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Abstract

Distance Sampling theory is based on measurements of perpendicular distances
from a line (or radial distances from a point transect) to detected animals,
in order to estimate their probability of detection. In plain terrains, these
distances are often measured directly, with readily available instruments. In
mountainous terrains, several types of distances could be measured. Buckland
et al. [2] suggest horizontal projections of all measured distances (rather than
the distances measured over the ground) for consistency and to avoid potential
biases. However, simply projecting perpendicular distances on a horizontal
plane can lead to biased estimates, even with the inclusion of altitude as a
covariate to model detectability [1]. Here we show that this bias can be due
to the violation of the uniformity of the projected perpendicular distances. We
propose estimators of detection probability that could be useful when sampling
in uneven terrains. Estimators’ performance is compared with those used in
conventional distance sampling.

Distances in mountainous terrains

Commonly used instruments are:

� GPS: to record the coordinates and the length of a given transect;

� rangefinder: to measure the distance between the observer and a detected
animal;

� compass: to measure angles.

Detection probability estimation

Conventional detection probability estimator

P̂a =

∫ w

0

ĝ(y)f (y)dy =
1

w

∫ w

0

ĝ(y)dy =
µ̂

w
, (1)

where

�w is the truncation distance;

� g(y) = P (detection|distance y) is the detection function;

� f (y) = 1
w is the pdf of perpendicular distances y.

Common problems in mountainous terrains

� Projected transects with unequal width;

� Projected truncation distance is not necessarily the same for both sides of
line transect.

The pdf of the perpendicular distances, y, from the line transect is

Proposed detection probability estimator

P̃a =

κ∑
i=1

∫ wi

wi−1

ĝ(y)f ∗(y)dy, (2)

where

� κ represents the number of distinct truncation distances wi;

�w0 < w1 < ... < wκ, w0 = 0 and wκ = max(wi) = w;

� f ∗(y) = 1
(wi−wi−1)

ci∑κ
j=1 cj

, wi−1 ≤ y < wi, i = 1, ..., κ;

� ci is the cumulative absolute distribution of step level

ci =

{
1, if i = 1

1− 1
C

∑i−1
j=1

αj
wj
, if i = 2, ..., κ,

� 0 < αi < 1, is the contribution of strip with width wi and
∑κ

i=1αi = 1;

�C =
∑κ

j=1 (αj/wj).

We considered the following estimators for Pa:

P̃a1:αi = pi, i = 1, ..., κ and pi is the relative frequency of each wi observed;

P̃a2: κ = 2, w1 = w̄, w2 = max(wi) and αi = 1/2;

P̃a3: κ = 2, w1 = (max(wi) + min(wi))/2, w2 = max(wi) and αi = 1/2;

P̃a4: κ = 2, w1 = w̃, w2 = max(wi), where w̃ represents the median of the w
and αi = 1/2.
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Simulation

Surfaces generated with projected square area A = [0; 1]× [0; 1]:

� Population with N = 510 animals randomly located;

� Random placement of k = 5 and k = 10 transect lines on u axis;

� Artificial sightings generated with g(r) = exp{−r2/(2θ2)}, for 0 ≤ r ≤ wr, of
the inclined distances;

� Probability of detection considered Par = 0.61.

Scenario k wr θ ā N̄c n̄

1. Two slopes
5

0.0234 0.012
0.2013 102.4 62.7

10 0.4020 204.9 125.3

2. Curve
5

0.0491 0.025
0.2972 156.0 95.5

10 0.6075 312.3 191.4

ā: Mean covered area; N̄c: mean population size in the coverage area, n̄: mean sample size.

Discussion

� In scenario 1 all estimators underestimate the true variance;

� High number of outliers, which contribute to an increase in the variance and
also to the asymmetry of the distributions;

� For a highly varying slope surface (scenario 2):
� Conventional estimator has a poor performance;
� P̃a3, presents a much better performance (less biased and more precise) than the others.
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