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Abstract
Logic programs, more specifically, answer-set programs, can be annotated with probabilities on facts
to express uncertainty. We address the problem of propagating weight annotations on facts (e.g.
probabilities) of an answer-set program to its stable models, and from there to events (defined as
sets of atoms) in a dataset over the program’s domain.

We propose a novel approach which is algebraic in the sense that it relies on an equivalence
relation over the set of events. Uncertainty is then described as polynomial expressions over variables.

We propagate the weight function in the space of models and events, rather than doing so
within the syntax of the program. As evidence that our approach is sound, we show that certain
facts behave as expected. Our approach allows us to investigate weight annotated programs and to
determine how suitable a given one is for modeling a given dataset containing events. It’s core is
illustrated by a running example and the encoding of a Bayesian network.
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1 Introduction

Using a logic program (LP) to model and reason over a real world scenario is often difficult
because of uncertainty underlying the problem being worked on. Classic LPs represent
knowledge in precise and complete terms, which turns out to be problematic when the
scenario is characterized by stochastic or observability factors. We aim to explore how
answer-set programs (ASPs) plus weight annotated facts can lead to useful characterizations
for this class of problems. To setup a working framework, we make the following assumption:
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3:2 Weighted ASP

▶ Assumption 1 (System Representation, Data and Propagation). Consider a system whose
states are partially observable ( i.e. observations can miss some state information) or
stochastic ( i.e. observed values are affected by random noise). We assume that know-
ledge about such system features a formal specification including weighted facts and empirical
data such that:
Representation The system has a formal representation2 in the form of a certain logic

program; The program’s stable models correspond one-to-one with the system states.
Data Data is a set of observations; a single observation (of the system states) results from

a set of (boolean) sensors.
Propagation The weights in facts are propagated to the stable models of the representation.

In this setting, data from observations can be used to estimate some parameteres used in
the propagation process and, more importantly, to address the question of “How accurate is
the representation of the system?”. Other probabilistic logic programming (PLP) systems
such as Problog [7], P-log [4] or LPMLN [15], in line with Kifer and Subrahmanian [13],
derive probability distributions from program syntax, limiting them to prior information. We
question such methods and address stable model (SM) uncertainty by including parameters for
unknown quantities, estimable with data. To frame this setting we extend our assumptions:

▶ Assumption 2 (Sensor Representation and Events).
Sensors The sensors of the system’s states are associated to some atoms in the representation;
Events An event is a set of atoms from the representation.

Following the terminology set by Calimeri et al. [5], sensors activate atoms (a) whereas
no activation is represented by default negation (naf) ∼a. Negated atoms (¬a) work similarly.
By assumption 2, events can represent hidden or faulty sensors, like {a,¬a,∼b,∼¬b,∼c,¬c},
where a and ¬a are activated, b is hidden, and ¬c is consistently activated. Not all events
are observations, and some may not uniquely determine system states – how to associate
events to stable models and, thus, to system states, is addressed in Section 4.

If we (i) omit the naf-literals; (ii) use x to denote the classical ¬x; (iii) and use expressions
like ab to denote sets of literals such as {a, b}, then the event {a,¬a,∼b,∼¬b,∼c,¬c} can be
shortened to the equivalent form aac. We follow the convention of denoting a model by “true”
atoms (positive or negative), with “falsehood” resulting from default negation [11]. Models
include atoms like a or b but not literals ∼a. Sensor input is represented using positive and
negative atoms, considering different sensors or a single sensor yielding positive/negative
values.

Weights, not probabilities, are used to define a weight function on SMs, extended to all
events. The step from facts to SMs is non-deterministic, and parameters represent non-unique
choices, estimable with data. ASPs, based on SMs semantics, use SAT solving [10, 1, 19]
or top-down search [2, 3, 18]. Distribution semantics (DS) [25, 23] extends logic programs
with probabilistic reasoning. We are particularly interested in the following setting and
application scenarios of such an extension to logic programs:
Partial observability A system’s state can have hidden variables, not reported by the sensors.
Sensor error Information gathered from the sensors can carry stochastic perturbations.
Representation induction Combine representations and data to induce more accurate

representations.

