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Abstract

Migratory plant-parasitic nematodes (PPNs) pose significant threats to
global agriculture and forestry. Recent advances in next-generation se-
quencing on migratory endoparasitic nematodes have revealed substantial
genomic diversity, enhancing our understanding of their evolutionary
adaptations and molecular mechanisms of pathogenicity. Their genomic
plasticity also reflects functional adaptations for an endoparasitic lifestyle
(i-e., detoxification and antioxidant defenses, anhydrobiosis or cryptobiosis,
and environmental stress tolerance). Key findings highlight an expanding ar-
ray of parasitism proteins, suggesting a more complex network of effectors
than was previously recognized. This review provides an updated overview of
relevant aspects of the biology and parasitic strategies of migratory endopar-
asitic nematodes, with a focus on species within clades 10 and 12. These
molecular insights underscore the importance of ongoing research into
lesser-studied species, which will ultimately contribute to the development
of targeted strategies for nematode control and crop protection.
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1. INTRODUCTION

Nematodes are remarkably ubiquitous and the most abundant animals on the planet. This group
of multicellular organisms, mostly microscopic, can thrive in diverse and extreme environments
(2). The Phylum Nematoda is currently divided into twelve clades (158), with plant parasitism
evolving independently at least four times (9). Plant-parasitic nematodes (PPNs) are distributed
across clades 1 (Triplonchida), 2 (Dorylaimida), 10 (Aphelenchoididae), and 12 (Tylenchida) (158)
and represent nearly a sixth of currently known nematode species (60). PPNs represent a consid-
erable challenge to global food security and forest ecosystems, causing substantial economic losses
in major crops, estimated to exceed 157 billion dollars annually worldwide (98).

The coevolution of PPNs with their host plants resulted in remarkable synchronization be-
tween life cycles, developing diverse strategies to become successful plant pathogens (2). Most
of our understanding of the molecular basis of these interactions has been focused on sedentary
PPN [i.e., cyst nematodes (CNs) and root-knot nematodes (RKNs)] because of their significant
impact on agriculture (3, 40, 114). Migratory PPN are also critical for agricultural and forest
ecosystems worldwide, and recent research has expanded our knowledge of the biology of these
nematodes (76, 115). The discovery of a previously unknown migratory PPN, Litylenchus crenatae
(family Anguinidae), affecting beech forest ecosystems (i.e., beech leaf disease) in North America
(166) serves as a prime example of a new species invading and threatening a non-native ecosystem,
turther illustrating the importance of migratory PPNs.

2. BIOLOGY OF MIGRATORY ENDOPARASITIC NEMATODES

Migratory endoparasitic nematodes present different strategies for how they interact with their
host plants and exploit their resources. These nematodes exhibit diverse lifestyles based on their
feeding behavior, which can categorize them as either facultative or obligate PPNs (Figure 1). For
example, the pinewood nematode Bursaphelenchus xylophilus and the foliar nematode Aphelenchoides
besseyi, both from clade 10, are examples of facultative PPNs, switching between fungal and plant-
cell feeding based on nutrient availability. In clade 12, although some species are also facultative
PPN (e.g., the fungivorous Aphelenchus avenae), the majority are obligate, meaning that they rely
on living plant tissues to complete their entire life cycle (e.g., root lesion Pratylenchus spp.) (76,
115). Some migratory species employ a relatively simple feeding strategy by acquiring the cell
contents as they move through the host tissues (e.g., Pratylenchidae), whereas others develop a
more intricate and specialized network of feeding cells as they proliferate within the host, such as
hyperplasia and hypertrophy of infected host tissues (e.g., Anguinidae) (124, 166).

Migratory endoparasitic nematodes spend most of their life migrating in the plant tissues,
causing physiological changes in belowground (e.g., the root-lesion nematodes Pratylenchus or
the burrowing nematode Radopholus similis) or aboveground host plant parts (e.g., the stem and
bulb nematodes Ditylenchus spp. or the chrysanthemum foliar nematode Aphelenchoides ritzemabosi)
(Figure 1) (76). The majority of this group infects angiosperm plant species, whereas B. xylophilus
infects solely gymnosperm coniferous trees with the help of its phoretic partner, the insect vec-
tor Monochamus spp. (Figure 1). Thus, the host specificity of migratory endoparasitic nematodes
diverges depending on the species. For example, beech leaf (L. crenatae), red ring (Bursaphelenchus
cocophilus), and pine wilt (B. xylophilus) diseases (145, 160, 166) impact forestry trees worldwide,
specifically targeting beech, palm, and pine trees, respectively. Other species are cosmopolitan
PPN, able to infect almost all crop categories (i.e., staple, forage, ornamental, and tree crops),
like Pratylenchus penetrans (21) or Ditylenchus spp. (151).

The molecular mechanisms driving the adaptation and specialization of migratory PPNs to
specific host plants offer critical insights into parasitism and adaptation, presenting a fascinating
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Figure 1

Schematic representation of relevant plant-parasitic nematode species belonging to clade 10 (orznge) and clade 12 (blue) (adapted from
158). The phylogenetic inference was based on 28S rRNA sequences.

area of research. In this review, we focus on migratory endoparasitic PPN, specifically on species
within clades 10 and 12, which include many of the most economically significant species. It is
noteworthy that, despite the economic importance of these species, they represent only a small
fraction of the total number of migratory PPNs described worldwide.

3. GENERAL FEATURES OF MIGRATORY NEMATODES’
MOLECULAR DATA

A significant number of omics data sets has been generated for PPNs, including multiple species
of migratory endoparasitic nematodes (82, 118). The use of next-generation sequencing (NGS)
facilitates a fast accumulation of data, laying the groundwork for novel and unparalleled integrated
comparative analyses across divergent nematode species. Most sequencing efforts have predom-
inantly centered on economically significant species within the Tylenchida and Aphelenchida
orders (118). The development of these new large genomic sets provides new perspectives on the
evolutionary mechanism driving the establishment of these nematodes. In addition, it enhances
the comprehension of the genetic and mechanistic foundations of their pathogenicity and their
adaptation to host plants (118).

3.1. Genomic Data

The currently available genome assemblies for migratory endoparasitic PPNs, belonging to
clades 10 and 12, are shown in Figure 2. The genome sizes varied greatly between species so far
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nematodes. The available genomes for species in clade 10 are represented by Aphelenchoides besseyi (PRJNA901680) (74), Aphelenchoides
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clade 12, the genome assemblies are represented by Anguina tritici (PRINA659265) (147), Aphelenchus avenae (PRINA236621-2) (172),
Ditylenchus dipsaci (PRJANA498219) (113), Ditylenchus destructor (PRINA312427) (192), Hoplolaimus columbus (PRINA659263) (106),
Pratylenchus coffeae (PRINA276478) (14), Pratylenchus scribneri (PRJNA932437) (1), and Radopholus similis (PRJNAS522283) (110).
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studied, ranging from 19.6 Mb (Pratylenchus coffeae) (14) to 417 Mb (Hoplolaimus galeatus) (105),
exceeding the model nematode Caenorbabditis elegans (100.3 Mb) (15). The diversity of this group
is further highlighted by the number of protein-coding genes, which spans from 6,712 in P, coffeae
(14) to the predicted 61,855 genes in Hoplolaimus columbus (106), reflecting the diversity of the
lifestyles of these nematodes.

