an oxygen-poor atmosphere, 

prevents the degradation of any antioxidants that may be present 

in olive oil, also helping to maintain its nutritional and 
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organoleptic qualities. This guarantees the quality of the olive 

oil obtained, i.e., the nutritional and organoleptic qualities 

are not neglected during the method of obtaining the oil. One 

of the main factors that influences the quality and character-

istics of olive oil is the variety of the olive and its region. 

 

The pomace, after the separation or extraction step, is processed 

in parallel and independently of the olive oil processing, to 

remove or extract as many antioxidants as possible. As an ordi-

nary skilled in the art knows, the antioxidants present in olives 

are mostly hydrophilic. For this reason, most antioxidants are 

not naturally present in olive oil, but rather in pomace. To be 

able to take advantage of the antioxidants, and later add or mix 

them with the olive oil, it is necessary to extract them from 

the pomace. 

 

To extract the antioxidants from the pomace coming from the olive 

mill, the step of extracting the antioxidant concentrate is car-

ried out. This process begins with the separation or extraction 

of antioxidants from the pomace. This separation shall be carried 

out by any method known to the state of the art, especially but 

not exclusively, by pressing or beating, among others, prefera-

bly a combination of the two methods mentioned. In this step, 

water is mixed with the pomace, so that the antioxidants migrate 

to the water. The water and pomace are then separated. This water 

will hereinafter be referred to as antioxidant extract. The pom-

ace is then reused by some method known in the technique, which 

is not part of the scope of the present invention. The antioxi-

dant extract should preferably be centrifuged and decanted to 

separate impurities, namely fat residues. 

 

The antioxidant extract contains between 100 to 400 ppm of hy-

droxytyrosol. Optionally, before concentrating the antioxidant 
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extract, the solution is centrifuged and decanted to remove any 

oil still present in the pomace and that has migrated to the 

antioxidant extract, which can then be mixed with the oil that 

is being processed in parallel. A decanting step can also be 

performed to remove impurities that are still present in the 

antioxidant extract. 

 

For the concentration of the antioxidant extract, any appropri-

ate step is carried out for the removal of water from a solution, 

such as, especially, but not exclusively, evaporation or reverse 

osmosis, among others. Reverse osmosis can be performed by any 

known method in the art, at a temperature below 30 °C.  This 

first step of concentration is optional, and its implementation 

depends on the needs of the producer. This step, if it is per-

formed, is called the first step of concentration. Prior to this 

concentration step, the extract is filtered by microfiltration. 

 

After this optional step, a purification step may occur. The 

main objective of this step is to remove impurities from the 

pomace that may still be present in the antioxidant extract. 

Purification may be carried out by any appropriate method, such 

as, but not limited to, ion exchange chromatography. Within 

chromatography, the use of cationic resins is indicated, but not 

essential. The purification step is also optional and depends on 

the quality or condition of the antioxidant extract. By washing 

the cationic resins, hydroxytyrosol and tyrosol are eluted with 

water, allowing the extraction of the hydroxytyrosol and tyrosol 

that are still present. 

 

After the purification step, the main step of the method of 

producing an antioxidant concentrate takes place. After the 

first step of concentration and/or purification, the antioxidant 

extract undergoes a second step of concentration, in which it is 
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concentrated by evaporation. This evaporation step is carried 

out by any means known in the art, however, it must be carried 

out at a temperature below 30 °C, preferably between 20 °C and 

30 °C, more preferably between 26 °C and 30 °C.  Evaporation 

should also be carried out at a pressure of less than 50 mbar, 

especially between 1 mbar and 15 mbar, preferably between 5 mbar 

and 10 mbar. Evaporation occurs over a period of more than 1 

hour. 

 

Unlike temperatures used in evaporation processes in other 

state-of-the-art arrangements, where the temperature reaches 75 

°C, the evaporation step, like all other steps of the method of 

this invention, does not exceed 30 °C.  This prevents the deg-

radation of antioxidants, as these compounds are sensitive to 

high temperatures, reacting more easily with other compounds in 

these conditions, which accelerates degradation and volatiliza-

tion. In this way, a high concentration of total antioxidants is 

maintained, increasing only by evaporation, with no degradation 

occurring. After the evaporation step is completed, a concen-

trate of antioxidants is obtained. 

 

The antioxidant concentrate obtained has a concentration of hy-

droxytyrosol and tyrosol greater than 100,000 ppm, preferably 

greater than 200,000 ppm, especially between 250,000 ppm and 

350,000 ppm. 

 

After the second concentration step, the antioxidant concentrate 

is mixed with the olive oil that has been processed in parallel. 

Because the antioxidant concentrate has a very high content of 

antioxidants, an extremely low volume is mixed with the oil, 

preferably a volume equal to or less than 1.2 mL of antioxidant 

concentrate per 1 L of olive oil. The mixture is carried out by 

any means known in the state of the art, especially, but not 
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exclusively, by means of a mixer or a piston homogenizer, inert 

gas bubbles, pressing, among others, preferably by means of a 

circulator to allow the oil to circulate through pipes. This 

mixing step takes place for a period longer than 1 minute, pref-

erably between 15 minutes and 1 hour for every 1000 L of olive 

oil, more specifically between 20 and 45 minutes, more specifi-

cally for 30 minutes for every 1000 L of olive oil. The mixture 

of the antioxidant concentrate with the olive oil is also carried 

out in an inert atmosphere, in order to prevent the quality of 

the antioxidant concentrate from degrading during the duration 

of the process. As will be clear, this mixing step can be carried 

out either with a continuous addition of the antioxidant con-

centrate to a continuous stream of oil, referred to in the tech-

nical area as continuous addition, or with the discrete addition 

of a certain volume of antioxidant concentrate to a discrete 

volume of olive oil, termed in the technical area as batch ad-

dition. 

 

Although the antioxidant concentrate is hydrophilic, i.e., con-

sidered immiscible with olive oil, a small amount of water is 

soluble in olive oil and vice versa. Specifically, it is known 

in the art that samples of extra virgin olive oil have an average 

amount of 1.2 mL of water per 1 L of olive oil. Therefore, the 

addition of the antioxidant concentrate to the oil in the re-

ferred volume allows not to mix excess water, which would have 

to be later decanted before the oil is packaged. In this way, 

this last step of decanting is avoided, as the oil is directly 

packaged after mixing the antioxidant concentrate. If packaging 

is not possible, olive oil with a high antioxidant content is 

stored in an inert atmosphere, and it is also packaged under the 

same atmospheric conditions. 
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The mixture of the antioxidant concentrate with the olive oil is 

carried out in such a way that the oil has a final concentration 

of hydroxytyrosol and tyrosol greater than 250 ppm, after 12 

months shelf life, as required by European regulations for olive 

oil. 