2 We use “representation” instead of “model” to avoid confusion with the stable models of answer-set
programs.
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Probabilistic tasks Support common probabilistic tasks such as maximum a posteriori (MAP),
maximum likelihood estimation (MLE) and Bayesian inference (BI) on the representation
domain i.e. the set of all events.

Probabilistic tasks and simple examples

Maximum a posteriory (MAP) MAP estimates model parameters by combining prior beliefs
with data likelihood to find the most probable values:

θ̂MAP = arg max
θ

P(θ | X)

For a biased coin with heads probability θ following a Beta distribution, observing 7
heads in 10 flips, the MAP estimate of θ maximizes the posterior distribution combining
the prior Beta and the likelihood of the observations.

Maximum likelihood estimation (MLE) MLE estimates model parameters by maximizing
the likelihood of observed data:

θ̂MLE = arg max
θ

P(X | θ)

For 7 heads in 10 flips, the MLE estimate of the probability of heads is θ = 0.7.
Bayesian inference (BI) Bayesian Inference updates hypothesis probabilities by combining

prior beliefs with observed data to produce a new probability distribution.

P(θ | X) = P(X | θ) P(θ)
P(X)

Bayesian Inference updates a Beta prior (α, β) with 7 heads and 3 tails from 10 flips,
resulting in a Beta posterior (α + 7, β + 3).

The remainder of this article is structured as follows: Section 2 provides necessary context.
In Section 3 we discuss the syntax and semantics of our proposed language for weighted
answer-set programs (WASPs). We also define a weight function over total choices and address
the issue of how to propagate these weights from facts to events, in Section 4. This method
relies on an equivalence relation on the set of events. Furthermore, we express uncertainty
by polynomial expressions over variables which depend on the total choices and on the
stable models. By then the Partial Observability and Sensor Error points are addressed. An
evidence that our approach is sound is given by Equation (28) where we show that replacing
certain facts (with weight 1.0) by deterministic facts does not change the probability. Some
final remarks and ideas for future developments including Representation Induction and the
Probabilistic Tasks are presented in Section 5.

2 Framework

We start by refining assumptions 1 and 2 to set “representation” as an “ASP with weights”:

▶ Assumption 3 (Representation by answer-set programs with weigths).
Answer-set programs and weights A representation of a system is an answer-set program

that includes weighted facts.
A weighted fact (WF) or an annotated fact has the from “a : w” where a is an atom,
w ∈ [0, 1], and “derives” the disjunctive fact “a ∨ a”. A model may include either a or a but
never both.

SLATE 2025



3:4 Weighted ASP

Selecting one of a, a for each WF in a program will lead to a total choice (TC) 3. Propagating
weights from WFs to TCs is relatively straightforward (see Equation (6)) but propagation to
events requires a step trough the program’s stable models, addressed in Section 4.

About propagating weights from total choices

Propagating weights from TCs to SMs and events faces non-determinism, as seen in program
P1 from ex. 1, where multiple SMs (ab, ac) result from a single TC (a) without clear weight
assignment. We use algebraic variables to address this, allowing deterministic propagation.
Variable values can be estimated from data, contributing to Representation Induction.
Related works use credal sets [6] or Bayesian approaches [28] to handle uncertainty, while
our method remains algebraic.

3 Syntax and Semantics of Weighted ASP

We start the formal definition of weighted answer-set program with the setup and discussion of
a minimal syntax and semantics of propositional ASP, without variables, functors or relation
symbols, but enough to illustrate our method to propagate weights from annotated facts to
events. From now on “¬x” and “x” denote classical negation and “∼x” default negation.

Syntax

We slightly adapt Calimeri et al.’s approach [5]. Let A be a finite set of symbols, the positive
atoms. For a ∈ A, the expressions a and ¬a (the later a negative atom, also denoted a) are
(classical) atoms. If a is an atom, the expressions a and ∼a are (naf-)literals. A rule is of
the form

h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm

where the hi are atoms and the bj are literals. The symbol “←” separates the head from
the body. A rule is a constraint4 if n = 0, normal if n = 1, disjunctive if n > 1, and a fact if
m = 0.