3.1.1. Aphelenchoididae. One of the first genomes of PPNs to be sequenced was the clade 10
migratory nematode B. xylophilus. The initial genome version was assembled using 454 and
Illumina technologies (74.6 Mb) (81), followed by two updated versions based on Illumina
and Nanopore sequencing with genome sizes of 75.9 Mb (153) and 78.3 Mb (29), respectively
(Figure 2). The first draft genome of B. xylophilus (81) revealed the same karyotype as C. ele-
gans, and the highest GC (guanine-cytosine) content of any PPN examined (82). The B. xylophilus
genome exhibits a high level of genetic diversity and significant genomic variations (single
nucleotide polymorphisms or indels) between virulent and avirulent populations (126). These vari-
ations may be associated with the multiple introductions of this species into new geographic areas
or may reflect the pathogenic or ecological traits of the nematode (126). Recently, a chromosome-
level assembly comprising six chromosomes with a total size of 77.1 Mb revealed more genetic
variations driving genome evolution in different populations of B. xylophilus and provided more
insights into key protein families potentially associated with pathogenicity and host adaptation,
e.g., glycoside hydrolase (GH) families (36).
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Several other genomes have been released for the Aphelenchoides genus, a sister group of Bur-
saphelenchus (74, 89). With the exception of Aphelenchoides fujianensis, which has a genome size
of 144 Mb, the genomes of other Aphelenchoides species range between 45 Mb for Aphelenchoides
pseudobesseyi (89) and 50.3 Mb for A. besseyi (74). The significant reduction in genome sizes is at-
tributed to the loss of repetitive elements, including the loss of entire gene families, as seen in
Aphelenchoides bicaudatus, which has lost DNA and LINE (long interspersed nuclear elements)
transposable elements (89).

3.1.2. Pratylenchidae. The genome of P, coffeae is one of the most compact metazoan genomes
to date, with a very low prevalence of repetitive DNA, a reduction in the number of gene family
members, and a reduced average number of introns (14). These distinctive features offer valuable
insights into the minimum essential gene set required for a functional multicellular organism,
shedding light on the evolutionary mechanistic route(s) underlying plant parasitism (14). Two ad-
ditional partial genome sequences were made available using the genome-skimming technique
for Pratylenchus neglectus, Pratylenchus penetrans, and Pratylenchus thornei (31). More recently, the
genome assembly of Pratylenchus scribneri revealed a much larger genome of 227.2 Mb (Figure 2),
which could reflect high gene duplication and likely repetitive gene content for this species (1).
The significant variation in Pratylenchus genome sizes suggests a widespread genome heterogene-
ity, accompanied by considerable differences in chromosome numbers (e.g., 2n ranging from 10 to
26 chromosomes) observed among amphimictic and nonsexually reproducing species within this
genus (135). Interestingly, Pratylenchus species are regarded as closely related to RKNs. Therefore,
detailed phylogenomic analyses could offer significant insights into the adaptation and evolution-
ary plasticity across various Pratylenchus genomes and, potentially, into the evolution of the more
specialized parasitism of RKNs (8).

Although the burrowing nematode R. simzilis is classified as a member of the Pratylenchidae
family, its inclusion in this group is primarily based on convergent morphological features (55).
Additional molecular and phylogenetic evidence reinforced the idea that R. simzilis is evolutionarily
closer to CNs (62, 110, 168). Three draft genome assemblies are currently available for different
populations collected from plantain and banana in Costa Rica, ranging from 50 to 65 Mb, with rel-
atively smaller sizes than other migratory nematodes (Figure 2) (182). Noteworthy mentions are
the two draft genomes generated using single specimens for lance nematodes, namely H. columbus
(106) and H. galeatus (105). Detailed comparative analyses and genome annotation are still lacking.

3.1.3. Anguinidae and Aphelenchidae. Genome data available for the Anguinidae include the
potato rot nematode Ditylenchus destructor (192), the stem and bulb nematode Ditylenchus dipsaci
(113,129), and the weed plant nematode Ditylenchus weischeri (129). D. destructor revealed the small-
est genome assembly for this genus so far (111.1 Mb), whereas the genome of D. dipsaci is double
the size with 227.2 Mb and double the number of genes (Figure 2). D. destructor stands out for
having a higher number of orthologous genes with C. elegans than other sedentary PPN, suggest-
ing an intermediate evolutionary status between free-living and sedentary forms (192). The draft
genome of the seed gall nematode Anguina tritici is estimated to be 164 Mb (147). This nematode
shows an impressive capacity to survive in an anhydrobiotic state for several decades while retain-
ing its parasitism capacities (99). A partial genome skimming for Anguina agrostis has also been
released (31) as well as a draft genome assembly for Subanguina moxae, indicating a genome size
0f 90.2 Mb (152).

A genome of 255 Mb was estimated for 4. avenae (Aphelenchidae), the only genome sequenced
so far for this genus (Figure 2) (172). The average number of genes is twice that of other nema-
tode genomes, probably due to high levels of gene duplication. The expansion of protein kinases
identified in the genome is likely to result from an evolutionary adaptation to desiccation (172).
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The growing number of PPN genomes can enhance our understanding of the complexities
that differentiate PPNs from their free-living relatives. Moreover, as large-scale genomic studies
have progressed, new features are revealed at the species level. However, single reference genomes
may not capture the genetic diversity of the species analyzed. Pangenomic analysis, combined
with long-read data and transcriptomics, can provide insights at both the individual level (variable
genome features) and species level (core genome features), which is highly relevant for discovering
important genes associated with pathogenic traits.

3.2. Transcriptomic and Proteomic Data

The increasing availability of transcriptomic data generated for migratory endoparasitic PPNs
makes a substantial contribution to existing genomic resources and, in some cases, compensates
for the lack of available genomic data sets for various species across multiple clades (Table 1).
These transcriptome resources are crucial for addressing important biological questions (see
Section 3.3) and have expanded our ability to identify parasitism-related genes and genetic adap-
tations (103). Initially, transcriptomic data relied on small-scale data sets of expressed sequence
tags or Roche 454 sequencing (Table 1). With the advent of NGS technologies, substantial tran-
scriptome data sets have been generated, allowing large-scale comparative studies (103). Perhaps
not surprisingly, many predicted genes lack functional annotation. Moreover, as some of these se-
quences originated from single species across multiple distant families, a significant number are
species- or genus-specific, without any homology in currently available sequence databases (e.g.,
38,57, 128, 164).