 

Results 

 

The method of the present invention has been carried out and 

tested, and the composition of the antioxidant concentrate, and 

the final olive oil is compared with the equivalent products 

obtained by other methods known to the state of the art, espe-

cially by the method referred to in patent document WO2018189730. 

 

By the method of the present invention, an antioxidant concen-

trate was obtained that was tested by any method known to the 

state of the art, namely, but not exclusively, by the standard 

HPLC method developed by the International Olive Council. How-

ever, only the concentration of hydroxytyrosol and tyrosol in 

the antioxidant concentrate was calculated, and a value of ap-

proximately 300,000 ppm of hydroxytyrosol and tyrosol was ob-

tained. 

 

The document WO2018189730 refers to a total antioxidant value of 

56,000 ppm and 29,000 ppm, for two different olive varieties, of 

which 16,800 ppm and 9,800 ppm, respectively, correspond to hy-

droxytyrosol. 

 

From these figures, it can be seen that the amount of antioxi-

dants obtained by the method of the present invention is con-

siderably higher than that obtained by the method referred to in 

document WO2018189730. While in documents of the state of the 

art it is mentioned to obtain a maximum of 56,000 ppm, with the 
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method of the present invention a value about 6 times higher was 

obtained for only hydroxytyrosol and tyrosol, not even consid-

ering the concentrations of the other antioxidants present in 

olives. 

 

This difference is explained by the temperature conditions ap-

plied throughout the method, which does not exceed 30 °C through-

out the method. Even more important for this difference is the 

second step of concentration, carried out by evaporation at a 

temperature below 30 °C, which prevents the degradation of the 

antioxidants in the antioxidant extract. In the example referred 

to in document WO2018189730, evaporation was carried out at 65 

°C, which causes a considerable increase in antioxidants degra-

dation. 

 

The reduced pressure used in the example of the method of this 

invention (between 1 and 15 mbar) contributes not only to the 

reduction of the degradation of antioxidants, by creating an-

aerobic conditions important to maintain the quality of the an-

tioxidants, but also contributes to the increase in the concen-

tration of antioxidants since it is possible to eliminate a 

greater amount of water,  therefore, less water is mixed with 

the oil eliminating the decanting method. In this way, the an-

tioxidants remain in the oil so there are no undesirable depos-

its. 
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CLAIMS 

 

1. Production process of olive oil with high antioxidant con-

tent and an antioxidante concentrate comprising the follow-

ing steps: 

a) selection of olives; 

b) transformation of the olives into an olive paste; 

c) separation of the oil from the paste obtained in step 

b), thereby obtaining olive oil and olive pomace; 

d) extraction of antioxidants from pomace by mixing water 

with pomace; and 

e) at the same time, the olive oil is processed, followed 

by its storage in the warehouse whose atmosphere is 

mostly made up of an inert gas; 

f) optionally, concentration of the antioxidant extract ob-

tained in step d) is carried out through the removal of 

water; 

g) optionally, the antioxidant extract obtained in step f) 

is purified; 

h) concentration of the antioxidant extract obtained in 

step g); 

i) mixing of the antioxidant concentrate obtained in step 

(h) with the olive oil that was previously stored; 

j) bottling of the olive oil; 

characterized in that: 

- steps (a) to (j) are carried out at a temperature below 

30 °C; 

- in step (h) an additional evaporation step is intro-

duced at a pressure of less than 50 mbar; 

- in step (i) a volume equal to or less than 1.2 mL of 

antioxidant concentrate per 1 L of olive oil is mixed. 

 

2. Production process according to claim 1 characterized in 
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that the antioxidant concentrate obtained in step h) of claim 

1 presents a concentration of hydroxytyrosol and tyrosol 

between 250.000 ppm and 350.000 ppm. 

 

3. Production process according to any one of the preceding 

claims characterized in that the olive oil obtained has a 

final concentration of hydroxytyrosol and tyrosol greater 

than 250 ppm, after 12 months shelf life. 

 

4. Production process according to any of the preceding claims, 

characterized in that the inert gas in step e) of claim 1 

is, preferably, helium, nitrogen or argon. 

 

5. Production process according to any of the preceding claims 

characterized in that the removal of water in step f) of 

claim 1 is accomplished through evaporation or reverse os-

mosis. 

 

6. Production process according to any of the preceding claims 

characterized in that the purification in step g) of claim 

1 is performed by chromatography. 

 

7. Production process according to claim 6 characterized in 

that the chromatography is ion exchange chromatography. 

 

8. Production process according to any of the preceding claims 

characterized in that the evaporation step in step h) of 

claim 1 is carried out between 20 °C and 30 °C. 

 

9. Production process according to any of the preceding claims 

characterized in that the evaporation step in step h) of 

claim 1 is carried out between 1 mbar and 15 mbar. 
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10. Production process according to any of the preceding claims 

characterized in that the evaporation step in step h) of 

claim 1 is carried out for a period of time exceeding 1 hour. 

 

11. Production process according to any of the preceding claims 

characterized in that the mixing step in step i) of claim 1 

elapsing between 20 to 45 minutes. 

 

12. Production process according to any of the foregoing claims 

characterized by the mixing step in step i) of claim 1 is 

carried out in an inert atmosphere. 
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4  

 

PHTHALATES 

4.1 Considerations and Objectives 

Olive oil is celebrated for its numerous health benefits and cultural significance. However, 

like any widely produced food product, it faces challenges beyond quality and authenticity. A 

growing concern is the inadvertent introduction of contaminants, particularly plastic additives 

such as phthalates. 

The increasing reliance on plastic materials in food production and storage has raised 

concerns about the migration of these substances into the final product. Ensuring the safety 

and quality of olive oil requires rigorous identification and mitigation of contaminants. 

Understanding contamination sources and developing effective analytical methods are 

crucial for addressing these challenges.  