An answer-set program (ASP) is a set P of facts and other rules, denoted, resp. F(P )
and R(P ), or simply F and R. In a normal program all the rules are normal. Notice that
programs with constraint or disjunctive rules can be converted into normal programs [9].

Semantics

The standard semantics of an ASP has a few different, but equivalent, definitions [17]. A
common definition is as follows [11]: let P be a normal program. The Gelfond/Lifschitz
reduct of P relative to the set X of atoms results from (i) deleting rules that contain a literal
of the form ∼p in the body with p ∈ X and then (ii) deleting the remaining literals of the
form ∼q from the bodies of the remaining rules. Now, M is a stable model (SM) of P if it is
the minimal model of the reduct of P relative to M . We denote by S(P ), or simply S, the
set of stable models of the program P .

3 We use the term “choice” for historical reasons, e.g. see [6] even though not related to the usual “choice”
elements, atoms or rules from e.g. [5]

4 An “integrity constraint” in [5].
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Evaluation without grounding

While the most common form to generate stable models is based on grounding, a different
approach is the one supported by s(CASP), that evaluates ASP programs with function
symbols and constraints without grounding, enabling human-readable explanations and
addressing grounding-based solvers’ issues of exponential growth and unnecessary complete
model computation.

WASPs and their Derived Programs
If a is an atom and w ∈ [0, 1], a weighted fact (WF) (or a fact with weight annotation) is
a : w. Notice that we have w ∈ [0, 1] but w is interpreted as a balance between the choices a

and a, and not a probability.
Weighted answer-set programs (WASPs) extend ASPs by adding WFs. We denote the set

of weighted facts of a program P by W(P ), and AW(P ) the set of positive atoms in W.
When possible we simplify notation as W,AW .

Our WASPs definition is restricted to illustrate weight propagation from TCs to events,
excluding logical variables, relation symbols, and functors. Weight annotations aren’t used
on rule heads or disjunctions, but this doesn’t limit expressiveness:

α : w ← β =⇒
{

γ : w,

α← β ∧ γ
(1)

while annotated disjunctive facts

α ∨ β : w =⇒


γ : w,

α ∨ β ← γ,

α← γ, β ← γ.

(2)

Derived program

The derived program of a WASP is the ASP obtained by replacing each weighted fact a : w by
the derived disjunction a ∨ a. The stable models of a WASP program are the stable models of
its derived program. So, we also denote the set of SMs of a (derived or) WASP program P by
S(P ) or S.

Events

An event of a program P is a set of atoms from P . We denote the set of events by E(P ) or
simply E . An event e ∈ E which includes a set {x, x} is said to be inconsistent; otherwise it
is consistent. The set of consistent events is denoted by C.

▶ Example 1 (A simple weighted answer-set program). Consider the following WASP :

P1 =
{

a : 0.3,

b ∨ c← a
(3)

with weighted facts W = {a : 0.3}. The derived program is the ASP

P ′
1 =

{
a ∨ a,

b ∨ c← a,
(4)

with SMs S = { a, ab, ac }. The atoms are A =
{

a, a, b, b, c, c
}

and the events are E = 2A 5.

5 2X is the power set of X: A ∈ 2X ⇔ A ⊆ X.
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3:6 Weighted ASP

Total Choices and their Weights
A disjunctive head a ∨ a in the derived program represents a single choice, either a or a. We
define the set of total choices (TCs) of a set of atoms by the recursion

T
(
∅
)

= ∅,

T (X ∪ a) =
⋃

t∈T(X)

(t ∪ a) ∪
⋃

t∈T(X)

(t ∪ a) (5)

where X is a set of atoms and a is an atom. The total choices of a WASP P are the TCs
of the positive atoms in it’s weighted facts: T (P ) = T

(
AW(P )

)
. When possible we write

simply T . Given a WASP, the weight of the total choice t ∈ T is given by the product

