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Desenvolvimento Humano
Universidade de Évora
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Article

Validation of Aerobic Capacity (VO2max) and Pulse Oximetry
in Wearable Technology
Bryson Carrier, Sofia Marten Chaves and James W. Navalta *

School of Integrated Health Sciences, Department of Kinesiology and Nutrition Sciences, University of Nevada,
Las Vegas, NV 89154, USA
* Correspondence: james.navalta@unlv.edu

Abstract: Introduction: As wearable technology becomes increasingly popular and so-
phisticated, independent validation is needed to determine its accuracy and potential
applications. Therefore, the purpose of this study was to evaluate the accuracy (validity)
of VO2max estimates and blood oxygen saturation measured via pulse oximetry using
the Garmin fēnix 6 with a general population participant pool. Methods: We recruited
apparently healthy individuals (both active and sedentary) for VO2max (n = 19) and pulse
oximetry testing (n = 22). VO2max was assessed through a graded exercise test and an
outdoor run, comparing results from the Garmin fēnix 6 to a criterion measurement ob-
tained from a metabolic system. Pulse oximetry involved comparing fēnix 6 readings under
normoxic and hypoxic conditions against a medical-grade pulse oximeter. Data analysis
included descriptive statistics, error analysis, correlation analysis, equivalence testing, and
bias assessment, with the validation criteria set at a concordance correlation coefficient
(CCC) > 0.7 and a mean absolute percentage error (MAPE) < 10%. Results: The Garmin
fēnix 6 provided accurate VO2max estimates, closely aligning with the 15 s and 30 s aver-
aged laboratory data (MAPE for 30 s avg = 7.05%; Lin’s concordance correlation coefficient
for 30 s avg = 0.73). However, it failed to accurately measure blood oxygen saturation (BOS)
under any condition or combined analysis (MAPE for combined conditions BOS = 4.29%;
Lin’s concordance correlation coefficient for combined conditions BOS = 0.10). Conclusion:
While the Garmin fēnix 6 shows promise for estimating the VO2max, reflecting its utility
for both individuals and researchers, it falls short in accurately measuring BOS, limiting
its application for monitoring acclimatization and managing pulmonary diseases. This
research underscores the importance of validating wearable technology to leverage its full
potential in enhancing personal health and advancing public health research.

Keywords: cardiorespiratory fitness; fitness tracker; activity monitor; biometric technology;
altitude; hypoxia

1. Introduction
Wearable technology (WT) has continued to grow in popularity and sophistication

each year, with WT reaching the number one spot in worldwide surveys of fitness trends in
seven of the last nine years and being in the top three for the other two years (2018 and
2021) [1–9]. According to recent surveys, almost one in three Americans use a wearable
device to track their health and exercise, and around 70% of people own at least one
wearable or plan to buy one in the next year [10,11]. This prevalence of WT may represent
a revolutionary change in physiology and public health research simply due to the vast
pool of potential data that may become available to researchers. Also, an important aspect
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is the constant monitoring of physiological metrics that these devices perform, which will
provide granular details into a person’s physiology that could transform human physiology
research [12,13]. However, this transformation may only come to be realized if WT devices
are found to be accurate in their measurements and estimates. As these consumer-grade
wearable devices are not subject to any type of regulation, there is no governing body
ensuring their accuracy. Thus, if researchers, athletes/coaches, public health officials, and
healthcare professionals hope to continue to utilize these devices, an understanding of
their accuracy and when they can appropriately be used is necessary. This underpins the
importance of independent validation of WT devices by researchers to further several
scientific fields.

Among the many variables that WT can estimate or measure, the maximal aerobic
capacity (or VO2max) and blood oxygen saturation (BOS) measured via pulse oximetry
are important for a variety of health- and fitness-related purposes. VO2max represents the
maximal amount of oxygen an individual can transport from the environment into their
lungs, diffuse into the blood, and extract at the muscles and organs to produce energy, or
ATP. It represents a measure of cardiorespiratory fitness (CRF) and has a strong inverse
relation with all-cause mortality and cardiovascular diseases [14–16]. VO2max also has an
important relationship to endurance performance among athletes, often being cited as the
most important single factor—or among the most important factors—in predicting race
performance [17–19]. Pulse oximeters can non-invasively measure the amount of oxygen
bound to hemoglobin based on how light reflects off the blood cells when broadcast from
the device. Devices with pulse oximeters to measure BOS can also be used to monitor car-
diorespiratory functions, especially in people with pulmonary diseases. It can also be useful
for athletes looking to travel to altitude for an event or competition who wish to monitor
their acclimatization process [20,21]. Therefore, the purpose of this study was to evaluate
the accuracy (validity) of VO2max estimates and blood oxygen saturation measured via
pulse oximetry using the Garmin fēnix 6 with a general population participant pool.

2. Materials and Methods
Prior to data collection occurring for this study, the protocols were approved by the

University of Nevada, Las Vegas Institutional Review Board (IRB). All participants signed
an informed consent and filled out pre-assessment documents prior to completing the
study. While the VO2max and pulse oximetry testing were completed separately, some
participants completed both and are included in each dataset. As the participant pool for
both VO2max and pulse oximetry testing are different, demographic data are provided for
each group.

2.1. VO2max Testing

For VO2max testing, 19 apparently healthy (people who, based on their personal
knowledge, reported being healthy at the time the study was conducted), active and
sedentary individuals were recruited to participate (25.50 ± 5.26 years, 11 male, 8 female,
173.63 ± 9.08 cm, 74.08 ± 14.16 kg, BMI = 24.42 ± 3.21 kg/m2, 22.14 ± 6.06% fat mass,
36.87 ± 4.58% muscle mass, 25.07 ± 23.65 km run per week, and all reported as mean ± SD).
Data collection occurred over two separate days. On the first day, participants completed
a graded exercise test utilizing progressive increases in speed and grade to determine
their VO2maxs. Maximal oxygen consumption was measured using the ParvoMedics
TrueOne 2400 metabolic cart (ParvoMedics Inc., Salt Lake City, UT, USA). The VO2max
was determined by taking the highest average oxygen consumption during the graded
exercise test for a set timeframe. Aggregated VO2max values for the 4-breath, 15-s, 30-s,
and 1-min averaged timeframes were obtained by the metabolic cart and served as the
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criteria measures for the comparisons to the WT device. The second day consisted of
an outdoor run that was guided by the wearable device (Garmin fēnix 6®, Garmin Ltd.,
Olathe, KS, USA) to generate an estimated VO2max value. The Garmin fēnix 6 is a rugged,
multisport GPS smartwatch designed for outdoor use and athletes. It is marketed to
combine the functionality of a fitness tracker, outdoor navigator, and smartwatch in a
durable, wrist-worn device. The participants were asked to come back between two and
seven days from the first visit (5.06 ± 3.96 days). The researchers performed a factory
reset on the watch prior to each subject to prevent data from previous participants from
influencing the measurements and estimates of the current subject. The participants then
put on the associated heart rate monitor (Garmin HRM-Run®) for the outdoor run. The
outdoor run involved a 10–15 min run at an intensity above 70% of the participant’s
estimated max HR, according to the manufacturer’s guidelines. This provided the device
with enough data to estimate the VO2max, using a linear extrapolation of the heart rate
(HR) and running speed [22]. The outdoor run was performed in one of two places: the
University track or a flat area of the campus, depending on logistics and track availability.
Five participants completed the testing at the track, and fourteen participants completed
the testing on campus. The altitude was ~686 m, and the average temperature during
outdoor testing was 20.67 ± 12.62 ◦C, as measured by local weather readings. The average
distance, time, pace, and HR were 2.13 ± 0.17 km, 12.91 ± 1.42 min, 6.33 ± 1.49 min/km,
and 153.50 ± 11.45 bpm, respectively, as measured by the device. The data collection took
place over the timespan of ~14 months, with running trials being completed during the
morning, afternoon, and evening.

2.2. Pulse Oximetry Testing

For pulse oximetry testing, 22 apparently healthy individuals were recruited to
participate (25.48 ± 6.02 years, 13 male, 9 female, 173.27 ± 7.70 cm, 68.88 ± 9.10 kg,
BMI = 22.91 ± 2.40 kg/m2, 18.55 ± 7.05% fat mass, and 38.73 ± 3.61% muscle mass). The
participants began by putting on the fēnix 6 on their left wrist and were instructed to have
the strap tension secure but comfortable. The researchers then placed a medical-grade pulse
oximeter (Roscoe Medical Fingertip Pulse Oximeter, Model: POX-ROS, Roscoe Medical
Inc., Middleburg Heights, OH, USA) on the right index finger of the participant. The
participants completed eight trials of testing under four conditions (two per condition). The
first testing condition was under normoxic (normal oxygen concentration) conditions, with
the watch head placed on the posterior wrist. The researchers performed the necessary
steps (selecting the correct icon in the watch) on the watch to generate a BOS level by the
fēnix 6 and recorded the value from the fingertip oximeter at the same time the watch
generated a value. Afterward, the watch was then placed on the anterior wrist, and the
process was repeated. After both normoxic conditions were completed, the participants
performed hypoxic (low oxygen concentration) testing of the pulse oximeter. The par-
ticipants were connected to an altitude simulator machine (Hypoxico Everest Summit II,
Hypoxico Inc., New York, NY, USA) for a minimum of five minutes to allow for their blood
oxygen levels to stabilize prior to testing. The machine was set to an altitude of 3657.6 m
(12,000 ft) as the default for participants. However, if the participants became lightheaded
or uncomfortable at that simulated altitude, it was lowered to an altitude better tolerated
by the individual, and a five-minute waiting period reset occurred, with the possibility of
returning to normoxia for as long as needed before restarting at a lower simulated altitude.
All participants were seated for all pulse oximetry tests. The participants were instructed
to control their breathing rate and breathed in and out in synchronization with the altitude
simulator bursts of air. This corresponded to a breathing rate of 12.5 breaths per minute.
Blood oxygen saturation testing under hypoxia was tested with the watch on the anterior
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and posterior left wrists, as was performed prior in the normoxic testing condition. The
average time under hypoxia was 9.18 ± 1.05 min. If the fēnix 6 was unable to generate
a measurement of BOS for any trial, the researchers retried up to three times for each
trial when the watch did not generate a value on the first attempt. If it was still unable
to generate a measurement after three tries, no further attempts were made. Once the
values were obtained from the watch and the fingertip oximeter, the pulse oximetry testing
was concluded.

2.3. Data Analysis

The VO2max values for each timeframe (4-breath, 15 s, 30 s, and 1 min) and BOS
values for each condition (anterior/posterior placement, normoxia/hypoxia) were in-
put into Google Sheets (Alphabet Inc., Mountain View, CA, USA). The pulse oximetry
values were compared by condition as well as the combined dataset. All granular cal-
culations were completed within Google Sheets. All summary statistics, validation mea-
sures, and figures were completed and generated in jamovi (jamovi Project, version 2.6.19,
https://www.jamovi.org/). Descriptive statistics, error analysis (mean absolute percentage
error), correlation analysis (Pearson’s r, Lin’s concordance correlation coefficient [CCC]),
equivalence testing (TOST paired samples test), and bias assessment (Bland–Altman analy-
sis) were also performed. The TOST test upper and lower bounds were set at +0.5 and −0.5
Cohen’s D for each test. Data analysis for the VO2max data was completed by comparing
the fēnix 6 estimates of the VO2max to each laboratory aggregated timeframe (4 breath,
15 s, 30 s, 1 min). Determination of validation was predetermined, and any device that
produced a CCC > 0.7 and a MAPE < 10% was considered valid.

3. Results
3.1. VO2max

The 19 participants used for this analysis had an average VO2max of 48.9 mL/kg/min
and an average VO2max percentile of 83.37 ± 21.14%, based on the 30 s averaged VO2max
values. The error analysis showed that the fēnix 6 VO2max estimate had a MAPE of less
than 10% for the 15 s, 30 s, and 1 min averaged timeframes (see Table 1). The correlation
analysis produced a CCC > 0.7 for both the 15 s and 30 s averaged timeframes (see Table 1).
Equivalence testing via the TOST test produced no equivalent results, with the equivalence
conditions being violated for the 4-breath, 15 s, 30 s, and 1 min averaged times (see Table 1).
The Bland–Altman bias values and 95% confidence intervals can be found in Table 1, and
the associated plots can be found for all time parameters in Figure 1.

Table 1. VO2max descriptive and validation statistics results, n = 20. Notes: MAPE = mean absolute
percentage error; TOST test = two one-sided t-tests. Bland–Altman bias values and 95% confidence
intervals are provided. Values that met the predetermined validation criteria are bolded.

Fēnix 6 VO2max
Estimate

Lab VO2max—4
Breath Avg

Lab VO2max—15 s
Avg

Lab VO2max—30 s
Avg

Lab
VO2max—1 min

Avg
Mean (mL/kg/min) 49.68 54.54 49.95 48.94 47.91
Standard Deviation 4.61 7.28 7.04 6.67 6.76

MAPE 10.70% 7.23% 7.05% 8.53%
Pearson Correlation 0.73 0.78 0.78 0.76
Lin’s Concordance 0.49 0.71 0.73 0.68

Bland–Altman Bias −4.87
(−7.30, −2.44)

−0.26
(−2.45, 1.92)

0.75
(−1.28, 2.78)

1.77
(−0.35, 3.89)

TOST Test (Upper) <0.001 0.80 0.45 0.10
TOST Test (Lower) <0.972 0.01 0.09 0.34
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Figure 1. VO2 Bland–Altman plot of fēnix 6 compared to laboratory VO2max values: 4 s average
in top left, 15 s average in top right, and 30 s average in bottom left, 1 min average in bottom right.
Blue line represents proportional bias line with shadings representing 95% confidence intervals of
proportional bias line. X-axis is the mean of the two measurements with the Y-axis the difference
between the two measurements. The mean bias line and upper and lower limits of agreement are
shown in dashed lines (mean bias being the middle-dashed line). The solid line represents the
hypothetical mean bias of 0.

3.2. Pulse Oximetry

The error analysis showed that the fēnix 6 BOS values had a MAPE of less than 10%
for all four conditions and the combined data (anterior/posterior, hypoxia/normoxia; see
Table S1 and Supplementary Files). The correlation analysis did not produce a CCC > 0.7
for any conditions, including the combined data (see Table S1 and Supplementary Files).
Equivalence testing via the TOST test was violated for all four conditions but was met for the
combined data (see Table S1 and Supplementary Files). The Bland–Altman bias values and
95% confidence intervals can be found in Table 2 for the combined data and the Supplementary
Files for individual conditions. The associated plots can be found for the combined data in
Figure 2 The total number of measurements that the fēnix 6 generated was 52, for a total
success rate (or data availability rate) of 59%. This means that when prompted for a blood
oxygen saturation measurement, it only provided data 59% of the time.

Table 2. Blood oxygen saturation measurements measured via pulse oximetry in Garmin fēnix 6 and
criterion device. Descriptive and validation statistics results for n = 22 (52 distinct fēnix 6 values
from all conditions and participants). Bland–Altman bias values and 95% confidence intervals are
provided. Values that met the predetermined validation criteria are bolded.

Fēnix 6 Blood Oxygen
Saturation Measurement (%)

Criterion: Blood Oxygen
Saturation Measurement (%)

Mean 95.44% 92.06%
Standard Deviation 1.60% 8.17%

MAPE 4.29%
Pearson Correlation 0.18
Lin’s Concordance 0.10

Bland–Altman Bias 1.12
(−0.34, 2.57)

TOST Test (Upper) 0.13
TOST Test (Lower) 0.02
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Figure 2. Bland–Altman plots for the combined pulse oximetry data, containing both hypoxia and
normoxia conditions. Blue line represents proportional bias line with shadings representing 95%
confidence intervals of proportional bias line. X-axis is the mean of the two measurements with the
Y-axis the difference between the two measurements. The mean bias line and upper and lower limits
of agreement are shown in dashed lines (mean bias being the middle-dashed line). The solid line
represents the hypothetical mean bias of 0.

4. Discussion
In this study, the validity of the VO2max estimates and blood oxygen saturation

(BOS) values measured via pulse oximetry in wearable technology (WT) was compared to
gold-standard measurements. Based on the pre-established validation criteria, the fēnix
6 has acceptable accuracy (MAPE < 10%, CCC > 0.7) in its estimation of VO2max and
corresponds closely to the 15 s and 30 s averaged timeframes. The measurements of BOS
via pulse oximetry did not have acceptable accuracy for any condition or the combined
data. As the appropriate use cases of these devices are discussed, it is important to note that
these are consumer-grade devices, not medical devices. Thus, they are not subject to FDA
regulation (or any other governing body) in terms of accuracy and effectiveness. VO2max
and pulse oximeters have an important role in monitoring the health of an individual,
including general health and fitness levels and those with potential cardiovascular disease
(CVD) and pulmonary diseases. While these devices are being used for measuring variables
in diseased populations, they are not intended for that purpose. Despite this, researchers,
healthcare professionals, and public health officials are utilizing WT to track these metrics
for scientific-, policy-, and healthcare-related purposes [23–29]. This illustrates the need
for an independent evaluation of these devices in terms of their validity and reliability
compared to gold-standard measurements. Wearable technology has the potential to
revolutionize public health and physiology research due to its constant monitoring and
widespread availability [12,13]. Thus, researchers, healthcare professionals, public health
officials, and scientific journals should be invested in the independent validation of these
devices to further several scientific fields.

Wearable technology can generate an estimate of the VO2max through the HR, as the
linear relationship between the HR and VO2 is well-established [22]. The fēnix 6 measures
the users HR and running speed and utilizes a linear extrapolation up to the estimated
max HR, based on an individual’s age, to determine the VO2max. While this can be
accomplished simply with the watch and built-in photoplethysmography (PPG)-based HR
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monitor, an accessory HR monitor that is placed on the chest and utilizes ECG technology
to determine the HR can also be used. The PPG sensors common in many watch-based
wearable devices have been shown to be much less accurate at reading HRs during exercise
than ECG-based HR monitors, mainly due to the PPG sensor’s susceptibility to motion
artifacts during movement [30–34]. ECG-based HR monitors have been recommended for
use during exercise, which was observed in the current investigation. While WT represents
an improvement in availability in tracking physiological metrics, such as the VO2max,
field-based maximal and submaximal tests to estimate the VO2max have been around for
decades [35]. A meta-analysis detailing the performance of these submaximal predictive
equations compared to gold-standard testing found that they have a correlation range of
r = 0.57 to 0.92 [36]. The current investigation found an r value of 0.78 for the 15 s and
30 s timeframes. Previous studies have found the Garmin fēnix 3 to have correlations
of up to 0.92 [37], equal to the best submaximal equations that have been developed in
terms of correlation values. Although comparing these devices solely based on correlation
provides an imperfect view of their validity, accuracy, and reliability, they do offer some
comparative value.

Having an accurate estimate of VO2max can be very useful, as it represents an im-
portant metric to determine a person’s health status. VO2max is a reliable predictor for
overall cardiorespiratory fitness (CRF), which is an independent risk factor for all-cause
and disease-specific mortality [14–16]; meaning, an individual with a low VO2max value
will be at a higher risk of mortality due only to that metric, regardless of any other health
metrics. The American Heart Association has released a lengthy review and position
statement endorsing regular measurements of CRF in clinical practice. They concluded
that a substantial body of epidemiological and clinical research indicates that cardiores-
piratory fitness is a potent predictor of mortality, often surpassing the predictive power
of established risk factors such as smoking, hypertension, hyperlipidemia, and diabetes
mellitus. Incorporating CRF into risk stratification models can substantially enhance the
precision of risk assessment for adverse health outcomes [38], as an assessment of CRF is
ideally performed through a maximal exercise test and measurement of oxygen consump-
tion and carbon dioxide production through a metabolic cart. Unfortunately, this is not
possible for many people who cannot complete a maximal exercise test (those with CVD,
musculoskeletal diseases, pulmonary diseases, etc.) or for those who cannot afford the cost
of laboratory measurements. Wearable technology has the potential to evaluate a person’s
VO2max through a relatively light bout of exercise (as is the case with the current device
being tested) or even at rest (as is the case with other wearable devices). Thus, an accurate
estimate of VO2max has the potential to influence personal health measures, as well as
provide greater insights into the public health status for researchers and policymakers. As
the fēnix 6 was found to generate accurate estimates of VO2max, individual recreational
users, and possibly researchers, public health officials, and healthcare professionals can
trust the values generated by the device. However, researchers and healthcare workers
may want to utilize a more stringent validation threshold than what has been employed in
the current investigation.

In addition to the role of VO2max in personal health, it is also an important measure for
endurance athletes. VO2max is among the most important single measures to determine
performance in an endurance event and is considered by many to be the single most
important metric in determining performance [17–19]. Having the ability to know an
athlete’s VO2max allows for improved training programs to be developed that are tailored
to the athlete’s specific fitness level. As gold-standard methods of determining a person’s
VO2max can be expensive and time-consuming, they are not a practical option for many
recreational athletes or teams. Wearable technology can represent a cost-effective method
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of determining aerobic capacity for individuals, as well as teams. These devices can also
generate a VO2max value during the course of normal training, eliminating the need to
take a day off from training for testing purposes. It also has the added benefit of constant
monitoring, allowing for small changes in aerobic capacity to influence the training protocol.

Measuring BOS via pulse oximetry is a well-established and widely used method in
hospitals and other clinical settings. The introduction of pulse oximetry into smartwatches
and other wearable devices is a recent advancement. Pulse oximeters measure BOS by
broadcasting pulses of light and measuring the reflection via PPG sensors to monitor
changes in blood oxygen concentration. This technology may prove to be an important way
to monitor a person’s disease status and health metrics, especially those with pulmonary
diseases, such as asthma, emphysema, and chronic obstructive pulmonary disease (COPD).
However, independent validation of these devices will need to be completed in order to
trust these measurements. It can also be useful for athletes who travel to altitude to monitor
their acclimatization process, such as hikers, mountaineers, or other athletes traveling to
higher altitudes than their current altitude [39]. While the device tested in the current
investigation performed poorly, especially during the hypoxic conditions, it may be of
interest to future researchers to test the ability of this technology to measure BOS levels
accurately throughout the day rather than on demand. However, as we have mentioned
previously, PPG sensors are susceptible to motion artifacts and could have similar issues
with accuracy when measured throughout the day. Some research has demonstrated that
desaturations below 50% can be observed when patients are moving during testing [40].
With these severe limitations in terms of the accuracy of this device, especially during
hypoxic conditions, those looking to use this device to measure acclimatization when at
altitude should look elsewhere for accurate measurements.

For this current investigation, we have used the generally accepted thresholds of
a MAPE < 10% and CCC > 0.7. However, universal agreement for thresholds or even
analytical tests to determine validity has not been established. As we recruited from
the general population for this study, the fairly liberal thresholds of 10% and 0.7 seem
appropriate. However, those looking to use this device in higher-level athletics, public
health and/or physiology research, and healthcare may seek more conservative thresholds
to determine appropriate use cases. In the future, a tiered threshold system could be
established to better understand the appropriate use cases of these devices. In terms of
the analytical tests, we have decided only to use MAPE and CCC in the determination of
validity. However, we have also included bias assessments (Bland–Altman analysis) and
equivalence testing (the TOST test). These have all been suggested as appropriate analytical
techniques to determine validity, though they are not always common in other validation
literature [13,41,42]. For instance, equivalence testing is especially absent from much of the
validation literature. We have included all for the benefit of the reader as well as because
we view them as appropriate tests to determine validity. However, because the thresholds
have not been established for these additional tests, we have not included them in our
validity thresholds.

Limitations

This study evaluated both active and sedentary individuals in the general population,
and thus the generalizability of this device to other populations should be done cautiously,
if at all. While the validation criteria used have been used in previous research, the rela-
tively liberal thresholds (MAPE < 10% and CCC > 0.7) might not be sufficiently stringent
for high-stakes applications such as high-level athletics, public health research, or health-
care settings. As this study only evaluated acute hypoxia, additional research should be
performed on these devices to determine their accuracy and usefulness in monitoring blood
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oxygen saturation longitudinally. Finally, we have noted the environmental conditions
that VO2max was tested in, as it was an outdoor running trial. As the temperature can
impact a person’s HR during exercise, this could be a confounding factor in the estimation.
However, given that the data were collected over a ~14-month time period, this strengthens
the external validity of the results and the generalizability.

5. Conclusions
In this study, we tested the Garmin fēnix 6 VO2max estimate and blood oxygen

saturation values, measured via pulse oximetry for accuracy, and compared them to gold-
standard laboratory measurements. The fēnix 6 showed acceptable accuracy for VO2max
and was most closely aligned with the 15 s and 30 s timeframes. The fēnix 6 did not
show acceptable accuracy for blood oxygen levels for any condition or the combined
analysis. Therefore, the Garmin fēnix 6 may reasonably be expected to generate an accurate
estimate of an individual’s VO2max based on 15 s or 30 s aggregated data if more accurate
laboratory tests are not available. In addition, the fēnix 6 will not generate an accurate
estimate of an individual’s blood oxygen levels, either in normoxia/hypoxia or utilizing
anterior/posterior watch placement on the wrist.
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Abstract: The aim of this study was to understand and describe the physiological and
biomechanical demands of various tasks used in basketball training and, subsequently,
to provide a practical application of these tasks in a typical training week. Twelve bas-
ketball players had their external load variables monitored across 179 training sessions
(2896 samples) using local positioning system technology. These variables included total
distance covered, distance covered at various intensity levels, accelerations, decelerations,
PlayerLoad™, and explosive efforts. The analysis revealed significant differences in both
physiological and biomechanical loads across various drills. Specifically, tasks with more
space and fewer defenders, such as 3v0 full court, impose higher physiological loads
compared to tasks with less space and more defenders, like 5v5 full court. The difference
in physiological load between these tasks was statistically significant (p < 0.05) with a
moderate effect size (ES: −0.60, 95% CI: [−0.99, −0.22]). In terms of biomechanical load,
drills with increased defensive pressure, such as 5v5 full court, exhibited significantly
higher values compared to less specific drills, such as 5v0 full court, with a very large effect
size (ES: 1.37, 95% CI: [1.04, 1.70], p < 0.01). Additionally, comparisons between 5v5 full
court and 3v0 full court for biomechanical load produced a very large effect size (ES: 1.67,
95% CI: [1.37, 1.97], p < 0.01), indicating a substantial difference in load demands. The
results indicate that tasks with more space and fewer defenders impose higher physio-
logical loads, while those with less space and more defenders increase the biomechanical
load. For training design, it is recommended to schedule tasks with a higher biomechanical
load at the beginning of the session and those with a physiological orientation toward the
end. Understanding the distinct demands of different drills can help coaches structure
training sessions more effectively to optimize player load and performance development
throughout the week.

Keywords: team sports; local positioning system; load monitoring; game demands; training

1. Introduction
In recent years, extensive research in team sports, particularly basketball, has focused

on characterizing the game’s physical demands [1,2], identifying the most demanding
passages of play [3,4], understanding the effects of training modifications during prac-
tice sessions, and exploring injury mechanisms [5]. For instance, load quantification in
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basketball has been employed to analyze average and peak physical demands in competi-
tion [2,6], compare practice and competition loads [7,8], observe the evolution of training
loads and performance throughout a season [9], assess the impact of targeted training pro-
grams on physical performance [10], and profiling players based on age [8,11], gender [12],
position [13,14], and competitive level [15,16].

This body of research improves our understanding of basketball from a physical
demands’ perspective, highlighting its nature as an intermittent sport characterized by
alternating offensive and defensive actions [17]. The game features frequent changes in
movement type and intensity [18], with high-intensity periods interspersed with medium-
and low-intensity intervals, where actions often occur unpredictably [19]. Consequently,
basketball matches exhibit an irregular alternation of aerobic and anaerobic physical de-
mands [20] that impose various neuromuscular and metabolic challenges throughout the
match. Biomechanical, physiological, technical, and tactical demands in basketball create
significant variability in movements and intensities, contributing to its highly intermittent
nature [15,21,22].

Despite the abundance of available indicators, significant confusion and inconsistency
remain in their application and integration into training processes. The current basketball
literature is often more descriptive than practical and offers limited information on physio-
logical or biomechanical stressors. As Russell et al. (2020) noted in their systematic review,
there is a clear disconnect between applied practices and methodological frameworks.
Given the limitations of existing studies, drawing definitive conclusions about the true
physical demands of basketball is not yet possible. Most research to date (e.g., [4,5,23])
has analyzed the loads experienced by basketball players using the traditional distinction
between external and internal loading. However, several studies have highlighted the chal-
lenges and critical importance of distinguishing between physiological and biomechanical
load–response pathways in team sports, including basketball [23].

Monitoring physiological and biomechanical load adaptation in team sports, par-
ticularly basketball, has gained increasing recognition and research interest. Although
physiological loads primarily focus on the work–energy relationship as players move
around the court, biomechanical loads refer to the external forces exerted on the players
through their movements. Biomechanical loads refer to the external forces exerted on
players through their movements, including the impact of gravity, ground reaction forces,
resistance from equipment, and interactions with opponents. These loads include the
stresses placed on muscles, tendons, bones, and joints during physical activities, which
influences both performance and the risk of injury [24]. It is well established that biome-
chanical and neuromuscular factors play a critical role in horizontal deceleration, a key
component of sports that involve multidirectional movements, such as basketball. The
unique ground reaction force profile during horizontal deceleration, characterized by high-
impact peak forces and loading rates, can increase susceptibility to excessive forces and
the risk of injury if the limbs are unable to tolerate these forces [25]. Various metrics are
available to quantify the biomechanical loads experienced by the body, its structures, and
individual tissues. However, the challenge lies in measuring these loads accurately, both
in and out of laboratory settings [26]. The biomechanical load, defined as the external
forces acting on an athlete’s body, can be monitored using Inertial Measurement Units
(IMUs). These devices utilize inertial movement analysis (IMA) to capture biomechanical
load variables such as player load or jumps. IMUs are widely used to monitor adaptations
to training and their relationship with game performance.

For example, in football, Mandorino et al. [27] employed machine learning techniques
to develop a novel locomotor efficiency index (LEI) to assess the neuromuscular fitness
of players. Subsequently, Mandorino et al. [28] analyzed the effects of different training
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periodization strategies on the neuromuscular state of football players. In basketball,
a study quantifying workload during basketball-specific drills using microtechnology
revealed that full-court 3v3 and 5v5 drills imposed the highest physical demands compared
to traditional balanced basketball drills such as 2v2 and 4v4. Metrics such as acceleration
load per minute (AL·min−1) were used to assess workload, demonstrating that the drill
format significantly influences the biomechanical load experienced by players [29].

More recently, Olthof et al. (2021) studied the statistical relationships between biome-
chanical loads in training and game performance. Their findings indicated that training
loads significantly affected match loads in subsequent games. In particular, increasing
training loads two days before a match led to higher expected match loads, suggesting that
biomechanical loads are strong predictors of game performance.

What is clear so far is that manipulating certain variables, such as the number of players
involved in the use of full-court versus half-court drills, results in significantly different
player loads [2,30]. Considering these findings, the biomechanical load of various basketball
exercises must be considered, with the overarching goal of training being to prepare players
for competition. Training sessions should be designed to reflect this goal by observing the
distinct loads induced by each exercise, not only in terms of internal and external load, but
also in relation to physiological and biomechanical load. By understanding the specific
physiological and biomechanical demands, internal or external, of each task assigned
to players, the designs of the training sessions can be optimized, ultimately leading to
improved performance in competition. Addressing the gap between theoretical knowledge
and practical application is crucial because it ensures that research findings are not confined
to academic settings but are effectively translated into real-world practice. In the context of
basketball training, presenting actionable strategies enables coaches and practitioners to
directly apply evidence-based insights to their training designs. This not only enhances the
relevance and utility of the research but also helps optimize training effectiveness, ensuring
that players are better prepared for the demands of competition.

To our knowledge, there is limited research that specifically differentiates between the
types of loads (physiological and/or biomechanical) for each task in basketball. Further-
more, even fewer studies go beyond describing the load and offer practical applications of
this knowledge for improved training design. Thus, the aim of this article is twofold; first,
to identify and describe the physiological and biomechanical load associated with various
tasks used in basketball training and, second, to propose a practical application of these
tasks within the framework of a typical training week.

2. Materials and Methods
2.1. Sample

Elite male basketball players [31] from the same team competing in the highest regional
division of an U18 Spanish basketball competition were included in this study (n = 18,
mean ± standard deviation [SD]: age 16.9 ± 0.8 years, height 196.6 ± 9.4 cm, body mass:
91.7 ± 8.2 kg). Monitoring took place during 179 training sessions.