Integrating additional omics techniques, like proteomics, along with computational modeling,
can offer a more thorough insight into the biological interactions between plants and pathogens.
So far, few proteomic studies are available for migratory PPNs. For instance, the profile of the
surface coat (SC) proteins of B. xylophilus revealed a diverse array of proteins associated with
the host immune response [such as regulators of reactive oxygen species (ROS)] and highlighted
the binding patterns of several lectins to the SC proteins from different life stages of virulent/
avirulent B. xylophilus isolates (143, 144). The secretome of B. xylophilus stimulated with pine
extracts identified several cell wall-degrading enzymes (CWDE:s), detoxification enzymes, and
peptidases (142). Further studies performed an in-depth characterization of the proteomic changes
between the secretomes of B. xylophilus and the nonpathogenic Bursaphelenchus mucronatus (17) as
well as the secretomes from susceptible and nonsusceptible pine extracts (146). In both studies, a
large range of proteins were identified, which included peptidases, hydrolases, and proteins with
antioxidant activities. More recently, a comparative proteomic study of the secretomes of different
B. xylophilus populations from distinct geographical locations identified a set of proteins associated
with peptidase, cellulase, and lipase activities common among the isolates (18, 19).

3.3. Relevant Adaptations to Migratory Lifestyle

The genetic makeup of PPNs has evolved under the selective pressures imposed by their unique
lifestyles, resulting in distinctive gene compositions within their genomes. Despite the modest
number of genome assemblies for migratory PPN, their annotation highlights important aspects
of their exclusively motile life cycle compared to other sedentary species (82). Comparative ge-
nomics augments the prediction of novel PPN proteins, some of which are found to be acquired
by lateral gene transfer (LGT) from other microorganisms, such as bacteria or fungi (9). Fur-
thermore, important biological questions are now revealed and can be seen as a prelude to the
significant genomic diversity within this group of nematodes, which remains largely unexplored
within the Phylum Nematoda.
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3.3.1. Detoxification and antioxidant defenses. Migratory PPNs have developed genomic
adaptations to manage plant defenses and sustain their homeostasis, both within the host tis-
sues and under challenging environmental conditions. The xenobiotic metabolism of nematodes
involves the biotransformation of exogenous plant compounds to facilitate their excretion (re-
viewed in 100). A prime example is the multilayer detoxification strategy found by studying the
genome/transcriptome of B. xylophilus that allows nematode evasion of a complex cocktail of ROS
products, toxins, and other plant metabolites (39, 46, 81, 161, 189). In addition, some of these
detoxification genes (e.g., flavin monooxygenase, short-chain dehydrogenase, aldo/keto reduc-
tase, aldehyde dehydrogenase, UDP-glucuronosyl transferases, and ATP-binding cassettes) were
found in expanded gene families in B. xylophilus, possibly due to gene duplication and divergence
of paralogs (81, 82, 189). The importance of ROS-related genes in migratory PPNs and their role
in the interaction with plant hosts is detailed below (see Section 4).

3.3.2. Anhydrobiosis and environmental adaptations. Some PPNs can survive low temper-
atures and desiccation for long periods of time without the presence of a host. The molecular
mechanisms involved in nematode cold resistance or anhydrobiosis tolerance start to reveal core
molecular information about the plasticity of some migratory PPNs. A. avenae is considered a
model species for studying anhydrobiosis in PPNs. Early studies have shown that one of the
unique features of this species is the accumulation of large amounts of trehalose, a nonreduc-
ing sugar that protects membranes and proteins from structural damage under anhydrobiosis (54,
107). The trehalose metabolism of other PPNs has also been related to the ability to withstand
harsh environments, such as in A. besseyi for anaerobic environments (24) or B. xylophilus for cryp-
tobiosis (25, 127). Later, other factors were also related to A. avenae desiccation tolerance (11,
12, 22), in particular, the hydrophilic protein Aav-LEA-1, a member of the group-3 subclass of
the late embryogenesis abundant (LEA) proteins commonly accumulated by plants under water-
deficit conditions (11). Transcriptome data uncovered several gene pathways (including LEA and
heat-shock proteins) found to be associated with cold or desiccation stress in D. destructor (104).
Curiously, homologs of LEA genes were also found in B. xylophilus in association with dauer larvae
biology (80).

The recent genome assembly of A. avenae sheds light on its evolutionary adaptations and
comprehensive mechanisms for surviving under anhydrobiosis (172). For example, the finding
of 15 LEA proteins, phylogenetically closer to LEA proteins from plants, and 74 species-specific
intrinsically disordered proteins has been considered a major molecular strategy for extreme desic-
cation resistance, as is the presence of a large family of desiccation-resistant heat-shock 70 proteins
(172). The analysis of the A. avenae transcriptome during its ametabolic state unveiled an increase
in ATP levels, facilitating the global recycling of macromolecules and enhancing autophagy during
the initial phases of anhydrobiosis (172).

The transcriptomic analysis of the anhydrobiotic response of Apbelenchoides fragariae (49)
revealed an upregulation of the detoxification-related proteins, multiple genes encoding for
molecular chaperones, and unfolded protein response enzymes underlining strategies to cope with
cellular toxification and protein misfolding/aggregation (50).

3.3.3. Life stages development. The life cycle of PPNs includes six stages: egg, four juvenile
stages (J1-J4), and the adult stage. Some nematodes, such as B. xylophilus, present two additional
stages (D3 and D4) related to dauer development, which is a nonfeeding stage and highly associ-
ated with harsh survival conditions and nematode dispersal (103, 153). Life-stage transcriptome
analyses have revealed a core expression pattern of genes related to nematode development (103).
In the particular case of B. xylophilus, several studies focused on the gene profile dynamics of ne-
matode development, including the formation of the dauer larvae (e.g., 103, 153, 157), analyzed
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the whole life-cycle transcriptome of B. xylophilus and showed differential gene regulation among
both dispersal (D3-D4) and propagative cycles. Genes involved in basic biological functions were
found conserved between C. elegans and B. xylophilus, such as structural constituents of cuticle-,
collagen-, and lipid-binding genes, and C. elegans orthologs on molting functions (153). CWDEs
were differentially expressed between stages (e.g., highly expressed in J3 and D4), emphasizing
their stage-specific regulation (153). Peptidases or chitinases (GH18) were also differentially ex-
pressed among developmental stages, reinforcing their distinct role function in pathogenicity
(153). Zhang et al. (188) analyzed the transcriptomic changes in B. xylophilus during the dauer
molting process induced by the pine volatile -pinene, revealing a significant enrichment of dif-
ferentially expressed genes in the metabolism of xenobiotics, fatty acids, and carbon of the J4 stage.
A stage-specific transcriptome data set generated for R. similis showed differential gene expression
across various developmental stages of this species (69).