ωT (t) =
∏

a:w ∈ W,
a ∈ t

w ×
∏

a:w ∈ W,
a ∈ t

w. (6)

Here w = 1 − w, and we use the subscript in ωT to explicitly state that this function
concerns total choices. Later we’ll use subscripts S, E to deal with weight functions of stable
models and events, ωS , ωE . Some stable models are entailed from some total choices while
other SMs are entailed by other TCs. We write S(t) to represent the set of stable models
entailed by the total choice t ∈ T . Our goal can now be rephrased as to know how to
propagate the weights of the program’s total choices, ωT , in Equation (6) to the program’s
events, ωE to be defined later, in Equations (21a) and (21b).

Propagation of weights

As a first step to propagate weight from total choices to events, consider the program P1 of
Equation (3) and a possible propagation of ωT : T → [0, 1] from total choices to the stable
models, ωS : S → [0, 1] (still informal, see Equation (16)). It might seem straightforward, in
ex. 1, to set ωS(a) = 0.7 but there is no explicit way to assign values to ωS(ab) and ωS(ac).
We represent this non-determinist by a parameter θ as in

ωS(ab) = 0.3 θ,

ωS(ac) = 0.3 (1− θ)
(7)

to express our knowledge that ab and ac are models entailed from a specific choice and,
simultaneously, the inherent non-determinism of that entailment. In general, it might be
necessary to have several such parameters, each associated to a given stable model s (in
Equation (7), s = ab in the first line and s = ac in the second line) and a total choice t (t = a

above), so we write θs,t. Obviously, for reasonable θs,t, the total choice t must be a subset of
the stable model s.

Unless we introduce some bias, such as θ = 0.5 as in LPMLN [15], the values for θs,t can’t be
determined just with the information given in the program. But it might be estimated with
the help of further information, such as an empirical distribution from a dataset. Further
discussion of this point is outside the scope of this paper.

Now consider the program{
a : 0.3,

b← a ∧ ∼b
(8)
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that has a single SM, a. Since the weights are not interpreted as probabilities, there is no need
to have the sum on the stable models equal to 1. So the weights in the TCs of Equation (8)
only set

ωS(a) = 0.7.

In this case, if we were to derive a probability of the SMs, normalization would give P(a) = 1.0.
Also facts without annotations can be transformed into facts with weight 1:

a =⇒ a : 1.0. (9)

The method that we are proposing does not follow the framework of Kifer and Subrah-
manian [13] and others, where the syntax of the program determines the propagation from
probabilities explicitly set either in facts or other elements of the program. Our approach
requires that we consider the semantics, i.e. the stable models of the program, independently
of the syntax that provided them. From there we propagate weights to the program’s events
and then, if required, normalization provides the final probabilities. Moreover, we allow
the occurrence of variables in the weights, in order to deal with the non-determinism that
results from the non-uniqueness of SMs entailed from a single TC. These variables can be
later estimated from available data.

Related Approaches and Systems
The core problem of setting a semantics for probabilistic logic programs, the propagation
of probabilities from total choices to stable models in the case of ASP or to other types in
other logic programming systems (e.g. to possible worlds in Problog) has been studied for
some time [13, 25]. For example, the credal set approach [6], defines PT in a way similar to
Equation (6) but then, for a ∈ A, t ∈ T , the probability P(a | t) is unknown but bounded by
P(a | t) and P(a | t), that can be explicitly estimated from the program.

Problog [8, 28] extends Prolog with probabilistic facts so that a program specifies a
probability distribution over possible worlds. A world is a model of T ∪ R where T is a
total choice and R the set of rules of a program. The semantics is only defined for sound
programs [24] i.e., programs for which each possible total choice T leads to a well-founded
model that is two-valued or total. The probability of a possible world that is a model of
the program is the probability of the total choice. Otherwise the probability is 0 [24, 27].
Another system, based on Markov Logic [22], is LPMLN [15, 16], whose models result from
weighted rules of the form a ← b ∧ n where a is disjunction of atoms, b is conjunction of
atoms and n is constructed from atoms using conjunction, disjunction and negation. For
each model there is a unique maximal set of rules that are satisfied by it and the respective
weights determine the weight of that model, that can be normalized to a probability.