Data collection was carried out at the same facility for two consecutive seasons
(2018–2019 and 2019–2020). To be included in the study, players had to complete a mini-
mum of 50% of training sessions (n = 90/179) during both seasons; those who did not meet
this criterion were excluded from the analysis. Additionally, data from players who did not
complete at least 80% of the total duration of a specific training session were excluded from
that session’s data pool but remained in the overarching study.

After applying the exclusion criteria, six participants who entered the study were
excluded from the analysis. Consequently, 2896 training data samples from a collective of
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12 participants were subjected to analysis. This study was conducted in accordance to the
Declaration of Helsinki [32].

2.2. Procedures

This observational investigation was conducted over a 2-year period throughout the
2019–2020 and 2020–2021 seasons. Each player wore a device (Vector S7; Catapult Sports,
Melbourne, Australia) in a specially designed pocket within a vest, placed on the upper
thoracic spine between the scapulae. The devices contained an accelerometer (±16 g,
100 Hz), magnetometer (±4900 µT, 100 Hz), gyroscope (up to 2000 deg/s, 100 Hz), and LPS.
The ClearSky LPS (ClearSky S7, 10 Hz, firmware version 5.6.; Catapult Sports, Melbourne,
Australia) is an ultra-wide band, 4 GHz transmitting system equipped with 24 anchors
positioned around the perimeter of a basketball stadium that was used to collect LPS
data. The technology used in this study has been supported as valid in measuring dista-
nce [33–36], speed, accelerations, decelerations [33,34], and Player LoadTM [37], while
similar LPS technology has been shown to be reliable (coefficient of variation (CV) < 5%) in
measuring distance and speed variables [36]. All players were familiar with monitoring
technology, having worn the devices during training and games in the previous season.
Each device was turned on ~20–40 min before the warm-up that preceded each game. The
players wore the same device throughout the study period to avoid variation between
devices in the output of external load data [38].

Activity editing occurred during and after the session. To minimize significant in-
terobserver variability, the editing process for all activities was carried out consistently
by the same individual. During training sessions, duration was defined as the time in
minutes that a player actively participated in training, excluding the intervals between
exercises, hydration breaks, or instances when a player, during a task, was not actively
involved. A player was considered inactive during a task if they were off the court and did
not participate (e.g., in a 5v5, where a player awaits off-court to substitute for a teammate).
After completing data collection, Catapult Sports Openfield cloud software (version 1.22.0)
was used to extract data from each player for each training session, segmented by task.
Subsequently, following the predefined exclusion criteria, the collected data were exported
into a Microsoft Excel spreadsheet (version 16.0, Microsoft Corporation, Redmond, WA)
for further analysis. The drills were classified according to their specificity from 0 to 5,
following the classification by [29]. Activities at level 0–1 were those carried out outside the
basketball court and unrelated to basketball practice (e.g., cycling), while level 5 represented
an official basketball game (Table 1).

Table 1. Drill classification based on their specificity from 5 to 0 (Schelling & Torres, 2016).

4 5v5 full court

A 5v5 game is played with 10 players on the court at
the same time. The number of consecutive plays and
the work-to-rest ratio vary depending on the coach’s

feedback and the pauses they implement.

4 5v5v5
A 5v5v5 game is played where the defending team

transitions to offense and attacks the
opposite basket.
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4 4v4 full court

A 4v4 game is played with 8 players on the court at
the same time. When the offensive play ends, the
defending team transitions to offense and attacks
the same team at the opposite basket. The number

of consecutive plays and the work-to-rest ratio
ranges between 3 and 6, depending on the coach’s

feedback and pauses

4 4v4v4
A 4v4v4 game is played where the defending team

transitions to offense and attacks the opposite
basket, where another team is waiting to defend.

3 3v3 Full court

A 3v3 game is played with 6 players on the court at
the same time. When the offensive play ends, the
defending team transitions to offense and attacks
the same team at the opposite basket. The number

of consecutive plays and the work-to-rest ratio vary
between 3 and 6, depending on the coach’s feedback

and pauses.

3 3v3v3
A 3v3v3 game is played where the defending team

transitions to offense and attacks the opposite
basket, where another team is waiting to defend.

3 Eleven Player Break

A continuous 3v2 situation is played. Among the
five players involved, the one who gains possession

when the play ends (whether through a basket,
rebound, or turnover) attacks on the opposite side
with two players positioned in the corners against

two defenders waiting on the other side.

3 2v2 full court

A 2v2 game is played where, after an offensive play,
the team defends at the opposite basket. Following
the defensive effort, the team passes to one of the
two teammates positioned to transition and attack

on the opposite court.

2 1v1 in longitudinal half
court (28 × 7.5 m)

The attacking player must attempt to drive past and
score after playing a 1v1. Once the offensive play is
over, the player who attacked transitions to defense.

2 5v0 full court
A 5v0 drill is performed at midcourt, followed by

another drill at the opposite end. After completing
these drills, 5 new players enter the court.
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2 4v0 full court
A 4v0 drill is performed at midcourt, followed by

another drill at the opposite end. After completing
these drills, 4 new players enter the court.

2 3v0 full court
A 3v0 drill is performed at midcourt, followed by

another drill at the opposite end. After completing
these drills, 3 new players enter the court.

2
2v0 (Individual

Technical-Tactical)
half court

Different individual technical-tactical situations are
practiced without opposition in a 2v0 setting

2
1v0 (Individual

Technical-Tactical)
half court

Different individual technical-tactical situations are
practiced without opposition in a 1v0 setting.

2.3. Physical Variables

The selected physical parameters were classified into two types (physiological and
biomechanical variables) [23,39]. Each variable was extracted and represented as a relative
value, indicating the rate of accumulation of that parameter per minute.

2.3.1. Physiological Variables

The following 5 variables were considered physiological: distance (m) per minute
covered (TD) and distance (m) per minute covered in different intensity zones including:
standing–walking (S-W) = <7 km·h−1; jogging (JOG) = 7–14 km·h−1; running (RUN)
= 14.01–18 km·h−1; and high-speed running (HSR) >18 km·h−1, as previously used in
basketball research [15].

To classify tasks according to the orientation of the physiological load, a two-step
cluster analysis was performed (average silhouette = 0.5) using physiological parameters:
total distance per minute, and distance per minute at different thresholds (Table 2). Tasks
were grouped into four categories: low physiological load, medium physiological load,
high physiological load, and very high physiological load. Each category was assigned a
numerical value, with 1 representing low physiological load, 2 for medium physiological
load, 3 for high physiological load, and 4 for very high physiological load.

17



Sensors 2025, 25, 262

Table 2. Cluster analysis identifying drill groups based on physiological load parameters.

Variables
Physiological Load

Low Medium High Very
High

Distance per minute (m) 18.56 62.09 75.28 80.50
Standing–walking (<7 km·h−1) 15.53 31.75 65.40 34.35
Jogging (7–14 km·h−1) 3.13 21.36 51.81 28.05
Running (14.01–18 km·h−1) 0.85 6.37 17.32 12.29
High-speed running (>18 km·h−1) 0.22 2.42 3.77 6.02

Sample size (N) 141 1831 122 1042
Sample proportion (%) 4.5% 58.4% 3.9% 32.2%
Bayesian information criterion (BIC) 9214.44
Average silhouette 0.5

Note: The value of each physiological load variable is presented as the mean and standard deviation for each
group, and the sample size indicates the number of tasks included in each group.

To determine the physiological load of each task, an average was calculated for each
task based on the numerical value of the cluster load ranging from 1 to 4. For instance, if
100 official match records were distributed with 50 in cluster number 4 and 50 in cluster
number 3, the average of the 100 records would be a value of 3.5, indicating a physiological
load of 3.5.

2.3.2. Biomechanical Variables

The following 5 variables were considered biomechanical: jumps per minute (JUM-
PS) > 20 cm, accelerations per minute (ACC) (count) performed > 2 m·s−2 (dwell time:
0.3 s), decelerations per minute (DEC) (count) performed > −2 m·s−2 (dwell time:
0.3 s), PlayerLoad™ per minute (PL) (arbitrary units [AU]), and explosive efforts per
minute (EE). These dwell times were chosen given values between 0.3 and 0.4 s have been
identified as the most readily used in basketball settings [40–42].

PL was calculated as the square root of the sum of the instantaneous rate of change
in acceleration in the three movement planes (x-, y-, and z-axes) using the following

formula [6,40]: PlayerLoad™ = [
√(

ay1 − ay−1
)2

+ √(ax1 − ax−1)
2 + √(az1 − az−1)

2]/100 ,
where fwd indicates movement in the anterior–posterior direction, side indicates move-
ment in the medial–lateral direction, up indicates vertical movement, and t represents
time, while EE was calculated as the number of inertial movements per minute (n·min)
derived from the analysis of high- and medium-intensity inertial movements (accelerations,
decelerations, and changes of direction).

To group the tasks based on the biomechanical load orientation, a two-step cluster
analysis was conducted (average silhouette = 0.5) using the biomechanical parameters
JUMPS, ACC, DEC, PL, and EE (Table 3). Exercises were grouped into tasks with low
biomechanical load and tasks with high biomechanical load. A numerical value of 1 was
assigned to low biomechanical load, while a value of 2 was assigned to high biomechanical
load. To determine the biomechanical load of each task, an average was calculated for each
task based on the numerical value of the cluster load ranging from 1 to 2.

Table 3. Cluster analysis identifying drill groups based on biomechanical load parameters.

Variables
Biomechanical Load

Low High

Accelerations per minute 1.35 2.71
Decelerations per minute 1.20 3.38
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Variables
Biomechanical Load

Low High

Explosive efforts per minute 1.56 3.26
PlayerLoad per minute 5.91 8.42

Jumps per minute 0.65 0.73

Sample size (N) 128 2124
Sample proportion (%) 47.4% 67.7%

Bayesian Information Criterion (BIC) 10,677.49
Average silhouette 0.5

Notes: The value of each physiological load variable is presented as the mean and standard deviation of each
group, and the sample size indicates the number of tasks included in each group.

2.4. Statistical Analysis

The mean, standard deviation (SD), and coefficient of variation (CV) were determined
to describe the external physical load for each drill, while to describe the load orientation,
the mean, median, and SD were utilized.

A Linear Mixed Model (LMM) was used to identify differences in external load and its
orientation between drills (1v0-Individual Technical-Tactical-half court, 1v1 in longitudinal
half court-28 × 7.5 m-, 2v0-Individual Technical-Tactical-half court, 2v2 full court, 3v0 full
court, 3v3 full court, 3v3v3, 4v0 full court, 4v4 full court, 4v4v4, 5v0 full court, 5v5 full
court, 5v5v5, and Eleven player break).

“Player” was used as a random effect. Tasks were included as nominal predictor
variables in the LMM at 14 levels (1v0-Individual Technical-Tactical-half court, 1v1 full
court in longitudinal half-28 × 7.5 m-, 2v0-Individual Technical-Tactical-half court, 2v2 full
court, 3v0 full court, 3v3 full court, 3v3v3, 4v0 full court, 4v4 full court, 4v4v4, 5v0 full
court, 5v5 full court, 5v5v5, Eleven player break).

Cohen’s effect size (ES) and the mean difference with 95% confidence intervals (CI)
were determined for all pairwise comparisons and interpreted as follows: trivial = <0.20;
small = 0.20–0.59; moderate = 0.60–1.19; large = 1.20–1.99; and very large = ≥2.00 [43].
All analyses were conducted using IBM SPSS for Windows (version 23, IBM Corporation,
Armonk, NY, USA), except ES, which was calculated using a customized Microsoft Excel
spreadsheet (version 16.0, Microsoft Corporation, Redmond, WA, USA).

3. Results
The descriptive analysis of each drill according to physical orientation (physiological

or biomechanical) and specificity is presented in Table 4. The distribution of drills based on
the orientation of the training load orientation is shown in Figure 1.

Table 4. Descriptive statistics for each drill according to physical orientation (physiological or
biomechanical) and specificity.

Drill Specificity
Physiological Load Biomechanical Load

Median Mean ± SD (% CV) Median Mean ± SD (% CV)

5v5 full court
4

2 2.84 ± 0.99 (35%) 2 1.79 ± 0.40 (22%)

5v5v5 2 2.00 ± 0.00 (0%) 2 1.64 ± 0.48 (29%)

4v4 full court
3

2 2.96 ± 1.01 (34%) 2 1.82 ± 0.38 (21%)

4v4v4 2 2.11 ± 0.51 (24%) 2 1.62 ± 0.48 (30%)
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Drill Specificity
Physiological Load Biomechanical Load

Median Mean ± SD (% CV) Median Mean ± SD (% CV)

3v3 Full court
3

4 3.11 ± 0.99 (32%) 2 1.82 ± 0.38 (21%)

3v3v3 2 2.34 ± 0.75 (32%) 2 1.75 ± 0.43 (25%)

Eleven Player Break

2

4 3.06 ± 1.00 (33%) 2 1.64 ± 0.48 (29%)

2v2 full court 2 2.59 ± 0.99 (38%) 2 1.62 ± 0.48 (30%)

1v1 in longitudinal half
court (28 × 7.5 m) 2 2.20 ± 0.62 (28%) 2 1.83 ± 0.37 (20%)

5v0 full court 2 2.54 ± 0.92 (36%) 1 1.32 ± 0.46 (35%)

4v0 full court 2 2.42 ± 0.81 (33%) 1 1.24 ± 0.43 (35%)

3v0 full court 3 3.03 ± 0.97 (32%) 1 1.13 ± 0.34 (30%)

2v0 (Individual
Technical-Tactical) half

court
2 2.34 ± 0.72 (31%) 1 1.17 ± 0.38 (32%)

1v0 (Individual
Technical-Tactical) half

court
2 1.94 ± 0.24 (12%) 1 1.21 ± 0.40 (33%)

ȱ

Figure 1. Distribution of drills based physical orientation (physiological or biomechanical) and
specificity. Note: The colors are related to the specificity of the exercises, as shown in Table 4, evolving
from less specific exercises -blue- to more specific exercises -red-.

The descriptive analysis (mean ± SD, and % CV) of the external physical load of
training drills and the effect size ± 95% CI of the differences between tasks (1v0-Individual
Tactical-Technical-half-court vs. 1v1 full court in longitudinal middle-28 × 7.5 m-, 2v0-
Individual Tactical-Technical-half-court, 2v2 full court, 3v0 full court, 3v3 full court, 3v3v3,
4v0 full court, 4v4 full court, 4v4v4, 5v0 full court, 5v5 full court, 5v5v5, Eleven Player
Break) are shown in Figure 2.
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PhysiologicalȱLoadȱ
Distanceȱperȱminuteȱ(m)ȱ

ȱ
Standing–walkingȱ(<7ȱkm·hƺ1)ȱ

ȱ
Joggingȱ(7–14ȱkm·hƺ1)ȱ

ȱ
Runningȱ(14.01–18ȱkm·hƺ1)ȱ

Figure 2. Cont.
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High-speedȱrunningȱ(>18ȱkm·hƺ1)ȱ

BiomechanicalȱLoad 
Accelerationsȱperȱminuteȱ

ȱ

Figure 2. Cont.
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Explosiveȱeěortsȱperȱminuteȱ

ȱ
PlayerȱLoadȱperȱminuteȱ

ȱ
Jumpsȱperȱminuteȱ

Figure 2. Standardized differences (Cohen’s d) and their respective 95% confidence intervals (CI)
between the training tasks that showed significant large–very large size differences for physiological
and biomechanical loads.
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Regarding the comparison for physiological load (Figure 3), it is notable that 4v4v4
was significantly lower than 3v3 full court (ES: −1.26), Eleven Player Fast Break (ES: −1.45),
and 3v0 full court (ES: −1.30). Furthermore, Eleven Player Fast Break showed significantly
higher values than 1v1 full court (ES: 1.23).

PhysiologicalȱLoadȱ

ȱ
BiomechanicalȱLoadȱ

ȱ

3v3 full court

Eleven Player Break

3v0 full court

1v1 full court

-1.26 [-1.84  / -0.64] 
Large

-1.45 [-2.28  / -0.55] 
Large

-1.30 [-1.99  / -0.56] 
Large

1.23 [0.39  / 2.01] 
Large

4v4v4

 

 

Eleven Player Break

-8 -6 -4 -2 0 2 4 6 8

Figure 3. Standardized differences (Cohen’s d) and their respective 95% confidence intervals (CI)
between training tasks and match tasks for physiological and biomechanical load. Notes: The dashed
line represents the magnitude of the effect from large to very large.

Regarding the comparison between tasks for the biomechanical load (Figure 3), 5v5
full court, 4v4 full court, and 3v3 full court showed significantly higher values than 4v0 full
court (ES 5v5 full court: 1.37; ES 4v4 full court: 1.23; ES 3v3 full court: 1.49), 3v0 full court
(ES 5v5 full court: 1.67; ES 4v4 full court: 1.85; ES 3v3 full court: 1.88), 2v0 half court (ES
5v5 full court: 1.71; ES 4v4 full court: 1.71; ES 3v3 full court: 1.38), and 1v0 half court (ES
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5v5 full court: 1.59; ES 4v4 full court: 1.58; ES 3v3 full court: 1.31). Additionally, 4v4 full
court also showed significantly higher values than 5v0 full court (ES: 1.23).

Concerning 3v3v3, the results showed significantly higher values than 3v0 full court
(ES: 1.65), 2v0 half court (ES: 1.38), and 1v0 half court (ES: 1.31). Moreover, Eleven Player
Fast Break reached significantly higher values than 3v0 full court (ES: 1.29). Regarding 1v1
full court, it showed significantly higher values compared to 5v0 full court (ES: 1.23), 4v0
full court (ES: 1.56), 3v0 full court (ES: 1.93), 2v0 half court (ES: 1.78), and 1v0 half court
(ES: 1.64). Finally, 5v0 full court obtained significantly higher values than 4v0 full court
(ES: 1.30).

Regarding the comparisons of physiological and biomechanical load, significant dif-
ferences (p < 0.05) with effect sizes ranging from trivial to very large are shown in Table 5.

Table 5. Comparisons for each drill according to physiological or biomechanical orientation.

Physiological Load Biomechanical Load

Dif. Mean [I/S] Sig. Dif. Mean [I/S] Sig.

1v0 1v1 −0.26 [−0.63/0.10] 1.000 −0.62 *
[−0.79/−0.45] 0.000

2v0 −0.41 [−1.06/0.25] 1.000 0.04 [−0.26/0.34] 1.000

2v2 −0.64 *
[−1.09/−0.21] 0.000 −0.41 *

[−0.61/−0.2] 0.000

3v0 −1.09 *
[−1.54/−0.65] 0.000 0.07 [−0.13/0.28] 1.000

3v3 −1.16 *
[−1.54/−0.80] 0.000 −0.61 *

[−0.78/−0.44] 0.000

3v3v3 −0.40 [−0.91/0.11] 0.670 −0.54 *
[−0.77/−0.3] 0.000

4v0 −0.48 [−1.02/0.06] 0.190 −0.03 [−0.28/0.22] 1.000

4v4 −1.02 *
[−1.37/−0.68] 0.000 −0.61 *

[−0.77/−0.45] 0.000

4v4v4 −0.17 [−0.56/0.21] 1.000 −0.41 *
[−0.59/−0.24] 0.000

5v0 −0.60 *
[−0.99/−0.22] 0.000 −0.11 [−0.28/0.07] 1.000

5v5 −0.90 *
[−1.23/−0.57] 0.000 −0.59 *

[−0.74/−0.43] 0.000

5v5v5 −0.06 [−0.65/0.52] 1.000 −0.43 *
[−0.7/−0.16] 0.000

Eleven Player Break −1.13 *
[−1.68/−0.58] 0.000 −0.43 *

[−0.68/−0.18] 0.000

1v1 2v0 −0.14 [−0.75/0.46] 1.000 0.65 * [0.38/0.93] 0.000

2v2 −0.38 *
[−0.75/−0.02] 0.020 0.21 * [0.05/0.38] 0.000

3v0 −0.83 *
[−1.19/−0.47] 0.000 0.69 * [0.53/0.86] 0.000

3v3 −0.90 *
[−1.17/−0.64] 0.000 0.01 [−0.11/0.13] 1.000

3v3v3 −0.14 [−0.58/0.31] 1.000 0.08 [−0.12/0.28] 1.000
4v0 −0.22 [−0.69/0.26] 1.000 0.59 * [0.37/0.8] 0.000

4v4 −0.76 *
[−0.99/−0.53] 0.000 0.01 [−0.09/0.11] 1.000

4v4v4 0.09 [−0.19/0.37] 1.000 0.21 * [0.08/0.34] 0.000

5v0 −0.34 *
[−0.62/−0.05] 0.000 0.51 * [0.38/0.64] 0.000

5v5 −0.64 *
[−0.85/−0.43] 0.000 0.03 [−0.06/0.13] 1.000

5v5v5 0.20 [−0.33/0.73] 1.000 0.19 [−0.06/0.43] 0.800

Eleven Player Break −0.86 *
[−1.35/−0.38] 0.000 0.19 [−0.03/0.41] 0.340
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Physiological Load Biomechanical Load

Dif. Mean [I/S] Sig. Dif. Mean [I/S] Sig.

2v0 2v2 −0.24 [−0.89/0.41] 1.000 −0.44 *
[−0.74/−0.14] 0.000

3v0 −0.69 *
[−1.34/−0.03] 0.030 0.04 [−0.26/0.34] 1.000

3v3 −0.76 *
[−1.37/−0.16] 0.000 −0.64 *

[−0.92/−0.37] 0.000

3v3v3 0.01 [−0.70/0.71] 1.000 −0.57 *
[−0.89/−0.25] 0.000

4v0 −0.08 [−0.80/0.65] 1.000 −0.07 [−0.4/0.26] 1.000

4v4 −0.62 *
[−1.21/−0.03] 0.030 −0.65 *

[−0.91/−0.37] 0.000

4v4v4 0.23 [−0.38/0.85] 1.000 −0.45 *
[−0.73/−0.17] 0.000

5v0 −0.20 [−0.81/0.42] 1.000 −0.14 [−0.42/0.14] 1.000

5v5 −0.49 [−1.08/0.09] 0.340 −0.62 *
[−0.89/−0.36] 0.000

5v5v5 0.34 [−0.41/1.10] 1.000 −0.47 *
[−0.82/−0.12] 0.000

Eleven Player Break −0.72 [−1.45/0.01] 0.060 −0.47 *
[−0.8/−0.13] 0.000

2v2 3v0 −0.45 *
[−0.89/0.00] 0.050 0.48 * [0.28/0.68] 0.000

3v3 −0.52 *
[−0.88/−0.16] 0.000 −0.20 *

[−0.37/−0.03] 0.000

3v3v3 0.25 [−0.26/0.76] 1.000 −0.13 [−0.36/0.1] 1.000
4v0 0.17 [−0.37/0.70] 1.000 0.38 * [0.13/0.62] 0.000

4v4 −0.38 *
[−0.71/−0.04] 0.010 −0.20 *

[−0.36/−0.05] 0.000

4v4v4 0.47 * [0.10/0.85] 0.000 0 [−0.18/0.17] 1.000
5v0 0.05 [−0.33/0.43] 1.000 0.30 * [0.13/0.48] 0.000

5v5 −0.25 [−0.58/0.08] 0.790 −0.18 *
[−0.33/−0.03] 0.000

5v5v5 0.59 * [0.00/1.17] 0.050 −0.02 [−0.29/0.24] 1.000
Eleven Player Break −0.48 [−1.03/0.07] 0.250 −0.02 [−0.27/0.23] 1.000

3v0 3v3 −0.07 [−0.44/0.29] 1.000 −0.68 *
[−0.85/−0.51] 0.000

3v3v3 0.69 * [0.18/1.20] 0.000 −0.61 *
[−0.85/−0.38] 0.000

4v0 0.61 * [0.07/1.15] 0.010 −0.11 [−0.35/0.14] 1.000

4v4 0.07 [−0.27/0.41] 1.000 −0.68 *
[−0.84/−0.53] 0.000

4v4v4 0.92 * [0.54/1.30] 0.000 −0.49 *
[−0.66/−0.31] 0.000

5v0 0.49 * [0.11/0.87] 0.000 −0.18 *
[−0.36/−0.01] 0.030

5v5 0.19 [−0.14/0.52] 1.000 −0.66 *
[−0.81/−0.51] 0.000

5v5v5 1.03 * [0.44/1.62] 0.000 −0.51 *
[−0.78/−0.24] 0.000

Eleven Player Break −0.03 [−0.58/0.52] 1.000 −0.50 *
[−0.76/−0.25] 0.000
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Physiological Load Biomechanical Load

Dif. Mean [I/S] Sig. Dif. Mean [I/S] Sig.

3v3 3v3v3 0.77 * [0.32/1.21] 0.000 0.07 [−0.13/0.27] 1.000
4v0 0.69 * [0.21/1.16] 0.000 0.58 * [0.36/0.79] 0.000
4v4 0.14 [−0.09/0.38] 1.000 0 [−0.11/0.11] 1.000
4v4v4 0.99 * [0.71/1.28] 0.000 0.20 * [0.06/0.33] 0.000
5v0 0.57 * [0.28/0.85] 0.000 0.50 * [0.37/0.63] 0.000
5v5 0.27 * [0.05/0.48] 0.000 0.02 [−0.08/0.12] 1.000
5v5v5 1.11 * [0.57/1.64] 0.000 0.17 [−0.07/0.42] 1.000
Eleven Player Break 0.04 [−0.45/0.53] 1.000 0.18 [−0.05/0.4] 0.620

3v3v3 4v0 −0.08 [−0.68/0.51] 1.000 0.51 * [0.23/0.78] 0.000

4v4 −0.62 *
[−1.05/−0.20] 0.000 −0.07 [−0.27/0.12] 1.000

4v4v4 0.23 [−0.23/0.68] 1.000 0.13 [−0.08/0.34] 1.000
5v0 −0.20 [−0.66/0.26] 1.000 0.43 * [0.22/0.64] 0.000

5v5 −0.50 *
[−0.91/−0.08] 0.000 −0.05 [−0.24/0.14] 1.000

5v5v5 0.34 [−0.30/0.98] 1.000 0.1 [−0.19/0.4] 1.000

Eleven Player Break −0.73 *
[−1.33/−0.12] 0.000 0.11 [−0.17/0.38] 1.000

4v0 4v4 −0.54 *
[−1.00/−0.08] 0.000 −0.58 *

[−0.79/−0.37] 0.000

4v4v4 0.31 [−0.18/0.80] 1.000 −0.38 *
[−0.6/−0.16] 0.000

5v0 −0.12 [−0.61/0.37] 1.000 −0.08 [−0.3/0.15] 1.000

5v5 −0.42 [−0.87/0.03] 0.120 −0.56 *
[−0.76/−0.35] 0.000

5v5v5 0.42 [−0.24/1.08] 1.000 −0.40 *
[−0.7/−0.1] 0.000

Eleven Player Break −0.64 *
[−1.27/−0.02] 0.040 −0.40 *

[−0.69/−0.11] 0.000

4v4 4v4v4 0.85 * [0.59/1.10] 0.000 0.20 * [0.08/0.31] 0.000
5v0 0.42 * [0.16/0.68] 0.000 0.50 * [0.38/0.62] 0.000
5v5 0.12 [−0.05/0.29] 1.000 0.02 [−0.06/0.1] 1.000
5v5v5 0.96 * [0.45/1.48] 0.000 0.18 [−0.06/0.41] 0.980
Eleven Player Break −0.10 [−0.57/0.37] 1.000 0.18 [−0.04/0.39] 0.410

4v4v4 5v0 −0.43 *
[−0.74/−0.12] 0.000 0.31 * [0.16/0.45] 0.000

5v5 −0.73 *
[−0.97/−0.49] 0.000 −0.18 *

[−0.28/−0.07] 0.000

5v5v5 0.11 [−0.43/0.65] 1.000 −0.02 [−0.27/0.23] 1.000

Eleven Player Break −0.95 *
[−1.45/−0.45] 0.000 −0.02 [−0.25/0.21] 1.000

5v0 5v5 −0.30 *
[−0.54/−0.06] 0.000 −0.48 *

[−0.59/−0.37] 0.000

5v5v5 0.54 [0.00/1.08] 0.050 −0.33 *
[−0.57/−0.08] 0.000

Eleven Player Break −0.52 *
[−1.03/−0.02] 0.030 −0.32 *

[−0.55/−0.09] 0.000

Partido oficial −0.66 *
[−1.00/−0.32] 0.000 −0.59 *

[−0.75/−0.44] 0.000

Tiros libres 1.54 * [1.16/1.92] 0.000 0.32 * [0.14/0.49] 0.000

5v5 5v5v5 0.84 * [0.33/1.34] 0.000 0.15 [−0.08/0.39] 1.000
Eleven Player Break −0.23 [−0.69/0.24] 1.000 0.16 [−0.06/0.37] 1.000

5v5v5 Eleven Player Break −1.06 *
[−1.73/−0.39] 0.000 0 [−0.3/0.31] 1.000

Notes: The * means statistically significant differences.
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4. Discussion
The aim of this article was twofold: firstly, to know and describe the physiological and

biomechanical loads of the different tasks used in basketball training and, subsequently, to
make a practical proposal of these tasks throughout a typical training week.

In relation to the first goal, the present study has allowed us to categorize the different
tasks used in basketball training under the perspective of physiological load or biomechan-
ical load. One of the main reasons for conducting this study is that, as reflected in several
specific investigations [2,5], there are still many limitations in the research carried out to
date on this topic given the large number of variables that can modify the load imposed by
each of the tasks used in basketball. Moreover, this aspect is usually analyzed under the
view of high or low load, i.e., under the perspective of the amount of load, but not under
the perspective of the nature of the training load, which can be physiological or neuromus-
cular in nature [23]. For example, in the results of the review by O’Grady et al. (2020) [2],
it is pointed out that the results of different studies analyzed [29,44] suggest that SSGs
with fewer players (2v2, 3v3) cause a greater training load, both internally and externally,
compared to SSGs with a greater number of players (4v4, 5v5), and that exercises used in
full court also involve a greater external load than those performed in half court, regardless
of team size. Similarly, Clemente (2016) [45] suggests that involving fewer players in SSGs
means higher intensity compared to 5v5. Atli et al. (2013) [46] also suggest that when the
number of players remains constant but the playing area increases (leading to an increase
in the relative distance to be covered), significant differences arise in the load of each of the
SSGs. While most of the results found so far are in line with these ideas [29,30,44], they are
still very general, because as the results of the present research show, under the perspective
of biomechanical and physiological loading, these results can be nuanced, and therefore,
would be a better help for coaches when designing training sessions.

Therefore, the results of this study are considered relevant, as it is the first research,
to the best of the researchers’ knowledge, to classify the different training tasks based on
the nature of the load, i.e., physiological load or biomechanical load. The main results
obtained can be seen graphically in Figure 1. In summary, it could be said that those tasks
that cover more space (full court vs. half court) and with fewer defenders (3vs3, 2vs2,
11 counterattack, 5v0, 4v0, and 3v0) have a higher physiological load, while tasks without
defense tend to have lower values of biomechanical load. However, those tasks with less
space and more defenders (3v3v3, 4v4v4, 5v5, and 4v4) have a higher biomechanical load.

It could be concluded that the higher biomechanical load is closely related to the
presence of defenders. However, in the case of 1v0 and 2v0 tasks, although less demanding,
it should be noted that they present a certain biomechanical load (as they are normally
linked to technical work and, therefore, accumulate a high number of jumps/min). In
this sense, the study by Schelling & Torres. (2016) [29] also found that, for variables such
as accelerations per minute, half-court exercises were more demanding. Specifically, 2v2
and 5v5 in half court showed the highest values for accelerations per minute among the
different SSGs analyzed. In the study by Olthof et al. (2021) [24], they found a positive asso-
ciation between the biomechanical load of the training sessions with the players’ statistics
during the match and suggested that biomechanical loads were good predictors for game
performance, in the way that excessive biomechanical loads from training may negatively
impact game performance. Finally, Castillo et al. (2021) [47] found significant differences
in high decelerations and jumps when considering the interaction of the defensive style
factors and the outcome of game-based drills.

Although numerous modulators of the external load (opposition/non-opposition,
number of opponents, type of opposition, limitation of technical actions, or feedback from
the coach) have been described in the specific literature, the playing space seems to be the
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fundamental variable in the regulation of the intensity of the exercises (i.e., [2,4,45]). The
m2/player ratio determines and guides the task load. By modifying/restricting the absolute
(total m2) or relative (m2/player) spaces, the biomechanical and physiological demands
of the exercises can be modulated to a large extent. However, the results obtained in the
present study qualify this idea, as it is not only space that will be the main modulator of the
load experienced by the player, but also the presence or absence of defenders. Therefore,
the combination of these two variables will be the main modulator of tasks to impose a
greater physiological or biomechanical load on the athlete. This could coincide with the
results obtained by Sansone et al. (2023) [4], who, while analyzing the training tasks used
in basketball from a different perspective, come to the conclusion that the modification of
the number of players involved in the task and the space available to the player should be
used to modify the external load experienced.