This section introduces the topic, highlighting the importance of preserving the integrity 

of olive oil throughout its production and distribution chain to ensure a safe and high-quality 

product for consumers. 

A review article "A Critical Review of Analytical Methods for the Quantification of 

Phthalates Esters in Two Important European Food Products: Olive Oil and Wine" was pub-

lished, addressing analytical methods for determining phthalates in olive oil and wine. The 

article also summarized key information on the characteristics, toxicity, health effects, and reg-

ulations associated with these compounds. Techniques for extraction, purification, and quan-

tification were also discussed in detail. 

Although the review covered two food matrices—olive oil and wine—this thesis will focus 

exclusively on the olive oil matrix.  
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4.2 Article Review:  

"A Critical Review of Analytical Methods for the Quantification 

of Phthalates Esters in Two Important European Food Products: 

Olive Oil and Wine" 

 

Flávia Freitas, Maria João Cabrita and Marco Gomes da Silva 

 

DOI: 10.3390/molecules28227628 

 

November 2023
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4.3 Analysis of Phthalates 

 Cross-Contamination in the Laboratory: Preventive Measures  

The review article discussed various techniques for the extraction of phthalates in olive 

oils. However, a significant and recurring issue with these methods is cross-contamination in 

the laboratory, which directly impacts the reliability of the analytical results. To achieve accurate 

analysis of these contaminants, it is crucial to thoroughly evaluate all materials and solvents 

used during the stages of analytical preparation, extraction, and injection into the equipment. 

Phthalates and other plasticizers are ubiquitous in laboratory environments, posing a high risk 

of contaminating samples and reagents. 

One of the initial studies conducted in this chapter focused on testing common labora-

tory materials, such as volumetric flask stoppers, laboratory spray nozzles, vial septa, vials and 

their caps, pipette tips, syringe filters, test tubes, among others. The results revealed that all 

analyzed materials contained plasticizers. This finding underscores the pervasive presence of 

plasticizers and highlights the need for stringent precautions to prevent their unintentional 

introduction during analytical procedures. Therefore, controlling cross-contamination is an es-

sential step in ensuring the accuracy and reliability of the quantification of these compounds 

in olive oils. 

To address this issue, several preventive measures were implemented throughout the 

study: 

• A glass surface was placed on the laboratory bench to prevent contact with po-

tentially contaminated surfaces; 

• Glassware was used whenever possible;  

• All caps of volumetric flasks were replaced with glass caps and caps of the vials 

used were made of phthalate-free materials; 

• For the collection of real samples, glass containers with bamboo lids were used. 

• Glassware and other lab materials were meticulously washed, rinsed, and stored 

at 100°C before use; 

• Phthalate-free chemical solvents were selected and analyzed daily for the pres-

ence of plasticizers; 

• The chromatographic system was routinely checked for plasticizers by performing 

three blank injections at the start, during, and at the end of analyses. 
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These measures collectively ensured that cross-contamination was minimized, thereby 

enhancing the reliability of the results obtained during the quantification of phthalates in olive 

oils. 

 Preliminary Study of Production Line Materials 

As highlighted in the review article, the sources of olive oil contamination by plasticizers 

extend far beyond the containers used for storage or commercial packaging. The production 

line itself constitutes a significant source of contamination, involving materials such as olive 

harvesting nets, plastic buckets and bags for temporary olive storage, conveyor belts, hoses in 

production lines, and storage containers or tanks in processing facilities, among others. 

In our laboratory, some of these materials were subjected to preliminary analyses for 

eight phthalates by GC-TOFMS, and phthalates were detected in almost all of them (Table 5). 

This finding highlights the pervasive nature of contamination throughout the production pro-

cess. 

 

Table 5. Preliminary results of the analysis of eight phthalates in hoses, O-rings, nets, and slabs using GC-TOFMS. 

The limit of quantification for the preliminary method for all phthalates was 0.060 mg/kg, except for DIDP and 

DINP, which was 0.600 mg/kg. *Phthalates are present in very high concentrations, exceeding the quantification 

range. DMP: dimethyl phthalate; DIBP: diisobutyl phthalate; DBP: dibutyl phthalate; BBP: benzyl butyl phthalate; 

DEHP: bis(2-ethylhexyl) phthalate; DOP: dioctyl phthalate; DINP: diisononyl phthalate; DIDP: diisodecyl phthalate.  

Production 

Material 
DMP DIBP DBP BBP DEHP DOP DINP DIDP 

 
<LOQ <LOQ <LOQ <LOQ 0,064 <LOQ <LOQ <LOQ 

 
<LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 

 
<LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 

 
<LOQ <LOQ <LOQ <LOQ 0,598 <LOQ 1,001 <LOQ 

 
* * * * * * * * 

 <LOQ <LOQ <LOQ <LOQ 0,150 <LOQ <LOQ <LOQ 

 <LOQ <LOQ <LOQ <LOQ 0,410 <LOQ <LOQ <LOQ 

 
<LOQ <LOQ <LOQ <LOQ 0,071 <LOQ <LOQ <LOQ 
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<LOQ <LOQ <LOQ <LOQ 0,170 <LOQ 0,480 <LOQ 

 
<LOQ 0,251 0,292 0,061 2,045 * * * 

 

To better understand the critical contamination points along the olive oil production line, 

samples were collected from three production lines located in different regions of Portugal—

North, Central, and South. This study culminated in the publication of the article titled "Analysis 

of Plasticizers Contamination Throughout Olive Oil Production" which explored contamination 

across these three production lines in detail. A total of 23 phthalates and 9 phthalate substi-

tutes were analyzed, providing valuable insights into the extent and sources of contamination.
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4.4 Article 

"Analysis of Plasticizers Contamination Throughout Olive Oil 

Production" 
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December 2024
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 Article Supplementary Material 