Towards Propagating Weights from Total Choices to Events
The program P1 in Equation (3) from ex. 1 showcases the problem of propagating weights
from total choices to stable models and then to events. The main issue arises from the lack
of information in the program on how to assign un-biased weights to the stable models. This
becomes crucial in situations where multiple stable models result from a single total choice.

Our assumptions 1–3 enunciate that a WASP program represents a system; the states of
that system, which are partially observable and stochastic, are associated to the program’s
stable models; and state observations are encoded as events, i.e. sets of atoms of the program.
Then:
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λ

cab

ab ac

abccab bac

bc

a

ac

abc

Figure 1 This diagram shows events related to the stable models of program P1. Circle nodes are
total choices, shaded nodes are SMs. Solid lines show SM relations, dashed lines show subset/superset
relations. The set of events in all SMs, Λ, is {λ} because a ∩ ab ∩ ac = ∅.

λ

cab

ab ac

abccab bac

bc

a

ac

abc

Figure 2 Classes of (consistent) events related to the stable models of P1 are defined through
sub-/super-set relations. In this picture we can see, for example, that {cab, ab, b} and {a, abc} are
part of different classes, represented by different fillings. As before, the circle nodes are total choices
and shaded nodes are stable models. Notice that bc is not in a filled area.

1. With a weight set for the stable models, we extend it to any event in the program domain.
2. If statistical knowledge is available, it’s considered external and doesn’t affect the propaga-

tion procedure.
3. However, that knowledge can be used to estimate the parameters θs,t and to “score” the

program.
4. If a program is one of many candidates, its score can be used as fitness by algorithms

searching for optimal programs in a dataset.
5. If events are not consistent with the program, then we ought to conclude that the program

is wrong and must be changed accordingly.
We address propagating weights from stable models to events using parameters like θ. This
defines a function µE that can be normalized to set probabilities PE , ensuring consistent
probabilistic reasoning with the ASP program.

4 Propagating Weights

The diagram in Figure 1 shows the challenge of propagating weights from total choices to
stable models and then to general events, where node values depend on neighbours. This
leads to interpretation issues, such as assigning unexplained values to nodes like bc. We
propose basing propagation on the event’s relation to stable models instead.



F. Coelho, B. Dinis, D. Seipel, and S. Abreu 3:9

♢

a

ab
ac

a, ab
a, ac

ab, ac

Λ

⊥ (inconsistent)

Figure 3 This diagram shows the lattice of stable cores from ex. 1. Nodes are stable cores derived
from stable models, plus the inconsistent class. The bottom node is the independent events class,
with no relation to SMs. The top node represents events related to all SMs (consequences). Shaded
nodes are SMs.

4.1 An Equivalence Relation
Our approach to propagating weights views stable models as prime factors or “irreducible
events”. Events are considered based on their relation to SMs. In ex. 1, a relates to ab and
ac, while c only relates to ac. Thus, a and c relate to different SMs, but a and abc relate to
the same SMs. We formalize this relation. The stable core (SC) of the event e ∈ E is

JeK := { s ∈ S | s ⊆ e ∨ e ⊆ s } (10)

where S is the set of stable models.
Notice that the minimality of stable models implies that either e is a stable model or

at least one of ∃s (s ⊆ e) ,∃s (e ⊆ s) is false i.e., no stable model contains another. We now
define an equivalence relation so that two events are related if either both are inconsistent or
both are consistent and, in the latter case, with the same stable core.

▶ Definition 2 (Equivalence Relation on Events). For a given program, let u, v ∈ E. The
equivalence relation u ∼ v is defined by

u, v ̸∈ C ∨
(
u, v ∈ C ∧ JuK = JvK

)
. (11)

This equivalence relation defines a partition on the set of events, where each class holds a
unique relation with the stable models. In particular we denote each class by:

[e]∼ =

⊥ := E \ C if e ∈ E \ C,{
u ∈ C

∣∣ JuK = JeK
}

if e ∈ C.
(12)

where ⊥ denotes the set E \ C of inconsistent events, i.e. events that contain {x, x} for some
atom x.