However, in the present study we should avoid having a dichotomous view of this
perspective, and it would be much more convenient to understand this analysis not as
an analysis of the training tasks between two extremes (high physiological load or high
biomechanical load), but as a continuum between these possibilities. In this sense, according
to the results obtained, it would be much more advisable to classify the tasks as exercises
fundamentally of biomechanical orientation (1v1 full court, 3v3v3, 4v4v4v, and 5v5v5),
exercises fundamentally of physiological orientation (3v0 full court, 4v0 full court, and
5v5v5), low-intensity mixed-orientation drills (1v0 half court and 2v0 half court), and
high-intensity mixed-orientation drills (official match, 4v4 full court, 3v3 full court, 5v5 full
court, counter attack of 11, and 2v2 full court).

In relation to the second goal, it is necessary to highlight its clear practical application,
as the present analysis allows us to model training based on the knowledge of the real
impact of each task. With this objective we could define different types of sessions as shown
in Table 6. Based on the results obtained, depending on the objectives we are looking for
when designing the training, we will be able to select more suitable tasks for each of these
objectives:

Table 6. Different types of sessions according to the objectives and physical orientation (physiological
or biomechanical).

Orientation Session
Duration Tasks Task

Duration

Main: 3v0-4v0-5v0 15–20 min

Physiological 60–90 min Reinforcing: 3v3-4v4-5v5 10–12 min

Accessories: 1v0-2v0 10–12 min

Main: 1v1FC-3v3v3-
4v4v4-5v5v5 15–20 min

Biomechanical 60–90 min Reinforcing: 5v5HC 10–12 min

Accessories: 1v0-2v0 10–12 min

Main: 2v2 FC-11PB-
3v3-4v4-5v5-SGs 15–20 min

Mixed high
intensity 60–90 min Reinforcing: - -

Accessories: 1v0-2v0 10–12 min

Main: 3v3v3-4v4v4-
5v5v5-4v4-5v5 15–20 min

29



Sensors 2025, 25, 262

Table 6. Cont.

Orientation Session
Duration Tasks Task

Duration

Tapering I 60–75 min Reinforcing: 3v3 10–12 min

Accessories: 1v0-2v0 10–12 min

Main: 5v5v5-4v4-5v5 15–20 min

Tapering II 45–60 min Reinforcing: 5v0 10–12 min

Accessories: 1v0-2v0 10–12 min

Main: 5v0 8–10 min

Tapering III 30–45 min Reinforcing:
5v5v5-5v5

(limited contact,
no tape)

5–8 min

Accessories: 1v0-2v0 10–12 min

Another main application of this task classification is the weekly design of training
according to the number of competitions and their location, as it appears in Figure 4.
Weekly tapering or short-term tapering is the weekly adjustment of the training load with
the objective of obtaining an optimal performance for the competition. This programming
involves an overload phase (the day’s farthest away from the competition) and a tapering
phase (the days closest to the competition). Since there is a high sensitivity of physical
qualities to tapering in team sports, understanding the differences in the demands of the
different tasks allows us to improve the exercise selection system and training design,
especially when seeking to optimize weekly performance. It should be noted that there
are studies that have revealed a large interindividual variability in individual sports in
response to tapering.

ȱ

Figure 4. Weekly training design according to the number of competitions. Notes: The basketball
ball represents an official game according to a typical calendar in basketball leagues.

Greater control of the training stimulus and the adaptations that occur during periods
of progressive loading and tapering, especially during periods of intense physiological
and psychological stress, that is, prior to competition, could improve the training design
and management of the training load. Therefore, the choice of exercises could be crucial to
establish an optimal pre-competition physical load.
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The main limitation of the present study is that probably not all of the possible tasks to
be used in basketball training have been analyzed, although it can be observed that most of
the tasks normally used in training sessions are included. However, what is relevant is that
it allows for a more correct design of the training sessions by placing the tasks with a greater
biomechanical impact at the beginning of the sessions and trying to place the tasks with a
greater physiological orientation towards the end of the training. Similarly, if the objective
of the planned training is more related to fatigue endurance work, the predominant tasks
should be those with a high physiological load, whereas if the objective of the training
is mainly tactical or strategic, the tasks to be used will have a high biomechanical load.
Additionally, one of the main limitations of this study is the small and highly specific
sample size, which restricts the generalizability of the findings. In this regard, the results
are closely related to the specific coaching methodology and training design employed in
this study, limiting their applicability to other coaching approaches or contexts.

Future research should aim to include larger and more diverse samples to enhance the
generalizability of the findings. Expanding the study to include players from various com-
petitive levels, age groups, and geographical regions would provide a better understanding
of the physiological and biomechanical demands in basketball training. Furthermore, ex-
ploring how different coaching methodologies impact these variables could offer valuable
insights for practitioners seeking to adapt the findings to their specific needs and training
environments.

5. Conclusions
This study classifies basketball training tasks according to their physiological or

biomechanical load, showing that tasks with more space and fewer defenders impose
higher physiological loads, while those with less space and more defenders increase the
biomechanical load. For training design, it is recommended to place tasks with higher
biomechanical load at the beginning of the session and those with physiological orientation
toward the end. Manipulating space and the presence of defenders allows for adjusting task
intensity to meet specific objectives, optimizing performance and avoiding overtraining.
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Abstract: Sports performance initiation is of significant interest in sports sciences, particularly in
beach volleyball (BV), where players usually combine indoor and BV disciplines in the formative
stages. This research aimed to apply an electronic performance tracking system to quantify the
physical-conditional performance of young male BV players during competition, considering age
group (U15 or U19), sport specialisation (indoor or beach) and the set outcome (winner or loser).
Thirty-two young male players, categorised by age and sport specialisation, were analysed during
40 matches using electronic performance tracking systems (Wimu PROTM). Data collected were the
set duration, total and relative distances covered, and number and maximum values in acceleration
and deceleration actions. U19 players and BV specialists, compared to their younger and indoor
counterparts, covered more distance (719.25 m/set vs. 597.85 m/set; 719.25 m/set vs. 613.15 m/set)
and exhibited higher intensity in terms of maximum values in acceleration (4.09 m/s2 vs. 3.45 m/s2;
3.99 m/s2 vs. 3.65 m/s2) and deceleration (−5.05 m/s2 vs. −4.41 m/s2). More accelerations
(557.50 n/set vs. 584.50 n/set) and decelerations (561.50 n/set vs. 589.00 n/set) were found in indoor
players. Additionally, no significant differences were found in variables regarding the set outcome.
These findings suggest that both age and specialisation play crucial roles in determining a great
physical-conditional performance in young players, displaying a higher volume and intensity in
external load metrics, whereas indoor players seem to need more accelerations and decelerations in
a BV adaptation context. These insights highlight the age development and sport specialisation in
young volleyball and BV athletes.

Keywords: sand sports; microtechnology; accelerometer; automatic detection; player load

1. Introduction
Beach volleyball (BV) is an outdoor split-court sport played by pairs on the sand, where

environmental and contextual variables influence game performance [1,2]. Its popularity
has increased recently, prompting sports science researchers to deepen BV analysis from
different perspectives [3]. Technical-tactical [4,5], psychological [6], physiological [2],
environmental [7] and reglementary [8] aspects of the game have been studied so far.
However, physical-conditional parameters have proved to be one of the most studied
aspects of the game, from the beginning years [9–11] to the present [12].
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Regarding the physical-conditional analysis, BV is an intermittent sport that combines
short maximal efforts with prolonged low-intensity recovery periods [2]. These maximum
efforts, composed of jumps, defences and displacements with direction changes at high
intensity on an irregular and unstable surface such as the sand, make BV a very physically
demanding sport [2]. Therefore, players’ internal and external loads during competition
and training have been studied extensively for performance monitoring, injury prevention,
and health control [1,3,13,14].

When discussing physical-conditional aspects of the game, it is necessary to define
the concept of load as the intensity, volume and frequency of stimulus experienced by
athletes [15,16]. One of BV’s most studied external load variables has been the number of
jumps [17,18]. Still, new research trends indicate that kinematic analysis of the game could
better integrate the external workloads by considering variables such as total distances,
number and intensity of accelerations, decelerations or changes in direction by the players
during the game [1,3,19,20].

Moreover, physical-conditional variables have been shown to differ in terms of age
groups [1,21], game outcomes [3,22] and players’ specialisation [3,14,17,21,23]. In terms of
age group, a tendency towards longer sets, more jumps and greater distances covered at
higher intensities has been found in older categories [1,21]. Concerning game outcomes,
winning teams show higher speeds and jumps in blockers and higher adjusting ability,
speed, accelerations and decelerations in defenders [3]. As far as players’ specialisation is
concerned, different approaches can be proposed. Some authors have used the player’s
team role to differentiate between blockers, defenders and universal players [3,14,17,21,23].
Still, to date, no BV articles have considered the players’ specialisation in terms of exclusivity
in the BV practice in the formative stages. In this sense, two methodological approaches
can be identified: specificity and multidisciplinary [24,25]. Young BV players usually
combine indoor and BV seasons in their formative stages. Therefore, two levels of players’
specialisation can be determined: players who train indoors and move to BV during the
summer season (indoor) or players with a more specialised dedication to BV (beach).

For a better understanding of physical game demands, in the last few years, research stud-
ies using electronic performance tracking systems (EPTSs) in BV have emerged [1,3,13,14,16],
and this trend can be considered as a starting point in the application of this technology in BV.
To the best of the authors’ knowledge, these publications have focused on monitoring female
BV players, including a case study analysing 99 matches of an elite team [14]; a comparative
study (U23 vs. Senior) analysing ten teams at the Australian BV National Championships [1];
two studies focusing on the validation and description of the physical-conditional demands
of NCAA players [13,16]; and a study focusing on how contextual variables (player profile,
set type, and match outcome) affect data collected with Global Position Systems in six teams
during 30 official matches of the Portuguese BV National Championship [3]. Therefore, a gap
in the research literature that provides performance indicators obtained with an EPTS in men’s
BV is recognised, as well as information related to the initial stages.

For all the above reasons, this research aimed to apply EPTS technology to objec-
tively quantify the physical-conditional performance of young male BV players during
competition, considering the age group (U15 vs. U19), the players’ sport specialisation
(indoor vs. beach), and the set outcome (winner vs. loser). The following hypotheses are
established: (1) volume and intensity external load variables will increase with the players’
age; (2) adjustment variables, such as the number of accelerations and decelerations, will
be higher in indoor players; (3) volume and intensity values will be higher in BV specialist
players; and (4) intensity external load variables will be higher in the winners’ teams.

2. Materials and Methods
2.1. Participants

Thirty-two youth men players were analysed according to their age category (U15
or U19) and sport specialisation (indoor—I, or beach—B): (a) U15-I (n = 8, 12 ± 1 years,
43.7 ± 9.1 kg and 1.55 ± 0.11 m, national league level), (b) U15-B (n = 8, 13 ± 1 years,

35



Sensors 2024, 24, 7524

57.8 ± 10.7 kg and 1.70 ± 0.10 m, national league level), (c) U19-I (n = 8, 14 ± 1 years,
58.1 ± 6.5 kg and 1.76 ± 0.05 m, national league level), and (d) U19-B (n = 8, 18 ± 1 years,
68.1 ± 8.0 kg and 1.79 ± 0.07 m, national league level). All participants were free from
injury during testing and voluntarily participated in the study. Players over 18 years old
and legal representatives of minors signed an informed consent form giving their assent
to participate. The study was conducted according to the guidelines of the Declaration
of Helsinki (2013) and approved by the Ethics Committee of the University of Valencia
(ID: 2158717).

2.2. Procedure
Four simulated competitions were organised, one for each group (U15-I, U15-B, U19-I,

U19-B), where the 8 players (4 teams) played a total of 10 one-set matches to 21 points,
distributed in three phases: round robin, semi-finals and finals (Figure 1). Athletes were
briefed on the measurement protocol and the competition system upon arrival. Before each
match, the players were instrumented with electronic tracking devices. The starting and
finish set time was recorded, and the set outcome was registered, assigning the winning
(W) or losing (L) category to the teams based on the game result. A total of 40 four-player
matches (n = 160 records) were monitored (20 U15-B records had to be excluded due to
technical issues), in which 1310 points (369 in U15-I, 193 in U15-B, 376 in U19-I, 372 in
U19-B) and 536 min (166 in U15-I, 74 in U15-B, 133 in U19-I, 163 in U19-B) were played.

Figure 1. Competition format representation.

2.3. Technology
WIMU PROTM (RealTrack Systems, Almeria, Spain), a multi-sensor device with four

triaxial accelerometers, three triaxial gyroscopes, a triaxial manometer and a Global Position
System, was the EPTS used to monitor players’ physical-conditional performance during
competition [26]. This device was validated previously by different sports scenarios [27,28].
Before each match, players wore a tough-fit top with an interscapular (vertebral T2-T4 level)
compartment where the WIMU PROTM device was located [26]. A push button provided
by the manufacturer connected via ANT+ technology to the device was used for more
precise signal segmentation (start and end of the set) (Figure 2). Data generated by these
sensors during the sets were downloaded and processed in the SPRO program (Software
version number: Version 1.0.0 Copilation: 989; RealTrack Systems, Almeria, Spain), where
the INTERVAL PRO monitor (Software version number: Version 1.0.0 Copilation: 989;
RealTrack Systems, Almeria, Spain) was applied to calculate the variables through algorithms
configured by the manufacturer.
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Figure 2. Equipment used during competition monitoring.

2.4. Measurement
To compare the players’ physical-conditional efforts, nine external load variables were

considered to represent the volume and intensity performance: set duration (min), distance
covered per set (m/set), distance covered per minute (m/min), number of accelerations
and decelerations per set, per minute, and maximum acceleration and deceleration (m/s2).
Variables were selected considering the results of previous studies [1,3,13,14,29].

2.5. Statistical Analysis
A descriptive analysis was carried out in two parts: (i) with the age group (U15 vs. U19),

the players’ sport specialisation (indoor vs. beach) and the set outcome (winner vs. loser)
separately, and (ii) with the interaction between age group and players’ sport specialisation
(U15-I, U15-B, U19-I, U19-B), and age group and set outcome (U15-L, U15-W, U19-L, U19-W).
The median (µ) and interquartile range (IQR) were used for data descriptive representa-
tion. The Shapiro–Wilk test showed a non-normal data distribution (p < 0.05). Therefore,
Mann–Whitney U and Kruskal–Wallis tests were applied (p < 0.05), as well as the Holm
adjustment for pairwise comparison (p < 0.05). Furthermore, the effect size (ES) and the con-
fidence interval (CI) were calculated. Rank-biserial correlation (rbis) effect size considering
0.10 small, 0.30 medium and 0.50 large was used for the Mann–Whitney U test [30]. For the
Kruskal–Wallis test, the rank epsilon square (ε2) effect sizes were chosen with values as fol-
lows: 0.00–0.01, negligible; 0.01–0.04, weak; 0.04–0.16, moderate; 0.16–0.36, relatively strong;
0.36–0.64, strong; and 0.64–1.00, very strong [31]. RStudio (version 2023.06.0, package “ggstat-
plot”) software was used in the analysis.

3. Results
The U19 category displayed higher volume and intensity values compared to the

U15. The older players covered more distance (719.25 m/set vs. 597.85 m/set, p = 0.001,
rbis = 0.45) and more relative distance (44.30 m/min vs. 38.66 m/min, p = 0.001, rbis = 0.41),
and exhibited higher intensity in maximum accelerations (4.09 m/s2 vs. 3.45 m/s2, p = 0.001,
rbis = 0.68) and decelerations (−5.05 m/s2 vs. −4.41 m/s2, p = 0.001, rbis = 0.40) (Figure 3).
Although the variables of duration and the number of accelerations and decelerations per
set and minute did not reveal significant differences, there was a trend towards higher
values in older age groups. In relation to Figure 4, data show that BV specialists covered a
greater distance (719.25 m/set vs. 613.15 m/set, p = 0.001, rbis = 0.41) and relative distance
(45.59 m/min vs. 37.36 m/min, p = 0.001, rbis = 0.69), but performed fewer accelera-
tions (557.50 n/set vs. 584.50 n/set, p = 0.001, rbis = 0.34; 34.19 n/min vs. 36.13 n/min,
p = 0.001, rbis = 0.50) and decelerations (561.50 n/set vs. 589.00 n/set, p = 0.001, rbis = 0.34;
34.17 n/min vs. 36.24 n/min, p = 0.001, rbis = 0.52) per set and minute. However, they did
perform higher maximum accelerations (3.99 m/s2 vs. 3.65 m/s2, p = 0.001, rbis = 0.31).
Moreover, no differences were found considering the set outcome (Figure 5).
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Figure 3. Age group comparison (U15 vs. U19) of the nine performance variables portrayed as violin
plots. Median values (µ), interquartile ranges (IQR), Mann–Whitney U test (p < 0.05), rank-biserial
correlation effect size (rbis), 95% confidence interval (CI95%), and number of observations (nobs)
expressed in each plot.

Figure 4. Players’ specialisation comparison (beach vs. indoor) of the nine performance variables
portrayed as violin plots. Median values (µ), interquartile ranges (IQR), Mann–Whitney U test
(p < 0.05), rank-biserial correlation effect size (rbis), 95% confidence interval (CI95%), and number of
observations (nobs) expressed in each plot.
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ߝ

Figure 5. Set outcome comparison (loser vs. winner) of the nine performance variables portrayed as
violin plots. Median values (µ), interquartile ranges (IQR), Mann–Whitney U test (p < 0.05), rank-
biserial correlation effect size (rbis), 95% confidence interval (CI95%), and number of observations
(nobs) expressed in each plot.

In the category-level interaction (Table 1), the U19-B group covered the greatest
distances (760.90 m/set, p = 0.001, ε2 = 0.23). A tendency to cover more distance with
more age and BV specificity was shown. Similar trends were found in relative distance but
with higher values in U15-B and U19-B, regardless of age. In terms of accelerations and
decelerations (both in volume and intensity), the lower-specialisation groups tended to
have higher values. Significant differences were found between the U19-I and the U15-B
and U19-B groups, but no differences between U15-I and U19-I were shown. Additionally,
U15-I had higher values in decelerations/set compared to U15-B, and U15-I had higher
values in the intensity variables (accelerations/min and decelerations/min) compared to
U19-B. Maximum values of accelerations and decelerations tended to be higher in older
categories, with the higher acceleration values in U19-I.

Table 1. Comparative interaction between age group and players’ specialization.

Variables U15-I
µ (IQR)

U15-B
µ (IQR)

U19-I
µ (IQR)

U19-B
µ (IQR) X2 p ε2 CI95% Holm

Set duration (min) 15.59
(4.20)

15.12
(4.57)

16.42
(2.79)

16.60
(2.44) 7.68 0.05 0.06 [0.01, 1.00] †

Distance covered
(m/set)

585.95
(129.60)

643.50
(163.45)

682.15
(185.30)

760.90
(163.28) 32.25 0.01 0.23 [0.16, 1.00]

ߝ

Ɔ ‡ #

Relative distance
covered (m/min)

35.72
(6.11)

43.95
(7.20)

39.55
(10.31)

46.48
(5.77) 57.71 0.01 0.41 [0.34, 1.00] *

ߝ

၇

ߝ

Ɔ #

Accelerations per
set (n/set)

565.50
(138.75)

506.00
(168.00)

605.00
(84.00)

571.00
(105.25) 14.16 0.01 0.10 [0.04, 1.00] † #

Accelerations per
min (n/min)

35.72
(2.29)

34.69
(1.84)

36.39
(2.06)

33.97
(1.65) 26.99 0.01 0.21 [0.13, 1.00]

ߝ

Ɔ † #
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Table 1. Cont.

Variables U15-I
µ (IQR)

U15-B
µ (IQR)

U19-I
µ (IQR)

U19-B
µ (IQR) X2 p ε2 CI95% Holm

Decelerations per
set (n/set)

567.50
(139.25)

498.50
(165.25)

606.50
(88.50)

570.50
(104.75) 14.32 0.01 0.10 [0.05, 1.00] * † #

Decelerations per
min (n/min)

35.94
(2.17)

34.88
(2.03)

36.56
(2.06)

34.13
(2.10) 30.46 0.01 0.22 [0.14, 1.00]

ߝ

Ɔ † #

Maximum acc.
(m/s2)

3.45
(0.51)

3.42
(0.49)

3.99
(0.58)

4.16
(0.66) 53.37 0.01 0.38 [0.29, 1.00]

ߝ

၇

ߝ

Ɔ † ‡ #

Maximum dece.
(m/s2)

−4.65
(1.23)

−3.79
(0.88)

−5.09
(1.42)

−4.99
(1.28) 26.63 0.01 0.19 [0.14, 1.00] * † ‡

(U15-I) Under 15 age group indoor specialisation, (U15-B) under 15 age group beach specialisation, (U19-I) under
19 age group indoor specialisation, (U19-B) under 19 age group beach specialisation. (µ) Median values, (IQR)
interquartile ranges, (X2) Kruskal–Wallis (p < 0.05), (ε2) Rank Epsilon Square Effect Sizes, (CI95%) 95% Confidence
Interval. Holm adjustment (p < 0.05) pairwise differences is represented as: (*) U15-I vs. U15-B, (

ߝ

၇) U15-I vs. U19-I,
(

ߝ

Ɔ) U15-I vs. U19-B, (†) U15-B vs. U19-I, (‡) U15-B vs. U19-B, (#) U19-I vs. U19-B.

Finally, in the category–result interaction (Table 2), the older age groups’ tendency
to present higher values in total distance, relative distance, maximum acceleration, and
deceleration was confirmed. Moreover, no significant differences were found between
the winning and losing teams within each category (U15 vs. U19), confirming the results
obtained in Figure 3.

Table 2. Comparative interaction between age group and set outcome.

Variables U15-I
µ (IQR)

U15-B
µ (IQR)

U19-I
µ (IQR)

U19-B
µ (IQR) X2 p ε2 CI95% Holm

Set duration (min) 15.42
(2.96)

15.42
(2.69)

16.34
(2.83)

16.34
(2.19) 4.23 0.24 0.03 [0.01, 1.00]

Distance covered
(m/set)

588.60
(115.58)

605.05
(163.76)

687.80
(199.42)

734.70
(109.00) 22.86 0.01 0.16 [0.08, 1.00]

ߝ

၇

ߝ

Ɔ ‡

Relative distance
covered (m/min)

37.70
(7.83)

39.23
(8.51)

43.81
(10.52)

44.86
(8.12) 18.74 0.01 0.13 [0.07, 1.00]

ߝ

၇

ߝ

Ɔ ‡

Accelerations per set
(n/set)

568.50
(140.75)

541.50
(100.50)

585.00
(114.50)

581.00
(88.75) 1.84 0.61 0.01 [0.01, 1.00]

Accelerations per
min (n/min)

35.73
(2.48)

34.92
(2.52)

35.32
(3.00)

34.84
(3.02) 3.67 0.30 0.03 [0.01, 1.00]

Decelerations per set
(n/set)

572.00
(140.25)

545.00
(104.50)

586.50
(118.25)

585.00
(86.75) 1.72 0.63 0.01 [0.01, 1.00]

Decelerations per
min (n/min)

35.71
(2.42)

35.19
(2.38)

35.79
(3.25)

35.22
(2.69) 4.15 0.25 0.03 [0.01, 1.00]

Maximum acc.
(m/s2)

3.52
(0.42)

3.30
(0.56)

4.14
(0.63)

4.02
(0.42) 50.54 0.01 0.36 [0.28, 1.00]

ߝ

၇

ߝ

Ɔ † ‡

Maximum dece.
(m/s2)

−4.38
(0.84)

−4.53
(1.41)

−5.14
(1.26)

−4.95
(1.42) 18.05 0.01 0.13 [0.07, 1.00]

ߝ

၇

ߝ

Ɔ †

(U15-L) Under 15 age group loser team, (U15-W) under 15 age group winner team, (U19-L) under 19 age group
loser team, (U19-B) under 19 age group winner team. (µ) Median values, (IQR) Interquartile ranges, (X2) Kruskal–
Wallis (p < 0.05), (ε2) Rank Epsilon Square Effect Sizes, (CI95%) 95% Confidence Interval. Holm adjustment (p < 0.05)
pairwise differences is represented as: (

ߝ

၇) U15-L vs. U19-L, (

ߝ

Ɔ) U15-L vs. U19-W, (†) U15-W vs. U19-L, (‡) U15-W
vs. U19-W.

4. Discussion
This study aimed to determine how the physical-conditional variables evolve in

men’s BV competition, considering age group (U15 vs. U19), players’ sport specialisation
(indoor vs. beach), and the set outcome (winner vs. loser). It is important to consider
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that our study aimed to enhance ecological validity by analysing performance variables
in real-game contexts and ensuring the findings represent actual competition dynamics.
This approach, however, may impact internal validity, as factors like years of training
and physical development were not explicitly controlled. While such variables could
influence the outcomes, our primary objective was a descriptive performance comparison
across levels and categories, prioritising real-world applicability over strict control of
confounding factors. The hypotheses proposed by the authors were as follows: (1) volume
and intensity of external load variables would increase with players’ age, and (3) volume
and intensity values would be higher in beach specialist players, both of which were
accepted; (2) adjustment variables, such as the number of accelerations and decelerations,
would be higher in indoor players, which was partially accepted; and (4) the intensity
external load variables would be higher in winning teams, which was rejected.

To start with, older players can sustain higher-intensity efforts for extended periods,
achieving greater values in both total and relative distances covered with higher-intensity
accelerations and decelerations. These findings align with the existing literature, which has
shown that senior players cover greater relative distance, at higher speeds, with more rest
periods, and perform more jumps compared to the younger category [1,21]. This suggests
an increase in performance metrics as players grow, regardless of the level of specialisation.
In this sense, the higher values are attributed to an increase in physical and metabolic
capacity as a result of maturation and growth, as well as more experience, shown in better
decision-making and skills control [32].

Furthermore, volume and intensity values were higher in BV specialists, as they
covered greater distances and relative distances compared to indoor players, as shown in
previous studies [12]. Despite performing fewer accelerations and decelerations per set and
minute, beach specialist players exhibited higher maximum accelerations. These suggest
better specificity adaptation to the BV requirements, playing at a higher intensity without
needing extra accelerations and decelerations for adjustments. In this sense, indoor players
need to adapt to the open context of the sand surface, wind and sun, as well as to the larger
player responsibility area, making it difficult to maintain beach specialist external load
volume and intensity [12].

Regarding accelerations and decelerations, indoor players are used to specific position
roles, having to adapt in BV to a general role using all volleyball skills (serve, receive,
set, spike, block and defend), and needing an additional number of accelerations and
decelerations for in-game adjustments [12]. Specifically, the study found that indoor
players tend to have slightly higher values in decelerations/set compared to BV specialists
in the U15 category and higher accelerations/min and decelerations/min compared to U19
beach specialist players. These findings suggest that while indoor players may perform
more frequent adjustments, the differences are not pronounced enough to be statistically
significant in all categories.

Finally, no significant differences were found between winning and losing teams regard-
ing the volume and intensity of external load variables within each age category. This finding
is consistent across the metrics of total distance, relative distance, maximum acceleration, and
deceleration. It provides differing results from recent reference studies on elite senior female
athletes, where winning teams show higher speeds and jumping in blockers, and higher
adjusting ability, speed, accelerations and decelerations in defenders [3]. This is probably
because, in senior elite categories, the physical-conditional aspect of the game becomes more
determined than in formative stages. These results suggest that while physical performance
is crucial, other factors such as technical skill, tactical execution, and psychological aspects
of the game may play more critical roles in determining the outcome of the matches in
formative categories.

One major limitation of this study is determining the effect of the number of sets on
performance indicators, as the data were collected from one-set simulated competitions.
This setup may not accurately reflect the typical accumulative load and fatigue experienced
in multi-set matches, although many U15 and U19 competitions present one-set match
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formats. Moreover, recruiting top elite athletes at this formative stage also becomes a
significant challenge, which might have impacted the sample’s representativeness.

Moreover, the study was conducted on different days, making it difficult to control
contextual variables such as wind, heat, and humidity, which can significantly influence
performance. This variability adds a layer of complexity when interpreting the results,
as these environmental factors can affect players’ physical and technical performances.
Furthermore, the study did not control other contextual variables, such as technical, tactical,
or psychological aspects, which can also impact performance. These uncontrolled factors
may confound the results, making it challenging to isolate the effects of the measured
performance indicators. Future research should aim to include a larger, more diverse
sample and consider multi-set matches to provide a more comprehensive understanding of
performance indicators in men’s BV at the formative stages. Additionally, these protocols
should be implemented for female formative and professional players to assess potential
gender differences, providing valuable insights into performance variations and promoting
a more inclusive understanding of the sport. Furthermore, studies should also explore the
progression of athletic and technical performance across a broader range of age groups and
training levels, as this could clarify how longer training years and competitive exposure
influence development in beach volleyball athletes.

5. Conclusions
The findings indicate that age and sports specialisation significantly influence the

physical-conditional performance of young volleyball players measured with EPTS tech-
nology. Older players and those specialised in BV show higher volume and intensity in
their external load metrics, whereas indoor players perform more acceleration and deceler-
ation movements. Additionally, the set outcome does not significantly impact the external
load variables.

The findings of this study offer valuable insights for coaches and trainers in developing
training programs for young volleyball players. The significant influence of age and
sports specialisation on physical-conditional performance suggests that training volume
and intensity should be consciously adapted to these factors. Older players and those
specialised in BV demonstrate higher volumes and intensities in their physical activities.
Therefore, training programs for these athletes should include higher intensity and volume
exercises to match their advanced physical capabilities.

Moreover, the finding related to set outcomes highlights the need for coaches to
consider other factors, such as technical skills, tactical decisions and psychological aspects of
the game, when preparing athletes for competition in the formative stages. Furthermore, by
integrating EPTS technology into regular training and match analysis, coaches can establish
reference values for different age groups and specialisations, enhancing their ability to
monitor and adjust training loads effectively. This approach not only helps optimise
performance but also prevents injuries by ensuring that young athletes are not overtraining.

These data and differences found between indoor and BV may be suitable for a proper
fusion of experiences in both sports, ensuring a wider physical stimulus favouring future
sports specialisation and injury prevention.
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Abstract: The aim was to analyse the consequences of a congested schedule (due to the COVID-19
lockdown) on creatine kinase (CK) in elite football players using GPS tracking technology. A total of
17 elite football players were monitored in training and competition with a global positioning system.
Variables including total distance, high-intensity distance, and distance acceleration and deceleration
were analysed. Different measurements of serum creatine kinase (CK) concentration were performed
on match day (MD) and at 24 h (MD+1), 48 h (MD+2), and 72 h (MD+3) after each match to study the
muscle damage of each individual player caused during the match. The results showed a significant
increase in physical demands in training (in relative terms regarding the match) at MD+3 compared to
MD+1 and MD+2. Furthermore, at +72 h, CK decreases to a value almost the same as that before MD. On
the other hand, the players with lower demands for high-intensity actions in the match showed a higher
reduction in the concentration of CK at MD+3 compared to MD+1 and MD+2 (p < 0.05). It became
evident that players with high-intensity demand and a high number of accelerations and decelerations
need more time to assimilate the match load and can remain in a state of muscle fatigue for up to 3 days.
In addition, a congested schedule can lead to a state of chronic fatigue in elite football players, limiting
physical performance and possibly increasing the potential risk of injury for football players.

Keywords: creatine kinase; external load; fatigue; injury risk; physical demands

1. Introduction
Football stands out because of the intermittent physical participation of the players

according to their position and the moment of the game, which implies periods in which
the players perform high-intensity activity interspersed with actions of lower intensity
or recovery [1]. During the 90 min match, each player covers an average total distance
of approximately 11 km, with 5% of this distance covered at high speed and 3% at sprint
speed [2]. The ability to perform and repeat these intense actions during the match has
been considered one of the key factors for the performance of football players [3]. It has
also been shown that this characteristic is evolving in football such that high-intensity
demands have increased significantly, with an increase in sprint distance of approximately
35% over a period of seven seasons [4]. In addition to the activity carried out at high
speed, players perform between 1000 and 1400 actions of high intensity and short duration,
ranging between 3 and 5 s, and involve actions with and without the ball that alternate
randomly [5]. These efforts require a good number of eccentric muscle contractions, which

Sensors 2024, 24, 6917. https://doi.org/10.3390/s24216917 https://www.mdpi.com/journal/sensors45



Sensors 2024, 24, 6917

greatly contribute to the muscular stress suffered by the player and are perceptible up to
120 h after the match [6].