  DMP DMTP DBM DEP DIPrP DAP DPrP 

North 

a. <LOQ <LOD <LOD <LOQ <LOQ <LOD <LOD 

b. <LOD <LOD <LOD 0.019 ± 0.001 <LOD <LOD <LOD 

c. not analyzed 

d. <LOQ <LOD <LOD <LOD <LOQ <LOQ <LOQ 

e. <LOD <LOD <LOD <LOQ <LOD <LOQ <LOQ 

f. <LOD <LOD <LOD 0.026 ± 0.010 <LOD <LOD <LOQ 

g. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

h. <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

i. 0.013 ± 0.001 <LOD <LOD <LOD 0.004 ± 0.001 <LOD <LOD 

Centre 

a. not analyzed 

b. <LOQ <LOD <LOD <LOQ <LOQ <LOD <LOQ 

c. <LOD <LOD <LOD <LOQ <LOQ <LOD <LOQ 

d. <LOQ <LOD <LOD <LOD <LOQ 0.045 ± 0.001 0.018 ± 0.001 

e. 0.007 ± 0.001 <LOD <LOD <LOD <LOQ <LOQ <LOQ 

f. 0.009 ± 0.001 <LOD <LOD <LOD <LOQ 0.098 ± 0.004 0.066 ± 0.001 

g. not analyzed 

h. 0.007 ± 0.001 <LOD <LOD <LOD <LOD <LOQ <LOQ 

i. not analyzed 

South 

a. not analyzed 

b. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

c. <LOD <LOD <LOD 0.023 ± 0.005 <LOD <LOQ <LOD 

d. <LOQ <LOD <LOD <LOD <LOD <LOQ <LOD 

e. <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

f. <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

g. <LOQ <LOD <LOD 0.041 ± 0.014 <LOD <LOD <LOD 

h. <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

i. <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

         

Olive Oil 1 
Glass <LOD <LOD <LOD <LOQ <LOD <LOQ <LOD 

PET <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

         

Olive Oil 2  
Glass <LOQ <LOD <LOD <LOD <LOD <LOQ <LOD 

PET <LOD <LOD <LOD <LOD <LOD <LOQ <LOD 

         

Olive Oil 3 
Glass <LOQ <LOD <LOD <LOQ <LOD <LOD <LOD 

PET <LOQ <LOD <LOD <LOQ <LOD <LOD <LOD 

         
Olive Oil 4 Glass <LOD <LOQ <LOD <LOQ <LOD <LOQ <LOD 

Olive Oil 5 Glass <LOD <LOQ <LOD 0.020 ± 0.010 <LOD 0.059 ± 0.003 <LOD 

Olive Oil 6 Can <LOD <LOD <LOD 0.029 ± 0.005 <LOD <LOD <LOD 

         

Table S1: Concentration (mg/kg) of the 32 plasticizers studied in all collected samples, expressed as average ± 

standard deviation. Bold and underlined values indicate those exceeding the specific migration limits defined. 
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  DES DIBP DBP DMEP BMPP DIPP 

North 

a. <LOD 0.011 ± 0.004 <LOD <LOD <LOD <LOD 

b. <LOD 0.008 ± 0.001 <LOD <LOD <LOD <LOQ 

c. not analyzed 

d. <LOD <LOD <LOQ <LOD <LOD <LOD 

e. <LOD 0.007 ± 0.002 <LOQ <LOD <LOD <LOD 

f. <LOD <LOD <LOD <LOD <LOD <LOD 

g. <LOD <LOD <LOD <LOD <LOD <LOD 

h. <LOD 0.019 ± 0.008 <LOQ 0.969 ± 0.107 0.023 ± 0.001 0.032 ± 0.001 

i. <LOD 0.028 ± 0.009 0.127 ± 0.007 4.342 ± 0.448 0.029 ± 0.001 0.043 ± 0.000 

Centre 

a. not analyzed 

b. <LOD 0.019 ± 0.010 0.073 ± 0.004 <LOD <LOD <LOD 

c. <LOD 0.052 ± 0.010 0.085 ± 0.004 <LOD <LOD <LOD 

d. <LOD 0.061 ± 0.007 0.083 ± 0.012 <LOD <LOD <LOQ 

e. <LOD 0.079 ± 0.013 0.082 ± 0.007 <LOD <LOQ <LOQ 

f. <LOD 0.093 ± 0.008 0.092 ± 0.002 <LOD <LOQ <LOQ 

g. not analyzed 

h. <LOD 0.072 ± 0.007 0.096 ± 0.009 1.686 ± 0.643 0.035 ± 0.001 0.050 ± 0.003 

i. not analyzed 

South 

a. not analyzed 

b. <LOD <LOD <LOD <LOD <LOD <LOD 

c. <LOD 0.013 ± 0.006 <LOQ <LOD <LOD <LOD 

d. <LOD 0.010 ± 0.008 <LOQ <LOD <LOD <LOD 

e. <LOD 0.010 ± 0.002 <LOD <LOD <LOD <LOD 

f. <LOD <LOQ <LOD <LOD <LOD <LOD 

g. <LOD <LOQ <LOQ <LOD <LOD <LOD 

h. <LOD <LOQ <LOQ <LOD <LOD <LOD 

i. <LOD <LOD 0.038 ± 0.002 <LOD <LOD <LOD 

        

Olive Oil 1 

Glass <LOD 0.014 ± 0.009 <LOD <LOD <LOD <LOD 

PET <LOD <LOQ <LOD <LOD <LOD <LOD 

        

Olive Oil 2  

Glass <LOD <LOQ 0.020 ± 0.005 <LOD <LOD <LOD 

PET <LOD 0.018 ± 0.005 <LOQ <LOD <LOD <LOD 

        

Olive Oil 3 

Glass <LOD <LOD <LOD <LOD <LOD <LOD 

PET <LOD <LOQ <LOD <LOD <LOD <LOD 

        
Olive Oil 4 Glass <LOD <LOD <LOD <LOD <LOD <LOD 

Olive Oil 5 Glass <LOD 0.020 ± 0.002 <LOD <LOD <LOD <LOD 

Olive Oil 6 Can <LOD <LOD <LOD <LOD <LOQ <LOQ 

        
Table S1 (Cont.): Concentration (mg/kg) of the 32 plasticizers studied in all collected samples, expressed as average 

± standard deviation. Bold and underlined values indicate those exceeding the specific migration limits defined. 
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  DEEP DPP BPA ATBC BBP DHXP 