3.3.4. Cross-phyla interactions. Migratory endoparasitic PPNs that feed on both plants and
fungi serve as excellent model organisms for studying genomic plasticity related to their interac-
tion with species from different phyla. For example, the higher number of digestive proteases (e.g.,
serine, aspartic, metallo, and cysteine families) found in the B. xylophilus genome, in comparison
with other PPNs, may indicate the diverse range of potential food substrates (81). For exam-
ple, the presence of the GH18 chitinase family in this nematode supports their mycetophagous
phase (153). Different gene expression patterns have also begun to reveal the complexity of the
nematode phase transitions (i.e., mycetophagous versus phytophagous). For instance, many genes
associated with xenobiotic detoxification were linked with the phytophagous B. xylophilus, accom-
panied by physiological and morphological changes attributed to adaptation and stimulated by
the plant environment (157). Some of these morphological changes were potentially associated
with the differential regulation of collagen genes and rearrangements of the nematode cuticle
(157). Moreover, Ekino et al. (37) showed that B. xylophilus presents a different body structure
between the mycetophagous and phytophagous phases, suggesting that nematode ultrastructure
phenotypic plasticity is a key strategy for nematode survival inside the hostile plant environment.
Another example of these complex biological interactions is evidenced by the genomic adap-
tation to phoretic relationships between nematodes and insects. The nonrelated nematodes
B. xylophilus and the animal parasitic nematode (APN) Brugia malayi have evolved life-stage larval
forms independently driven by the need for dispersal via an insect vector (103). These distinct
larval forms, tailored to the insect vector, evolved separately, suggesting a convergence in their
transcriptomes (103). Additionally, these insect-vectored nematodes possess a reduction in the
size of C-type lectin family genes compared with self-dispersing ones, whereas their functional
domains are more diverse, which may have contributed to the evolutionary transition (122).

4. EFFECTORS OF MIGRATORY PLANT-PARASITIC NEMATODES

Plants and pathogens have shared a complex relationship over the course of their evolutions (9).
The development and successful parasitism by PPN rely on a continuous molecular dialogue be-
tween the nematode and the host plant. To successfully colonize their hosts, PPNs secrete cocktails
of effector proteins, which suppress plant immunity defenses or interfere with other host cellular
and physiological processes to facilitate nematode parasitism (117, 119, 136, 165). To withstand
pathogen attack, plants have developed a two-layered immune system composed of pathogen-
associated molecular pattern (PAMP)-triggered immunity (PTT) and effector-triggered immunity
(ETI) (75). Although in some cases PTT might be a sufficient defense response, many pathogens
have evolved effector proteins that can be deployed to inhibit or suppress PTI-related defenses.
Plants have adapted to recognize specific effectors through resistance proteins, activating their

Espada o Vicente o Vieira



second layer of immunity. This often results in a hypersensitive response (HR) and cell death,
which help block pathogen development.

The secretions produced by PPN are the main pivotal components of the different molecular
processes involved in the suppression of host defenses, modulating complex changes in morphol-
ogy, function, and gene expression in interacting host cells (28, 40, 114, 136). The main sources
of these nematode effectors are three large and complex esophageal secretory gland cells, two
subventral and one dorsal (40, 114, 165) (Figure 3). These gland cells produce and secrete the
effectors into the host through the stylet, a mouth spear. Other nematode tissues may also con-
tribute to parasitism-related secretions, such as the amphids, hypodermis, or excretory/secretory
system as seen in APNs (Figure 3) (42, 139,156,159, 191). Building on our knowledge of effectors
in sedentary nematodes, secreted proteins are delivered into the apoplasm (42, 163) or cytoplasm
(42, 114). Moreover, some effectors, after being secreted into the cytoplasm, can be transported
into the apoplasm (e.g., CLE-like peptides from CN) (53) or target other cell compartments,
such as the cell nucleus (132). Thus, the diverse host responses and the distinct strategies imple-
mented across migratory nematodes seem to be influenced by the specific set of effectors that each
nematode delivers into the plant tissues.

4.1. Identification of Effectors in Migratory Plant-Parasitic Nematodes

The identification of effectors in PPNs has relied on well-established bioinformatic pipelines,
which typically involve criteria like the presence of a signal peptide and absence of transmembrane
domains, common features of effector proteins. Large amounts of NGS data are being generated,
yielding extensive lists of putative secreted proteins, many of which lack predictive domains or
known functions (58, 165). Previous attempts to identify effector genes in migratory PPNs have
relied on comparative analyses based on sequence homology, revealing conserved genes among
many PPNs. The presence of a common repertoire of effectors, excluding LGT-acquired genes,
suggests the conservation of specific genetic elements across multiple PPN, despite their dis-
tinct parasitism strategies (168). Although this approach is valuable, it may overlook the effector
composition of certain species, particularly when studying the effector repertoires of phylogenetic
taxonomically unrelated species.

4.1.1. Target esophageal gland cell transcriptomes. To enhance the accuracy of genuine
effector identification, significant progress has been made through the implementation of target
cell transcriptomics. This approach involved sequencing of RNA extracted from the isolated gland
cells collected via microaspiration (108). This methodology has been successfully applied across
various species, providing unprecedentedly accurate repertoires of candidate effectors that en-
compass both sedentary (108, 117) and migratory PPNs (38, 167, 168, 170). Contrary to previous
assumptions that migratory nematodes are less specialized PPNs with a limited number of effec-
tors, recent data have uncovered substantial evidence of a more intricate and extensive network of
effectors in these migratory species (38, 39, 167, 168, 170). These gland cell transcriptomes not
only revealed an over-representation of homologs of known effectors but, more significantly, have
yielded sets of hundreds of reliable pioneer candidate effectors (38, 167, 168, 170).

4.1.2. Promoter motifs. The NGS advances and computational methods have enabled a
genome-scale identification of effectors in PPN, capitalizing on the recognition of cis-regulatory
elements within the effector gene promoter regions. For example, the pivotal work conducted on
the dorsal gland cell of the CN Globodera rostochiensis revealed the motif DOG box identified in the
promoter region of effector genes (41). Likewise, new cis-regulatory motifs have been found for
phylogenetically distant migratory PPNs, such as the pinewood (38), root lesion (167, 170), and
burrowing nematodes (168) (Figure 3). The B. xylophilus STATAWAARS motif is a noncanonical
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Figure 3

A schematic representation of the interactions between migratory endoparasitic nematodes and their host target cells. Promoter DNA
motifs have been found associated with highly expressed effector genes in the esophageal gland cells of some migratory nematodes,
such as Bursaphelenchus xylophilus, Pratylenchus penetrans, and Radopholus similis. These effectors can be secreted directly into the
cytoplasm and apoplast. The nematode cell wall-degrading enzymes (CWDEs) degrade plant cell walls and contribute to nematode
penetration and migration within plant tissues. To withstand pathogen attack, plants have developed a two-layered immune system
composed of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTT) and effector-triggered immunity (ETT). To
evade plant defenses, a large set of effectors are secreted, targeting different host molecular pathways, including the suppression of
reactive oxygen species (ROS) or cell death. A significant number of nematodes have been identified as inducers of cell death, whereas
others may interact with plant hormone pathways (i.e., salicylic acid, jasmonic acid, and ethylene pathways). Abbreviations: ACOs,
1-aminocyclopropane-1-carboxylate oxidase; ACRE, Avr9/Cf-9 rapidly elicited genes; CyPs, cyclophilin proteins; ER, endoplasmic
reticulum; HoCM, Hirschmanniella oryzae chorismite mutase; NAMP, nematode-associated molecular pattern; PR, pathogenesis-related;
RsCM, Radopholus similis chorismate mutase; RsVAP, Radopholus similis venom allergen-like protein; TLPs, thaumatin-like proteins.