Let λ be the empty set event (notice that λ = ∅ ∈ E) 6, and Λ the consequence class of
(consistent) events related with all the stable models. Then

[λ]∼ = Λ. (13)

The combinations of stable models, i.e. the stable cores, together with the set of incon-
sistent events (⊥) forms a set of representatives for the equivalence relation ∼. Since all

6 We adopt the notation “λ” for empty word, from formal languages, to distinguish “∅ ∈ E” from “∅ ⊂ E”.

SLATE 2025



3:10 Weighted ASP

events within a consistent equivalence class have the same stable core, we are interested
in functions (including weight assignments), that are constant within classes. A function
f : E → Y , where Y is any set, is said to be coherent if

∀e ∈ E ∀u ∈ [e]∼
(
f(u) = f(e)

)
. (14)

Considering coherent functions, in the specific case of Equation (3), instead of dealing
with the 26 = 64 events, we need to consider only the 23 + 1 = 9 classes, well defined in terms
of combinations of the stable models, to define coherent functions. In general, a program with
n atoms and m stable models has 22n events and 2m + 1 stable cores – but easily m≫ n.

4.2 From Total Choices to Events
The “propagation” phase, traced by Equation (6) and Equations (16)–(21b), starts with the
weight of total choices, ωT (t), propagates it to the stable models, ωS(s), and then, within
the equivalence relation from Equation (11), to a coherent weight of events, ωE(e). So we
are specifying a sequence of functions

ωT −→ ωS −→ ωR −→ ωE (15)

on successive larger domains

T −→ S −→ [E ]∼ −→ E

such that the last function (ωE) is a finite coherent function on the set of events and thus, as a
final step, it can easily be used to define a probability distribution of events by normalization:

ωE −→ PE .

Total choices and Stable models
Let’s start by looking into the first two steps of the sequence of functions Equation (15): ωT
and ωS . The weight ωT of the total choice t ∈ T is already given by Equation (6). Recall
that each total choice t ∈ T , together with the rules and the other facts of a program, defines
the set S(t) of stable models associated with that choice. Given a total choice t ∈ T , a stable
model s ∈ S, and formal variables or values θs,t ∈ [0, 1] such that

∑
s∈S(t) θs,t = 1, we define

ωS(s, t) :=

θs,t if s ∈ S(t)
0 otherwise.

(16)

The θs,t parameters in Equation (16) express the program’s lack of information about
the weight assignment, when a single total choice entails more than one stable model. We
address this issue by assigning a possibly unknown parameter, i.e. a formal algebraic variable
(θs,t) associated with a total choice (t) and a stable model (s). This allows the expression of a
quantity that does not result from the program’s syntax but can be determined or estimated
given more information, e.g. observed data.

As sets, two stable models can have non-empty intersection. But because different SMs
represent different states of a system –which are disjoint events – we assume that the algebra
of the stable models is σ-additive.
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▶ Assumption 4 (Stable models as disjoint events). For any set X of stable models and any
total choice t,

ωS(X, t) =
∑
s∈X

ωS(s, t) . (17)

Equation (17) is the basis for Equation (19a) and effectively extends ωS : S × T → R to
ωS : 2S × T → R. Now the pre-condition of Equation (16) can be stated as ωS

(
S(t) , t

)
= 1.

Classes
The next step in the sequence of Equation (15) is the function ωR on [E ]∼. Each class of
the relation ∼ (eq. 11) is either the inconsistent class (⊥) or is associated with a stable core,
i.e. a set of stable models. Therefore, ωR is defined considering the following two cases.

Inconsistent class

This class contains inconsistent events; they should not be observed and have weight zero.