In this sense, monitoring systems have become increasingly important to assess these
variables. Among the main monitoring methods, the global positioning system (GPS) is
widely used in elite football to quantify training and competition load [7]. GPS is one of
the current models of external load control to monitor the movement patterns and physical
actions performed by football players during training and matches [8], as well as to help
players avoid injuries [9].

The competitive demands of football involve various physiological systems, including
the musculoskeletal, nervous, immune, and metabolic systems, to the point that recovery
strategies after exercise influence the players’ preparation for the next match [10]. Different
studies have been carried out with the objective of analyzing this fatigue and recovery,
including the analysis-specific variables of performance such as biochemical markers and
muscle status, to achieve greater efficiency of progress during recovery [11].

Therefore, these parameters of muscle metabolism, including creatine kinase (CK),
lactate dehydrogenase (LDH), and myoglobin, tend to increase after exercise [12]. CK has
been used as an indirect marker of muscle damage to quantify and determine the extent of
muscle damage caused during competition and training [13]. After a high-intensity effort,
the main function of CK in muscle is to provide phosphorus for adenosine triphosphate
resynthesis [14]. This parameter increases after exercise, and it peaks between 24 and 48 h
post match [15]. Therefore, CK is measured between this period of time after the match
when there is no decrease in serum concentration (48 h after), while the next assessment is
carried out between 48 and 72 h to determine if the athlete recovers for the next match [16].
An insufficient recovery can adversely affect physical performance [17].

This is an increasingly important aspect in modern football, as it involves a large number
of matches during the season, and it is not unusual for a team to play two matches in a
week [18]. A congestion of matches can lead to a lack of motivation and concentration, which
can affect coordination [19]. Because of low recovery between matches, residual fatigue
occurs [20] and increases the stress imposed on the players, which decreases performance [21].
It is necessary to know the impact and physiological changes induced by a football match to
help design and develop more effective strategies to shorten the duration to a full recovery [22].
In this regard, further studies are required to demonstrate the impact of high-level match
congestion on the muscle damage response of professional players.

Due to the COVID-19 pandemic, there has been a congested fixture period calendar
after the resumption of competition in Spain in May 2020. This has influenced the physical
performance and injury rate after the quarantine period [23]. Therefore, the quantification of
CK and physical demands using GPS devices is ideal to analyse physical performance and
muscle damage during the congestion period of training and matches. Therefore, the aim of
this study was to analyse the influence of a congested match schedule on physical performance
and muscle damage in professional football players after the COVID-19 lockdown.

2. Materials and Methods
2.1. Sample

A longitudinal and quantitative study was performed with male professional football
players who played in the Spanish 2nd Division (LaLiga Smartbank) during the 2019–2020
season. All the information was collected, and the data were obtained during the last phase
of the LaLiga SmartBank. This period coincides with the resumption of competition after
the lockdown period in Spain. Specifically, this period was between 12 June 2020 and
20 July 2020. All the players played 11 matches and participated in 23 training sessions.
The study protocol was approved and followed the guidelines established by the local
institution, the Ethics Committee of the European University of Madrid (CIPI35/2020), and
it was in accordance with the recommendations of the Declaration of Helsinki. The players
were previously informed through a document about the purpose of the study and the
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nature of the tests that would be performed, and an informed consent form was signed
prior to the tests.

2.2. Procedures
The data from each player in each match were considered as one observation. Only

data of players who participated for at least 10 min in the match and had a complete mea-
surement of physical and physiological variables were included in the study. Furthermore,
goalkeepers and players who were penalised or injured were excluded from the analysis
and sampling, as were football players not participating in the matches. The players were
evaluated individually once before a training session and match competition.

The final study consisted of 17 male professional football players (25.91 ± 3.13 years;
71.27 ± 3.25 kg; 179.36 ± 5.14 cm) divided into three subsamples according to the demand
for each of the physical variables analysed (total distance, high-intensity distance [distance
travelled above 21 km/h], high-intensity acceleration distance [acceleration distance travelled
above 3 m/s2], and high-intensity deceleration distance [deceleration distance travelled above
−3 m/s2]). The three final subgroups consisted of low-physical-demand players (LPD),
medium-physical-demand players (MPD), and high-physical-demand players (HPD).

2.3. Equipment
All team players wore inertial measurement devices (IMUs) (81 × 45 × 16 Mm;

65 gr) with 18 Hz GPS tracking technology (WIMU PRO™, Almería, Spain) to evaluate
their movement patterns during each match and training session. For the analysis and
data extraction, the software SPROTM v. 960 (REALTRACK SYSTEMS S.L., Almería,
Spain) was used. The precision and reliability of this GPS system have been reported in
previous investigations [24].

CK measurements were performed at four time points: immediately at the end of the
game (MD) as a baseline measure, 24 h after the game (MD+1), 48 h after the game (MD+2),
and 72 h after the game (MD+3). Blood samples were collected from the index finger
using test strips (REFLOTRON TEST STRIPS®, Roche, Switzerland) and measured on a
biochemical analyser (REFLOTRON PLUS®, Roche, Switzerland). The doctor responsible
for the medical service was in charge of taking the measurements. Measurements were
made according to the established hours, with a variation of ±1 h. Before each sampling,
the instrument was calibrated according to the manufacturer’s recommendations. A CK
measurement protocol was developed according to previous studies [25]. CK sample
collection was carried out in the doctor’s office. This office was perfectly equipped and
prepared, with a standard temperature of 21 ◦C and a relative humidity of 65%, fulfilling
conditions of suitability and homogeneity for carrying out the measurements.

2.4. Statistical Analysis
Results are presented as means ± standard deviations. The three subsamples based on

the physical variables (i.e., LPD, MPD, and HPD) were created using k-means clustering.
The Kolmogorov–Smirnov test revealed a non-normal behaviour of all variables; therefore,
nonparametric tests were performed. The Kruskal–Wallis H test was used to compare
the physical parameters and CK blood levels in % relative to the match between MD+1,
MD+2, and MD+3. The same test was used to compare the CK blood levels in % relative
to the match between MD+1, MD+2, and MD+3 in each of the three subsamples of each
physical variable, and the CK blood levels in absolute terms and in % relative to the match
between the three subsamples of each physical variable at each of the time points (i.e., MD,
MD+1, MD+2, and MD+3). Here, differences were identified, and Dunn–Bonferroni tests
were performed for post hoc pairwise comparisons. SPSS V24.0 for Windows (SPSS Inc.,
Chicago, IL, USA) was used for all tests. The level of significance was set at p < 0.05
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3. Results
The analysis of variance revealed significant differences in the physical performance

and muscle damage of the players in the days after the match compared to the results
obtained during the MD (Figure 1; p < 0.001). The external load of the players at MD+3
showed a significant increase compared to MD+1 and MD+2 for all the variables analysed
(p < 0.001; ES: 0.27–0.96). The CK results showed a significant reduction at MD+3 compared
to MD+1 (−202.32%; ES: 0.70; p < 0.001) and MD+2 (−187.46%; ES: 0.64; p < 0.001).

Figure 1. Physical demands and CK blood levels at MD+1 (24 h), MD+2 (48 h), and MD+3 (72 h)
according to the MD results. HI: high intensity; CK: creatine kinase. * Significant differences with
respect to 48 h; † significant differences with respect to 72 h.

The subgroup analysis revealed a significant influence of the physical demands of the
match on the evolution of the CK levels of the players (Table 1; p < 0.001). In relation to
the total distance covered, the players with the greatest distances covered in the match
(HPD) showed a significant reduction at MD+3 compared to MD+1 (−244.37%; ES:0.78)
and MD+2 (−191.15%; ES: 0.66) according to the baseline situation (p < 0.05). In this sense,
in relation to the distance at high intensity and the distance in high-intensity acceleration,
the groups with LPD and MPD revealed a reduction in the concentration of CK at MD+3
compared to MD+1 and MD+2 (p < 0.05). Finally, the subgroup analysis regarding the
distance covered during high-intensity deceleration showed a significant decrease at MD+3
compared to MD+1 in the three groups analysed (p < 0.05).

The analysis of the three subgroups only revealed a greater concentration of CK in
the MPD group compared to the HPD group (+176.84%; ES: 0.43) as a function of the
distance covered during high-intensity acceleration at MD+1 (p < 0.05). In absolute terms,
the comparative analysis showed higher levels of CK in the blood in the HPD group before
the game as a function of the distance travelled at high intensity (+43.66 U l−1; ES: 0.54)
and during high-intensity accelerations (+64.24 U l−1; ES: 1.03) compared to the LPD
group (p < 0.05). In relation to the results obtained 24 h after the match, the MPD group
revealed higher blood concentrations of CK than the LPD group (+166.76 U l−1; ES: 1.24) as
a function of the distance covered during high-intensity accelerations (p < 0.05).
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4. Discussion
The aim of this study was to analyse the influence of a congested match schedule on

physical performance and muscle damage in Spanish professional football players after the
COVID-19 lockdown. For this fatigue assessment, internal load (serum CK measurements)
and external load (GPS variables) were used individually. Our findings demonstrate that
players with higher-intensity physical demands in matches, recognized as distance covered
at high intensity and distance covered accelerating and decelerating at high intensity, had
greater muscle damage and required a longer recovery time. Also, large differences were
observed in the recovery time, with 72 h being the ideal time. A long period of inactivity
due to the COVID-19 lockdown caused significant negative adaptations in the players,
which are related to increases in fitness-dependent injuries [26]. Therefore, a long preseason
is of crucial importance because of its protective effect, as it reduces injury risk and injury
severity and increases player availability during the season [27]. In this sense, preparing
for 4 weeks with limiting guidelines on the return to competition is a handicap to achieve
adequate adaptations for competition.

After an analysis of the chronological evolution of the concentration of CK in plasma,
an increase in the curve of this biochemical marker is observed from immediately after the
end of the match up to 4 days after the end of the match [18]. The highest CK concentration
occurred in the 24 h post-match test [28]. In this study, the peak CK levels differ and are
lower than reference levels in other studies. This important finding could be due to the
players remaining in a state of chronic fatigue for much of this period, which prevented
the logical manifestation of this biomarker. Indicators of muscle damage have been shown
to decrease as a result of frequent bursts of eccentric loading, or as a result of continued
sporting activity [29], as is the case with a congested schedule in football. Therefore, high
loads applied over a long period of time by football players can lead to metabolic and
organic overloads and, consequently, to chronic fatigue [30].

The release of CK in plasma and its elimination by the body depend on the level of
training of the subject and the type, intensity, and duration of exercise [31]. Our results
are focused on the characteristics of the effort, which were analysed individually. After
48 h post match, the CK level was still high [15,17]. This suggests that the players did not
have a complete recovery 48 h after the match. However, at 72 h, there was a significant
reduction in serum CK concentrations compared to previous tests (MD+1 and MD+2). This
decrease was evidenced previously [31], where the CK levels decreased in the days after
the match, probably as an adaptation to the training stimuli that produced the muscle
damage. Therefore, after 72 h, minimal functional recovery and reduced risk of injury can
be guaranteed [24]. In this way, physical demands and neuromuscular function show a
reduction 24 h and 48 h post match. This decrease in training performance is explained by
the structured planning due to the congested match period, and thus the loads are adjusted
on the day of the match [20].

On the other hand, a large requirement of the physical demands of the players in the
competition influence the concentration of CK and the muscle damage of the players in
subsequent days. Changes in the CK levels after the match have higher significant correla-
tions with high-speed running than total distance covered [13]. Our findings indicated a
positive relationship between the total distance covered and the time of recovery, where
the players with the greatest distance covered in the competition showed a significant
reduction at MD+3 compared to groups with less load. This did not happen in other studies
that did not find relationships between total distance and the increase in CK concentration
in football.18 In addition, other studies have shown a negative correlation between total
distance and CK levels at MD+1 and MD+2 [28]. Therefore, players who are stronger and
have more strength in the lower body show reduced levels of CK 48 h after the match [32].
This implies that the muscle damage produced by travelling a certain distance does not
generate excessive fatigue, which is quantified using concentrations of CK. This may be
because players with more fatigue resistance can travel long distances in matches due to
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the predominance of muscle fibres I or IIb, which are associated with less muscle damage
than type II muscle fibres [19].

Otherwise, players who run long distances at high speeds develop increased muscle
damage, as demonstrated by post-match CK measurements [17]. These findings are similar
to our results, which show significant reductions in the concentrations of CK in the groups
with low and medium demand regarding these variables, with respect to the group with
HPD in competition. This decrease is especially significant in the MD+3 test, which
uses the MD+1 and MD+2 measurements as references. On the other hand, another
study showed that high-intensity match activities are related to CK levels at 24 h after the
football match [7].

The main take-home application of this study is that it is necessary to adapt the training
regimen during the three days after a competition by considering the high load experienced
by the players as well as the total volume of minutes played. These players have a high
state of fatigue, and their demands during post-match training have been shown to be
lower. In addition, it is important that the time saved by the low load of these workouts is
used to apply recovery measures. Thus, if there are less than 72 h between competitions,
the degree of recovery should be assessed in order to make the lineup and design the
match plan. It is possible to save the load, and the performance of these players during the
competition is not limited, which takes into account the demands of the previous match.

There are some limitations to be considered when interpreting the present results.
Firstly, we do not have data prior to the lockdown to be able to make a pre–post comparison.
This is due to the unexpected cancellation of the competition due to COVID-19. Moreover,
dietary intake was not monitored and could influence recovery time. Furthermore, factors
such as the quality of sleep and the players’ activity outside of training hours were also
not analyzed.

5. Conclusions
Once the physical results obtained with the GPS devices and the CK values are known,

it is essential to manage the workload of players during training with a congested match
schedule to ensure adequate recovery for the next match. Special attention should be paid
in the days after the match to players who engaged in higher-intensity efforts and high
acceleration and deceleration activities during the match. These players will need more
time to assimilate the match loads and will not be in an acceptable state of recovery until 3
days after the match. Therefore, with a congested match schedule, a rotation of players is
essential for recovery and for the players to be able to perform at an optimal physical level
in matches. Organisers of elite tournaments, such as leagues or national team competitions,
must be aware of the risks faced by elite players during congested calendar situations and
opt for the health and well-being of the players over the spectacle.
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Abstract: Handball is a team sport characterised by physical interaction with other opponents.
This interaction produces a high load on the players that can manifest itself in various ways, from
discomfort to prolonged injuries due to tears caused by excessive load. In order to establish correct
protocols for application in women’s teams, context- and gender-specific reference data must be
available. For this reason, the present research aims to find out how women’s teams in European
competitions prepare for decisive matches during the match week, analysing the load in a segmented
way and the level of specificity that should be achieved in training. Ex post facto research was
used in which a total of 17 players belonging to a women’s first division handball team in Spain
participated. The variables player load and impacts extracted from the use of Wimu ProTM inertial
devices were analysed. The results showed a high neuromuscular load in players at this competitive
level, especially in the variable impacts, reaching values per session of up to 1000 impacts. The
individuality analyses show that the load varies significantly depending on the subject, which is why
it is considered essential to establish protocols for strength work and load control in the most specific
way possible.

Keywords: vertical load; horizontal load; team sport; inertial devices; high performance

1. Introduction
Handball is a high-intensity intermittent sport [1] in which players face during training

and competition high efforts that involve a load whose evolution must be controlled and
planned by the team’s coaching staff. The load planning will be conditioned by the sum of
the objective internal load [2], subjective internal load [3], kinematic external load [4] and
neuromuscular external load [5].

The neuromuscular load directly affects the performance and health of the players,
as this type of load is generated by the execution of practical movements typical of sport
in general and handball in particular, such as jumping, running, pivoting, throwing and
defending [5]. This load is marked by the dynamic and frequent movements of handball,
the numerous impacts that players receive, the numerous changes of direction, the im-
plementation of tactical systems, etc., which can affect injuries caused by overload, such
as stress fractures or tendinitis, underlining the importance of the physical-conditional
development of players to control muscle fatigue and reduce the risk of injury [6].

The use of inertial devices is well established in various individual and team sports,
with handball being one of the least active in the research field [7]. Taking into account that
there are articles in handball that have demonstrated the validity of these devices for this
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sport both in laboratory tests and on the court [8,9], it is essential to investigate the physical
load in handball in order to characterise training and competition and optimise the training
and performance processes of the players.

The use of these devices and new technologies makes it possible to manage loads
efficiently to try to reduce the risk of injury to players [6]. The possibility of collecting
multiple variables by obtaining positioning data and accelerometers makes it possible
to collect a lot of data with very high precision and frequency, obtaining information on
many variables that must subsequently be discriminated. From the use of inertial devices
in handball, data have been obtained on player positioning and play distribution [10],
throwing speed in running and jumping [11] and even the differences in load in handball on
the court and on the beach [12] or the physical load on handball referees [13]. Other studies
have pointed out that decelerations could be related to injury risk due to overloading [14].

However, the use of reference values is not sufficient to control the load in team sports.
One of the most complex situations for physical trainers in this type of sport is to combine
group training with individualised training, as the loads in most situations must be specific
to each player due to the heterogeneity between them [15]. Studies in the literature have
shown that the load in handball is variable depending on the position and that individual
values must be taken into account to improve performance [16] and reduce injury risk [17].
That is why it is necessary to know what types of load should be worked on an individual
level and what type of load should be worked on a collective level in order to facilitate and
make the training processes more efficient.

Nevertheless, studies in women’s handball using new technologies are very scarce
and practically nonexistent in professional women’s handball. Values obtained in semi-
professional women’s handball [18] show that players perform in competition with an average
of 566.7 total accelerations per game and 419 decelerations. These, weighted to playing time,
correspond to 19.06 accelerations per minute and 14.5 decelerations per minute. In order
to find values relating to player load and impacts in professional women’s handball, it is
necessary to consider studies in beach handball [19], where the physical load is far from that
of professional handball. In these matches, the average number of impacts is 477.13, being
5.26 higher than 8G. In terms of player load, the values obtained are 14.35 a.u.

Understanding and controlling the neuromuscular load seems essential to manage the
loads in professional handball and to achieve the maximum possible performance, as well
as to ensure the health of the players. Therefore, the aim of this research was to analyse
the objective neuromuscular load in women’s handball. In addition, the specific objectives
were to find out the segmentation of the loads received by the players during training and
to analyse the individuality of the different variables.

2. Materials and Methods
2.1. Design

The present research was classified as an ex post facto design, following the research
methods proposed by O’Donoghue [20]. This is because the researchers do not intervene
in the training processes, remaining on the sidelines during the session. It is the coaching
staff who are in charge of task design and load planning. The researchers simply place the
devices before training and remove them at the end of the training session, staying out of
the way during the session, only supervising that everything works correctly by visualising
the data in real time. The main focus of the research is then taken to the analysis of the data,
giving that retrospective naturalisation of the interventions categorised as ex post facto.
Due to this, it was a non-experimental research design, taking place in the natural context
of sport, without the deliberate manipulation of training or variables during the research
process [21].

2.2. Participants
The participants in this research were 17 professional female handball players

(age = 25.53 ± 5.69 years; height = 168.35 ± 6.95 cm; weight = 67.88 ± 8.18 kg) belonging
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to the Spanish top division of women’s handball (Liga Guerreras) and the European
league (EHF Euro Cup) during the 2022–2023 season. Of the 17 players on the roster,
two were goalkeepers, six front lines, four wingers, and five pivots. A non-probabilistic
convenience sample was used, as access to these data is very complicated due to the small
population of professional athletes. Informed consent was given to all participants before
starting the research, explaining the possible risks and benefits of participating in the
study. The research was conducted following the criteria of the Declaration of Helsinki
(2013) [22], the Ethical Standards in Sport and Exercise Science Research of Harriss et al.
(2022) [23] and was approved by the University Bioethics Committee (233/2019). The
investigation respected the framework of Organic Law 3/2018 of 5 December on Personal
Data Protection and Guarantee of Digital Rights (2018) [24].

Eligibility Criteria
The following criteria were established for the selection of participants: (i) belonging

to the team officially, (ii) having participated in at least 80% of the training sessions, and
(iii) having been available for at least the last two matches.

Exclusion criteria were: (i) having had a lower body injury less than one month before
the start of the measurement, (ii) having trained with lower body discomfort during one or
more training sessions, and (iii) having been training in a national team during part of the
data collection period.

2.3. Sample
Data were collected from all the training tasks of all the players who met the inclusion

and exclusion criteria during one week of a competitive mesocycle in preparation for the
regular league and European competition. For the statistical analysis, two databases were
created, one for each dependent variable analysed. The total sample analysed is 142 cases
collected in a total of 5 training sessions.

2.4. Variables
The independent variable of the study was the training sessions. The dependent

variable was the neuromuscular load, specifically the Player Load (measurement based
on the accumulation of accelerations in all axes of the plane) and the impacts received
by the players measured in G forces. The variable player load corresponds to the vector
sum of device accelerations in the 3-axes. The complete formula for its calculation can be
found in the article by Reche-Soto et al. [25]. The variables were collected in global values,
weighted by time and segmented by work zones. The variables were not manipulated by
the researchers during data collection.

2.5. Instruments
The data were collected with Wimu ProTM devices (RealTrack Systems, Almeria,

Spain). This required the installation of eight antennas around the field of play, establishing
a signal system that allowed triangulating the position and movements of the players
during the entire data collection of each session (Figure 1). The devices were positioned
with a harness adjusted to the back, at the level of the T2–T4 thoracic vertebrae. These
devices are valid and reliable for indoor interventions [26] and were used with 100 hz
sampling. The devices included proprietary software for real-time data visualization and
proprietary software for retrospective data processing.
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Figure 1. Configuration of the UWB system on the court.

2.6. Procedure
The physical trainers and coaching staff of the club were contacted in order to carry out

the research. The players were informed of the benefits and disadvantages that could derive
from participation in this research, the study being minimally invasive as the devices did not
interfere with the players’ sporting practice. When all parties agreed, an informed consent
form was drawn up and signed by all participants. This was followed by data collection.

During the training session, the data were monitored in real time through the software
included with the inertial devices, SVivoTM version 923.4.0 (RealTrack Systems SL, Almeria,
Spain, 2020). Once the training was over, the devices were removed and the data were
saved in the cloud, stored there for further analysis.

The training sessions were carried out during the first five days of the week, with
no rest in between. The sessions had an average duration of 67.4 min, with the longest
session being the first one (79 min) and the shortest being the last one (60’). The total
distance covered per session averaged 2.64 km per player, again with the longest distance
covered being the first session (3.8 km) and the shortest being the last session (1.8 km).
On a physical level, the first session was the one that generated the greatest load on the
players, since it was the longest, the session in which the greatest distance was covered
(and the greatest distance per minute as well), the one that reached the highest values of
speed and acceleration, the greatest values of high intensity and player load (total and per
minute) and the greatest total maximum impacts. The second session was the one that had
more actions with very high G-force values and more intense falls. The third session was
the one that generated the greatest imbalances in the right-left footprint. The fourth session
was the one with the highest values in high intensity actions per minute and high impacts
per minute. The last session was the softest with no maximum values.

Regarding methodological aspects, all sessions included unopposed situations and
offensive and defensive Small-Sided Games. The last three also included Full Game situations.
The first two sessions were the most balanced in both offensive and defensive aspects, with
one unopposed task, two defensive and three offensive Small-Sided Games. The third session
was eminently offensive. The fourth session was mainly tactical, with less effective playing
time and one task of each type. Finally, the last session was low-load, with attacking and
precision situations, and ended with a real situation that lasted half the session.

2.7. Statistical Analysis
A descriptive analysis of both variables was carried out first, in the case of the Player

Load segmented by axes and in the case of the impacts segmented by G-force zones. Second,
two linear mixed models were performed (one for the Player Load variable and the other for
the impacts) to determine the possible differences in the variables, controlling the variance
factor between subjects considering the evolution of the week. For this research, the default
significance level was set at Alpha (α) = 5%. The level of statistical significance, p-value (p),
was set at p = 0.05. Analyses were performed with the statistical programme JAMOVI
(v2.3.28, The Jamovi Project, 2022).
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3. Results
Table 1 shows the descriptive results of the Player Load variable and its different

variables resulting from the segmentation by axes.

Table 1. Descriptive results of the different variables related to the Player Load.

Variable N X ± SD Minimum Maximum

Player Load (a.u.) 70 48.37 ± 14.29 11.54 78.64
PL/min 70 0.67 ± 0.16 0.22 1.00

Horizontal Player Load (a.u.) 70 31.26 ± 9.21 7.69 49.29
hPL/min 70 0.43 ± 0.11 0.15 0.63

Vertical Player Load (a.u.) 70 31.55 ± 9.53 7.39 53.15
vPL/min 70 0.43 ± 0.11 0.14 0.67

Anteroposterior Player Load (a.u.) 70 19.37 ± 5.65 4.99 30.03
apPL/min 70 0.27 ± 0.06 0.10 0.38

Table 1 shows that the players perform on average 0.67 au/min of Player Load, being
mostly vertical and horizontal and in a smaller proportion of anteroposterior component.

Table 2 shows the mixed linear model to analyse the individuality of the variables,
including only the total variables without weighting by time.

Table 2. Linear mixed model of Player Load as a function of training session.

Variable Marginal R2 Conditional
R2 AIC ICC p

Player Load (a.u.) 0.34 0.85 492.44 0.78 <0.001
Horizontal Player Load (a.u.) 0.34 0.86 428.63 0.78 <0.001

Vertical Player Load (a.u.) 0.33 0.84 438.38 0.77 <0.001
Anteroposterior Player Load (a.u.) 0.37 0.83 367.38 0.72 <0.001

The results of the repeated measures linear mixed model showed a large improvement
of the marginal R2 over the conditional R2 for all variables, controlling for the random
factor of individual responses of subjects with a very high ICC (>0.70).

Table 3 shows the descriptive results of the variable impacts and their values divided
by ranges.

Table 3. Descriptive results of the variable impacts.

Variable N X ± SD Minimum Maximum

Total impacts (counter) 70 7196.91 ± 1757.88 2319 10,440
Total high impacts [>8G] (counter) 70 27.83 ± 19.48 4.00 87

Total impacts [0–2 G] 70 5829.71 ± 1360.27 2031 8347
Total impacts [2–4 G] 70 1002.09 ± 343.82 273 1789
Total impacts [4–6 G] 70 265.51 ± 120.24 10 567
Total impacts [6–8 G] 70 71.77 ± 37.41 1 178

Total impacts [8–10 G] 70 20.23 ± 14.44 3 67
Total impacts [>10 G] 70 7.60 ± 6.14 0 27

Horizontal impacts (counter) 70 7175.43 ± 2212.04 2211 11,308
High horizontal impacts [>8G] (counter) 70 3.50 ± 3.26 0 15

Horizontal impacts [0–2 G] 70 6646.17 ± 1995.46 2127 10,471
Horizontal impacts [2–4 G] 70 464.29 ± 204.71 79 970
Horizontal impacts [4–6 G] 70 52.09 ± 30.36 2 143
Horizontal impacts [6–8 G] 70 9.39 ± 6.76 0 30
Horizontal impacts [8–10 G] 70 2.19 ± 2.23 0 9
Horizontal impacts [>10 G] 70 1.31 ± 1.80 0 11

It can be seen that horizontal impacts account for almost all the impacts received
by the handball players. The number of impacts rises to values of over 10,000 impacts
per session, with an average of 28 high intensity impacts and a maximum of 27 impacts
received by a player in one session.

Table 4 shows the results of the linear mixed model used to analyse the individuality
of the players in the different variables.
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Table 4. Linear mixed model of impacts as a function of training session.

Variable Marginal R2 Conditional
R2 AIC ICC p

Total impacts (counter) 0.38 0.83 1171.38 0.73 <0.001
Total high impacts 0.12 0.68 581.43 0.64 <0.001

Horizontal impacts (counter) 0.35 0.84 1200.57 0.75 <0.001
High horizontal impacts 0.07 0.38 361.16 0.33 <0.146

The results of the repeated measures linear mixed model showed a high improvement
in the conditional R2 versus marginal R2 for the total impacts and horizontal impacts
variables, finding an ICC > 0.70. The high impacts variables also show a significant
improvement, especially for high total impacts, with an ICC above 0.05 for high total
impacts and < 0.05 for high horizontal impacts.

4. Discussion
The aim of this study was to investigate the neuromuscular load in training handball

players through the variables Player Load and Impacts in an elite women’s team. From
the data, it is clear that the ability to accelerate, decelerate and change direction correctly is
necessary for optimal physical performance in handball, which involves intense eccentric
contractions that generate neuromuscular fatigue, which in turn leads to identifying the
importance of being able to monitor the loads during training for greater control over
possible injuries [14].

The descriptive results of the PlayerLoad variable in professional handball players
show mean values of 0.67 au/min, reaching a maximum of 1 au/min. Research on handball
players that includes the PlayerLoad variable is scarce and has been carried out in competi-
tion [27–29]. The studies indicated that Player Load values were similar for wingers, backs
and pivots, except in the study by Wik, Luteberget and Spencer [29]. The main results
indicate that elite women’s handball matches require high physical and physiological
demands [28], but by using different devices, it is not possible to establish reference values
for intensity and Player Load. Furthermore, different load responses have been recorded
across matches, suggesting that coaches should be able to monitor match loads to be able to
reproduce them in training in order to optimise the training load prescription according to
the demand of each match. Another argument that highlights the importance of monitoring
the external load is found in the complexity of controlling loads due to the long duration
of the handball season, with the different performance objectives of each team and the
possibility of qualifying and playing in international leagues, which conditions the work
planning, making it a flexible process over time. To our knowledge, no previous research
has focused on workload comparisons during a training week.

In the study presented by Font, Karcher, Reche, Carmona, Tremps and Irurtia [14],
using a device similar to the one used in the present research, a season of an elite men’s
team is monitored, where average Player Load values of 1.1 u.a. in matches throughout the
season are shown, higher values than those presented during training by the players in
this study. In the article by González-Haro et al. [30], the external load in amateur handball
players was analysed, segmenting the load by specific positions. The Player Load values
were around 0.59 and 0.83 on average, values that agree with those obtained in the present
research. However, the difference between the samples is decisive for the interpretation of
these data. The reference values for men’s handball are not applicable to women’s handball,
since the loads borne by female players at the highest competitive level do not correspond
to the resulting values for men’s handball at the same level [31].

Physical trainers should plan strength and conditioning training by including different
types of exercises during training sessions to develop the ability of muscles and tendons to
attenuate high eccentric forces, especially in players who tend to play on their backs because
of their position and tactical tasks [32]. The assessment of these differences could represent
crucial information for handball coaches and team practitioners in order to optimise the
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training load prescription according to the demand of each league match, both for specific
off-court strength training as well as in specific on-court training designed by the coach.

Analysing the Player Load data obtained on the different axes, the similarity between
the vertical and horizontal components stands out, as opposed to the differences between
the two previous ones with the anteroposterior axis. Previous analyses of the segmentation
of player load values according to acceleration axes are not known to exist in the literature.
The findings of the present investigation reveal that vertical accelerations are practically
the same as horizontal accelerations, so that the load generated by running and track
displacements is equivalent to that generated by jumps and vertical oscillations in running.
It is important to work on strength and power in all axes of the plane with movements
that include free weights and different muscle groups [33], as the use of gym machines
that work only one axis in the plane may not be optimal for sports performance in team
sports [34].

The horizontal and total impacts received by the players are almost equal, as most of
the impacts received by the players come from the interaction with other physical elements
in the transverse plane. On average, the players receive more than 1000 impacts of a force
between 0 and 4G per training session, but the values remain high until the high impact
value (8G), where they are considerably reduced. The values collected in the study by
González-Haro, Gómez-Carmona, Bastida-Castillo, Rojas-Valverde, Gómez-López and
Pino-Ortega [30] are lower than those presented by the women’s team, finding mean values
close to 60 impacts/min in the men’s amateur team and 80 impacts/min in the women’s
senior team. These differences are probably due to the competitive level, as the players
were training to enter the semi-final of a European competition. Other studies [35] have
found differences in the impacts received by female players depending on the specific
positions, with these differences being smaller as the hardness of the impacts increased.
The intensity of the training sessions, especially with regard to the contact with teammates
in the training sessions, influences the neuromuscular load that the players receive, so the
loads must be adapted and controlled to the competitive level and players’ sex.

Analysis of individual players shows that the neuromuscular load varies greatly
between subjects, hence the importance of player-specific load monitoring. The use of sub-
jective tools to control the load for an entire team may not be sufficient in high performance,
and other methods must be used to specifically assess the load that each player is able to
withstand [36]. Studies such as that of González-Haro, Gómez-Carmona, Bastida-Castillo,
Rojas-Valverde, Gómez-López and Pino-Ortega [30] found significant differences in the
load depending on the specific positions, which could be a start to individualise in small
work groups, but always trying to seek the greatest possible individualisation with the
necessary technological support to do so.