DNA motif overrepresented in the promoter region of a large number of genes encoding se-
creted proteins and abundantly expressed in the gland cells (38). A preliminary enriched motif of
P, penetrans with the consensus sequence CAA[A|G|T|C]TG[T|G]C was identified as associated
with several genes localized in the subventral glands (167). In the case of R. similis, a promoter
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motif was identified as associated with effectors localized in the subventral esophageal gland cells,
representing the first subventral gland-specific motif (Rs-SUG box) (168).

High-quality genome assemblies are essential to streamlining future effector prediction efforts.
The identification of a promoter motif element(s) associated with a proportion of (nonrelated)
effector genes implies a coordinated regulatory mechanism governing the expression of these
genes (117). A new bioinformatic tool, MOnSTER, has been developed to identify clusters of
motifs in effector protein sequences in both sedentary and migratory PPNs (16).

4.1.3. In situ hybridization assays. Although these predictions can provide accurate lists of
candidate effectors, experimental validation remains an indispensable step. In situ hybridization
(ISH) assays are commonly employed to determine gene spatial localization within the nematode
tissues (30). Transcripts of effector candidates have been validated by ISH in the gland cells of
migratory PPNs belonging to both clade 10 (e.g., 38, 39, 68) and clade 12 (167, 168, 170). A
new whole-mount nematode preparation, the Sperling prep, provides a more sensitive method
for localizing and enhancing the visualization of nematode transcripts. This advanced technique
utilizes ISH chain reactions to achieve improved resolution in the detection of specific transcripts
within PPNs (150).

4.2. Molecular Characterization of Migratory Nematode Effectors

Migratory endoparasitic PPNs can cause significant host cell damage (e.g., roots) while evading
recognition and avoiding HR from the plant (148). This suggests that these nematodes allocate
resources toward subverting host defense mechanisms. Interestingly, some species may possess
a distinct set of effectors to manipulate the cell cycle machinery of their host plants (e.g., An-
guinidae) (166). The variability of parasitic strategies among migratory PPN, coupled with their
wide host range, suggests a completely novel and unexplored realm in the effector biology of these
species.

Detailed molecular analyses of PPNs reveal a diverse and evolving repertoire of effectors,
shaped by various evolutionary processes such as LGT (27), neofunctionalization (97), and de
novo gene birth (168). Despite evolving distinct parasitic strategies, migratory and sedentary PPN
share a common set of effector genes and likely target similar host molecular pathways. Grouping
effectors into functional classes has underscored the significance of specific genes, or gene families,
including distinct sets of CWDEs, genes involved in suppression of host immunity, detoxification,
or modulation of ROS, among others.

4.2.1. Cell wall-degrading enzymes. The migratory nature of PPNs implies a continuous
movement through the plant tissues. To penetrate the host tissues, nematodes need to overcome
the plant cell wall, which consists of a rigid barrier to most pathogens (116). Consistent with
previous findings, migratory nematodes exhibit a significant array of CWDEs involved in the
degradation or modification of the host cell wall (Figure 3): GH gene families, such as cellulases
(GHY), polygalacturonases (GH28), xylanases (GH30), arabinases (GH43), and arabinogalactan
galactosidases (GHS53), among others (7, 10, 79, 81, 89, 128, 169).

Most genes encoding CWDEs are found in the gland cells of species from clades 10 and 12,
highlighting their role as genuine candidate effectors. In clade 12, the following species have been
validated so far: A. avenae (79), A. tritici (147), Ditylenchus africanus (57), D. destructor (128, 192),
Hirschmanniella oryzae (4), P. coffeae (6), P. penetrans (162, 167), Pratylenchus vulnus (43, 44), Praty-
lenchus zeae (47), and R. similis (55, 56, 168). In clade 10, the following species have been validated
so far: B. xylophilus (83-85) and A. besseyi (175). In contrast to the wide occurrence of GHS5 cellu-
lase genes within clade 12, GH45 cellulase genes have been exclusively identified in members of
clade 10 (48, 81, 83, 125, 175).
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Ectopic expression of different CWDEs (e.g., GH16, pectate lyases, and expansins) from
R. similis using a potato virus X (PVX)-based system led to plant phenotypes consistent with the
anticipated roles of these proteins (168). Likewise, PVX-expression of Pp-pme in Nicotiana ben-
thamiana caused lesion-like spots, chlorosis, vein clearing, and yellowing of leaves post-inoculation
(162), whereas expression of Pp-expl led to severe dwarfing, chlorosis, and HR-like lesions on
leaves and roots, along with the activation of defense responses in N. benthamiana (169). The na-
ture of these responses, whether direct or indirect recognition by the host defense system, remains
to be elucidated.

Employing RNA interference (RINAi) assays via nematode soaking or plant-mediated silencing,
targeting genes of these CWDE families has significantly hindered root invasion and nematode
development and reproduction. Several studies have focused on members of the GHS5 family,
including Aphelenchoides fragariae and A. ritzemabosi (48, 183), D. destructor (128), P. coffeae (6),
P, vulnus (43, 44), P. zeae (47), and R. similis (120). Additionally, targeting other CWDEs, such
as xylanase-encoding genes from R. similis (56) and P. coffeae (6), has proven effective in reducing
nematode infectivity, most likely because of impaired root penetration and migration.

The significant similarity between analogous genes in bacteria and fungi strongly suggests
that some of these CWDEs were acquired through LGT from microbial ancestors, followed by
gene duplication to enhance their pathogenicity (27, 83, 125, 138). For example, a new putative
B-mannanase, previously undocumented in nematodes, was identified for H. oryzae (4). More re-
cently, two new instances of putative LGT have been documented for P. penetrans and R. similis.
In the former, a pectin methylesterase gene marked the initial discovery of this family within
Nematoda (162). In the latter, the detection of an a-L-arabinofuranosidase (GH62) in R. similis
represented the first gene of this family ever found in any metazoan (168).

Analyses of stage-specific transcriptomes have also uncovered unique expression patterns of
specific CWDEs (153, 167, 168). In P. coffeae, the expression of specific CWDEs was found to
adjust to the composition of cellulose or xylan of different plant species, suggesting the ability of
the nematode to detect and react to specific root exudate components (6). These findings propose
that the ability to modulate gene expression in response to different host plants may represent a
common adaptive strategy among PPN (6).

4.2.2. Reactive oxygen species modulation-related effectors. A key feature of PTT is the
strong generation of ROS that mediates a multitude of plant defense mechanisms and related
metabolic processes (61, 123, 155). PPNs possess catabolic enzymes known to counterattack the
effects of ROS [e.g., superoxide dismutases (SODs), ascorbate peroxidases, catalases (CTLs), glu-
tathione peroxidases, or thioredoxins] (52). Although some of these proteins can protect cells
from ROS damage within the tissues, others can be part of the nematode effectorome and be
secreted into the surrounding environment or directly into the plant (52). Various antioxidant and
detoxification proteins (see Section 3.3.1) that are indeed produced in the nematode gland cells,
such as P, penetrans CTL (167) or Ab-GPx-1 (173), ultimately participate in parasitism (Figure 3).
The gland cell Bx-GST exhibited enzymatic activity against a-pinene, -pinene, and hydrogen
peroxide, suggesting a potential adaptation of the nematode to tackle the range of host-derived
compounds (39). The 2-cysteine peroxiredoxin of B. xylophilus (BxPrx) with expression in gland
cells and other tissues showed antioxidant activity, suggesting protection against free-radical ex-
posure in all life stages (96). The gland cell Bx Prx3-interacting effector 1 (BxPIEI), a small
cysteine-rich effector and novel virulence factor, specifically targets the Pinus thunbergii PtPrx3-1
(type-1II class haem-peroxidase), leading to suppression of ROS metabolism and inactivating jas-
monic acid (JA) and ethylene (ET) pathways (137). When silenced, siBxPIEI reduced nematode
reproduction and disease progression and simultaneously interfered with the upregulation of the
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host pathogenesis-related genes PtPR-3 (class IV chitinase) and PtPR-9 (peroxidase) (Figure 3)
137).