North 

a. 0.096 ± 0.027 <LOD <LOD <LOD <LOD <LOD 

b. <LOD <LOD <LOD <LOQ <LOD <LOD 

c. not analyzed 

d. <LOD <LOD <LOD 0.007 ± 0.000 <LOQ <LOD 

e. <LOD <LOD <LOD 0.008 ± 0.001 <LOQ <LOQ 

f. <LOD <LOD <LOD 0.011 ± 0.001 <LOQ <LOQ 

g. <LOD 5.747 ± 0.734 <LOD 0.008 ± 0.001 <LOQ <LOQ 

h. <LOD 5.998 ± 1.000 <LOD 0.009 ± 0.002 <LOQ <LOQ 

i. 0.019 ± 0.004 <LOD <LOD 0.015 ± 0.000 0.006 ± 0.001 <LOD 

Centre 

a. not analyzed 

b. 0.024 ± 0.000 4.325 ± 0.282 <LOD 0.014 ± 0.000 <LOD <LOD 

c. <LOD 5.204 ± 0.327 <LOD 0.019 ± 0.002 <LOD <LOD 

d. <LOQ 6.422 ± 0.020 <LOD 0.016 ± 0.001 <LOD <LOD 

e. <LOD 6.213 ± 0.830 <LOD 0.015 ± 0.001 <LOD <LOQ 

f. <LOD 6.801 ± 0.279 <LOD 0.016 ± 0.001 <LOQ <LOQ 

g. not analyzed 

h. <LOD 9.818 ± 0.363 <LOD 0.018 ± 0.003 <LOQ <LOQ 

i. not analyzed 

South 

a. not analyzed 

b. <LOD <LOD <LOD <LOD <LOD <LOD 

c. <LOD 3.389 ± 0.297 <LOD 0.013 ± 0.001 <LOD <LOD 

d. <LOD 5.435 ± 0.267 <LOD <LOD <LOD <LOD 

e. <LOQ 5.716 ± 0.210 <LOD <LOQ <LOD <LOD 

f. <LOD 5.494 ± 0.179 <LOD 0.015 ± 0.001 <LOD <LOD 

g. <LOD <LOD <LOD <LOQ <LOD <LOD 

h. 0.043 ± 0.005 5.921 ± 0.087 <LOD 0.015 ± 0.001 <LOD <LOD 

i. <LOQ 6.243 ± 0.440 <LOD 0.029 ± 0.002 <LOD <LOD 

        

Olive Oil 1 

Glass 0.024 ± 0.001 <LOD <LOD 0.005 ± 0.000 <LOD <LOD 

PET <LOQ 1.125 ± 0.040 <LOD 0.008 ± 0.000 <LOD <LOD 

        

Olive Oil 2  

Glass <LOD 0.005 ± 0.081 <LOD 0.005 ± 0.000 <LOD <LOD 

PET <LOD <LOD <LOD 0.007 ± 0.000 <LOD <LOD 

        

Olive Oil 3 

Glass <LOQ 0.656 ± 0.107 <LOD 0.016 ± 0.001 <LOD <LOD 

PET <LOD <LOD <LOD 0.016 ± 0.000 <LOQ <LOD 

        
Olive Oil 4 Glass <LOD <LOD <LOD <LOQ <LOQ <LOQ 

Olive Oil 5 Glass <LOQ <LOD <LOD <LOQ <LOD <LOD 

Olive Oil 6 Can <LOD <LOD <LOD <LOQ <LOD <LOD 

        
Table S1 (Cont.): Concentration (mg/kg) of the 32 plasticizers studied in all collected samples, expressed as average 

± standard deviation. Bold and underlined values indicate those exceeding the specific migration limits defined. 
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  DEHA DBEP DCHP DPhP DEHP DHP DOP 

North 

a. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

b. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

c. not analyzed 

d. 0.135 ± 0.004 <LOD <LOD <LOD <LOD <LOD <LOD 

e. 0.124 ± 0.009 <LOD <LOD <LOD <LOD <LOD <LOD 

f. 0.161 ± 0.011 <LOD <LOD <LOD <LOD <LOD <LOD 

g. 0.181 ± 0.003 <LOD <LOD <LOD <LOD <LOD <LOD 

h. 0.188 ± 0.007 <LOD <LOD <LOD <LOD <LOD <LOD 

i. 0.245 ± 0.015 <LOD <LOD <LOD 0.454 ± 0.013 0.468 ± 0.016 <LOD 

Centre 

a. not analyzed 

b. <LOD <LOD <LOD <LOD 0.076 ± 0.007 0.044 ± 0.007 <LOD 

c. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

d. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

e. <LOD <LOD <LOD <LOQ <LOD <LOD <LOD 

f. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

g. not analyzed 

h. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

i. not analyzed 

South 

a. not analyzed 

b. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

c. 0.022 ± 0.004 <LOD <LOD <LOD <LOD <LOD <LOD 

d. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

e. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

f. <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

g. 0.068 ± 0.002 <LOD <LOD <LOD 0.037 ± 0.003 <LOD <LOD 

h. 0.095 ± 0.003 <LOD <LOD <LOD 0.078 ± 0.009 0.051 ± 0.009 <LOD 

i. 0.161 ± 0.008 <LOD <LOD <LOD 0.095 ± 0.001 <LOQ <LOD 

         

Olive Oil 1 

Glass <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

PET <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

         

Olive Oil 2  

Glass <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PET <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

         

Olive Oil 3 

Glass <LOD <LOD <LOD <LOD <LOD <LOD <LOD 

PET <LOQ <LOD <LOD <LOD <LOD <LOD <LOD 

         
Olive Oil 4 Glass <LOD <LOD <LOD <LOD 0.656 ± 0.006 0.692 ± 0.006 <LOD 

Olive Oil 5 Glass 0.034 ± 0.014 <LOD <LOD <LOD <LOD <LOD <LOD 

Olive Oil 6 Can <LOD <LOD <LOD <LOD 0.082 ± 0.013 0.051 ± 0.014 <LOD 

         
Table S1 (Cont.): Concentration (mg/kg) of the 32 plasticizers studied in all collected samples, expressed as average 

± standard deviation. Bold and underlined values indicate those exceeding the specific migration limits defined. 
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  DEHT DEHS DNP DINP DIDP TOMT 