Having objective information on the kinematic and neuromuscular external load de-
mands of professional handball players will allow coaches at this level to design training
programmes tailored to the specific demands of handball and its tactical game character-
istics. These benchmark values are the first of their kind for this population of high-level
professional players and should help to adjust training processes to match the demands
of competition. However, PlayerLoad data should be interpreted and used with caution,
and each brand uses a different algorithm to calculate this variable (some manufactur-
ers calculate PlayerLoad from three-dimensional accelerometer data, while others use
two-dimensional data for the calculation) [37].

The main limitation of this research is the transversality of the measurement, as a top-
level team is measured in the most demanding training period of the season (preparation
for a knockout semi-final match in European competition). However, this limitation is
compensated for by the high quality of the data obtained, as it is a very representative week
in terms of training and workload. As a prospective for the future, it is recommended that
researchers carry out longer measurements and monitor competitions whenever possible.
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5. Conclusions
Handball is a sport in which players bear high neuromuscular loads, essentially

derived from the accumulation of accelerations in the horizontal and vertical planes and
impacts in the horizontal axis. Strength work and training tasks should include complete
movements in multiple planes, as well as work with free weights in the gym, combined
with actions that involve a physical relationship with the environment.

6. Practical Applications
The results of this study underline the importance of monitoring training sessions to

know the fatigue derived from accelerations and impacts in handball players, since they
have a great importance when generating load in the players. This load should be taken
into account to establish recovery and injury prevention plans during the season.

Due to the evidence of the high neuromuscular loads that players endure, it is recom-
mended to perform off-court strength and power work based on multiaxis work with free
weights and combining different muscle groups, reducing the work on a single plane of the
gym machines. This off-court work should always be complemented with on-court work
with tasks with many players in which there is continuous physical contact with teammates.
Research should now focus on generating reference data in competition adapted to each
level and sport context, paying special attention to impacts in the horizontal plane, in
order to prepare players to withstand the eccentric load derived from the repetition of high
G-force impacts throughout training or competition.

Finally, in the literature, consensus should be established on how to reference the load
values derived from the Player Load with different devices, as the scarce evidence in this
sport regarding this variable makes it difficult to apply reference values when using devices
of different brands.
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Abstract: This study aimed to explore how positional performance varies across different youth
age groups and during matches in football competitions. The study encompassed 160 male outfield
youth football players (n = 80, under-13, U13; n = 80, under-15, U15) who belonged to the starting
line-up and played the entire first half of each match. The players’ positional data were gathered
through the global positional system for each of the eight matches performed by each age group.
The frequency of near-in-phase synchronization based on speed displacements, spatial exploration
index, and the distance to the nearest teammate and opponent were used as variables. Additionally,
each match half was segmented into three equal parts to assess changes over time and used as a
period factor along with age group. The results indicated that U13 players showed a significant
decrease (from small to large ES) in synchronization speed and spatial exploration index throughout
the first half of the match, along with a decrease in the distance to the nearest opponent. In contrast,
U15 players exhibited most changes during the third segment of the half, with a decrease in speed
synchronization and spatial exploration, but an increase in the distance and regularity to the nearest
opponent. Comparing both age groups revealed significant differences in speed synchronization
across the entire half of the match and within each segmented period (from small to large ES),
with U13 consistently showing higher values. The study highlights that long durations in 11 vs.
11 matches might not provide an appropriate learning environment in the U13 age group. Conversely,
the U15 group displayed better capacity for tactical adjustments over time, suggesting a higher level
of tactical maturity. Overall, these findings emphasize the importance of adapting youth football
training and competition structures to the developmental needs and capabilities of different age
groups to optimize learning and performance outcomes.

Keywords: global position system; collective behaviour; tactical analysis; youth players

1. Introduction
One major challenge in sports science is identifying performance determinants to

enhance coaching and competition outcomes [1]. Performance analysis plays a crucial role
here, focusing on gathering valid, accurate, and reliable data during competitions to boost
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individual or team performance [2]. As one of the traditional methods of performance anal-
ysis in team sports, notational analysis seeks to obtain indicators of discrete actions and/or
events by using advanced statistical procedures [3–5]. However, this method often fails to
provide information regarding the dynamic confrontation of forces between the players
and teams [6]. That is, teams continuously adjust and adapt their movement behaviour
as a result of the cooperative (i.e., teammates’ actions) and competitive interactions (i.e.,
opposition movements). This means that a team may dictate the game rhythm during the
earlier phase of the match; however, as the match unfolds, it is likely that the opposing
team will adjust their positioning and actions to balance the match [7]. In general, the
discrete performance indicators captured by traditional notational analysis would fail
to capture these coordinative tendencies between both teams [8]. As a result of recent
technological developments, research in sports sciences started to analyse players’ position-
ing dynamics, which considers the spatiotemporal relationships between both teams as
a result of the collective principles of play, the opponents’ behaviour, and the contextual
circumstances [8–10]. Consequently, analysing players’ positioning dynamics across the
match seems to provide a more functional, holistic, and complex understanding of teams’
sports performance.

In association football, performance analysis should be a comprehensive process
involving precise measurements of physiological, technical, and tactical workloads that
ultimately influence player and team outcomes [6]. The physical and physiological de-
mands of the players when involved in real practice scenarios have been investigated
incessantly over the last years, describing the movement patterns during training [11–13]
and competition environments [14–16]. Nevertheless, these demands seem to be very
sensitive to the teams’ strategies, contextual variables, and opponent behaviour, indicating
that multiple factors could impact players’ physical responses during matches [1,17,18].
For example, lower external load has been reported in teams that show higher positioning
synchronization during training sessions [19], shedding light on the role of positioning and
tactical behaviour on the players’ physical load. Positioning synchronization consists of a
metric that measures the percentage of time that each pair of players moves in the same
direction (e.g., the defensive line moving forward to follow the midfielders’ and strikers’
pressure) [9,19]. This variable has been used to distinguish teams’ quality, as the winning
team seems to possess higher values of movement synchronization [20]. More recently,
rather than players’ positioning, synchronization has been applied to players’ movement
speed. In this context, Gonçalves et al. [10] showed that higher dyadic synchronization
at high speeds in the first half periods may limit players’ performance in the second half.
Accordingly, it was found a decrease in speed synchronization during the second half
periods that may result from accumulated muscular and mental fatigue towards the match.
Additionally, an examination of teams’ behaviour across 15 min intervals during a single
match revealed variations in team dispersion throughout these periods, with more regular
patterns emerging toward the match’s conclusion [7]. Altogether, the results from the previ-
ous study suggest that the integration of players’ physical performance with the collective
principles of play may be achieved by analysing the synchronization speed. Additionally,
exploring the players’ and team’s performance across time periods for each half (e.g., blocks
of 15 min) would contribute to a better understanding of their performance.

In fact, the analysis of positional dynamics aims to identify and describe emergent
tactical patterns that underpin performance, while preserving the sequential and situa-
tional characteristics of match events [8,9,21,22]. This means that while analysing players’
movements, researchers and data analysts must be aware that tactical patterns are dynamic
and shift throughout the match, influenced by players’ varying capacities and external
factors such as pre-match coaching strategies that guide collective behaviour [23]. However,
as the match unfolds, players and teams are likely to adapt to changing play configurations
and opposition strategies, which are known as tactics [24]. Thus, analysing players’ tacti-
cal performance during shorter periods can provide additional insights into how tactical
decisions are executed under varying levels of fatigue [25,26].
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Most research developed with positioning data has been applied to elite and adult
levels. While studies examining youth players’ tactical behaviour exist, they are predomi-
nantly centred around training sessions [27]. For example, Olthof, Frencken [28] compared
under-13 (U13), under-15 (U15), under-17 (U17), and under-19 (U19) performance during
small-sided games (SSGs) while varying the pitch size. The authors found that an increase
in the pitch size contributed to a higher external load, and also bigger distances between
teams [28]. In addition, higher variability was found in players’ distances in larger for-
mats [28]. This finding is especially important, as there has been a focus of discussion
resulting from which size and playing format may be more appropriate for youth football
players [29]. In fact, it is still common to find younger age groups (e.g., U13 and U15)
playing 11-a-side in regular formats (e.g., length x width, 106 × 65 m playing area), which
may not be appropriate for their development stage [29]. Despite the competitive setting
concerns in youth football, research exploring their positional performance during matches
is scarce. In fact, the limited available research exploring competitive formats in youth
football has mostly compared it with SSGs [30]. Thus, exploring youth players’ position-
ing performance across different time periods in competitive settings while comparing
different age groups may help responsible bodies and entities to better frame competition
for youth players. In addition, larger playing spaces seem to induce large variability in
their behaviour [28]. It may also be expected to see a higher variability when playing
during long periods (e.g., one half), while also resulting in lower tactical knowledge when
compared to older levels [31]. Thus, this study aimed to explore how positional perfor-
mance varies across different youth age groups (i.e., U13 and U15) and time periods during
competitive matches.

2. Materials and Methods
2.1. Participants

The study encompassed 160 male outfield youth football players, with 80 partici-
pants U13 belonging to eight teams (U13: average age 12.5 ± 0.5 years; average height
163.2 ± 8.2 cm; average weight 48.9 ± 6.7 kg; average playing experience 4.3 ± 1.7 years)
and 80 from U15, also belonging to eight teams (U15: average age 14.5 ± 0.5 years; av-
erage height 169.1 ± 9.5 cm; average weight 53.7 ± 7.1 kg; average playing experience
6.5 ± 1.4 years). The U13 teams engaged in three weekly training sessions (approximately
90 min each) and played an official 11-a-side game on weekends. Similarly, the U15 teams
participated in four weekly training sessions (around 90 min each) and competed in an
official 11-a-side game on weekends. Goalkeepers were involved in the study but excluded
from data analysis due to their specialized positional constraints and unique game dynam-
ics compared to outfield players. Informed consent was obtained from coaches, players,
parents, and the club prior to the study’s commencement. All participants were informed of
their right to withdraw from the study at any time. The study’s procedures were approved
by the local Institutional Research Ethics Committee and conformed to the Declaration of
Helsinki guidelines.

2.2. Procedures and Instruments
The teams involved in the study participated in eight official matches as part of the

Second China Youth Football League 2023, with each age group (U13 and U15) playing four
matches. The analysis focused on the 20 outfield players from each match’s starting line-up
who played the entire first half of each match. This approach was chosen because previous
research has shown that player substitutions can significantly affect the tactical, physical,
and technical performance of teams [32,33]. Given the high number of substitutions made
by coaches during the second half, the study limited data analysis to the first half of
each match to maintain consistency in the data collected and to minimize the impact of
these changes on the analysis. Therefore, it was considered 35 min for U13 (an official
match lasts for 70 min) and 40 min for U15 (an official match lasts for 80 min). The match
sessions consisted of an 11 vs. 11 official match, on a 104 × 64 m pitch, with official
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rules. All players performed a 15 min standard warm-up consisting of ball possessing and
dynamic stretching.

Before the beginning of each match, players were outfitted with a 10 Hz Catapult
MinimaxX unit (MinimaxX S4, 10 Hz, Firmware 6.70, Catapult Innovations, Melbourne,
Australia) which has been demonstrated to be valid and reliable [34]. The systems collected
latitude and longitude coordinates, which were then extracted and resampled using an
interpolation method to standardize the length of the time series. Subsequently, these
coordinates were converted into metres using the Universal Transverse Mercator (UTM)
coordinate system through specific coding routines [35]. The data were then smoothed with
a 3 Hz Butterworth low-pass filter. To align the positional data with the field, a rotation
matrix was applied, orienting the length of the playing field along the x-axis and the width
along the y-axis. This matrix adjustment ensures that the players’ positional data are
consistent with the spatial orientation of the playing field, as detailed in the methodology
outlined by Pereira, Gonçalves [36].

2.3. Positioning Relations
The positional data of the players were used to determine the following variables (see

Figure 1)

Figure 1. Representation of positional-related variables. Note: Dark grey circles represents one team,
while light grey circles represents the other team.

:
• Frequency of near-in-phase synchronization from the players’ speed displacements

(expressed in % of time). Taking into consideration the all-possible intra-team dyads
formed by the outfield teammates (45 dyads), the frequency of near-in-phase syn-
chronization from the players’ speed displacements was processed (expressed in %
of time) [10]. The Hilbert Transform [37] was used to compute the relative phase of
the time series corresponding to the speed displacements of all dyads. Near-in-phase
synchronization (i.e., % of time spent between −30◦ and 30◦ of relative phase) was
used to access players’ interpersonal speed coordination.

• Spatial exploration index (SEI), which is processed by the calculation of the player’s
mean position and then computing all distances from this average point to all datasets
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across the time series, and ending by computing the average value from all these
distances [38].

• Distance to the nearest teammate and opponent expressed as absolute values (m),
variability in these distances as expressed by the coefficient of variation (CV), and
regularity in these distances expressed by the approximate entropy (ApEn) [39].
The ApEn has been used to assess the regularity in the players’ movement behaviour,

and its values range from 0 to 2 (arbitrary units). From a processing approach, ApEn
expresses the probability that the configuration of one segment of the data in a time series
will allow the prediction of the configuration of another segment of the time series a certain
distance apart. In practice, this technique may be used, for example, to identify if players’
positioning dynamics express a regular and predictable pattern which may, in turn, provide
information regarding their tactical behaviour. The input values used to process the ApEn
were 2 for the vector length (m) and 0.2 × SD for the tolerance (r) [40,41].

2.4. Statistical Analysis
To evaluate variations in positional performance during matches, each match half

analysed in the study was divided into three equal segments, or thirds, and this division was
utilized as a factor in the analysis. Descriptive data were presented as means ± standard
deviation (SD). Before inferential statistics, the Shapiro–Wilk and Levene’s tests were
performed to analyse whether the variables followed a normal distribution and verify
the homogeneity of the variances, respectively. A two-way analysis of variance with
repeated measures ANOVA [age group (U13 and U15) × half period (full, 1st, 2nd, and
3rd third)] was applied to test age and half period on the dependent variables. When
significant main effects or interactions were achieved, Bonferroni post hoc analyses were
performed to locate the pairwise. To estimate the strength of significant findings, effect sizes
(ESs) were determined using Cohen’s dunbiased [42,43]. Effect size values were interpreted
as follows: <0.20 represents a trivial effect, 0.20 to 0.49 is classified as a small effect,
0.50 to 0.79 corresponds to an intermediate effect, and 0.80 and higher is considered a
large effect [44]. The analysis reports the effect size using eta squared (η2) for the main
effects and interactions from the repeated measures ANOVA. For significant main effects
or interactions, Cohen’s dunbiased was used to indicate the effect size for the pairwise post
hoc comparisons. The statistical analyses were conducted using SPSS software v.26 for
Windows (IBM Corp., Armonk, NY, USA), and the significance level was established at
p ≤ 0.05.

3. Results
Table 1 presents the descriptive and inferential analysis for considered variables in

both age groups and half periods. Figures 2–5 depict the descriptive result for visual
inspection analysis, and Figures 6–9 depict the Cohen’s dunbiased result for respective pair-
wise comparison.
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Figure 2. Descriptive values for players’ speed displacement synchronization according to the game
periods (1st third, 2nd third, and 3rd third) and age groups (U13 and U15). Each dot represents an
intra-team dyad value and the coloured error bars indicate mean ± standard deviation.

Figure 3. Descriptive values for the players’ spatial exploration index (SEI) according to the game
periods (1st third, 2nd third, and 3rd third), age groups (U13 and U15), and their interactions. Each dot
represents an intra-team dyad value and the coloured error bars indicate mean ± standard deviation.
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Figure 4. Descriptive values for players’ distance to the near teammate (nTM) according to the
game periods (1st third, 2nd third, and 3rd third), age groups (U13 and U15), and their interactions.
Each dot represents an intra-team dyad value and the coloured error bars indicate mean ± standard
deviation. CV = coefficient of variation; ApEn = approximate entropy.
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Figure 5. Descriptive values for players’ distance to the near opponent (nOPP) according to the
game periods (1st third, 2nd third, and 3rd third), age groups (U13 and U15), and their interactions.
Each dot represents an intra-team dyad value and the coloured error bars indicate mean ± standard
deviation. CV = coefficient of variation; ApEn = approximate entropy.
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Figure 6. Cohen’s dunbiased differences for players’ speed displacement synchronization according to
the game periods (1st third, 2nd third, and 3rd third), age groups (U13 and U15), and their interactions.
Error bars indicate uncertainty in the true mean changes with 95% confidence intervals.

Figure 7. Cohen’s d differences for the players’ spatial exploration index according to the game
periods (1st third, 2nd third, and 3rd third), age groups (U13 and U15), and their interactions. Error
bars indicate uncertainty in the true mean changes with 95% confidence intervals.
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Figure 8. Cohen’s d differences for players’ distance to the near teammate (nTM) according to the game
periods (1st third, 2nd third, and 3rd third), age groups (U13 and U15), and their interactions. Error
bars indicate uncertainty in the true mean changes with 95% confidence intervals. CV = coefficient of
variation; ApEn = approximate entropy.

Figure 9. Cohen’s d differences for players’ distance to the near opponent (nOPP) according to
the game periods (1st third, 2nd third, and 3rd third), age groups (U13 and U15), and their inter-
actions. Error bars indicate uncertainty in the true mean changes with 95% confidence intervals.
CV = coefficient of variation; ApEn = approximate entropy.
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The analysis commenced by examining the interaction between the half period (with
three levels: 1st third, 2nd third, and 3rd third) and age group (U13 vs. U15) on % of the
time in near-in-phase speed synchronization. A two-way ANOVA with repeated measures
revealed a significant interaction effect, with F = 109.5, p < 0.001, and η2

p = 0.13, indicating
that the synchronization over time differed between the groups. The main effect of the half
period was also significant, with F = 247.1, p < 0.001, and η2

p = 0.26, suggesting that the %
of synchronization changed over time, regardless of the group assignment. Additionally,
the main effect of the group was significant, with F = 142.3, p < 0.001, and η2

p = 0.17. This
suggests that, overall, the U15 group exhibited a lower % of synchronization across all time
points compared to the U13 group (see Table 1). Considering the post hoc analysis as well
as Cohen’s dunbiased results, and comparing U13 vs. U15, U13 had significantly (p < 0.001)
more % of synchronization in all considered half periods: a large effect for both the full half
(Cohen dunbiased [95% CI]; −0.89 [−1.03; −0.73]) and the 1st third (−1.26 [−1.41; −1.10]); a
moderate effect for the 2nd third (−0.75 [−0.91; −0.61]); and a small effect for the 3rd third
(−0.38 [−0.53; −0.23]). The U13 period significantly decreased over the half while trivial to
small results were identified for the U15 period in comparison (see Figures 2 and 3).

The players’ SEI showed a significant effect on the period*age interaction, F = 27.3,
p < 0.001 and η2

p = 0.15, and the half period, with F = 169.1, p < 0.001, and η2
p = 0.52 (see

Table 1). U13 decreased their values over the match, from a small to large effect size, while
U15 decreased only after the 1st third (1st vs. 2nd third: −1.10 [1.37; −0.87], and 1st vs. 3rd
third: −1.13 [−1.49; −0.79], both large effect sizes). On the 3rd third, U15 showed higher
values compared to U13 (see Figures 4 and 5).

The players’ distance to the near teammate nTM was analysed from absolute val-
ues, metres, the coefficient of variation (%CV) as the magnitude of the variability, and
approximate entropy (ApEn) as the magnitude of the structure variability. The absolute
values were similar for both age groups and for all periods (see Table 1). However, the
%CV showed significant differences in the period*age interaction, F = 7.4, p < 0.001 and
η2

p = 0.05, and the half period, with F = 17.3, p < 0.001, and η2
p = 0.10 (see Table 1). The

U13 group decreased from the 1st to 2nd third (1st vs. 2nd third: −0.55 [−0.77; −0.33]; and
1st vs. 3rd third: −0.48 [−0.73; −0.24]), while U15 decreased from the 2nd to 3rd third (1st
vs. 3rd third: −0.60 [−0.90; −0.30]; and 2nd vs. 3rd third: −0.52 [−0.76; −0.29]). The ApEn
also presented significant differences in the period*age interaction, F = 4.8, p = 0.01 and
η2

p = 0.03, and the half period, F = 26.7, p < 0.001 and η2
p = 0.14 (see Table 1). Pairwise

differences showed that U13 and U15 presented similar values. However, for U13, the 1st
and 2nd third were similar, and the distance to nTM became more regular in the 3rd third
(1st vs. 3rd third: −0.31 [−0.50; −0.12]; and 2nd vs. 3rd third: −0.21 [−0.37; −0.05]). U15
decreased the ApEn value across the match (see Figures 6 and 7).

The players’ distance to the near opponent (nOPP), considering absolute values,
revealed a significant interaction effect, with F = 293.3, p < 0.001, and η2

p = 0.65, indicating
that the nOPP over time differed between the groups and match period, with F = 4.9,
p = 0.01, and η2

p = 0.06, suggesting that nOPP changed over time (see Table 1). Additionally,
while the main effect of the group was not significant, the pairwise differences presented a
lower distance to nOPP for U15 in the 1st third (−1.11 [−1.45; −0.78]) and higher values in
the 3rd third (1.39 [1.05; 1.74]). In fact, U13 decreased the distance to nOPP over the match
while U15 increased during the same period (moderate to large effect size for both age
groups). The %CV only revealed a significant half-period effect, with F = 19.7, p < 0.001,
and η2

p = 0.11, where the values of nOPP increased over time for both groups (see Table 1).
Finally, the ApEn presented significant differences in the period * age interaction, with
F = 5.1, p = 0.01, and η2

p = 0.03, and the half period, with F = 29.9, p < 0.001, and η2
p = 0.14

(see Table 1). Pairwise differences showed that U13 and U15 presented similar values.
However, for U15, the distance to nOPP becomes more regular right after the 1st third
(1st vs. 2nd third: −0.62 [−0.85; −0.40]; and 1st vs. 3rd third: −0.60 [−0.77; −0.43]) (see
Figures 7 and 8).
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4. Discussion
This study aimed to explore and compare changes in positioning performance among

youth soccer players (U13 and U15) during an 11-a-side match. Generally, results from
the U13 group indicated a decrease in synchronization speed and the amount of space
explored, along with a reduction in distance to the nearest opponent (nOPP). For the
U15 group, differences were primarily observed in the third period of the match, with
a decrease in synchronization speed and in SEI, while the distance and regularity to the
nOPP increased. When comparing both age groups, differences in synchronization speed
were noted throughout the entire match, as well as in all periods, with higher values being
observed in the U13 group. Additionally, differences between age groups became more
pronounced as the game progressed, particularly in the second and third periods.

4.1. Analysis of U13 Positioning Variation across Time Periods
A major aim with younger age groups (i.e., from U5 to U14) is to develop players’

technical and coordination skills [45–47] while developing players’ understanding of the
general (i.e., reject numerical inferiority, avoid numerical equality, and seek numerical
superiority) and specific principles of play (i.e., offensive and defensive behaviours that
guide individual, group, and collective movement behaviours) [48]. Developing such
skills seems to be a determinant for future achievements in football competitive environ-
ments [49,50]. The development of such technical, coordinative, and tactical skills must
be grounded in learning environments that foster decision-making skills, and competitive
and cooperative interactions. In fact, decision-making and proper positioning seem to
be related to talent in football [51]. Therefore, a meticulous and careful long-term plan
is required to enhance the chances of youth players to progress in football. In line with
this, a high number of football associations and researchers have been exploring which
competitive formats may be more suitable for the different age groups [29,52]. For example,
Sanchez, Ramirez-Campillo [53] compared U12 performance in 7-a-side, 8-a-side, and
11-a-side conditions and found higher external load in the larger format compared to the
other two conditions. From the technical perspective, the seven-a-side format seems to
elicit a greater number of actions when compared to the eight-a-side format in U12 [54].
A similar trend was found by Joo, Hwang-Bo [30] who explored the effects of using SSGs
(8-a-side) in smaller (length × width, 68 × 47 m) or regular spaces (75 × 47 m) when com-
pared to official matches (11-a-side, 75 × 47 m) in U12 Korean players. Altogether, the
results of these studies seem to highlight that the 11-a-side format may be significantly
complex for U12 players, who may not possess the technical (e.g., long pass ability) nor
decision-making skills (i.e., the ability to scan the environment to perceive teammates’ and
opponents’ positioning) that may allow them to successfully perform in such designs.

A similar conclusion may be drawn from the present study in the U13 age groups when
analysing their tactical behaviour. That is, there was a decrease in synchronization speed,
SEI, and distance to nOPP, while there was an increase in the regularity of the distance to
the nearest opponent across the half thirds. These results suggest that as the match unfolds,
there is a shift in the players’ focus from the collective movement behaviour towards the
direct opponent. In fact, from the 1st third towards the 3rd third, there is a decrease of
almost 1.5 m in the distance to the nOPP, which was followed by an increase in the regularity
of this distance. In other words, players seem to become closer to their direct opponent,
while maintaining this distance across the half-periods. Accordingly, younger age groups
seem to be more focused on the ball and on the closest opponent than on the team’s
collective approach [55], which may justify these results. Interestingly, these trends were
more evident across thirds, suggesting that players were able to keep a collective strategy
for the match during the first 15 min. Although anecdotally, as the coach’s instruction
was not measured, the pre-match speeches are often focused on providing descriptions of
players’ roles, emphasizing information about the opposition’s weakness, while providing
information on how to collectively behave during the different game phases [23]. Thus, it
may be plausible to assume that U13 players are able to follow a collective strategy within

76



Sensors 2024, 24, 4536

the first minutes of the match, after which it seems to fade into a more individual focus on
the ball and the opponent. In fact, younger age groups attempt to solve the game problems
by adopting an individual approach rather than a collective one [27].

From a practical point of view, governmental entities and national football associations
must consider the type of competitive designs in youth age groups. For example, smaller
formats may be more suitable for the U13 group. Alternatively, it may be important to add
stoppage periods that may allow coaches to provide individual and collective feedback,
allowing the players to adjust their tactical behaviours.

4.2. Analysis of U15 Positioning Variation across Time Periods
Older age group players seem to be more able to move and adjust to the competitive

environment [56] by being able to identify the relevant information to unfold goal-directed
behaviours as a result of better perceptual and cognitive skills [57]. In general, 11 vs.
11 formats are used from the U14 age groups above across different countries [29], which
may suggest that this age is a point at which players might be able to perceive and act
within complex competitive environments. The results from the present study seem to
support this statement, as the U15 positional variables (e.g., SEI, distance to the nearest
teammate, and ApEn in the distance to the nearest opponent) seem to be less affected
across half-period thirds. For instance, most variations in players’ performance emerge
in the 3rd third, with decreases in speed synchronization, SEI, and distance to the nTM,
lower variability, and higher regularity in the distance to the NTM. In contrast, a bigger
distance toward the nOPP was found. In general, these results point out that U15 can keep
its performance constant for most variables across the first two thirds of the half. Based on
this information, the transition to the 11 vs. 11 format may require a rest period around
the middle of each half that may allow the players to reorganize their positioning. Still,
a different strategy is depicted when compared to the U13 age group. That is, while in
the U13 group, a decrease in the distance to the nOPP was found, an opposite trend was
identified for the U15 group. Thus, it seems that with increased fatigue resulting from the
competitive interactions, U15 adopts a more collective approach by decreasing the distance
to the nTM and increasing it towards the nOPP. These findings are in line with the study
of Coutinho, Gonçalves [58], who explored how U14 players’ positioning performance
was affected during small-sided games by performing with additional muscular fatigue.
The authors found a decrease in the distance between dyads, while also observing greater
movement coordination. In addition, in this study, it was also found that there was a lower
variation and higher regularity in the distance to the nTM for the U15 age group from the
1st to the 3rd third. A previous study showed higher values for the inter-team distance in
the U15 age group than in the U13 group, which may reinforce these results. In contrast, a
higher coefficient of variation in the nearest was found in both the 2nd and 3rd third when
compared to the 1st third. This variability may act as a functional movement behaviour,
because of the higher compactness (i.e., expressed by the lower distance to the nTM and
SEI). In fact, variability in players’ movement behaviours has been considered fundamental
to adjusting to the dynamic and unpredictable nature of competitive football settings [59].

4.3. Differences between U13 and U15
A wide body of research has been exploring differences between age groups from a

tactical point of view. For example, Folgado, Lemmink [27] compared the performance
of U9, U11, and U13 under three-a-side and four-a-side small-sided game formats. The
three-a-side format revealed major differences in the distance between players, where the
older players revealed a greater ability to use the pitch length, while similar distances
between players were identified for the four-a-side format. Olthof, Frencken [28] compared
U13, U15, U17, and U19 performances during five-a-side small-sided games while varying
pitch dimensions (i.e., small, 40 × 30 m; and large, 68 × 47 m). The results showed a greater
distance between players and the playing area in the U15 group when compared to the
U13 group. The same trend was identified by a recent study comparing U13, U15, and U18
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players’ positioning performance during a five-a-side small-sided game [31]. Older players
revealed larger areas, and also a bigger distance between teams. The combined findings
from these studies highlight that older players are more able to use the available space. In
the present study, major differences between age groups were identified for speed synchro-
nization and SEI. In this respect, higher values of synchronization speed were identified in
all thirds for the U13 group. As previously noted, there is a higher trend towards following
the ball movement in younger age groups [55], which may have contributed to such values.
That is, this age group seems to be less prone to move collectively, but rather, they focus
on the ball movement, and thus, it may be expected that both teams move as a result of
the ball’s location. In contrast, the U15 group may possess higher tactical awareness that
allows them to vary between moving collectively (e.g., staying compact while defending to
press the opposition) or moving at different paces, rhythms, and directions (e.g., attempting
to perform depth passes in the last third, whereas, one to two players may move close
to the ball to drag defenders, with one or two sprinting to explore the space). Thus, the
lower synchronization values in the U15 group may reflect this age group’s ability to
understand each configuration of play. In fact, this group was less affected by the thirds.
For example, the U13 group showed a clear trend towards decreasing the space explored
as the thirds progressed, while the U15 group despite decreasing from the 1st third to the
2nd, was kept constant to the 3rd third. Younger age groups, such as the U13 group, are
likely to adopt more individual strategies to solve game problems than explore collective
movement solutions [27]. Consequently, and as the match unfolds, they may decrease
the space exploration as a result of the lower collective commitment. In contrast, the U15
group revealed a decrease from the 1st to the 2nd third but kept the values constant to the
3rd third. The values from the 1st third may result from the inherent variability in team
behaviours in the first 15 min, in which both teams may be exploring adaptive movement
patterns [7]. However, as the match unfolds and the fatigue increases, U15 players may
adopt more collective and stable behaviours [58].

5. Conclusions
Overall, it is important to be aware that exposing young players to 11 vs. 11 matches for

long periods may not provide an appropriate learning environment, especially in the U13
age group. The high density of players and available space contributed to more variable and
irregular behaviours across time, which can be depicted from the lower speed displacement
% synchronization (i.e., collective variable) and higher SEI (i.e., individual variable). In
contrast, the U15 group appears to be able to reveal positional adjustments over time,
reflecting their higher tactical awareness. These findings highlight the necessity of tailoring
youth football training and competition structures to suit the developmental needs and
capabilities of various age groups, thereby optimizing learning and performance outcomes.
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Abstract: This study aimed to measure the differences in commonly used summary acceleration
metrics during elite Australian football games under three different data processing protocols (raw,
custom-processed, manufacturer-processed). Estimates of distance, speed and acceleration were
collected with a 10-Hz GNSS tracking technology device from fourteen matches of 38 elite Australian
football players from one team. Raw and manufacturer-processed data were exported from respective
proprietary software and two common summary acceleration metrics (number of efforts and distance
within medium/high-intensity zone) were calculated for the three processing methods. To estimate
the effect of the three different data processing methods on the summary metrics, linear mixed models
were used. The main findings demonstrated that there were substantial differences between the
three processing methods; the manufacturer-processed acceleration data had the lowest reported
distance (up to 184 times lower) and efforts (up to 89 times lower), followed by the custom-processed
distance (up to 3.3 times lower) and efforts (up to 4.3 times lower), where raw data had the highest
reported distance and efforts. The results indicated that different processing methods changed the
metric output and in turn alters the quantification of the demands of a sport (volume, intensity and
frequency of the metrics). Coaches, practitioners and researchers need to understand that various
processing methods alter the summary metrics of acceleration data. By being informed about how
these metrics are affected by processing methods, they can better interpret the data available and
effectively tailor their training programs to match the demands of competition.