ωR(⊥, t) := 0. (18)

Consistent classes

To be coherent, the propagation function must be constant within a class and its value
dependent only on the stable core:

ωR
(
[e]∼, t

)
:= ωS

(
JeK , t

)
=

∑
s∈JeK

ωS(s, t) . (19a)

and we further define the following:

ωR
(
[e]∼

)
:=

∑
t∈T

ωT (t) ωR
(
[e]∼, t

)
(19b)

Equation (19a) states that the weight of a class [e]∼ is the weight of its stable core (JeK)
and Equation (19b) averages Equation (19a) over the total choices. Notice that Equation (19a)
also applies to the independent class, ♢ =

{
e

∣∣ JeK = ∅
}

, because events in this class are not
related with any stable model:

ωR(♢, t) =
∑
s∈∅

ωS(s, t) = 0. (20)

Events and Probability
Each consistent event e ∈ E is in the class defined by its stable core JeK. So, denoting the
number of elements in X as #X, we set:

ωE(e, t) :=


ωR([e]∼,t)

#[e]∼
if #[e]∼ > 0,

0 otherwise.
(21a)

and, by averaging over the total choices:

ωE(e) :=
∑
t∈T

ωT (t) ωE(e, t) . (21b)
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The Equation (21b) is the main goal of this paper: propagate the weights associated to
facts of an WASP to the set of all events of that program. In order to get a probability from
Equation (21b), concerning the Probabilistic Tasks goal, we define the normalizing factor :

Z :=
∑
e∈E

ωE(e) =
∑

[e]∼∈[E]∼

ωR
(
[e]∼

)
, (22)

and now Equation (21b) provides a straightforward way to define the probability of a single
event e ∈ E :

PE(e) := ωE(e)
Z

. (23)

Equation (23) defines a coherent prior7 probability of events and, together with external
statistical knowledge, can be used to learn about the initial probabilities of the atoms.

The effect of propagation

To assess weight propagation from SMs to events, compare PE with syntactically induced
probabilities from fact weights. It is sufficient to check if PE(t) = PT (t) for all total choices.
Normalize TCs weights to get a probability distribution. For t ∈ T ,

PT (t) = ωT (t)∑
τ∈T ωT (τ) (24)

And now we ask if these probabilities coincide in T : ∀t ∈ T
(
PE(t) = PT (t)

)
?

It is easy to see that, in general, this cannot be true. While the domain of PT is the set
of total choices, for PE the domain is much larger, including all the events. Except for trivial
programs, some events other than total choices will have non-zero weight: If a program has
a consistent event e ∈ C \ T such that PE(e) ̸= 0 then there is at least one t ∈ T such that

PT (t) ̸= PE(t) . (25)

The essential, perhaps counter-intuitive, conclusion of Equation (25) is that we are dealing
with two distributions: PT , restricted to the total choices, results syntactically from the
annotations of the program, while PE , extended to events, results from both the annotations
and the program’s semantics, i.e. the stable models. For ex. 1:

PT (a) = 0.3 from the program and PE(a) = 3
64 from Equation (29).

Now PE : E → [0, 1] can be extended to PE : 2E → [0, 1] by abusing notation and setting,
for X ⊆ E ,

PE(X) =
∑
x∈X

PE(x) . (26)

It is straightforward to verify that the latter satisfies the Kolmogorov axioms of probability.
We can now properly state the following property about certain facts such as a : 1.0.

Consider a program A with the weighted fact α : 1.0 and B that results from A by replacing
that fact by the deterministic fact α. Then

∀e ∈ E
(

ωA
E (e) = ωB

E (e)
)

. (27)

7 In the Bayesian sense that future observations might update this probability.
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Normalization of Equation (27) entails that, for PA
E given by Equation (23) for A and PB

E
for B, then

∀e ∈ E
(

PA
E (e) = PB

E (e)
)

. (28)

▶ Example 3 (Probability of Events). The coherent prior probability of events of program P1
in ex. 1 is

JeK ⊥ ♢ a ab ac a, ab a, ac ab, ac Λ
PE(e) 0 0 7

207
1

23 θ 1
23 θ 0 0 3

46
10
23

(29)

To compute the probability of e ∈ E find the column of the event’s stable core:
ωE(ab) = θ

23 , because ab is the only SM related with ab so JabK = {ab} and the weight
value is found in the respective column of Equation (29).
ωE(abc) = 3

46 because abc ⊃ ab and abc ⊃ ac. So JabcK = {ab, ac}.
ωE(bc) = 0 because, since there is no SM s that either s ⊂ bc or bc ⊂ s, JbcK = ∅ i.e.
bc ∈ ♢.
ωE(a) = 7

207 and ωE(a) = 3
46 .