North 

a. 1.760 ± 0.543 0.035 ± 0.011 <LOQ <LOD <LOD 0.027 ± 0.004 

b. 0.736 ± 0.132 <LOQ 0.034 ± 0.001 <LOD <LOD 0.024 ± 0.001 

c. not analyzed 

d. 0.858 ± 0.041 <LOQ 0.041 ± 0.002 <LOD <LOD 0.040 ± 0.001 

e. 0.878 ± 0.054 <LOQ 0.045 ± 0.002 <LOD <LOD 0.042 ± 0.001 

f. 0.975 ± 0.028 <LOQ 0.059 ± 0.002 0.103 ± 0.061 <LOD 0.041 ± 0.002 

g. 0.850 ± 0.017 <LOQ 0.042 ± 0.001 1.278 ± 0.161 <LOD 0.032 ± 0.001 

h. 0.860 ± 0.023 <LOQ 0.107 ± 0.003 3.527 ± 0.214 <LOD 0.050 ± 0.003 

i. 2.686 ± 0.099 <LOQ 0.192 ± 0.007 6.000 ± 0.203 <LOD 0.051 ± 0.000 

Centre 

a. not analyzed 

b. 0.206 ± 0.021 <LOQ 0.033 ± 0.002 0.146 ± 0.056 <LOD <LOQ 

c. 0.153 ± 0.004 <LOQ 0.029 ± 0.004 0.431 ± 0.145 <LOD <LOQ 

d. 0.185 ± 0.005 <LOQ 0.035 ± 0.004 0.318 ± 0.065 <LOD <LOQ 

e. 0.190 ± 0.009 <LOQ 0.037 ± 0.003 0.625 ± 0.309 <LOD <LOQ 

f. 0.767 ± 0.006 <LOQ 0.059 ± 0.003 1.211 ± 0.172 <LOD <LOQ 

g. not analyzed 

h. 0.315 ± 0.005 <LOQ 0.109 ± 0.008 3.528 ± 0.323 <LOD <LOQ 

i. not analyzed 

South 

a. not analyzed 

b. <LOD <LOD <LOD <LOD <LOD <LOD 

c. 0.505 ± 0.012 <LOQ <LOQ <LOQ <LOD <LOQ 

d. 0.317 ± 0.038 <LOQ <LOQ 0.103 ± 0.023 <LOD <LOQ 

e. <LOQ <LOQ <LOQ 0.156 ± 0.015 <LOD <LOQ 

f. 0.436 ± 0.062 <LOQ <LOQ 0.264 ± 0.064 <LOD <LOQ 

g. 0.520 ± 0.011 <LOQ 0.024 ± 0.003 2.768 ± 0.132 1.627 ± 0.083 <LOQ 

h. 2.859 ± 0.091 <LOQ <LOQ 4.595 ± 0.222 0.518 ± 0.053 <LOQ 

i. 8.538 ± 0.292 <LOQ 0.043 ± 0.006 6.513 ± 0.579 2.880 ± 0.046 <LOQ 

        

Olive Oil 1 

Glass 0.631 ± 0.007 <LOQ <LOQ 1.598 ± 0.145 <LOD <LOQ 

PET 0.730 ± 0.012 <LOQ 0.027 ± 0.001 1.807 ± 0.199 <LOD <LOQ 

        

Olive Oil 2  

Glass 0.326 ± 0.012 <LOQ <LOQ 0.395 ± 0.076 <LOD <LOQ 

PET 0.378 ± 0.019 0.018 ± 0.003 0.024 ± 0.001 0.716 ± 0.112 <LOD <LOQ 

        

Olive Oil 3 

Glass 1.337 ± 0.019 <LOQ <LOQ 3.310 ± 0.053 <LOD <LOQ 

PET 2.048 ± 0.074 <LOQ 0.019 ± 0.003 3.245 ± 0.050 <LOD <LOQ 

        
Olive Oil 4 Glass <LOD 0.100 ± 0.003 0.026 ± 0.001 1.244 ± 0.086 <LOD <LOQ 

Olive Oil 5 Glass 0.504 ± 0.012 <LOQ 0.036 ± 0.002 5.976 ± 0.389 <LOD <LOQ 

Olive Oil 6 Can <LOD <LOQ 0.124 ± 0.004 <LOD <LOD <LOQ 

        
Table S1 (Cont.): Concentration (mg/kg) of the 32 plasticizers studied in all collected samples, expressed as average 

± standard deviation. Bold and underlined values indicate those exceeding the specific migration limits define.
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4.5 Future Perspectives: GC x GC 

Phthalates are predominantly analyzed using chromatographic techniques, as their de-

tection and quantification require high specificity and sensitivity. However, several analytical 

challenges arise due to their structural and chemical characteristics. Phthalates are derivatives 

of phthalic acid, resulting in a high degree of similarity among them. This similarity is particu-

larly evident in their mass spectral fragmentation patterns, where almost all phthalates exhibit 

a dominant ion with an m/z of 149. This creates significant difficulty in differentiating between 

phthalates, especially when they co-elute during chromatography (Figure 11). 

 

Figure 11. Chromatogram obtained by GC/MS for 34 plasticizers, including DINP and DIDP, using a Bruker Scion 

TQ 456 GC-MS/MS (Bruker Corporation, Billerica, MA, USA) chromatograph. Chromatographic separation was per-

formed on a ZB-5MS Plus capillary column (20 m × 0.18 mm ID, 0.18 µm film thickness). The temperature pro-

gram started at 50 °C, held for 1 min, increased at 20 °C/min to 140 °C, then 4 °C/min to 240 °C, followed by 10 

°C/min to 280 °C, and finally 20 °C/min to 310 °C, where it was held for 9 min. Helium was used as the carrier gas 

at a constant flow rate of 0.7 mL/min. The MS transfer line and source were set at 300 °C and 270 °C, respectively. 

A solvent delay of 7 min was applied. 

Among the phthalates, diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP) rep-

resent some of the most challenging analytes. These compounds not only lack unique ions 

with sufficient signal intensity to distinguish them but also elute as broad, overlapping peaks 

due to their composition of multiple skeletal isomers. Their partial co-elution exacerbates the 

difficulty of identification and quantification, leading to substantially higher limits of detection 
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(LOD) and quantification (LOQ) compared to other phthalates that elute as single, well-defined 

peaks. 

To address these challenges, multidimensional gas chromatography (GC), particularly 

comprehensive two-dimensional gas chromatography (GC × GC), has been explored as a viable 

alternative to classical one-dimensional GC (1D-GC). GC × GC offers enhanced separation ca-

pacity through the coupling of two columns with differing selectivity, enabling improved res-

olution of complex mixtures [310–313]. 