Another category of effectors that are not antioxidant enzymes but have been demonstrated
to influence ROS scavenging and potentially assist in managing oxidative stress are nematode-
specific transthyretin-like proteins (T'TLs). In B. xylophilus, a few genes encoding TTLs were
found to be expressed mainly in the esophageal glands (38, 180). Bx-tt7-52 has the ability to de-
grade hydrogen peroxide, and it has been shown to suppress the activity of several key antioxidant
enzymes of pine (e.g., CTL, SOD, PRX) (180). Similar to T'TLs, several putative secreted proteins
containing ShK domains have been localized in the gland cells of B. xylophilus (111), P. penetrans
(170), and R. similis (168). The gland cell-expressed Bx-ShKT gene of B. xylophilus revealed signif-
icant upregulation when exposed to hydrogen peroxide, suggesting a potential role in modulating
oxidative stress (111) (Figure 3).

4.2.3. Effectors targeting plant immunity responses. Evasion or suppression of the plantim-
mune responses is a hallmark of successful plant pathogens (119). There is growing evidence for
the role of secreted effector proteins from migratory PPNs in regulating and targeting key plant
molecular pathways involved in immunity to enhance nematode fitness. For example, calreticulin,
previously identified in Meloidogyne incognita, has been shown to inhibit PTT by suppressing the
activation of PTT defense-marker genes and callose deposition (73). Following this work, calreti-
culin transcripts were also confirmed in the esophageal glands of P. penetrans (167), P. zeae (47),
R. similis (94), D. destructor (128), and A. besseyi (45). Although the function of calreticulin in migra-
tory PPNs is not yet clear, exposure of R. similis to RINAi-induced gene silencing, either through
soaking assays or tomato transgenic plants expressing Rs-crt dsSRINA, reduced its reproductive abil-
ity and pathogenicity (94). Similarly, knockdown of the c7#-1 gene in both A. besseyi (Ab-crt-1) and
B. xylophilus (Bx-crt-1) led to reduced nematode reproduction (92), and affected nematode stress
adaptation and behavioral patterns (45).

In the second level of defense, plants employ nucleotide-binding and leucine-rich repeat (NB-
LRR) proteins, which are produced by disease resistance (R) genes, to detect effectors and activate
enhanced innate immunity (ETI) (75). This defense mechanism is characterized by its strength
and specificity, aimed at effectively countering the invading pathogens. PPNs have evolved a
suite of specialized effectors designed to counteract and suppress host cell death triggered in
response to infection. An expanding set of B. xylophilus effectors have been identified that specif-
ically suppress cell death. For instance, the BxSCD1 has the ability to suppress cell death and
immune responses (ROS and PTT marker genes) in N. benthamiana and P. thunbergii, by targeting
P, thunbergii PtACO1 (1-aminocyclopropane-1-carboxylate oxidase 1) (177) (Figure 3). Silencing
BxSCD1 led to a delay of the disease in P. thunbergii seedlings, thus showing a role in nematode vir-
ulence. In addition, this effector also shows some level of interaction with ET biosynthesis (177).
Two additional BxSCD have been characterized, namely BxSCD3 (66) and BxSCD5 (63). BxSCD3
is related to host immunity suppression, showing that when secreted into the intracellular space of
N. benthamiana, it can inhibit cell death triggered by the PAMPs PsXEG1 and INF1 from Phytoph-
thora sojae and Phytophthora infestans, respectively (66). Silencing of BxSCD3 impacted the defense
responses of P. thunbergii while enhancing nematode infection by downregulating the expression
of PtPR-3 and PtPR-6 genes (66). Additionally, BxSCDS is highly upregulated at early stages of
infection and suppresses PsXEG1-triggered cell death in N. benthamiana when it is secreted into
the apoplast (63).

Another effector, BxML1, contains an MD-2-related lipid-recognition (ML) domain and is
upregulated during the early stages of pine infection (190) (Figure 3). Co-expression of BxML1
suppressed BxCDP1-triggered cell death in N. benthamiana and specifically interacted with the
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P, thunbergii cyclophilin protein (PtCyP1) (188). Similarly, the candidate effector class III lipase,
BxLip-3, suppresses cell death triggered by the PAMPs PsXEG1 and BxCDP1 in N. benthamiana
(Figure 3) and is involved in lipid hydrolysis (131). The expression of two P. thunbergii class I chiti-
nases, PtChinl-3 and PtChinl—4, are inhibited by BxLip-3 during infection (131). In addition, this
effector also shows some level of interaction with PtPR-6 (JA-/ET-responsive genes). Two newly
reported gland cell-expressed Kunitz effectors, named BxKU1 and BxKU2, have been reported
for their ability to suppress cell death induced by PsXEG1 in P. thunbergii (179). Both proteins were
localized in the plant cell nucleus and cytoplasm when expressed in N. benthamiana and interacted
with the plant thaumatin-like protein 4 (TLP4). Additionally, BxKU2 also interacts with a cell
wall-related extensin-like protein (179) (Figure 3). Likewise, the B. xylophilus effector BxNMP1
also interacts with the thaumatin-like protein PtTLP-L2 in P, thunbergii (185) (Figure 3).

Venom allergen-like protein (VAP) coding genes represent a conserved family of proteins in
Nematoda and are known to play a significant role in undermining the host’s immune responses
(101, 102). VAPs belong to the cysteine-rich secretory protein (CAP) family and are character-
ized by highly conserved cysteine residues at their carboxyl terminus (181). In CNs, VAPs play a
role in suppressing basal immune responses by interacting with a tomato apoplastic papain-like
cysteine protease known as Rer3P™ (102). However, in the presence of the plasma membrane
immune receptor Cf-2, the disruptions caused by Gr-VAP1 on Rer3P™ trigger a defense-related
HR (101). Recent studies are beginning to unveil the significance of this gene family in migra-
tory endoparasitic nematodes. V4P genes have been widely reported, including species of both
clade 10, B. xylophilus (39, 77), and clade 12, D. africanus (57), D. destructor (23, 128), R. similis (91,
168), and P. penetrans (164, 167) (Figure 3). Interestingly, the increase in the expression patterns
of VAP genes is correlated with most stages of B. xylophilus (39, 77, 184), R. similis (91, 168), and
D. destructor (23), which likely reflects their role in suppressing host defense mechanisms along the
nematode migration. Transient expression of RsVAP of R. similis in tobacco leaves diminished host
defense responses by inhibiting the immune reaction triggered by the PAMP flg22 and inhibited
cell death induced by two different immune elicitors, BAX and Gpa2/RBP-1 (91). RsVAP interacts
with the tomato LeRabAld protein (ras-related protein RABA1d) and can influence host defense
responses (91). Silencing VAP genes via RNAI of R. similis and D. destructor compromised their
infectivity and/or lowered their reproduction rates, highlighting the significance of these genes
across different clades of the phylum Nematoda (23, 91).