Keywords: data processing; smoothing; filter; GPS; acceleration

1. Introduction
Global navigation satellite systems (GNSS) are a commonly used athlete tracking

system in team sports and permit the quantification of player movement [1,2]. A GNSS
device accesses satellites from multiple constellations in orbit (e.g., GPS and GLONASS)
to determine its position in space, allowing the estimation of its distance covered, speed
and acceleration [3,4]. In addition, some athlete tracking systems also include a triaxial
accelerometer, gyroscope and magnetometer, allowing human activity recognition and the
measurement of variables such as PlayerLoad™ [5,6]. The accelerometers within the athlete
tracking system are not involved in the calculation of GNSS acceleration; accelerometer-
derived acceleration is distinctly different data. Notably, most researchers and practitioners
(79%) in team sports use GNSS-derived acceleration data [7]. Accurately quantifying
player movements by determining the intensity, frequency and volume of these movements
demonstrates the demands of a sport [8]. This knowledge can be used by practitioners to
design training programs that adequately prepare athletes for competition [8].

Acceleration-based movements have been highlighted across the literature as impor-
tant for team sport performance [9], as many movements require an athlete to accelerate
or decelerate (negative acceleration) rapidly. Within sports, GNSS time-series acceleration
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data are often summarised according to the distance run or number of efforts performed
within certain acceleration/deceleration bands [1,7,9]. Acceleration efforts have been
identified as a critical component of Australian rules football (AF), where acceleration
match demands increase with increasing competition level [10]. Therefore, quantifying
these acceleration-based movements in AF are of interest to coaches and practitioners.
Manufacturer data processing can have a large influence on GNSS acceleration data and
corresponding summary metrics such as number of efforts [11,12]. Different data processes
can alter the quantification of player movement, which may affect a practitioner’s inter-
pretation of the data and training programs. For example, applying a data processing
method with strong smoothing, can cause a reduction in the number of acceleration efforts
recorded during a match [11], potentially changing a practitioners interpretation of players’
workload. Valid GNSS acceleration data are needed to correctly quantify player movement
with summary metrics.

Various validation studies have assessed the ability of GNSS to estimate accelera-
tion [12–16]. This is an ongoing process as each new GNSS device requires validation [17].
Numerous GNSS manufacturers apply their own data processing methods within their
software, which could impact data validity and result in manufacturer-influenced varia-
tions in summary metrics, rather than being directly related to what the GNSS device is
measuring [17]. Within the literature, large manufacturer-influenced variations have been
reported in summary acceleration metrics [11,18]. Variations of up to ~250 acceleration
efforts have been observed when using different manufacturer data processing methods on
an identical dataset from a soccer match [11]. Although it is known that differences exist
between manufacturer software processed data, most practitioners still use manufacturer’s
software-derived GNSS data, as it is a simple and efficient way to obtain data.

Practitioners and researchers experienced with data processing techniques might
choose to extract and process the raw (not smoothed in any way by the manufacturer
software) data from the GNSS devices and analyse it separately [9,19]. This approach offers
several advantages such as eliminating undesired processing practices (e.g., smoothing
and algorithms) and incorporating custom processes such as new summary metrics [9,17].
Custom processing of manufacturer-exported GNSS data has been shown to enhance
acceleration data quality, and derived summary metrics differed compared to manufacturer-
processed data [20]. When using custom processing on manufacturer-processed GNSS
data, double processing and over-smoothing of the data could take place, which could
eliminate important parts of the acceleration data. Using custom processing on raw GNSS
data would eliminate double processing and could enhance data quality. However, there is
no research comparing custom-processed raw GNSS data to manufacturer-processed data.

While the three methods (raw, custom-processed and manufacturer-processed) are
available for analysis of GNSS data, there is no research identifying differences in the
summary acceleration metrics between the methods. Furthermore, there is limited re-
search exploring differences between summary acceleration metrics of just the raw and
manufacturer-processed data. Large differences have been reported in the distance covered
when accelerating between raw and manufacturer-processed data in a controlled environ-
ment where GNSS devices were positioned on a sled [18], and large differences have been
found between just the acceleration data of team sport training sessions [20]. However, no
study has investigated the difference in commonly used acceleration metrics between raw
and manufacturer-processed data of team sport players during competition match-play.

Therefore, the aim of this study was to compare and explore the differences between
three data processing methods (I. raw; II. custom-processed; III. manufacturer-processed) in
the commonly used acceleration metrics of elite Australian football competition match-play
data using GNSS tracking technology. To make this research practical, it was decided that
GNSS-derived acceleration data would be used rather than acceleration data measured by
an accelerometer, as most researchers and practitioners in team sports use GNSS-derived
acceleration data.
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2. Methods
2.1. Participants

Player movement data from thirty-eight elite male players from one Australian Foot-
ball League team were collected with a 10-Hz GNSS tracking technology device from
fourteen matches during the 2019 competitive season. Data were included if the horizontal
dilution of precision (HDOP) was ≤2 and the player was in play on the field. There was no
minimum playing duration requirement for a player file to be included. This resulted in a
total sample size of 262 player files. The procedures used in this study were conducted with
approval from the Human Research Ethics Committee of La Trobe University (reference
number: HEC21282).

2.2. Equipment
Player movement, including estimations of acceleration, speed and distance, was mea-

sured using a 10-Hz GNSS device (Vector S7, Catapult Innovations, Melbourne, Australia).
The device was positioned between the athlete’s shoulder blades using the manufacturer’s
snug-fitting garment to prevent unnecessary device movement. Data collection proce-
dures adhered to the guidelines outlined by Malone, Lovell, Varley and Coutts [17], with
each athlete having their own specific device. The study sample had an average (±SD),
12 ± 1 number of satellites and horizontal dilution of precision (HDOP) of 0.62 ± 0.07.

The Vector S7 has reported acceptable levels of reliability and validity for speed
(coefficient of variation ≤2%, mean bias −0.5%) and reliability and validity for distance
(coefficient of variation ≤1.3%, mean bias ≤1%) according to Catapult’s vector data integrity
testing [21] and peer reviewed research [22].

The raw (not smoothed in any way by the manufacturer software) GNSS Doppler-shift
speed data were exported and retrieved from the Catapult software (Openfield, version
2.7.1, Catapult Sports, Melbourne, Australia) files folder. The raw acceleration dataset
was calculated using a central difference method on the raw Doppler-shift speed data. To
determine the most appropriate custom processing method, several common smoothing
methods (Butterworth filter: cut-off frequencies 0.1 to 4.9 Hz, exponential smoothing:
smoothing constant 0.1 to 0.9, moving average: sliding window 0.1 s to 0.9 s) have been
applied to the raw GNSS Doppler-shift speed data and were compared with a gold standard
motion analysis system (Vicon) dataset. The fourth order (zero lag) low-pass Butterworth
filter with a cut-off frequency of 2 Hz showed the strongest relationship with the Vicon data
(mean bias 0.00 m·s−2, 95% LoA ± 1.55 m·s−2, RMSE 0.79 m·s−2) and was therefore used
on the raw GNSS Doppler-shift speed data for the custom processing method. After using
the Butterworth filter, acceleration was calculated using a central difference method on the
custom-processed GNSS Doppler-shift speed data. Applying the processing to the raw
Doppler-shift speed data before deriving acceleration data will ensure that any noise present
in the raw Doppler-shift speed data will not be increased due to deriving acceleration.
The manufacturer-processed GNSS distance and acceleration data were exported from the
manufacturer’s software using their default settings (Openfield, version 2.7.1, Catapult
Sports, Melbourne, Australia). A summary of the details of the three datasets used for
further analysis, (I) raw, (II) custom-processed, (III) manufacturer-processed, can be found
in Table 1.
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Table 1. Summary of the three used data processing methods and details on how acceleration data
were obtained for each processing method.

Data Processing
Method How the Acceleration Data Were Obtained

Raw Central difference method applied to raw GNSS Doppler-shift speed data
to calculate acceleration.

Custom

Raw GNSS Doppler-shift speed data were processed with a fourth order
(zero lag) low-pass Butterworth filter with a cut-off frequency of 2 Hz,
whereafter acceleration was calculated using a central difference method
on the processed GNSS Doppler-shift speed data.

Manufacturer GNSS acceleration data were directly exported from manufacturer
software using their default settings.

As the custom-processed data were derived from the raw data, these datasets were
automatically synchronised. To allow for comparison of all results, the manufacturer-
processed data were synchronised with the raw data. The raw data files represented all
data from the time the GNSS units were switched on to start data collection until they
were switched off. However, the manufacturer-processed data represented only gametime.
Consequently, the files varied in length and could not be synchronised by means of cross-
correlation. Unix timestamps (also known as epoch time) were used for synchronisation.
The raw data files only included one Unix timestamp corresponding to the time the GNSS
units were switched on to start data collection; they did not include a timestamp variable.
The Unix timestamp was used to create a timeseries for the raw datafiles by extending
the Unix timestamp by the sampling frequency of the device and the length of each file.
The Unix timeseries of the raw and manufacturer-processed datasets were then used to
synchronise and join both datasets. Cross-correlation analysis was performed afterwards
to confirm perfect alignment of the raw and manufacturer-processed data.

2.3. Data Analysis
Two common summary acceleration metrics were extracted from the datasets. The first

metric was the number of high- and medium-intensity acceleration and deceleration efforts
which were extracted for each player and game from each of the three acceleration datasets.
The start of a high effort was defined by a ±3 m·s−2 threshold (a negative threshold defines a
deceleration effort and a positive threshold an acceleration effort) and ±2 m·s−2 for medium
efforts. These thresholds were selected as they are commonly used for high and medium
acceleration and deceleration efforts in the research literature [7,9,23]. An effort was counted
when the acceleration data reached the set threshold and stayed above the set threshold for
at least 0.3 s [24] and ended when the acceleration data reached 0 m·s−2 [11]. The second
metric was the distance covered in meters using the manufacturer-processed GNSS distance
within a predefined high (≥3 m·s−2 for acceleration and ≤−3 m·s−2 for deceleration) and
medium (2 to 3 m·s−2 for acceleration and −2 to −3 m·s−2 for deceleration) intensity zone,
extracted from each of the three acceleration datasets.

2.4. Statistical Analysis
To estimate the effect of the three different data processing methods on the number

of acceleration/deceleration efforts (#) and distance (m) within the high-intensity zone
(±3 m· s−2) or medium-intensity zone (±2 m·s−2), linear mixed models were used to
account for recurring measures. A negative binomial generalised linear mixed model was
used for the effort model, as the efforts were count-based, not normally distributed data [25],
and a linear mixed model was used for the distance model [26]. Each model included a
fixed effect for processing method (raw, custom-processed, manufacturer-processed). The
models included a random effect for player ID and game, which allowed for different mean
values for each player and game. The change in number of efforts or distance reported
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between processing methods within the medium- or high-acceleration or -deceleration
zone was estimated, and a 95% confidence interval (CI) was used to denote the imprecision
of the fixed effect parameter estimates. To determine the difference in number of efforts
(#) and distance (m) within each processing method between the high-intensity zone or
medium-intensity zone, the same mixed models were used as mentioned above, but with
intensity (medium or high) as a fixed effect. All analysis were performed in MATLAB
(version 9.14.0 (R2023a), The MathWorks Inc., Natick, MA, USA).

3. Results
3.1. Between Processing Methods Effects

Overall, manufacturer processing had the lowest reported distance and efforts, fol-
lowed by the custom processing, then the raw data. When using manufacturer-processed
data, distance covered while accelerating above the high threshold was on average 7.5 m,
whereas the custom processing brought the distance up to an average of 421 m and the raw
data, 1380 m (Figure 1). For the efforts reported in the high-acceleration zone, manufacturer
processing reported 3 efforts on average, where custom processing reported 138 efforts and
raw data 224 efforts.

 

Figure 1. Distance (m) decelerating (left–top) and accelerating (right–top), number of deceleration
efforts (left–bottom) and acceleration efforts (right–bottom), calculated for Medium (±2 m·s−2) and
High (±3 m·s−2) zones for one dataset processed in three different ways (I) raw, (II) custom-processed,
(III) manufacturer-processed. R = Data are different compared to Raw dataset of the same intensity.
C = Data are different compared to custom-processed dataset of the same intensity. * = Significantly
higher distance compared to the other intensity which was processed the same way.

For the variable distance in meters while in the high deceleration zone, the main
effect for processing method was significant (F(2, 696) = 5371, p < 0.001). Comparing
the custom processing to manufacturer processing, distance increased by 217 m, (95%
confidence interval (CI) = [200 m to 233 m], t(696) = 25, p < 0.001). Comparing the raw
data to manufacturer processing, distance increased by 849 m, (95% CI = [832 m to 865 m],
t(696) = 100, p < 0.001). Comparing the raw data to custom processing, distance increased
by 632 m, (95% CI = [615 m to 649 m], t(696) = 74, p < 0.001). The results of the effect of

86



Sensors 2024, 24, 4383

processing method on distance in the medium/high-acceleration or -deceleration zones are
presented in Table 2.

Table 2. Effects of processing method (raw, custom-processed, manufacturer-processed), on distance
in meters split by medium (±2 m·s−2)- and high (±3 m·s−2)-acceleration or -deceleration intensity.

Effect of Processing Method on Distance

Intensity Effect Estimate
(m)

Lower 95%
CI

Higher
95% CI df t p

A
cc

el
er

at
io

n High
Custom–Manufacturer 413 389 437 697 34 <0.001
Raw–Manufacturer 1373 1349 1397 697 112 <0.001
Raw–Custom 959 935 983 696 78 <0.001

Medium
Custom–Manufacturer 529 515 543 719 74 <0.001
Raw–Manufacturer 1042 1028 1056 719 145 <0.001
Raw–Custom 513 499 527 719 71 <0.001

D
ec

el
er

at
io

n High
Custom–Manufacturer 217 200 233 696 25 <0.001
Raw–Manufacturer 849 832 865 696 100 <0.001
Raw–Custom 632 615 649 696 74 <0.001

Medium
Custom–Manufacturer 327 315 339 719 53 <0.001
Raw–Manufacturer 798 786 810 719 130 <0.001
Raw–Custom 471 459 484 719 76 <0.001

df = degrees of freedom; t = t-statistic; p = p-value.

For the variable number of efforts while in the high-deceleration zone, the main effect
for processing method was significant, X2(2) = 15,938, p < 0.001. Comparing the custom
processing to manufacturer processing, the number of efforts increased 8.88 times, (95%
CI = [8.51 to 9.57], p < 0.001). Comparing the raw data to manufacturer processing, the
number of efforts increased 15.2 times, (95% CI = [14.6 to 15.9], p < 0.001). Comparing the
raw data to custom processing, the number of efforts increased 1.71 times, (95% CI = [1.67
to 1.77], p < 0.001). The results of the effect of processing method on number of efforts in
the medium/high acceleration or deceleration zones are presented in Table 3.

Table 3. Effects of processing method (raw, custom-processed, manufacturer-processed), on number
of efforts split by medium (±2 m·s−2) and high (±3 m·s−2) acceleration or deceleration intensity.

Effect of Processing Method on Number of Efforts

Intensity Effect
Estimate
(Rate of
Change)

Lower 95% CI Higher 95% CI p

A
cc

el
er

at
io

n High
Custom–Manufacturer 55.7 51.3 60.4 <0.001
Raw–Manufacturer 89.7 82.6 97.4 <0.001
Raw–Custom 1.61 1.57 1.66 <0.001

Medium
Custom–Manufacturer 1.43 1.38 1.48 <0.001
Raw–Manufacturer 6.13 5.93 6.34 <0.001
Raw–Custom 4.29 4.16 4.43 <0.001

D
ec

el
er

at
io

n High
Custom–Manufacturer 8.88 8.51 9.57 <0.001
Raw–Manufacturer 15.2 14.6 15.9 <0.001
Raw–Custom 1.71 1.67 1.77 <0.001

Medium
Custom–Manufacturer 1.18 1.14 1.23 <0.001
Raw–Manufacturer 5.09 4.92 5.27 <0.001
Raw–Custom 4.30 4.16 4.45 <0.001

3.2. Within Processing Method Effects
Overall, the distance while accelerating or decelerating was largest in the medium

zone compared to the high zone for all processing methods, except for distance while
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accelerating for the raw method. The number of efforts was largest in the high zone
compared to the medium zone for all processing methods except manufacturer processing.

For the variable distance while decelerating processed by the manufacturer, the main
effect for intensity was significant (F(1, 453) = 4345, p < 0.001). Distance in the medium-
intensity zone increased by 79 m compared to the high-intensity zone (95% CI = [77 m
to 81 m], t(453) = 66, p < 0.001). The results of the effect of intensity on distance while
decelerating or accelerating for each processing method are presented in Table 4.

Table 4. Effects of acceleration or deceleration intensity, medium (±2 m·s−2) and high (±3 m·s−2),
on distance in meters split by processing method (raw, custom-processed, manufacturer-processed).

Effect of Intensity on Distance

Processing Effect Estimate
(m)

Lower 95%
CI

Higher
95% CI df t p

A
cc

el
er

at
io

n Manufacturer Medium–High 118 114 121 455 74 <0.001

Custom Medium–High 234 225 243 455 51 <0.001

Raw Medium–High −211 −234 −189 455 −18 <0.001

D
ec

el
er

at
io

n Manufacturer Medium–High 79 77 81 453 66 <0.001

Custom Medium–High 190 182 197 455 52 <0.001

Raw Medium–High 29 13 45 455 3.4 <0.001

df = degrees of freedom; t = t-statistic; p = p-value.

For the variable number of efforts while decelerating processed by the manufacturer,
the main effect for intensity was significant (X2(2) = 1368, p < 0.001). The number of efforts
in the medium-intensity zone was 2.28 times greater compared to the high-intensity zone
(95% CI = [2.18 to 2.38], p < 0.001). The results of the effect of intensity on number of efforts
while decelerating or accelerating for each processing method are presented in Table 5.

Table 5. Effects of acceleration or deceleration intensity, medium (±2 m·s−2) and high (±3 m·s−2) on
number of efforts, split by processing method (raw, custom-processed, manufacturer-processed).

Effect of Intensity on Number of Efforts

Processing Effect Estimate
(Rate of Change) Lower 95% CI Higher 95% CI p

A
cc

el
er

at
io

n Manufacturer Medium–High 12.1 11.1 13.1 <0.001

Custom Medium–High 0.71 0.63 0.79 <0.001

Raw Medium–High 0.83 0.81 0.85 <0.001

D
ec

el
er

at
io

n Manufacturer Medium–High 2.28 2.18 2.38 <0.001

Custom Medium–High 0.30 0.29 0.31 <0.001

Raw Medium–High 0.66 0.60 0.72 <0.001

4. Discussion
This study aimed to measure the differences in commonly used summary acceleration

metrics during elite Australian football games of GNSS acceleration data that were derived
using three different processing methods (raw, custom-processed, manufacturer-processed).
The main finding was that there were substantial differences between the three process-
ing methods when calculating the same metric. Overall, compared to the raw data, the
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manufacturer-processed acceleration data had the lowest reported distance (up to 184 times
lower) and efforts (up to 89 times lower), followed by the custom-processed distance (up
to 3.3 times lower) and efforts (up to 4.3 times lower), where raw data had the highest
reported distance and efforts.

The raw data were unprocessed and consequently had the most noise present, result-
ing in the highest distance covered and number of efforts. The manufacturer-processed
acceleration data had the lowest reported distance and efforts. The results were approx-
imately 28 efforts lower than those found in literature using a similar GNSS device and
manufacturer software [27]. The difference could be explained by the fact that Rennie,
Kelly, Bush, Spurrs, Austin and Watsford [27] used a lower threshold of ±2.78 m·s−2 and
a shorter duration above the set threshold of 0.2 s to identify an effort. A lower duration
above the threshold of 0.2 s vs. 0.3 s (which was used in this study) has been shown to
identify 45% more acceleration efforts and 13% more deceleration efforts [24]. Furthermore,
all data that involved <75% of total game time were excluded from Rennie, Kelly, Bush,
Spurrs, Austin and Watsford [27], while there was no minimum game time requirements for
this study. When taking all factors (lower threshold, shorter duration above the threshold
and game time criteria) into consideration, the number of efforts reported are comparable
to the current study. This further highlights the effects of different processing methods on
acceleration data and accompanying difficulty in comparing results across studies.

Coaches and practitioners use acceleration metrics to quantify the demands (volume,
intensity and frequency of the metrics) of a sport or activity [7,28], which can be used to
create training programs to adequately prepare players for competition [8]. Furthermore,
researchers could be using and analysing GNSS manufacturer-processed acceleration data
and metrics for their research. A change in the metric output due to processing methods
will alter the demands they are quantifying. For example, a sudden increase in the volume
of acceleration undertaken might indicate to a coach that players are working harder than
normal. Although they are undertaking the same amount of work as usual, the metric
output increased due to different processing methods used. Examples of when processing
methods might change include when software is updated, athlete tracking technologies
are changed or when different software/algorithms are used to process the data. Coaches,
practitioners and researchers should be aware that processing methods can change, and
that these changes could affect metric outputs and alter the demands they are quantifying.

To be able to select a suitable processing technique for acceleration data, one should be
aware of the characteristics of their data (patterns and frequencies that could be present in
the data). The characteristics of the data can determine what type of processing method is
most suitable [29]. Based on the results of this study, practitioners using GNSS acceleration
data are recommended to select a processing method specific to their use case and charac-
teristics of the data. It is also recommended to evaluate the impact of different processing
methods on metrics of interest (e.g., number of efforts). For this study, the characteristics of
team sport-specific human movement patterns (elite AF players) and potential sources of
variability in the acceleration data should be taken into consideration. An athlete in full
sprint could have anywhere between 2 and 5 steps per second [30], indicating that at least
2 Hz patterns (corresponding to 2 steps per second) could be present in the acceleration
data. The acceleration data varies within a single step (from the heel strike of one foot to the
subsequent heel strike of the other foot), which is a result of changing the balance between
the propulsive and braking forces at each ground contact [31]. A surplus in propulsive
forces results in acceleration, where a surplus of braking forces results in deceleration. If an
athlete performs 2 steps per second, that means the acceleration data change significantly
at each single step [32]. This suggests that acceleration data might be more variable and
higher than what is currently indicated by GNSS devices.

The high acceleration values (considered as acceleration and deceleration values with
a high rate of change in speed) are shown by the results of the custom processing method,
which was smoothed with a filter which had a 2 Hz cutoff frequency, allowing for 2 Hz
patterns in the data. This method might be the closest approximation to the real world
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of all three processing methods. The larger distance run and number of efforts in raw
and custom-processed data compared to manufacturer-processed data is an indicator of
stronger data smoothing in the manufacturer-processed data. The custom-processed and
raw dataset showed that the acceleration data exceeded the high threshold (±3 m·s−2) for
more than 0.3 s, significantly more (up to 89.7 times) than the manufacturer-processed
dataset (see Table 3). Strong smoothing in the manufacturer data could eliminate important
portions of a signal by smoothing peaks and lowering the amplitude of high acceleration
data. The amplitude of the manufacturer-processed acceleration data is lowered to the
point where more data exceed the medium threshold (±2 m·s−2) but stay below the high
threshold (±3 m·s−2), as evident by the larger number of efforts in the medium zone
compared to the high zone (see Table 5). When looking into the literature, athletes have
reached acceleration values between 5–7 m·s−2 [32–35], suggesting that elite AF players
should be able to reach these values. However, the manufacturer-processed data suggest
that the elite AF players barely reach the set ±3 m·s−2 threshold, which is an indication that
manufacturer-processed data may be over-smoothing and masking the actual acceleration
values that an athlete is capable of.

The application of a data processing method with strong smoothing has been shown
to cause a reduction in the number of recorded acceleration efforts during a match [11].
Furthermore, manufacturer-processed GNSS acceleration data have shown a very large
mean bias, with lower acceleration values, when compared to a criterion measure [12]. In
combination with the results from the current study, these findings collectively suggest that
manufacturer-processed data are subject to extensive data smoothing.

Distance run in the medium-acceleration zone exceeded that of the high zone for all
different processing techniques except for the raw acceleration dataset, where the distance
recorded in the high zone was greater. The raw acceleration dataset was not subject to
smoothing, meaning that all potential sources of noise, such as sensor movement, multipath
interference and environmental conditions [36], were present in the data. This noise may
manifest as high-frequency components, leading to a larger representation of raw data in
the high zone compared to the medium zone and all other processing methods. Similar
findings have been reported for distance based summary acceleration metrics between
raw and manufacturer-processed data in a controlled environment [18] and between the
acceleration data of team sport training sessions [20].

Large inconsistencies exist in the literature for reported processing steps used on
acceleration data, which hinders the comparison of acceleration summary metric results
between studies [7,37]. The findings of the current study demonstrated substantial dif-
ferences between different processing methods when estimating the same acceleration
and deceleration metric. Therefore, future research should report all different processing
steps performed on their used acceleration data derived from an athlete tracking system to
ensure comparability of results between studies.

A noteworthy strength of this research is the use of elite Australian Football team data.
The dataset consisted of games played on different days and at different locations within
stadia, providing a real representation of diverse GNSS team data. The data were collected
with one type of GNSS device and is thus only representative of this specific device. Fur-
thermore, the manufacturer-processed data were exported using the specific manufacturer
software mentioned in the methods section. Since data processing procedures could vary
between software versions, it is important to note that the manufacturer-processed data
are representative only of this specific software. Future research investigating processing
methods of acceleration data of athlete tracking technologies should consider using local
positioning systems (LPS) and optical positioning systems, next to GNSS. Current elite
team sport environments require teams to use a variety of athlete tracking technologies
suitable for different locations, e.g., LPS or optical for indoor stadia, GNSS for outdoor or
training sessions [18]. The use of different athlete tracking systems interchangeably, re-
quires research to establish the influence of data processing on acceleration data of different
tracking systems to be able to compare acceleration data longitudinally.
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5. Conclusions
The results from this study demonstrated that there were substantial differences in

commonly used summary acceleration metrics (number of efforts performed and dis-
tance covered) during elite Australian football games between three processing methods
(raw, custom-processed, manufacturer-processed). Overall, the manufacturer-processed
acceleration data had the lowest reported distance and efforts, followed by the custom-
processed distance, where raw data had the highest reported distance and efforts. The
results indicate that different processing methods changed the metric output (number
of efforts and distance covered) and can in turn alter the quantification of the demands
of a sport (volume, intensity and frequency of the metrics). It is important for coaches,
practitioners and researchers using GNSS-derived acceleration data to know how, and be
aware that, processing methods change summary acceleration metrics (e.g., efforts and
distance covered) because they are often used to quantify the demands of a sport and to
create training programs to adequately prepare players for competition. Furthermore, it
is recommended that future research and tracking technology manufacturers report all
data processing practises performed on the acceleration data where possible. Knowing all
performed processing steps allow for comparability of results and the ability to identify if
differences may be due to processing practises rather than the used tracking technology.

Author Contributions: Conceptualization, S.E., D.L.C., P.B.G. and M.C.V.; methodology, S.E., D.L.C.,
P.B.G. and M.C.V.; software, S.E.; formal analysis, S.E.; investigation, S.E.; writing—original draft
preparation, S.E.; writing—review and editing, D.L.C., P.B.G. and M.C.V.; visualization, S.E.; supervi-
sion, D.L.C., P.B.G. and M.C.V.; project administration, S.E.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: All subjects gave their informed consent for inclusion before
they participated in the study. The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee of La Trobe University (reference
number: HEC21282).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ethical restrictions.

Conflicts of Interest: The authors report no conflicts of interest.

References
1. Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global positioning systems (GPS) and microtechnology sensors in team sports: A

systematic review. Sports Med. 2013, 43, 1025–1042. [CrossRef] [PubMed]
2. Torres-Ronda, L.; Clubb, J.; Beanland, E. Tracking systems in team sports: Back to basics. Sport Perform. Sci. Rep. 2022, 159, 1–9.
3. Silva, H.; Nakamura, F.Y.; Ribeiro, J.; Asian-Clemente, J.; Roriz, P.; Marcelino, R. Using minimum effort duration can compromise

the analysis of acceleration and deceleration demands in football. Int. J. Perform. Anal. Sport 2023, 23, 125–137. [CrossRef]
4. Duthie, G.M.; Robertson, S.; Thornton, H.R. A GNSS-based method to define athlete manoeuvrability in field-based team sports.

PLoS ONE 2021, 16, e0260363. [CrossRef] [PubMed]
5. Khan, D.; Al Mudawi, N.; Abdelhaq, M.; Alazeb, A.; Alotaibi, S.S.; Algarni, A.; Jalal, A. A Wearable Inertial Sensor Approach for

Locomotion and Localization Recognition on Physical Activity. Sensors 2024, 24, 735. [CrossRef] [PubMed]
6. Gastin, P.B.; McLean, O.; Spittle, M.; Breed, R.V. Quantification of tackling demands in professional Australian football using

integrated wearable athlete tracking technology. J. Sci. Med. Sport 2013, 16, 589–593. [CrossRef] [PubMed]
7. Ellens, S.; Middleton, K.; Gastin, P.B.; Varley, M.C. Techniques to derive and clean acceleration and deceleration data of athlete

tracking technologies in team sports: A scoping review. J. Sports Sci. 2022, 40, 1772–1800. [CrossRef] [PubMed]
8. Akenhead, R.; Harley, J.A.; Tweddle, S.P. Examining the external training load of an English Premier League football team with

special reference to acceleration. J. Strength Cond. Res. 2016, 30, 2424–2432. [CrossRef] [PubMed]
9. Delaney, J.A.; Cummins, C.J.; Thornton, H.R.; Duthie, G.M. Importance, reliability, and usefulness of acceleration measures in

team sports. J. Strength Cond. Res. 2018, 32, 3485–3493. [CrossRef]
10. Johnston, R.D.; Black, G.M.; Harrison, P.W.; Murray, N.B.; Austin, D.J. Applied Sport Science of Australian Football: A Systematic

Review. Sports Med. 2018, 48, 1673–1694. [CrossRef] [PubMed]

91



Sensors 2024, 24, 4383

11. Varley, M.C.; Jaspers, A.; Helsen, W.F.; Malone, J.J. Methodological considerations when quantifying high-intensity efforts in team
sport using global positioning system technology. Int. J. Sports Physiol. Perform. 2017, 12, 1059–1068. [CrossRef] [PubMed]

12. Delaney, J.A.; Wileman, T.M.; Perry, N.J.; Thornton, H.R.; Moresi, M.P.; Duthie, G.M. The validity of a global navigation satellite
system for quantifying small-area team-sport movements. J. Strength Cond. Res. 2019, 33, 1463–1466. [CrossRef] [PubMed]

13. Scott, M.T.; Scott, T.J.; Kelly, V.G. The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. J.
Strength Cond. Res. 2016, 30, 1470–1490. [CrossRef] [PubMed]

14. Brosnan, R.J.; Watson, G.; Stuart, W.; Twentyman, C.; Kitic, C.M.; Schmidt, M. The validity, reliability, and agreement of global
positioning system units-can we compare research and applied data? J. Strength Cond. Res. 2022, 36, 3330–3338. [CrossRef]
[PubMed]

15. Johnston, R.D.; Hewitt, A.; Duthie, G. Validity of Real-Time Ultra-wideband Global Navigation Satellite System Data Generated
by a Wearable Microtechnology Unit. J. Strength Cond. Res. 2019, 34, 2071–2075. [CrossRef]

16. Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE
2018, 13, e0199519. [CrossRef] [PubMed]

17. Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using gps devices
in sport. Int. J. Sport Physiol. Perform. 2017, 12, 18–26. [CrossRef] [PubMed]

18. Thornton, H.R.; Nelson, A.R.; Delaney, J.A.; Serpiello, F.R.; Duthie, G.M. Interunit Reliability and Effect of Data-Processing
Methods of Global Positioning Systems. Int. J. Sport Physiol. Perform. 2019, 14, 432–438. [CrossRef] [PubMed]

19. Duthie, G.; Thornton, H.; Delaney, J.; McMahon, J.; Benton, D. Relationship between physical performance testing results and
peak running intensity during professional rugby league match play. J. Strength Cond. Res. 2020, 34, 3506–3513. [CrossRef]

20. Delves, R.I.M.; Duthie, G.M.; Ball, K.A.; Aughey, R.J. Applying common filtering processes to Global Navigation Satellite
System-derived acceleration during team sport locomotion. J. Sports Sci. 2022, 40, 1116–1126. [CrossRef] [PubMed]

21. Catapult. Vector Data Validation; Catapult: Melbourne, Australia, 2020.
22. Crang, Z.L.; Duthie, G.; Cole, M.H.; Weakley, J.; Hewitt, A.; Johnston, R.D. The inter-device reliability of global navigation satellite

systems during team sport movement across multiple days. J. Sci. Med. Sport 2021, 25, 340–344. [CrossRef]
23. Oliva-Lozano, J.M.; Fortes, V.; Krustrup, P.; Muyor, J.M. Acceleration and sprint profiles of professional male football players in

relation to playing position. PLoS ONE 2020, 15, e0236959. [CrossRef] [PubMed]
24. Ellens, S.; Carey, D.; Gastin, P.; Varley, M.C. Changing the criteria applied to acceleration and deceleration efforts changes the

types of player actions detected. Sci. Med. Footb. 2022, 8, 52–59. [CrossRef] [PubMed]
25. McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1989.
26. Newans, T.; Bellinger, P.; Drovandi, C.; Buxton, S.; Minahan, C. The Utility of Mixed Models in Sport Science: A Call for Further

Adoption in Longitudinal Data Sets. Int. J. Sport Physiol. Perform. 2022, 17, 1289–1295. [CrossRef] [PubMed]
27. Rennie, M.J.; Kelly, S.J.; Bush, S.; Spurrs, R.W.; Austin, D.J.; Watsford, M.L. Phases of match-play in professional Australian

Football: Distribution of physical and technical performance. J. Sports Sci. 2020, 38, 1682–1689. [CrossRef]
28. Delves, R.I.M.; Aughey, R.J.; Ball, K.; Duthie, G.M. The quantification of acceleration events in elite team sport: A systematic

review. Sports Med.-Open 2021, 7, 45. [CrossRef] [PubMed]
29. Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009.
30. Kawabata, M.; Goto, K.; Fukusaki, C.; Sasaki, K.; Hihara, E.; Mizushina, T.; Ishii, N. Acceleration patterns in the lower and upper

trunk during running. J. Sport Sci. 2013, 31, 1841–1853. [CrossRef] [PubMed]
31. Haugen, T.; McGhie, D.; Ettema, G. Sprint running: From fundamental mechanics to practice-a review. Eur. J. Appl. Physiol. 2019,

119, 1273–1287. [CrossRef] [PubMed]
32. Nagahara, R.; Kanehisa, H.; Fukunaga, T. Ground reaction force across the transition during sprint acceleration. Scand. J. Med. Sci.