Traditionally, cryogenic modulation has been employed in GC × GC systems to maximize 

resolution. Cryogenic modulators trap and refocus analytes between the first and second di-

mensions, resulting in narrow peak widths and high chromatographic efficiency. This approach 

significantly improves the signal-to-noise ratio (S/N) for a given sample mass, allowing for the 

use of detectors such as flame ionization detectors (FID) with enhanced sensitivity. However, 

cryogenic modulation is associated with high operational costs, both in terms of instrument 

acquisition and maintenance. Additionally, the sharp peaks generated by this technique neces-

sitate mass spectrometers with extremely high scanning speeds, which can limit the use of 

simpler quadrupole mass analyzers in full-scan mode. Despite these limitations, targeted anal-

yses using methods like selected ion monitoring (SIM) or multiple reaction monitoring (MRM) 

on triple quadrupole systems can mitigate these challenges [314,315]. 

An alternative to cryogenic modulation is flow modulation, which offers comparable 

chromatographic resolution under optimal conditions but at a significantly reduced opera-

tional cost. Flow-modulated GC × GC systems eliminate the need for cryogenic cooling, sim-

plifying operation and maintenance. However, these systems face challenges related to the 

handling of larger eluate volumes from the second dimension, which are typically an order of 

magnitude greater than those from traditional GC or cryogenic GC × GC systems. To address 

this, a majority of the eluate is vented, and only a small fraction is directed to the mass spec-

trometer [314–317]. 

Figure 12 exemplifies the performance of a flow-modulated GC × GC system, highlight-

ing its potential to resolve plasticizers co-elutions in the future, with adequate optimization. 

While the resolution achieved is similar to that of cryogenic modulation, flow modulation offers 

the advantage of reduced costs, making it more suitable for routine analysis. Moreover, cou-

pling flow-modulated GC × GC with triple quadrupole mass spectrometers can potentially re-

solve co-elutions and maintain adequate sensitivity. Such systems are well-suited for targeted 

analyses where cost efficiency and reliable quantification are critical. 



 161 

 

Figure 12. Test chromatogram obtained by flow-modulated comprehensive GC × GC-TOFMS for 34 plasticizers, 

including DINP and DIDP, using a Agilent 8890GC System (Shanghai, China) with a BenchTOF-Select detector 

(Markes International, Bridgend, UK). Chromatographic separation was performed with the INSIGHT™ flow modu-

lator (SepSolve Analytical), equipped with a loop with 50 µL, a BPX5 column (20 m length × 0.18 mm i.d. and 0.18 

μm film thickness) as the first dimension (1D), and a BPX50 column (5 m length × 0.25 mm i.d. and 0.1 μm film 

thickness) as the second dimension (2D). The modulation period (PM) used was 5s. The temperature program 

started at 120 °C, was held for 3 minutes, and was then ramped at 4 °C/min per minute to 225 °C and held for 5 

minutes. It was further ramped at 4 degrees Celsius per minute to 250 °C and held for 20 minutes, followed by a 

final ramp at 4 °C/min to 280 °C, which was held for 40 minutes. Helium was used as carrier gas with a flow of 0.5 

mL/min in the first column and 20 mL/min in the second column. The MS transfer line and source temperatures 

were set at 270 °C.  

The analytical challenges posed by phthalates, particularly DINP and DIDP, underscore 

the need for advanced chromatographic techniques. Comprehensive GC × GC, whether cryo-

genically or flow-modulated, represents a powerful tool for overcoming these challenges. 

While cryogenic modulation provides unparalleled resolution, its high costs limit widespread 

adoption. Conversely, flow-modulated GC × GC strikes a balance between resolution and af-

fordability, offering a practical solution for routine analysis. Theoretically, a flow-modulated GC 

x GC coupled to a triple-quadrupole might be able to resolve all co-elutions and still provide 

good sensitivity. Future advancements in detector technology and modulation strategies may 

further enhance the applicability and efficiency of GC × GC systems for the analysis of 

phthalates and other complex mixtures. 
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CONCLUSION 

This work focused on the study of olive oil, a food matrix of high chemical complexity 

and significant nutritional, cultural, and economic importance. Throughout the thesis, three 

main themes were addressed, contributing to a deeper understanding of the chemical com-

position, organoleptic characteristics, nutraceutical potential, and safety of this product. 

To achieve the proposed objectives, a multidisciplinary approach was employed, inte-

grating various advanced analytical techniques and sample preparation methods. These meth-

odologies enabled a detailed characterization of different olive oil components, including vol-

atile organic compounds, antioxidants, and plasticizers, addressing essential aspects for mon-

itoring and improving its quality. 

The study on volatile organic compounds throughout olive oil’s shelf life provided im-

portant tools for predicting sensory disqualification, particularly through the ratio between E-

2-hexenal and acetic acid, improving the evaluation of the shelf life of extra virgin olive oils. 

The analysis of antioxidants led to the development of a methodology that maximizes the 

extraction of hydroxytyrosol (HTyr) and tyrosol (Tyr), enhancing olive oil as a functional food 

with nutraceutical applications, which resulted in an international patent. Additionally, the in-

vestigation of plasticizers identified the main sources of contamination during production and 

storage processes, providing practical strategies for mitigating these contaminants and ensur-

ing compliance with international regulations. 

This thesis thus represents a significant contribution to the improvement of olive oil 

quality monitoring and control, encompassing its organoleptic characteristics, functional prop-

erties, and the evaluation and mitigation of contaminants. The results reinforce olive oil’s value 
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as a high-added-value food while ensuring its safety and integrity, benefiting both producers 

and consumers.
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Food Chemistry Meeting. University of Madeira (Madeira, Portugal), September 5-8, 

2021 

 

• Flávia Freitas; Maria João Cabrita; Marco Gomes da Silva. "Preventing Future Health 

Risks: monitorization of very low levels of some phthalates in food matrices by 

GC/TOFMS". 3rd International Caparica Conference on Pollutant Toxic Ions and Mole-

cules. Caparica (Almada, Portugal), November 4-7, 2019 

 

• Flávia Freitas; Maria João Cabrita; Marco Gomes da Silva. "Phthalates, Preventing Future 

Health Risks: exploring GC/MS tools for monitoring phthalates in food matrices". 11th 