Other effectors have been recognized for their capacity to induce cell death in host plants.
For example, a distinct set of genes coding for nematode saposin-like proteins, also known as
sphingolipid activator proteins, has been characterized in B. xylophilus (Figure 3). Collectively,
the data indicate that BxSapB1 (65) and BxSapB2 (191) are capable of triggering cell death in
N. benthamiana. Silencing BxSapB1 by RNAI led to reduced expression of the pathogenesis-related
genes PtPR-1b, PtPR-3, and PtPR-5 and delayed the onset of symptoms in infected P. thunbergii
(65).

Plant receptor-like kinases (RLKSs) are transmembrane proteins composed of extracellular re-
gions that act as sensors, perceiving external stimuli and propagating them through intracellular
kinase domains (13). Rice OSRLK3 is an RLK containing a LysM domain, known to interact
with PAMPs and self-defense reactions. The A. besseyi ATPase, Ab-atps, was found interacting
specifically with OsRLK3 (176) (Figure 3). Although Ab-atps was found expressed in the nema-
tode esophageal and reproductive system, it targets different subcellular locations of Nicotiana
tabacum such as the membrane, cytoplasm, and nucleus and triggers plant cell death 5 days after
leaf infiltration, suggesting a role in plant infection (176).

The novel molecular pattern BxCDP1 triggers innate immunity in N. benthamiana, activates
defense mechanisms in P, thunbergii, and plays a significant role in the virulence of B. xylophilus
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(64) (Figure 3). BxCDP1 induces cell death in several plant species (e.g., pine, Arabidopsis, tomato,
pepper, and lettuce plants) and triggers ROS production and the expression of several N. benthami-
ana PTT marker genes, such as Nicotiana benthamiana Avr9/Cf-9 rapidly elicited 31 (NbAcre31),
NbBPTIS, and NbCyp71D20 (64). In P. thunbergii, the pathogenesis-related genes PtPR-3, PtPR-4,
and PtPR-5 are also induced by BxCDP1 (64). Another gland cell-expressed gene, BxICDI, was
found to induce cell death in the apoplastic space of N. benthamiana, dependent on N. benthamiana
brassinosteroid-insensitive 1-associated kinase 1 (NbBAKI) (95). Knockdown studies showed that
BxICD1 contributes to nematode virulence and migration in 3-year-old Pinus massoniana seedlings
(Figure 3) (95). These responses are mediated by the plant RLK BAKI1, which forms recep-
tor complexes with several pathogen recognition receptors to positively regulate PTT. BAK1 is
involved in the recognition of nematodes and the activation of defense mechanisms. Several ef-
fectors produced by CNs and RKNs are known to manipulate BAK1 to suppress plant immune
responses and facilitate parasitism by interfering with the formation of BAK1-containing receptor
complexes, reducing the plant’s ability to recognize the presence of the nematode (154).

Other candidate effectors, including thaumatin-like proteins (TLPs) of B. xylophilus such as Bx-
TLP-1(112) and Bx-TH1 and Bx-TH2 proteins (87, 141), can trigger cell death when expressed in
N. benthamiana (Figure 3). Evidence suggests that TLPs are components of the nematode’s secre-
tome (141, 142). Transcripts of some thaumatin-like genes have been detected in the esophageal
gland cells of H. oryzae (4) and B. xylophilus (38); however, their specific functions remain unknown.
Bx-tlp-1 is regarded as an essential component of nematode pathogenicity. RNAi knockdown of
Bx-tlp-1 decreased B. xylophilus reproduction and delayed disease progression in pine seedlings
(112). Both Bx-THI and Bx-TH?2 induced high expression levels of PR genes (PR-2, PR-4, PR-5,
PR-6) at different time points post-infection in pine seed embryos, suggesting their involvement
in pine wilt disease (87) (Figure 3).

4.2.4. Modulation of plant hormone-mediated responses. Plant hormones are key compo-
nents of the immune system against PPNs (51). Among others, salicylic acid (SA), known to be
produced by phenylalanine ammonia lyase and the isochorismate synthase pathways, is a critical
plant hormone that can play a pivotal role as a signaling molecule in the host defense response
to plant pathogen infections. Therefore, the SA pathway is frequently targeted by PPNs. In
addition, pathogens can also disrupt JA and ET biosynthesis to undermine host defenses. Fol-
lowing the initial discovery of a chorismate mutase (CM) in Meloidogyne javanica (90), homolog
genes/transcripts of CM have since been reported in various migratory nematodes, including
H. oryzae (4, 5), R. similis (186), and several Pratylenchus species (58, 121, 164) (Figure 3). Among
these species, the most well-characterized functions of CM and isochorismate mutase (ICM) pro-
teins are derived from studies of H. oryzae (5). These authors demonstrated that both HoCM and
HoICM could restore the enzyme activity in Escherichia coli strains lacking these enzymes (5). Al-
though HoCM protein contains a signal peptide for secretion, HoICM does not, indicating that
some migratory effector genes might also be secreted into the host plant through other means.
Additionally, expression of various HoCM forms (either the mature protein or just the catalytic do-
main) in transgenic rice lines increased the plants’ susceptibility to both H. oryzae and Meloidogyne
graminicola (5).In contrast, HOICM only increased susceptibility to H. oryzae. Although SA content
remained unchanged, expression of HoCM in rice lines suggested that HoCM might affect the
host’s immune response by decreasing the formation of secondary phenylpropanoid metabolites
(5).In R. similis, CM transcripts were confirmed in the esophageal glands, with high expression in
females and juveniles (186). Ectopic expression in transgenic tomato roots increased susceptibility,
whereas RINAi silencing of RsCM affected nematode pathogenicity. Notably, expressing RsCM in
N. bentbamiana leaves reduced callose deposition and downregulated defense gene markers and

BAX-induced cell death (186) (Figure 3).
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4.2.5. Proteases and protease inhibitors. Large numbers of proteases and protease inhibitors
have been identified in the secretome of certain PPNs (e.g., 142). These secreted proteases likely
play various roles, such as facilitation of host tissue penetration, nutrient acquisition, and degrada-
tion of proteins, to interfere with host immune responses and enhance virulence (58, 114). Despite
nematodes having hundreds of protease-encoding genes (20), only a small subset is secreted into
plant tissues. For instance, the B. xylophilus genome contains a high number of digestive peptidases
identified among the PPNs, which are highly upregulated after host infection, as well as expanded-
family 125 peptidase inhibitors that inhibit C1 peptidase and legumain (C13 family) (17, 18, 81,
87). A subset of secreted proteases has been identified as relevant candidate effectors in various
migratory species. A serine carboxypeptidase AbSCPI from A. besseyi belonging to the S10 family
of carboxypeptidases was found expressed in the esophageal gland cells and in all developmental
nematode stages (68) (Figure 3). When expressed in planta, this effector targeted the nucleus and
impaired nematode pathogenicity when silenced via RNA, suggesting that AbSCP1 is relevant
for nematode parasitism (68). Moreover, various proteases have been localized in the esophageal
gland cells, as well as other nematode tissues, of R. similis (69), D. destructor (67), and P. penetrans
(167). Overall, silencing some of these genes revealed a significant impact on nematode invasion
and pathogenicity as well as nematode hatching and development, indicating their potential as
target genes for nematode control (67).