Sports 2020, 30, 450–461. [CrossRef] [PubMed]
33. Morin, J.B.; Le Mat, Y.; Osgnach, C.; Barnabo, A.; Pilati, A.; Samozino, P.; di Prampero, P.E. Individual acceleration-speed profile

in-situ: A proof of concept in professional football players. J. Biomech. 2021, 123, 110524. [CrossRef]
34. Morin, J.D.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running

performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [CrossRef] [PubMed]
35. di Prampero, P.E.; Fusi, S.; Sepulcri, L.; Morin, J.B.; Belli, A.; Antonutto, G. Sprint running: A new energetic approach. J. Exp. Biol.

2005, 208, 2809–2816. [CrossRef] [PubMed]
36. Liu, Q.; Ying, R.; Dai, Z.; Wang, Y.; Qian, J.; Liu, P. Multi-Phase Fusion for Pedestrian Localization Using Mass-Market GNSS and

MEMS Sensors. Sensors 2023, 23, 3624. [CrossRef] [PubMed]
37. Linke, D.; Link, D.; Lames, M. Football-specific validity of TRACAB’s optical video tracking systems. PLoS ONE 2020, 15,

e0230179. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

92



Citation: Salazar, H.; Ujakovic, F.;

Plesa, J.; Lorenzo, A.;

Alonso-Pérez-Chao, E. Do Elite

Basketball Players Maintain Peak

External Demands throughout the

Entire Game? Sensors 2024, 24, 4318.

https://doi.org/10.3390/s24134318

Academic Editors: Georg Fischer

and Arnold Baca

Received: 2 May 2024

Revised: 29 May 2024

Accepted: 24 June 2024

Published: 3 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Do Elite Basketball Players Maintain Peak External Demands
throughout the Entire Game?
Hugo Salazar 1, Filip Ujakovic 2, Jernej Plesa 2, Alberto Lorenzo 3,* and Enrique Alonso-Pérez-Chao 4,5

1 Faculty of Education and Sport, University of Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
hsalazar002@gmail.com

2 Basketball Club Cedevita Olimpija, 1000 Ljubljana, Slovenia; filip.ujakovic@student.kif.unizg.hr (F.U.)
3 Faculty of Physical Activity and Sport Sciences—INEF, Polytechnic University of Madrid, 28040 Madrid, Spain
4 Department of Physical Activity and Sports Science, University Alfonso X el Sabio,

28691 Villanueva de la Cañada, Spain; ealonsoperezchao@gmail.com
5 Faculty of Sports Science, European University of Madrid, 28670 Villaviciosa de Odón, Spain
* Correspondence: alberto.lorenzo@upm.es

Abstract: Consideration of workload intensity and peak demands across different periods of bas-
ketball games contributes to understanding the external physical requirements of elite basketball
players. Therefore, the aim of this study was to investigate the average intensity and peak demands
encountered by players throughout game quarters. PlayerLoad per minute and PlayerLoad at three
different time samples (30 s, 1 min, and 3 min) were used as workload metrics. A total of 14 profes-
sional elite male basketball players were monitored during 30 official games to investigate this. A
linear mixed model and Cohen’s d were employed to identify significant differences and quantify the
effect sizes among game quarters. The results showed a significant, moderate effect in PlayerLoad
per minute between Q1 vs. Q4, and a small effect between Q2 and Q3 vs. Q4. Furthermore, a small
to moderate decline was observed in external peak values for PlayerLoad across game quarters.
Specifically„ a significant decrease was found for the 3 min time window between Q1 and other
quarters. The findings from the present study suggest that professional basketball players tend to
experience fatigue or reduced physical output as the game progresses.

Keywords: basketball; most demanding scenarios; PlayerLoad; team sport; physical demands;
accelerometry

1. Introduction
Load monitoring has become an essential process for coaches and sports science practi-

tioners to examine the individual workload of players and the collective workload of teams.
Additionally, quantifying physical and physiological loads is important for understand-
ing the dose–response nature of the training process when establishing optimal training
procedures [1]. Training load includes both external and internal components. External
loads (ELs) indicate the physical workload performed (e.g., duration, distance), which is
determined by the organization, quality, and quantity of exercise (training plan) [2]. Inter-
nal load (IL) refers to the psycho-physiological response during exercise aimed at meeting
the demands imposed by the EL (e.g., heart rate, heart rate variability, rate of perceived
exertion) [2]. In the modern era of sports science, recent technological advancements, such
as electronic performance tracking systems (EPTSs) integrating inertial measurement units
(IMUs) like accelerometers and gyroscopes, have transformed the monitoring of basketball
players in both training sessions and actual games [3].

Recent studies utilizing EPTSs have characterized basketball as an intermittent, high-
intensity sport. These studies have shown that the majority of playing time (93.65%) is
spent in standing–walking (<7 km/h) and jogging activities (7–14 km/h) [4]. These periods
of low-motion activities are interspersed with the most demanding scenarios (e.g., peak
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demands, high-intensity period). During these moments, players constantly engage in
continuous changes in direction, jumps, accelerations, decelerations, physical contacts, and
specific basketball skills (e.g., crossovers, lay-ups) [5,6]. Investigating the physical demands
experienced by athletes during both competition and training has emerged as a focal point
in sports science research [7]. This expanding field enables sports coaches to gather precise
data for refining athletic training programs to target specific adaptations. To accomplish
this, it is crucial to implement training methods that not only capture average values but
also replicate the challenges posed by peak competition demands, thereby optimizing
overall athletic performance [6].

Peak demands (PDs) refer to the most intense activity experienced by players within a
specified timeframe for a chosen variable [6]. PDs in basketball players have been assessed
using various external variables (e.g., PlayerLoad or distance) and time windows (e.g., 30 s,
45 s, 1 min, 5 min, and 10 min) [6,8–10]. The literature on PDs in basketball has examined
the influence of contextual factors such as player position [6,11], game score-line [12,13],
game schedule [14], team venue [15], cumulative playing time across the entire game [9,16]
and prior to intense passages [9], activity type [17,18], age category [19] or moment of the
game [10,20]. However, these studies are often conducted on non-professional samples,
primarily due to the challenges associated with accessing professional players.

Previous research on professional basketball has examined the impact of various
factors on the external PDs experienced by players, including playing positions [21,22] and
the seasonal period [23]. There is a dearth of studies in the literature that assess professional
or elite basketball players, potentially due to the challenges associated with accessing data
within high-performance environments or the limited availability of microtechnology for
quantifying competition demands in certain professional leagues [24]. Furthermore, the
imprecise usage of terms such as “elite”, “high performance”, and “professional” in sports
contexts introduces ambiguity and may result in research spanning various competitive
levels being classified as “elite”. This lack of specificity complicates the interpretation and
comparison of findings across studies [25,26].

Understanding the fluctuations in PDs provides a deeper insight into the demands of
competition. Fluctuations refer to variations in the intensity, measurement, or quality of a
variable over a period of time [20]. One of the earlier published articles evaluating fluctu-
ations throughout the quarters of a game demonstrated how dribbling actions and total
activity velocities declined as the game progressed [27]. Furthermore, with the implemen-
tation of microtechnology during games and among professional second-division players,
it has been revealed that all average external physical demands decreased across game
quarters [21]. Expanding the scope to include different levels of play, research conducted
among semi-professional [10,22] or youth basketball players [20] has uncovered a similar
trend in peak demands as observed in average demands, with higher peak values typically
recorded in the first quarter compared to the latter stages of the game [10,20,22]. Collec-
tively, these findings underscore the intricate dynamics of physical performance throughout
a basketball game, influenced by factors such as player expertise, match intensity, and
strategic maneuvers employed by the teams [10,20,22].

Based on the preceding information, our understanding of the behavior of external
peak demand during official basketball matches among elite or professional players re-
mains limited. Consequently, it cannot be assumed that the differences in external PDs
observed between quarters can be generalized to other samples (e.g., female players or
professional players) [9]. Furthermore, separate research on this topic is necessary for elite
male players, as top male basketball players have been shown to face significantly higher
physical demands and strategic challenges during games compared to their younger or
semi-professional counterparts [28]. Understanding these fluctuations in external peak
requirements could offer several advantages to basketball practitioners: (1) the ability
to develop more precise conditioning regimens, (2) the optimization of player rotations
during games to maintain optimal physical performance throughout game periods, (3) the
development of strategies for prescribing training drills more accurately based on real
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game reference values, and (4) preparing players to sustain the physical demands of a
basketball game when returning from injury. Therefore, the aim of the present study was
to investigate the average PDs encountered by professional basketball players across game
quarters within three distinct timeframes (30 s, 1 min, and 3 min). Based on prior research
conducted with non-elite male players utilizing microtechnology, it was hypothesized
that the average [21] and peak values [10,20,22] would likely decrease across the quarters
throughout the game.

2. Materials and Methods
2.1. Participants

Professional elite male basketball players classified as Tier 4 (elite/international
level) [25,26] (n = 14, mean ± standard deviation: age: 27.8 ± 3.5 y.0; height: 198.1 ± 10.4 cm;
body mass: 97.4 ± 11.6 kg) were monitored during 30 games (30 Eurocup/ABA league).
Throughout the data collection period, players engaged in an average of 10 h of training
per week, comprising 5 basketball sessions and 2 resistance training sessions. Additionally,
they played 2 games weekly. Players included in the study were from all positions: guards,
forwards, and centers. The team included in the study is based in Slovenia and has played
in the ABA League and Eurocup. Eurocup fixtures were scheduled between Tuesday and
Friday, while domestic league games were typically held on weekends.

Game samples from each player were only retained in the final analysis if they com-
pleted a minimum of 4 min of playing time derived from devices on each quarter. Playing
time derived from devices included all stoppages in play, such as free-throws, fouls, and
out-of-bounds, but excluded warm-ups, break periods between quarters, time-outs, or
time when players were substituted out of the game [9]. Samples obtained from game
instances where players accrued less than 4 min of playing time, as determined by data
derived from the monitoring devices, were systematically excluded from the final analyses.
This exclusion criterion ensured that only substantial periods of active participation were
considered, thus minimizing the impact of brief or negligible contributions to the overall
PlayerLoad assessment. Additionally, any player who prematurely exited the match due to
injury or experienced a cessation of device functionality, whether due to battery depletion
or technical malfunctions, was automatically excluded from the dataset corresponding
to that specific match. This meticulous approach to data curation aimed to uphold the
integrity and reliability of the analytical outcomes by focusing exclusively on instances
where players were actively engaged in gameplay for a meaningful duration. In this re-
gard, all players had to compete in at least 50% of the total monitored matches. Overall,
958 game samples across the 14 players were included in the analyses. All subjects gave
their informed consent for inclusion before they participated in the study. The study was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Ethics Committee of the University of Pais Vasco (UPV/EHU, code M10_2018_027).

2.2. Design
The study was conducted during the 2023–2024 season. Each player wore a monitoring

device (S7, Catapult Sports, Melbourne, Australia) inserted into a fitted neoprene vest
underneath their regular playing attire. The device was positioned on the upper thoracic
spine between the scapulae [29]. Each device contained microsensor technology consisting
of an accelerometer (±16 g, 100 Hz), magnetometer (±4.900 µT, 100 Hz), and gyroscope
(up to 2000 deg/s, 100 Hz). All players participating in the study were already acquainted
with the monitoring technology, having utilized similar devices extensively during both
training sessions and competitive games throughout the preceding season. This familiarity
ensured a smooth transition into the data collection phase, as players were accustomed
to wearing the devices and understanding their functionalities. To maintain consistency
and reliability in the recorded data, the devices were activated approximately 20 to 40 min
before the commencement of the warm-up phase preceding each game. By initializing
the devices ahead of time, any necessary calibration or synchronization processes could
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be completed without impinging on the players’ pre-match routines. Furthermore, to
minimize potential discrepancies arising from variations between the individual units of
the monitoring devices, players were assigned the same device for the entirety of the study
period. In this regard, the same individual took charge of editing all monitored sessions to
minimize inter-rater error to its lowest possible extent. This approach effectively mitigated
the risk of inter-unit variability in output readings, ensuring that the data obtained remained
consistent and comparable across all participants [30].

2.3. Variables
PDs were calculated for PlayerLoad™ (PL) in absolute values and extracted for each

player and time window (30 s, 1 min, and 3 min). Research has identified these sample
durations as the most practical for consideration in basketball [31]. Average demands
were extracted as relative values (Pl·min). PL, a parameter commonly used to measure
external load in various sports [6,32–34], is derived from accelerometer data and captures
the athlete’s accelerations in different planes. However, its definition may vary depend-
ing on the manufacturer of the accelerometer device. Recent studies have incorporated
PL and have demonstrated its strong correlation with physical and physiological per-
formance [14,35]. Specifically, in the case of basketball, it has the potential to provide
a good estimate of the external load of the athlete, as it is a sport that involves a high
number of accelerations and decelerations, changes in direction, or explosive efforts. PL
was calculated as the square root of the sum of the instantaneous rate of change in accelera-
tion in the three planes of movement (x, y, and z axes) using the following formula [13]:

PlayerLoad™ =

[√
( f wdt=i+1− f wdt=i)

2
+
√
(sidet=i+1−sidet=i)

2+
√
(upt=i+1−upt=i)

2
]

100 , where “fwd”
indicates movement in the anteroposterior direction, “side” indicates movement in the
medial–lateral direction, “up” indicates vertical movement, and t represents the time.

The average and PDs were determined directly from the Catapult software (OpenField
v8, Catapult Innovations, Melbourne, Australia). Peak values were calculated as rolling
averages, which is a more precise technique for measuring PD compared to fixed meth-
ods [36,37] and has been previously used in basketball research [6,8,31]. After extraction,
PDs were input into customized Microsoft Excel (version 16.0, Microsoft Corporation,
Redmond, WA, USA) spreadsheets for further analysis.

2.4. Statistical Analysis
The mean and standard deviation (SD) were determined for PL variables across each

sample duration (30 s, 1 min, and 3 min). Data distribution normality and sphericity
were validated through the Shapiro–Wilk statistic and Levene’s Test for homogeneity
of variances. A linear mixed model (LMM) with Bonferroni post hoc tests considering
significance at p < 0.05 was used to compare peak values for each sample duration. Game
quarter (4 levels) was entered as a fixed factor, while player (n = 14) was entered as the
random term. To identify the magnitude of the differences between quarters, effect sizes
(ESs) (Cohen’s d) with 95% confidence intervals were calculated. The ES magnitudes of
the differences were interpreted as follows: ≤0.2, trivial; >0.2, small; >0.6, moderate; >1.2,
large; >2.0, very large; and >4.0, nearly perfect [38]. All statistical analyses were conducted
using the software jamovi 2.3 (the jamovi project, 2022) for Windows.

3. Results
PL·min across game quarters (Qs) is presented in Figure 1. A decreasing pattern for

average values was found among quarters with significant differences (p < 0.001) from
the first three quarters compared to the last (Q1 vs. Q4, moderate; Q2 vs. Q4, small; Q3
vs. Q4, small).

Table 1 presents the descriptive values of PL for the three sample durations across
game quarters and the entire game. Table 2 illustrates the pairwise comparison of PL at
different time epochs. For the 30 s sample duration, a significant difference with a small
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effect was observed between game quarters. Regarding the 1 min sample, differences
in PL between quarters were significant between Q1 versus Q3 and Q4 (p < 0.001, small
to moderate), Q2 with Q3 (p < 0.001, moderate), and Q3 with Q4 (p < 0.05, small). For the
3 min sample duration, there was a significant decline in PL from the first three quarters
compared to Q4, with a small to moderate effect. The only non-significant comparison for
the 3 min sample duration was between Q2 and Q3.

Figure 1. Average values (PL·min) across basketball quarters for elite basketball players.

Table 1. Descriptive values (mean ± standard deviation) in PL between game quarters for each
sample duration.

Game Quarters PL 30 s (AU) PL 1 min (AU) PL 3 min (AU)

Q1 10.9 ± 1.6 17.4 ± 3 37.1 ± 6.6
Q2 10.8 ± 1.6 16.9 ± 2.6 35.0 ± 6
Q3 10.4 ± 1.6 16.5 ± 2.8 34.9 ± 6.2
Q4 10.1 ± 1.6 15.8 ± 2.5 33.4 ± 5.5

Note: Q: quarter; PL: PlayerLoad.

Table 2. Pairwise comparison of PL across the three selected timeframes for each quarter of basketball
games.

Sample Duration Effect Size 95% CI p

30 s sample
Q1 vs. Q2 0.07 (−0.17–0.31) 1.00
Q1 vs. Q3 0.30 (0.05–0.55) <0.05
Q1 vs. Q4 0.47 (0.22–0.72) <0.001
Q2 vs. Q3 0.23 (−0.01–0.47) 0.073
Q2 vs. Q4 0.40 (0.16–0.64) <0.001
Q3 vs. Q4 0.17 (−0.08–0.42) 0.44

1 min sample
Q1 vs. Q2 0.17 (−0.07–0.41) 0.37
Q1 vs. Q3 0.36 (0.10–0.60) <0.001
Q1 vs. Q4 0.57 (0.32–0.82) <0.001
Q2 vs. Q3 0.18 (−0.06–0.42) 0.30
Q2 vs. Q4 0.40 (0.15–0.64) <0.001
Q3 vs. Q4 0.22 (0.03–0.47) <0.05
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Table 2. Cont.

Sample Duration Effect Size 95% CI p

3 min sample
Q1 vs. Q2 0.35 (0.10–0.60) <0.001
Q1 vs. Q3 0.36 (0.10–0.62) <0.001
Q1 vs. Q4 0.62 (0.36–0.87) <0.001
Q2 vs. Q3 0.01 (−0.24–0.26) 1.0
Q2 vs. Q4 0.27 0.02–0.52 <0.05
Q3 vs. Q4 0.26 (0.01–0.51) <0.05

Note: Q: quarter; CI: confident interval; p: p value.

4. Discussion
The aim of the present study was to investigate the average physical demands and

PDs encountered by professional basketball players across game quarters within three
distinct timeframes (30 s, 1 min, and 3 min). This study provides impactful findings for
basketball coaches and performance staff, demonstrating a clear decrease in both average
and peak external load values for PL across game quarters. Significant differences were
observed between the first three quarters and the last quarter, indicating a decline in player
activity as the game progressed.

When contrasting our findings with the existing basketball literature, we found simi-
larities with García et al. (2020), who examined male basketball players competing in the
Spanish Second Division. They observed a decrease in average physical demands from
the first to the fourth quarters, specifically in total distance covered (p < 0.001; ES = −1.31)
and PL (p < 0.001; ES = −1.27) [21]. Regarding peak values, the current research further
investigated external PDs across quarters in basketball, focusing on elite junior male play-
ers [20], semi-professional male players (Fox et al., 2021), and male basketball players
competing in the Spanish Second Division [22]. Their studies also identified significant
decreases throughout the game, with the most notable declines in external peak values
occurring between the first and fourth quarters for total distance [20,22], PL [10,20,22] and
high-speed running [20,22]. However, the differences between quarters in jogging, running,
acceleration, and deceleration for all sample durations (30 s and 45 s and 1, 2, and 5 min)
were non-significant [20]. These results highlight the general trend of declining average and
peak physical demands as the game progresses, indicating that this decrease is independent
of the level of competition.

The hypothesis supporting this phenomenon (decline in average and peak values as
the game progresses) may be attributed to fatigue-related mechanisms associated with
accumulated playing time throughout entire games and prior to intense periods [9]. It
may also depend on situational variables such as the team lineup, which can vary due to
differences in player capacities, team cohesion, and tactical approaches, as well as the stage
of the game (e.g., the game pace may decline during latter periods) [9,39]. Longer sample
durations were more sensitive for detecting differences in PDs between quarters, indicating
their usefulness in planning game-like conditioning. In contrast, shorter sample durations
may reflect situational load demands during live play. This suggests that longer-duration
samples can provide insights into conditioning, while shorter-duration intervals can help
understand the demands of live play. Overall, these findings underscore the importance of
considering both the duration of sampling intervals and the specific quarters of play when
analyzing PL dynamics.

4.1. Practical Applications
Our findings can offer a useful practical application for basketball practitioners in

several ways. First, training programs can be designed to enhance players’ endurance and
recovery capacity to sustain performance throughout the game. For instance, training regi-
mens can incorporate drills with elevated PL towards the end of the session, thereby aiming
to bolster conditioning levels during periods away from competitive fixtures. Conversely,
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an alternative approach could involve introducing tasks with diminished PL towards the
session’s conclusion, more accurately simulating the conditions typically encountered
during match play. This approach focuses players on cognitive or tactical aspects, which
are often crucial late in the game. The goal is for players to work on strategic aspects in
situations of fatigue.

Another application could be strategically rotating players during the game or practice
to distribute playing time more equitably and maintain optimal performance. This approach
would likely involve pre-match or pre-training planning by coaching staff regarding player
participation and rest times. By scheduling strategic rest intervals, coaches can mitigate
fatigue and optimize player performance at critical moments.

Finally, it is advisable to use real-time performance tracking technologies to monitor
players’ physical condition and performance during matches and training sessions. This
enables adjustments to participation times based on their physical condition. Overall, un-
derstanding how physical demands vary throughout the game can help optimize training,
player rotation, and game strategies to maximize team performance across all quarters.

4.2. Limitations
The research conducted presents important strengths, such as the inclusion of elite and

professional players, which highlights the high level of the sample and the large sample
of matches in international-level competition. Nevertheless, some limitations should be
considered when interpreting the current findings. First, variables such as score-line,
playing position, fixture congestion, players’ role, quality of opposition, tactical aspects,
and other factors that could have directly or indirectly influenced the results were not
controlled for. Therefore, to advance our understanding of average and peak fluctuations,
future research should investigate these factors.

Second, another limitation is the focus on a single variable (PL) due to the challenges
associated with installing a local positioning system in elite stadiums, which would allow
for measuring positional variables such as distance. Future research conducted with elite
or professional players should consider this aspect.

Additionally, a significant limitation is the lack of studies on unexamined populations,
such as referees or female players. Research analyzing physical fluctuations has predomi-
nantly focused on elite male basketball players [10,20,22]. Incorporating other populations,
such as referees who also play a crucial role in the game or female athletes whose playing
style and physical demands may differ, could provide a more comprehensive perspective
on average and peak fluctuations in sports performance. Therefore, future research should
include these populations for a more holistic understanding of the topic.

5. Conclusions
The results of this study show a consistent decrease in both the mean and peak values

of external physical demands throughout the quarters of a game in professional basketball
players, with the most notable reductions occurring between the initial three quarters and
the last quarter. These results suggest that professional basketball players tend to experi-
ence fatigue or a reduction in physical demands as the game unfolds, underscoring the
importance of managing the players’ workload and implementing appropriate strategies to
optimize performance throughout the game. Another possible explanation could be that
tactical aspects related to game management (such as rotations, playing styles, and defense
strategies) during the last quarter influence these physical demands.

Author Contributions: Conceptualization, E.A.-P.-C. and H.S.; methodology, E.A.-P.-C. and H.S.;
software, F.U.; formal analysis, H.S.; investigation, J.P.; resources, F.U. and J.P.; data curation, F.U.
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read and agreed to the published version of the manuscript.
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Abstract: Profile determination in field hockey is critical to determining athletes’ physical strengths
and weaknesses, and is key in planning, programming, and monitoring training. This study pursued
two primary objectives: (i) to provide descriptive data on sprinting, deceleration, and change of
direction (COD) abilities and (ii) to elucidate the mechanical variables that influence sprint and
COD performance in elite female field hockey players. Using radar and time-gate technology, we
assessed performance and mechanical data from 30 m sprinting, deceleration, and COD tests for
26 elite female hockey players. A machine learning approach identified mechanical variables related
to sprint and COD performance. Our findings offer a framework for athlete categorization and
the design of performance-enhancing training strategies at the international level. Two pivotal
mechanical variables—relative maximum horizontal force (F0) and maximum velocity (Vmax)—
predominantly influence the times across all tested distances. However, the force–velocity profile
(FVP) and horizontal deceleration do not influence the variance in the COD test outcomes. These
insights can guide the design, adjustment, and monitoring of training programs, assisting coaches in
decision making to optimize performance and mitigate injury risks for female hockey players.

Keywords: physical and physiological analysis; training and game monitoring; motion analysis

1. Introduction
Decision making is essential in any sport [1], particularly in dynamic team sports

such as field hockey, volleyball, soccer, rugby, and basketball. In this process, coaches and
staff play a key role in planning, programming, and monitoring training [2]. In order to
succeed, it is crucial to know the sport’s profile, including biomechanical, physiological,
and technical-tactical factors. Therefore, profile determination is critical to determining
athletes’ physical strengths and weaknesses and fundamental to making decisions about
the training process [3].
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Field hockey is an invasive team sport featuring many offensive and defensive abilities
mixed with intermittent high-intensity running [2,4], which represent significant percent-
ages of the entire game (12 to 26%) [5]. This profile is characterized by movements such as
high-velocity running, jumping, changes of direction, kicks, and hits, demonstrating the
power generated by the athlete [6]. Having high-intensity running capacity and maintain-
ing these actions consistently in a game or season is an essential aspect of team sports [4]
and can mean victory [5]. Similarly, changing direction (COD) is crucial, enabling com-
petitors to evade opponents and gain advantageous positions [7,8]. COD is an implicit
skill in agility, including acceleration, deceleration, and decision-making situations [9].
Accordingly, several aspects of sprinting and COD must be considered in field hockey
athletes’ training process, such as duration, intensity, time spent at different intensities, and
physical and mechanical determinants.

Regarding sprinting, the average duration in elite matches is 1.8 ± 0.4 s (s), and the
longest sprints last 4.1 ± 2.1 s [10]. Additionally, sprints typically cover distances ranging
from 10 to 20 meters (m) [11] and account for 1.4–2.1% (73–112 s) of the total game time [12].
Sprints are also performed at between 18 and 24 km/h, representing 91 ± 4% of the players’
maximum speed [12,13]. The applied horizontal force is one of the most relevant variables
when executing a sprint [14–16]. The force–velocity profile (FVP) method allows the
identification of mechanical variables such as the maximum horizontal force (F0), maximum
velocity (V0), and maximum horizontal power (Pmax) applied during the sprint [17]. This
method is a valuable tool for coaches and physical trainers in the determination of the
physical profile of the athlete. Several studies have studied the profile of different sports,
such as soccer [15,18], athletics [19], ice hockey [20,21], basketball, and tennis [22]. However,
evidence of the force–velocity profile and the mechanical determinants of the sprint in elite
female field hockey is lacking.

The ability to perform quick sprints and efficiently change direction is crucial for
sport performance. On average, male players perform 1148 ± 128.9 change of direction
movements during elite field hockey matches [23]. Furthermore, another study revealed
512 ± 69 acceleration–deceleration actions in elite female players [24]. Strength, power,
speed, and technical ability determine the athlete’s ability to change direction and their
acceleration–deceleration actions [9]. In addition, fast decelerations are crucial for quick
change of direction (COD) movements performed during team sports [25,26]. However,
the associations between mechanical factors, such as FVP and deacceleration, and COD in
elite female field hockey has not been investigated.

The identification of the mechanical variables of sprinting (at different distances)
and COD allows the identification of the athlete’s profile to optimize performance and
determine risk factors for injury [27] and post-injury monitoring [28]. This study has
two objectives: to present sprint, change of direction, and deceleration reference values,
and to determine the influences of mechanical variables of the FVP and deceleration on
sprint acceleration performance (at 5, 15, and 30 m) and the ability to change direction in
elite female field hockey athletes. We hypothesized that sprint mechanical variables and
deceleration significantly explain sprint and COD performance in elite female field hockey
players.

2. Materials and Methods
2.1. Participants

Twenty-eight female players in the Chilean national team participated in this study. Ta-
ble 1 shows participants’ characteristics (field hockey training experience, 18.9 ± 4.7 years;
time representing the Chilean national team, 6.2 ± 4.9 years). Athletes voluntarily agreed
to participate in this study, signing an informed consent form. The assessments were
carried out following the Declaration of Helsinki standards. The tests were conducted in a
competitive period, one week before a series of official world-ranking matches.
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Table 1. Description of the subjects (mean ± standard deviation).

Body Mass (kg) Height (cm) Age (Years Old)

Defenders (8) 64.8 ± 6.8 166.1 ± 2.1 27.0 ± 3.7
Midfields (11) 62.3 ± 5.0 166.2 ±4.5 24.8 ± 4.6
Forwards (7) 61.4 ± 2.7 166.4 ± 4.3 24.7 ± 4.3

Total (26) 63.1 ± 5.3 166.2 ± 4.1 25.38 ± 4.2

2.2. Design
The testing was conducted between 07:30 a.m. and 09:00 a.m. in Chile’s official field

hockey arena. Before starting, the protocol of each evaluation was detailed to the partici-
pants after each athlete performed a general warm-up similar to the one they performed
during their physical preparation sessions. The warm-up lasted 15 min, including low-
moderate intensity cardiovascular exercises, mobility, and short-distance sprints. After
the standardized warm-up, subjects performed two maximal sprints on an indoor track.
They all performed a linear run with a maximum acceleration of 30 m to determine the
force–velocity profile (FVP). This profile represents the force–velocity and power–velocity
relationship that the neuromuscular system of the lower extremities is capable of generat-
ing [29]. Only the best times were considered for data analysis for the two trials.

2.2.1. Speed-Acceleration Evaluation 30 m
We evaluated the maximum acceleration in 30 m on a field hockey field. For this, the

Stalker ATS II model radar (Applied Concepts, Dallas, TX, USA; accuracy + 1.61 km/h,
sampling 46.9 Hz) was located on a tripod 10 m from the starting line and at the height
of 1 m to align with the location of the center of mass (CM) of the subject [30]. Radar
technology relies on using sonic waves to ascertain an object’s distance. Additionally,
velocity can be precisely measured through the Doppler effect (variation in wave frequency
as an object approaches or recedes) [31]. The radar was operated from a computer to avoid
the variability produced by manual operation [32]. Athletes were instructed to initiate with
no backward step, performing two 30 m maximal sprints from a standing staggered-stance
start, with at least 5 min passive recovery between sprints. Sprint performance (split times
0–5, 0–15, and 0–30 m) and mechanical outputs were computed for the best time trial.

2.2.2. Deceleration
Athletes used the same start protocol and radar technology for the horizontal sprint

test and sprinted maximally over 30 m before performing a maximal horizontal deceleration.
As previously described [25], we defined the beginning of the deceleration phase as the time
point immediately following the maximum velocity achieved during the 30 m sprint. The
end of the deceleration phase was established as the lowest velocity following maximum
velocity. We used early deceleration phases for analysis using the time point associated
with 50% maximum velocity.