National Chromatography Meeting (11ENC). Caparica (Almada, Portugal), December 9-
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stoppers in the aroma profile". 12th National Chromatography Meeting (12ENC). Uni-

versity of Aveiro (Aveiro, Portugal), December 6-8, 2022 
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• Sara Pinheiro; Flávia Freitas; Francisco Campos; Paulo Lopes; Miguel Cabral; Marco Go-

mes da Silva. From Cork Stoppers to Champagne – Influence of different bottling in the 

aroma profile". XV Food Chemistry Meeting. University of Madeira (Madeira, Portugal), 

September 5-8, 2021 

 

• Cátia Magro; Davide Mendes; Flávia Freitas; Marco Gomes da Silva; Alexandra B. Ribeiro; 

Eduardo P. Mateus. " Development of target methods for triclosan monitorization in 

effluents at trace levels using gas chromatography-triple quadrupole mass spectrome-

try and electronic tongues". 11th National Chromatography Meeting (11ENC). Caparica 

(Almada, Portugal), December 9-11, 2019 
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• Flávia Freitas; Maria João Cabrita; Marco Gomes da Silva. "Analytical techniques for as-

sessing olive oil quality and shelf life". 13th National Chromatography Meeting (13ENC). 

Faculty of Pharmacy, University of Lisbon (Lisbon, Portugal), December 17-19, 2023 

 

Abstract: Olive oil is a vegetable oil extracted from olives without the use of solvents or chem-

icals. It is a cornerstone of the Mediterranean diet due to its health benefits. Its distinctive 

flavour and aroma result from volatile organic compounds (VOCs), the presence and quantity 

of which vary due to olive variety, ripeness, processing, and storage.1,2 

VOCs are produced through natural biochemical processes, including the lipoxygenase (LOX) 

pathway, contributing to the green and fruity flavour of olive oil. However, sensory defects can 

arise from chemical oxidation and the action of exogenous enzymes, often stemming from 

microbial activity.3 

Olive oil is the only food product legally required to undergo quality evaluation by a certified 

sensory panel. This evaluation considers positive attributes such as fruity, bitter, and pungent 

flavours, as well as negative attributes like rancidity and mustiness. The shelf life of olive oil 

ranges from 18 to 24 months, thanks to natural antioxidants such as polyphenols.4,5 

Robust analytical methods, such as solid-phase microextraction (SPME) and gas chromatog-

raphy-mass spectrometry (GC/MS), are essential to support sensory evaluation. This study 

aimed to develop an HS-SPME-GC/MS methodology to identify VOCs as markers of both pos-

itive and negative attributes, correlating them with concentrations to estimate the risk of dis-

qualification during the olive oil's shelf life. 
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• Flávia Freitas; Maria João Cabrita; Marco Gomes da Silva. "Phthalates, a danger in food: 

a new analytical approach for risk assessment". IV PhD Students Meeting in Environ-

ment and Agriculture. University of Évora (Évora, Portugal), November 11-12, 2019 

 

Abstract: Phthalate esters (PE’s), better known as phthalates, are a group of chemical com-

pounds widely used since 1960 as plasticizing agents in order to impart flexibility, durability 

and longevity to plastics.[1] 

Given their unique physicochemical properties, some phthalates and their metabolites have a 

severe toxic effect on human health, primarily in the reproductive, endocrine and respiratory 

systems.[2,3] 

Several studies have led the EU and the USA, among other countries, to intervene and regulate 

exposure to phthalates.[4] Exposure to PE’s is daily, causing an accumulation in the body, lead-

ing to long-term harmful effects. The control must be rigorous with very low levels of detection 

(ppb or lower), so it is important to define methodologies that respond to this need. Tradition-

ally, the analysis of PEs is performed using 1D gas chromatography techniques. In the future, 

this project will apply classical and alternative 2D analytical methodologies (GC x GC and/or 

MD-GC) in order to obtain better separation, detection and sensitivity for PEs in complex food 

matrices, wine and olive oil.  

Up to this moment, nine phthalates have been quantified in Portuguese olive oil and different 

materials used in it’s production, such as hoses. Liquid extraction with hexane/Methanol was 

performed, and chromatographic analysis was carried on a LECO GC/TOFMS with an apolar 

capillary column. The limit of detection ranged from 0.2 to 1 ppm (mg/kg) for all analytes. 

Further matrices are under study, namely wine. 

 
Figure 1: Extracted ion chromatogram showing m/z 149, displaying seven phthalates at a concentration of 60 ng/mL 

 

References  

[1] Gómez-Hens, A.; M.P. Aguilar-Caballos, M.P. (2003). Social and economic interest in the control of phthalic acid esters. Trends 

in Analytical Chemistry, Vol. 22, No. 11, 847-857 

[2] Moretti, G.L.; Romano, D. (2012). Phthalates: Chemical Properties, Impacts on Health and the Environment 

[3] Hauser, R.; Calafat, A.M. (2005). Phthalates and human health. Occupational and Environmental Medicine, 62, 806–818 

[4] Serrano, S.E.; Braun, J.; Trasande, L.; Dills, R.; Sathyanarayana, S. (2014). Phthalates and diet: a review of the food monitoring 

and epidemiology data. Environmental Health, 13:43 

Acknowledgements: This work was supported by the Associate Laboratory for Green Chemistry- LAQV which is financed by na-

tional funds from FCT/MCTES (UID/QUI/50006/2019), and ICAAM funding by FCT - Foundation for Science and Technology under 

the Projects UID/AGR/00115/2019.  



 203 

POSTERS COMMUNICATIONS - FIGURES





 205 

  



 206 

 

 



 207 

 

 



 208 

 



 209 

 

 



 210 

 

 

 

 



 211 

 

  



 

  



 

 

 

2025 

F
L
Á

V
IA

 S
O

F
IA

 S
A

L
G

A
D

O
 

D
E

 F
R

E
IT

A
S

 

A
N

A
L
Y

T
IC

A
L
 A

P
P

R
O

A
C

H
E

S
 F

O
R

 T
H

E
 Q

U
A

L
IT

Y
 A

N
D

 F
O

O
D

 

S
A

F
E

T
Y

 A
S

S
E

S
S

-M
E

N
T

 O
F

 O
L
IV

E
 O

IL
 