Protease inhibitors are abundant in the secretomes and transcriptomes of migratory nematodes
(72), which are thought to be secreted to target host proteases and enhance virulence. Several of
these genes have been localized in the esophageal gland cells of B. xylophilus (86), and P. penetrans
(164, 167, 170). Recent studies have shown that specific proteases (e.g., serine proteases, as well
as protease inhibitors such as trypsin inhibitor-like proteins) can be secreted via the excretory/
secretory (E/S) system of P, penetrans (167). In APNs, the E/S system is known to play a vital role
in modulating the host’s immune response (59).

4.2.6. Fatty acid metabolism. Fatty acid- and retinol-binding proteins (FARs) form a unique
family of a-helix-rich lipid-binding proteins with strong affinities for fatty acids, retinol, and
retinoic acids. Specific to nematodes, FAR proteins are known to play important roles in the in-
fection processes of PPNs (71, 130). In migratory PPN of clades 10 and 12, FAR transcripts are
notably abundant in the hypodermis (187) and esophageal gland cells (39, 167), suggesting their
secretion and their direct involvement in promoting parasitism. In B. xylophilus, Bx-FAR-1 is sug-
gested to interfere with the plant immune response mediating the expression of plant-related JA
pathway genes (93, 178), similar to the roles reported for CNs and RKNs (70, 71) (Figure 3). Bx-
FAR-1 is upregulated in the earlier stages of infection and, when silenced, results in a reduction of
the nematode reproductive ability and pathogenicity (93). In addition to targeting the nucleus and
inducing cell death in N. benthamiana (93), Bx-FAR-1 interacts with the P. thunbergii Pt-F-box-1
protein, which has been reported to mediate several biotic stresses (178).

FARs have also been identified as promising gene targets for disruption of nematode develop-
ment (26, 33, 34, 35, 187). In R. similis, the contrast between a highly pathogenic population and
its less pathogenic counterpart revealed a notable difference in Rs-far-1 gene expression levels.
In addition, RNAI assays further demonstrated that Rs-F4R-1 plays a pivotal role in modulating
the levels of allene oxide synthase, a critical enzyme in the JA pathway (187). In Aphelenchoides
spp., FAR genes showed multi-tissue localization suggesting different biological functions (26,
35). Immunofluorescence and subcellular localization showed Ab-far-1 from A. besseyi targeting
the nucleus and cytoplasm of A. thaliana (33). In addition, interaction between Ab-far-1 and
A. thaliana actin-depolymerizing factor protein AtADF3 was confirmed, suggesting its potential
relation with plant PTT inhibition and promotion of parasitism and pathogenicity of 4. besseyi (33)
(Figure 3).
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4.2.7. Pioneer genes. With recent advancements in effector identification, the substantial
prevalence of pioneer genes aligns with prior findings indicating that effectors of PPNs often
encompass a high proportion of novel genes with minimal overlap among different taxa. Effectors
are known to undergo rapid coevolution to manipulate their host targets efficiently and evade
host defense immunity (119, 149). Validation of dozens of candidate pioneer effectors in the gland
cells of P. penetrans (167, 170), R. similis (168), and B. xylophilus (38, 39) underscores the vast, yet
unexplored, effectorome within the Nematoda. The large majority of these pioneer genes are
species- or genus-specific, similar to the trend found for sedentary PPNs (109, 117, 134). However,
the proportion of novel effectors may currently be overestimated due to the incomplete genome
data available for many species. Furthermore, the overall absence of sequence similarity among
these effectors suggests that other methods are needed to extend beyond sequence homology. For
example, leveraging AlphaFold protein structural prediction can enhance the identification and
evolution of effector families of sequence-unrelated proteins across all PPNs, as shown in fungal
plant pathogens (140).

The genome of sedentary PPNs has unveiled a significant expansion within certain effector
gene families (149). For instance, a remarkable level of variation has been observed in SPRYSEC
(32) or the hypervariable (HYP) CN effector families (149). In the latter, HYPs are single-gene
loci that are composed of thousands of distinct alleles (149). This extensive allelic diversity un-
derscores the dynamic evolutionary processes within nematode populations, suggesting rapid
adaptation and specialization in response to host plants (149). In the case of migratory nema-
todes, the large majority of the identified pioneer effectors consist of single-copy genes, with only
a few instances showing variation from this pattern (167, 168, 171). Transcript profiles revealed
compelling evidence that a significant fraction of these pioneer effectors have a dynamic and pre-
ponderant expression during host interaction (38, 39, 167, 171). For example, ectopic expression
of three out of seven pioneer genes from P. penetrans led to noticeable phenotypes (171). Among
these, the Ppen10370 gene produced the most striking effects, resulting in vein necrosis and le-
sions in N. benthamiana leaves as well as small lesions in tomato and tobacco. C-terminal GFP
fusion of the mature Ppen10370 protein is localized in the endoplasmic reticulum (ER) network
(Figure 3). Transcriptome analysis linked these phenotypic changes to the differential expression
of genes involved in stress response, ER protein processing, and antioxidant and detoxification ac-
tivities. Although the host molecular targets of this effector are still unknown, silencing Ppen10370
significantly reduced nematode pathogenicity, highlighting its role in parasitism (171).

Opverall, our understanding of the function(s) of these pioneer effectors remains elusive. This
limitation not only stems from the inherent difficulties posed by their unannotated nature but is
also exacerbated by the unique challenges of generating viable transgenic PPNs (40).

5. CONCLUDING REMARKS

The growing volume of high-quality sequencing data on migratory endoparasitic nematodes is
enabling us to tackle more and new biological questions, uncovering fascinating aspects of their
biology and genetic adaptations. The ongoing research in this field has resulted in a substan-
tial increase in the number of additional candidate effectors and has uncovered a remarkable
evolutionary trend within the effectoromes of various economically important species. This cap-
ital of knowledge will provide valuable insights for a holistic effector computational structural
biology. This includes an in-depth understanding of their host targets and pathways to gain a
comprehensive knowledge of their molecular functions integrating a multidisciplinary omics ap-
proach. Understanding how effectors of these migratory PPNs interact with such a diverse range
of host plants will elucidate the convergent and specific regulatory mechanisms targeted by these
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nematodes. Ultimately, the translation of these findings will facilitate the development of new
gene-targeted strategies to manage these nematodes and create more resilient crops.
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