Notice that ωE(a) + ωE(a) ̸= 1. This highlights the fundamental difference between ωE
and ωT (cf. Equation (25)), where the former results from the lattice of the stable cores and
the latter directly from the explicit assignment of probabilities to literals. Related with this
case, consider the complement of a consistent event e, denoted by ∁e. To calculate PE

(
∁e

)
find the classes in [E ]∼ that are not [e]∼, i.e. the complement of e’s class within [E ]∼8, ∁[e]∼.
Considering that [E ]∼ is in a one-to-one correspondence with the stable cores plus ⊥,

[E ]∼ ≃
{
⊥,♢, {a} , {ab} , {ac} , {a, ab} , {a, ac} , {ab, ac} , Λ

}
.

In particular, for ωE
(
∁a

)
, since JaK = {ab, ac} then ∁[a]∼ = [E ]∼ \ [a]∼ and PE

(
∁a

)
=

PE
(
[E ]∼ \ [a]∼

)
= 1− PE(a). Also, PE

(
∁a

)
= 1− PE(a).

While not illustrated in our examples, this method also applies to programs that have
more than one probabilistic fact, like{

a : 0.3, b : 0.6,

c ∨ d← a ∧ b.

4.3 Encoding of Bayesian Networks
Our approach generalizes to Bayesian networks similarly to previous works [6, 21, 12, 26].
Acyclic propositional programs can be seen as Bayesian networks with binary variables, where
the structure is the dependency graph, and variables correspond to atoms with probabilities
from facts and rules. Conversely, any binary Bayesian network can be specified by an
acyclic non-disjunctive WASP. A classic example in Bayesian networks involves the events
Burglary (B), Earthquake (E), Alarm (A), and calls from Mary (M) and John (J) [20].
These events have conditional probabilities, such as the alarm going off given a burglary or
earthquake, and neighbors calling if they hear the alarm. The example illustrates reasoning
under uncertainty. We follow the convention of representing the (upper case) random variable
X by the (lower case) positive atom x. From Figure 4 we obtain the following specification:{

b : 0.001,

e : 0.002

8 All the usual set operations hold on the complement. For example, ∁∁X = X.
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A

B E

M J

P(A | B, E)

P(E = e) = 0.002P(B = b) = 0.001

P(M | A) P(J | A)

P(M | A) m m

a 0.9 0.1
a 0.05 0.95

P(J | A) j j

a 0.7 0.3
a 0.01 0.99

P(A | B, E) a a

b e 0.95 0.05
b e 0.94 0.06
b e 0.29 0.71
b e 0.001 0.999

Figure 4 The Earthquake, Burglary, Alarm model.

For the table giving the probability P(M | A) we obtain, cf. Equation (1), the program{
m : 0.9← a,

m : 0.05← a

Similarly, for the probability P(J | A) we obtain{
j : 0.7← a,

j : 0.01← a,

Finally, for the probability P(A | B ∧ E) we obtain{
a : 0.95← b ∧ e, a : 0.94← b ∧ e,

a : 0.29← b ∧ e, a : 0.001← b ∧ e.

One can then proceed as in the previous subsection and analyze this example. The
details of such analysis are not given here since they are analogous, albeit admittedly more
cumbersome.

5 Discussion and Future Work

This work introduces weight assignments using algebraic expressions from ASPs, with much
to explore regarding their full expressive power, including recursion and logical variables.
Bayesian Networks’ theory and tools can be adapted, while connections to Markov Fields [14]
and program selection applications are future work. The equivalence relation identifies subset
cases, and better relations between SMs are possible. Inconsistent events’ weights are set to
0, but inconsistencies from noise in observations may require reconsideration.
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