2.2.3. Agility Test
Athletes performed the change of direction ability (CODA) test to assess agility. The

test consists of performing a forward sprint of 10 m and two lateral runs of 8 m, with the
final line of 10 m as a reference. Finally, the athlete returns to the starting line to complete
the test (10-8-8-8-10 = 36 m) [33]. A Witty time gate (Microgate, Bolzano, Italy) placed
on a tripod at a height of 1 m was used to determine the time. To prevent athletes from
activating gates with their arms, they were positioned 50 cm behind the light gate. Each
athlete performed two attempts, separated by 4 min of rest. The best record was used for
the analysis.
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2.2.4. Horizontal Force Velocity Profile
The speed–time data obtained by radar were loaded into the Excel® spreadsheet

created by Morin and Samozino [34]. The spreadsheet calculates the maximum horizontal
force used during the sprint (F0), maximum velocity (V0), and the maximum horizontal
power output (Pmax). In addition, we obtained the proportion of the total force produced
by the lower limbs on the floor that is applied horizontally (RFmax) and the rate of decrease
in horizontal force as speed increases (DRF). This method uses the fundamental laws of
movement to obtain the force–velocity relationship using the athlete’s speed and body
mass [32]. The use of radar for these purposes was validated using force platforms (absolute
bias 3–7%) [17]. Regarding reliability, the mean typical error is small (CV ≤ 8.4%) for all
kinetic and kinematic variables [35], making it a valuable field tool for determining these
variables. Briefly, the net horizontal anteroposterior GRF (FH) applied to the body center of
mass (CM) can be modeled over time as follows [17]:

FH(t) = m·aH(t) + Faero(t)

where m is the runner’s body mass (in kg) and Faero(t) is the aerodynamic drag that must
be overcome in a sprint, which is proportional to the square of the velocity of air relative to
the runner:

Faero(t) = k·(vH(t)− vw)
2

where vw is the wind velocity (if any) and k is the runner’s aerodynamic friction coefficient.
Regarding vertical direction, during the acceleration phase, the runner’s body CM

goes up from the starting position to the upright running position and does not change
from one complete step to another. Therefore, using the fundamental laws of dynamics in
the vertical direction, the mean net vertical ground reaction forces (FV) applied to the body
CM over each complete step can be modeled over time as being equal to body weight:

FV(t) = m·g

where g is the gravitational acceleration (9.81 m/s2).
The mechanical effectiveness of force application during running could be quantified

over each support phase or step by the ratio (RF in %) of FH to the corresponding total
resultant ground reaction forces (FRes, in N) and the entire acceleration phase by the slope
of the linear decrease in RF when velocity increases (DRF, in %/s/m):

RF =
FH

FRes
·100 =

FH√
FH2 + FV2

·100

Because the starting block phase (push-off and following aerial time) lasts between 0.5
and 0.6 s [28,29], occurring for an average time of ∼0.3 s, RF and DRF can be computed
from FH and FV values modeled for t > 0.3 s.

2.2.5. Statistical Analysis
The descriptive data are presented as mean and standard deviation (mean ± SD).

Minimum and maximum (median, quartile 25 (Q25) and 75 (Q75)) values for each variable
are also reported for better interpretation of the data. The study utilized a machine learning
approach to examine the relationships between our target variable “x” and a set of predictor
variables “y”. Linear regression is a statistical technique that predicts the outcome of a
response variable using several explanatory variables and is used to model the linear
relationship between explanatory variables and response variables. The model assumes
the absence of multicollinearity, which means that the explanatory variables are not highly
correlated. This study aimed to determine which independent variables most significantly
explain the variation in our target variable. Twelve variables were used to build the models
explaining the result of sprint acceleration and agility.
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The study’s target (i.e., dependent) variable was time at a different distance in the
FVP and the CODA test. All other columns in the dataset were treated as independent
variables. In order to avoid multicollinearity, which can bias the interpretation of regression
coefficients, a correlation matrix of the independent variables was calculated. In general,
if the absolute value of the Pearson correlation coefficient is >0.8, collinearity is likely to
exist [36,37]. Thus, variables with a correlation coefficient higher than 0.80 with another
variable were removed.

The analysis employed fivefold cross-validation [38,39] to mitigate overfitting and bias,
especially given the challenges posed by small datasets. Briefly, fivefold cross-validation
divides the dataset into five parts, or “folds”. For each iteration, the model is trained using
four folds and validated on the remaining fold. This process is repeated five times, ensuring
each fold is the validation set once. To guarantee that all features equally influenced the
models, we standardized them to have a mean of 0 and a standard deviation of 1 through
standard scaling. Such a step is crucial as variables with different scales can skew the model
fit, potentially leading to biased coefficient estimations.

The study adopted a comprehensive approach to model fitting [40] using three linear
regression models: Ordinary Least Squares (OLS), Ridge Regression, and Lasso Regression.
The OLS regression attempted to minimize the sum of the squared residuals. This model
provided an initial understanding of the relationship between the predictor and target
variables without penalty imposed on the coefficients. Ridge and Lasso’s regressions
introduced a level of bias into the coefficient estimates to manage multicollinearity and
improve model interpretability. Ridge Regression includes an L2 penalty that shrinks the
coefficients of correlated predictors. Lasso Regression utilizes an L1 penalty that can shrink
some coefficients to zero, thus performing feature selection.

A parameter alpha controls the degree of bias or regularization in Ridge and Lasso
regressions. Higher alpha values increase the penalty term and thus shrink the coefficients
towards zero, effectively simplifying the model. Conversely, an alpha of zero resembles
the OLS regression. Therefore, choosing the correct alpha value is critical to balance the
model’s complexity and predictive power. The study used a range of potential alpha
values to choose the optimal alpha: [0.0001, 0.001, 0.01, 0.1, 1, 10]. The analysis employed
RidgeCV and LassoCV, which use cross-validation to select the best alpha that gives the
best predictive performance on unseen data [41].

Once the models were fitted with the training data, their performance was determined
using the coefficient of determination (R2), describing the proportion of the dependent
variable’s variance explained by the independent variables. The best explanatory model
selection was primarily based on the R2 from the test dataset, which reflects the model’s
performance on unseen data. Following the selection of the best explanatory model, the
model’s performance and stability of the coefficients were evaluated. This involved the
calculation of Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE). These metrics provided a quantitative measure of how our model
can explain the actual values [41].

The predicted versus actual values for the training and test datasets were plotted to
facilitate interpretation. An identity line was also included to represent perfect predictions,
providing a clear visual guide to interpret the model’s performance. To ensure the robust-
ness of our linear regression model, we rigorously examined its underlying assumptions.
The normality of residuals was assessed using the Shapiro–Wilk Test, complemented by a
QQ plot for visual verification of data conformity to a normal distribution. Furthermore,
we verified the homogeneity of variance across levels of the independent variables, employ-
ing a visual check via a scatter plot of predicted values against residuals and a statistical
assessment using the Breusch–Pagan test. Statistical significance was set at p < 0.05. Data
analysis was performed in Python 3.9 programming language using the packages “pandas”,
“numpy”, “matplotlib”, “sklearn”, “statsmodels”, and “scipy.stats”.
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3. Results
3.1. Descriptive Values

The descriptive analysis of variables associated with the sport contributes to updating
the knowledge used to monitor the training process [1]. In addition, the data could be used
to compare athletes’ results with international values or similar categories (benchmarking).

3.1.1. Sprint Variables
To determine split times using radar technology for 0–5 m, 0–15 m, and 0–30 m,

athletes performed two 30 m maximal sprints. Table 2 shows the times at each distance
for the best trial. The times were 1.60 s ± 0.02 s for 0–5 m, 3.21 s ± 0.14 s for 0–15 m, and
5.30 s ± 0.21 s for 0–30 m.

Table 2. Descriptive values of times in 5 m, 15 m, and 30 m, mechanical variables of the horizontal
profile, times in the agility test, and deceleration (median, quartile 25 (Q25) and 75 (Q75)).

Q25 Median Q75

5-m (s) 1.55 1.60 1.65
15-m (s) 3.11 3.21 3.26
30-m (s) 5.18 5.27 5.42
F0 (N/kg) 5.34 5.72 6.05
V0 (m/s) 7.5 7.97 8.34
Pmax (W/kg) 10.61 11.51 12.01
FV profile (N/s/m) −0.79 −0.73 −0.67
RF max (%) 41.28 43.4 44.83
DRF (%/s/m) −7.33 −6.85 −0.62
Deceleration (m/s2) 3.00 3.29 3.69
CODA (s) 9.01 9.23 9.50

F0: maximal theoretical horizontal force; V0: maximal theoretical velocity; Pmax: maximal horizontal power;
FVslope: the slope of the linear F-V relationship; DRF: decrease in the ratio of horizontal-to-resultant force; RFmax:
maximal ratio of horizontal-to-resultant force. CODA: change of direction ability.

3.1.2. Deceleration and Change of Direction
To describe early deceleration using radar technology, athletes sprint maximally over

30 m, followed by a maximal horizontal deceleration (Table 2). Average values for early
deceleration were −3.37 ± 0.87 m/s2. The time employed during the CODA test was
recorded using time gates to assess agility. The mean time was 9.28 ± 0.30 s.

3.1.3. Mechanical Variables
The speed–time data obtained by radar technology were loaded into an Excel® spread-

sheet to determine the mechanical outputs from the best trial of the two 30 m maximal
sprints. Table 2 shows the quartile values of the variables from the FVP at 30 m. The mean
± SD values were 5.72 ± 0.49 N/kg for relative F0, 7.93 ± 0.47 m/s for V0, 11.35 ± 1.21
W/kg for relative Pmax, −0.72 ± 0.07 N/s/m for FV slope, 43.2 ± 2.0% for RFmax, and
−6.75 ± 0.13 %/s/m for DRF.

3.2. Mechanical Variables Determining Sprint and Change of Direction Performance
A machine learning approach with three linear regression models was used to de-

termine the best explanatory model for the time at different distances in the FVP and the
CODA test. The best explanatory model selection was primarily based on the R2 from the
test dataset, reflecting the model’s performance on unseen data.

3.2.1. Five Meter Sprint Performance
In many team sports, sprinting occurs over short distances and initial acceleration (0–

10 m) is critical to performance [42]. The Lasso regression was the best model for explaining
the 5 m time by the mechanical variables relative F0 and Vmax (R2 = 0.72; MAE: 0.025; MSE:
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0.001; RMSE: 0.033; intercept: 2.8204; relative F0 coefficient: −0.1493; Vmax coefficient:
−0.0481; Figure 1).

Figure 1. Regression plot of actual versus predicted for 5 m sprint. The black dotted line represents
the linear regression function.

3.2.2. Fifteen Meter Sprint Performance
The mechanical variables relative F0 and Vmax determine the time taken to cover a

distance of 15 m. The Lasso regression model best explains the 15 m time (R2 = 0.82; MAE:
0.028; MSE: 0.001; RMSE: 0.038; intercept: 5.6568; relative F0 coefficient: −0.2172; Vmax
coefficient: −0.1611; absolute F0 coefficient: 1.5058; Figure 2).

Figure 2. Regression plot of actual versus predicted for 15 m sprint. The black dotted line represents
the linear regression function.

3.2.3. Thirty Meter Sprint Performance
The average sprint distance in field hockey players is less than 20 m [43]. However,

we consider it relevant to incorporate the 30 m test for occasions where the athlete must
cover longer distances and to determine the FVP profile. Similar to the 5 m and 15 m times,
the variables relative F0 and Vmax explained the time taken to cover a distance of 30 m.
The Lasso regression model was the best explanatory model for the dependent variable
(R2 = 0.93; MAE: 0.027; MSE: 0.001; RMSE: 0.035; intercept: 9.6188; relative F0 coefficient:
−0.2514; Vmax coefficient: −0.3827; Figure 3).
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Figure 3. Regression plot of actual versus predicted for 30 m sprint. The black dotted line represents
the linear regression function.

3.2.4. Change of Direction
Change of direction performance, assessed through the CODA test, is not significantly

explained by the FV profile variables and deceleration (R2 = 0.04).

4. Discussion
The main findings of this study are separated into two components: (i) the descriptive

values of a sprint, change of direction, and deacceleration, and (ii) the mechanical variables
that determine sprint acceleration performance over short distances and change of direction
in elite female field hockey players.

4.1. Descriptive Values
According to our first aim, our results show that the time to run 5 m is longer than

that of elite team sport female players (0.99 s vs. 1.60 s) [5]. Regarding 30 m, elite female
field hockey players cover the distance in 5 s [44], 0.30 s less than the mean of the athletes
presented in our study. In addition, a recent study [45] shows values for the times used
to run 5, 15, and 30 m in sports similar to field hockey, including female soccer. The times
in the three distances are lower than those in our sample (5 m: 1.52 vs. 1.60, 15 m: 3.09 vs.
3.21, and 30 m: 5.16 vs. 5.30 s). These descriptive values allow for categorization of athletes
and defining training strategies to improve performance at the international level.

Little evidence exists about the horizontal FVP in female field hockey. A recent
study [46] reported the FV profile values of 31 field hockey players (15 males and 16 females).
The average values obtained were F0 = 6.88 N/kg, V0 = 7.69 m/s2, and Pmax = 13.19 W/kg.
Compared with our results, these values are 20.3% higher for F0, 3.0% lower for V0, and
16.2% higher for Pmax. However, direct comparison is challenging due to including male
and female participants in their study. Another study describes the values of Norwegian
elite athletes from different team sports, such as handball and women’s soccer [47]. F0,
V0, and Pmax variables are significantly higher than our sample’s results (~25.4% higher).
Conversely, another study [45] showed that soccer and basketball players present Pmax
values of 12.6 and 11.4 (W/kg), similar to those measured in our study. These results
highlight the need for further research to establish reference values that allow practitioners
to guide training and monitor key performance variables in field hockey.

To the best of the authors’ knowledge, this study is the first to show CODA test values
in elite field hockey players. Accordingly, there are no specific reference values for female
players. This test was initially designed to assess professional football referees’ change
of direction abilities [48]. FIFA established a reference value of 10 s for referees in the
international category. However, our research observed that the average time is lower
than the above reference value, with an average time of 9.28 s. Thus, our preliminary
results suggest that athletes demonstrate agility performance that exceeds the benchmark
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value established for international-level soccer referees. Soccer referees perform actions
similar to those in field hockey, such as running, sprinting, side-stepping, and running
backward [49]. However, the physical space, top speed, and number and magnitude
of accelerations and decelerations occurring in field hockey differ from those of soccer
referees [12]. Accordingly, further investigations and establishment of specific reference
values for women’s field hockey are necessary to comprehensively evaluate agility in
this sport.

Regarding early deceleration, only a few studies present values in team sports such
as soccer, rugby, and netball [25]. Those values are higher than those in our study
(−3.83 vs. −3.37 m/s2). A similar study in team sports showed values of −3.92 m/s2 [50],
suggesting that the female hockey athletes of our study exhibit lower deceleration rates.
However, these values represent mixed values for men and women. Therefore, the differ-
ences could be due to the gender of the athletes (mainly males), and not to deceleration
performance per se. More information on deceleration in field hockey is needed to deter-
mine reference values that can be used as a benchmark for coaches and trainers. Finally,
training strategies must enhance athletes’ ability to dissipate braking loads, improving the
muscle functions as a shock absorber (energy attenuation) [51]. This approach will lead
to new developments in injury mitigation and physical development strategies in team
sports [52].

4.2. Mechanical Variables
The most relevant mechanical variables determining the times for all the distances

studied are relative F0 and Vmax, which partially agree with the hypotheses of this study.
Our findings align with Hicks et al. [46], who reported that the same mechanical variables
explain 94% of the time taken to cover 30 m. Other studies have also investigated me-
chanical variables impacting sprint performance over various distances, with speed and
applied force emerging as crucial factors [53,54]. The logical relationship between applied
force and sprint velocity is underpinned by horizontal velocity’s dependency on ground
reaction forces (GRFs) applied in minimal time [55]. The horizontal component of GRF
(propulsive impulse) accounts for 57% of the variation in maximum sprint velocity [56].
Our results corroborate the importance of strength training, mainly horizontally applied
force, for enhancing sprint capabilities and the need for shorter contact times. Thus, the
specific application of force emerges as a decisive factor in sprint performance, surpassing
the magnitude of force applied [57]. This challenges field hockey coaches and practitioners,
as players must execute maximum-speed sprints while wielding a stick.

The ability to change direction depends on various mechanical variables such as
ground reaction force, impulse, velocity, and braking forces [7,58,59]. However, our results
showed that mechanical variables derived from FVP and horizontal deceleration do not
significantly explain the variance of performance in the CODA test. Our results do not
agree with our hypothesis and align with similar results that found low relationships
between mechanical variables and female soccer players’ ability to change direction [60].
The FVP profile only identifies horizontally applied force during maximum speed rather
than specific braking forces (i.e., horizontal and vertical forces) relevant during COD.
Furthermore, the ability to decelerate also depends on variables such as muscle strength
(concentric, eccentric, isometric) and technical components [61], which are aspects not
addressed in our study.

A limitation of our study is that the frequency sampling of the Stalker radar is 46.9 Hz;
however, the literature suggests a frequency between 50 to 250 Hz should be used in motion
capture systems [62]. In addition, estimates of variables related to the FVP have been
criticized, especially those related to power output. Treating scalar quantities (e.g., power)
as a vector could be inappropriate in biomechanics, and vector quantities as impulses could
be counted as causative factors in performance [63].

Obtaining the data in a competitive period is a strength of our study, allowing the
construction of a valid performance profile. Nevertheless, we recommend assessing the
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mechanical variables in different general and competitive training periods because training
status, training characteristics, responsiveness to training, and nutrition, among other
factors, could modify these variables [64]. Finally, control variables such as hormonal
profile and anthropometrics could be related to mechanical changes in the training load.

5. Conclusions
Our findings highlight the crucial role of understanding female hockey players’ me-

chanical characteristics of sprinting and COD abilities. By identifying these parameters,
researchers and practitioners gain a powerful tool for planning, monitoring, or adjusting
training programs. More than just a set of performance metrics, this information provides
a comprehensive athlete profile. Such a profile paves the way for individualized training
regimes tailored to enhance specific mechanical variables, distances, and skills that need
improvement. By refining these individualized training loads, practitioners can support
decision making in dynamic team sports. This optimizes performance and plays a crucial
role in injury prevention. Consequently, this study is key in setting a benchmark for fe-
male hockey training practices, emphasizing a data-driven approach to enhance athletic
performance and safety.
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Abstract: The Nordic hamstring exercise (NHE) is a very popular exercise used to improve eccentric
strength and prevent injuries. The aim of this investigation was to assess the reliability of a portable
dynamometer that measures maximal strength (MS) and rate of force development (RFD) during
the NHE. Seventeen physically active participants (34.8 ± 4.1 years; n = 2 women and n = 15 men)
participated. Measurements occurred on two different days separated by 48–72 h. Test–retest relia-
bility was calculated for bilateral MS and RFD. No significant test–retest differences were observed
in NHE (test–retest [95% CI, confidence interval]) for MS [−19.2 N (−67.8; 29.4); p = 0.42] and RFD
[−70.4 N·s−1 (−178.4; 37.8); p = 0.19]. MS showed high reliability (intraclass correlation coefficient
[ICC] [95% CI], =0.93 [0.80–0.97] and large within-subject correlation between test and retest [r = 0.88
(0.68; 0.95)]. RFD displayed good reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject
correlation between test and retest [r = 0.63 (0.22; 0.85)]. Bilateral MS and RFD displayed a coefficient
of variation of 3.4% and 4.6%, respectively, between tests. The standard error of measurement and
the minimal detectable change for MS was 44.6 arbitrary units (a.u.) and 123.6 a.u., and 104.6 a.u.
and 290.0 a.u. for peak RFD. This study shows that MS and RFD can be measured for NHE using a
portable dynamometer. However, not all exercises are suitable to apply to determine RFD, so caution
must be taken when analyzing RFD during NHE.

Keywords: muscle strength; rehabilitation; groin; repeatability; reproducibility

1. Introduction
Research into hamstring injuries has dramatically increased in the last two decades,

because hamstring injuries are one of the most common injuries in high-speed running
sports [1,2]. Specifically, one recent study conducted by Ekstrand et al. [1] reported that all
hamstring injuries diagnosed in soccer in the 21-year study period have increased from
12% to 24%. Furthermore, the proportion of injury absence days caused by hamstring
injuries increased from 10% to 20% [1]. Hamstring injuries are more likely to occur during
running and sprinting, because the hamstring muscles experience the greatest amount of
eccentric force during the late swing phase in the gait cycle [3], as the hip and knee muscles
during late swing phase demonstrated the most dramatic increase in biomechanical load
(i.e., torques, net powers, and work done) when running speed progressed [4–6]. Further-
more, hamstring injury depends on many factors [7]. Specifically, hamstring eccentric and
concentric strength, lumbopelvic and knee stability, lower-limb stiffness, and insufficient
sprint exposure may increase the likelihood of a hamstring injury occurring [7]. Given
that, eccentric knee flexor muscle strength is one of the fundamental metrics to prevent in-
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juries [8–10] and consequently increase an athlete’s specific performance (e.g., acceleration
and high-speed running) [8,11,12].

The Nordic hamstring exercise (NHE) is one of the most common eccentric exercises
used in sports and is currently used as a major injury prevention strategy [12]. The exercise
instruction is the following: the athlete is asked to perform eccentric knee flexor maximal
strength (MS) in a high kneeling position with the ankles fixed either by a partner or by
a stationary object. From this position, the athlete inclines the torso, maintaining neutral
hip alignment, for as far as possible and then uses the arms to contact the ground in
front when the hamstrings can no longer control the downward movement. The NHE
intervention seems to increase the fascicle strength by increasing the number of sarcomeres
in series within the muscle fibers, and there are potential changes in the distribution through
electromyography of the three biarticular of the hamstring muscles (i.e., biceps femoris
long head, semitendinosus, and the semimembranosus) [13–15].

Regarding previous research, Lodge et al. [16] found high test–retest reliability, ICC
0.91 (CI, 0.76–0.96) and 0.91 (CI, 0.78–0.96) for left and right eccentric knee flexor muscle
strength peak forces, respectively, using an eccentric hamstring strength measurement
device similar to the portable dynamometer used in the current study compared to an
isokinetic dynamometer. Furthermore, similar results were found in inter-rater reliability
and correlations between isometric and eccentric knee extension and flexion strength using
a hand-held dynamometry and isokinetic test for knee flexion extension. Consequently, it
is vital to highlight that eccentric knee flexor muscle strength devices have already been
validated, and the aim of this study was to evaluate the test–retest reliability of a portable
dynamometer. To the authors’ knowledge, this is the first study that has measured reliability
(i.e., test–retest) of the rate of force development (RFD) during knee flexor strength testing.

To date, the gold standard measure for the evaluation of eccentric knee flexor strength
is isokinetic dynamometry [17]. However, isokinetic dynamometers are characterized by a
lack of portability, high cost and time consumption, and their daily use might be practically
difficult. Considering that a great number of devices that use load cell dynamometers
have become popular field-based methods to monitor individual eccentric knee flexor
strength during a NHE [9,17–19], therefore, the aim of this study was to evaluate the test–
retest reliability of eccentric knee flexor MS and peak RFD during NHE using a portable
dynamometer. The leading hypothesis of the current study was that the current portable
dynamometer provides reliable data of eccentric knee flexor MS and RFD, and the study
was designed to answer the main research question declared above.

2. Materials and Methods
2.1. Participants

Seventeen healthy and physically active adult subjects (n = 15 men and n = 2 women)
who engaged in more than 3 h of physical exercise per week, who were injury free in the
lower limbs, and had no pain or illness in the past 3 weeks before starting the study volun-
teered to take part in this study. Table 1 reports the characteristics of the participants. The
experimental design and potential risks of the study were explained to the participants and
written informed consent was provided. The study was approved by the Ethics Committee
of the Portugal Football School, Portuguese Football Federation (CEPFS 12.2021).

Table 1. Participants’ characteristics (n = 17).

Total (n = 17)

Age (years) 34.8 ± 4.1
Body mass (kg) 78.5 ± 16.2

Height (m) 1.8 ± 0.1
BMI (kg/m2) 24.1 ± 3.6

Values are expressed in mean ± standard deviation. BMI, body max index.

116



Sensors 2023, 23, 5452

2.2. Procedures
The same researcher recorded the test–retest NHE performance data at three distinct

sessions on different days. Firstly, the participants performed a familiarization session that
included the same warm-up, order, and exercises as the evaluation sessions. Approximately
7 days later, the participants performed the first test session, and the retest session was
conducted within 48–72 h from the end of the first test session. All sessions were conducted
at the same time of the day (i.e., during morning or afternoon). Participants were asked to
not perform any vigorous lower-limb exercises in the 24 h before each testing session [20].

In the first session, the participants performed a warm-up that consisted of 7 min on
a bicycle ergometer at a pedaling cadence of 75–80 rpm, 2 sets of 12 reps of half-squats,
standing toe raises, and hip bridge [21]. According to recent literature [21], participants
were positioned in a kneeling position over the padded board, ankles held under lockable
braces (fixed atop the uniaxial load cells), with the lateral malleolus aligned with the edge
of the board and arms across the chest, using the portable dynamometer (Figure 1).

Figure 1. Testing set-up. (A) starting positioning; (B) participant leaned forward slowly and as
controlled as possible (eccentric phase only); (C) portable dynamometer used in this study.

The dynamometer Smart Nordic Trainer (Neuroexcellence®; S-2A INOX, Porto, Portu-
gal) has two load cells (one on each hook to measure the force applied by each leg). Each
cell has a maximum capacity of 4903 N (~500 kg). When starting the movement, the reading
of the cell is correct, but in the middle of the exercise, the hook has a rotational movement
of about 5 to 8 degrees, which is intentional, which is the adaptation of the hook to the
athlete’s exercise, which can vary the angle from athlete to athlete. The manufacturers
considered this read error to be negligible. A load of 100 kg with a hook rotated by 8 degrees
corresponds to an error of ±1 kg. The cell reading is 100 g. Model SENSOCAR® S-2A INOX
has a repeatability error <0.02% F.E, sensitivity 2.0 mV/V ± 0.1%, zero offset < 1% F.E,
combined maximum error < 0.02% F.E., Fluence 30 min (creep) < 0.02%. The metrics were
calculated according to the manufacturer as follows:

N: number of recorded samples; F: Force list; t: Timestamp list
Maximal Force: MaxValue = max(F)

Maximal Force : MaxValue = max(F)
Peak RFD = max({f(x) : x ∈ [N..1]})

f(x) = Fx−Fx−n
tx−tx−n

where n is the closest index and tx − tx−n is equal to the Time Interval RFD. Note: the
default value of the Time Interval RFD is 0.05 s.

During the familiarization, and during test and retest sessions, the participants per-
formed 3 maximal trials of eccentric NHE repetitions, where participants leaned forward in
a slow, controlled manner for as long as possible, during the eccentric phase. The move-
ment onset was determined by counting down from three to one (information given by
the software), and then the participant started performing the NHE. Then, the participants
passively returned to the starting position, in order to repeat the following repetitions. Ac-
cording to recent literature [21], the maximal NHE trials were separated by a standardized
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1-min rest period to allow for recovery and to avoid fatigue. If participants increased their
performance in all three trials, one or two additional NHE repetitions were performed [21].
Authorized feedback from the investigator was used to motivate the subjects. Trials were
only regarded as successful if the participants held trunk and hips in a neutral position
during the NHE repetitions. Participants controlled the movement until they lost control
and stopped dealing with it. No additional loading was used. According to the ANHEQ
criteria [22], the total score for NHE quality was 8 points, which is considered “good”.
Specifically, ANHEQ criteria are the following: (1) Rigid fixation: 2 points; (2) Knee position:
1 point; (3) Kneeling height: 1 point; (4) Separate familiarization: 1 point; (5) Diagnostic
tools: 1 point; (6) Feedback of target movement speed: 0 points—we only provided feed-
back to the participant to perform as slowly as possible; (7) Consequences of impaired
technique: 1 point; (8) Presentation of NHE performance variables: 1 point. Bilateral MS
and RFD were considered for analysis. All data were recorded with corporative data acqui-
sition software (NexSo v1.0.0., Porto, Portugal). Data were collected through the Bluetooth
BLE communication protocol at 180 Hz. The tests were performed in a gym facility.

2.3. Statistical Analyses
Sample distribution was tested using the Shapiro–Wilk test for MS and peak RFD

variables. Variables are presented as mean with the 95% confidence interval (CI).
Linear mixed model analysis was performed to examine differences in the MS and

peak RFD during test–retest.
To estimate the test–retest reliability of the NHE, intraclass correlation coefficients

(ICC) [23] and the two-way random effects model of the measurements with 95% CI was
used. The ICC were classified in the following manner: >0.90, high reliability; 0.80–0.89,
good reliability; between 0.70 and 0.79, fair reliability; and values <0.69, poor reliabil-
ity [24]. Further, within-subject variation was determined using typical error expressed as
a coefficient of variation (CV) [25].

The standard error of measurement [25] and the minimal detectable change (MDC)
were calculated to analyze the variability of the participants’ performances. For this
analysis, the following formulas were used to calculate the SEM and MDC [25].

SEM = SD ×
√

(1 − ICC)

MDC = SEM ×
√

2 × 1.96

We tested the within-subject correlations (r, 95% CI) [26] between test and retest for
MS and peak RFD variables. We qualitatively interpreted the magnitudes of correlation
using the following criteria: trivial (r ≤ 0.1), small (r = 0.1–0.3), moderate (r = 0.3–0.5), large
(r = 0.5–0.7), very large (r = 0.7–0.9), and almost perfect (r ≥ 0.9) [27].

Most of the statistical analyses were conducted using SPSS software (version 27.0.1,
SPSS Inc., Chicago, IL, USA), except for within-subject correlation for which a rmcorr
package in R statistical software (version 3.4.1, R Foundation for Statistical Computing,
Vienna, Austria) was used.

3. Results
Values of bilateral absolute MS and RFD variables during the NHE in healthy and

physical activity adults are presented in Figure 2.
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Figure 2. Descriptive test–retest individual data for MS and peak RFD during NHE in healthy and
physically active adults (n = 17).

During the familiarization session, MS was 669.4 N (581.1; 734.3) and peak RFD was
543.8 N·s−1 (428.7; 654.9). No significant test–retest differences were observed in NHE
performance for MS and RFD variables (Table 2).

Table 2. Descriptive and test–retest differences data for bilateral MS, relative MS, and peak RFD,
during NHE in healthy and physically active adults (n = 17).

Test Retest ∆ (Test–Retest) p

Bilateral MS (N) 669.8 (583.8; 755.9) 689 (588.3; 789.7) −19.2 (−67.8; 29.4) p = 0.42
Relative MS (N/Kg) 8.6 (7.7; 8.9) 8.7 (7.8; 9.6) −0.1 (−0.8; 0.5) p = 0.63

Peak RFD (N·s−1) 554.9 (446.6; 663.1) 625.3 (488.6; 761.9) −70.4 (−178.4; 37.8) p = 0.19
Values are expressed in mean (95% CI).

MS showed high reliability (ICC = 0.93 [0.80–0.97]) and large within-subject correlation
between test and retest [r = 0.88 (0.68; 0.95)] (Figure 3). Peak RFD demonstrated good
reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject correlation between test
and retest [r = 0.63 (0.22; 0.85)]. The MS and peak RFD presented CV values of 3.4% and
4.6%, respectively, between test and retest. The standard error of measurement and the
MDC for MS was 44.6 arbitrary units (a.u.) and 123.6 a.u., and for peak RFD was 104.6 a.u.
and 290.0 a.u.

Figure 3. Test–retest reliability and a within-subject correlation was calculated for MS and peak RFD
during NHE in healthy and physically active adults (n = 17). ICC, intraclass correlation coefficient
[95%CI]; CV, coefficient of variation; SEM, standard error of measurement; MDC, minimal detectable
change; N, Newton.

Figures 4 and 5 presents the force and time profile of the test–retest of a representative
participant and the RFD in one repetition. Figure 6 depicts the force time profile of the
first session of four randomly chosen participants in order to represent their different
completions of the exercise.
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Figure 4. Test–retest individual data between strength (N) and time (ms) of a representative subject.
Red circles symbolize the moment where the RFD was higher during NHE.

Figure 5. Test–retest individual data between RFD (N/s) and time (ms) of a representative subject.

Figure 6. Example for different individual subjects (S1, S2, S3, S4, and S5) performing a NHE.

4. Discussion
The aim of this study was to evaluate the test–retest reliability of the bilateral ec-

centric knee muscle flexor MS and RFD during NHE. The main findings were the fol-
lowing: (1) no significant test–retest differences were observed in NHE for MS and RFD;
(2) MS showed high reliability and large within-subject correlation between test and retest;
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(3) RFD displayed good reliability and moderate within-subject correlation between test and
retest; and (4) MS and RFD presented CV values of 3.4% and 4.6%, respectively, between
test and retest. This study shows that MS and RFD can be measured for NHE using a
portable dynamometer.

Regarding peak absolute strength, NHE showed high reliability (ICC = 0.93 and
CV = 3.4%) and a large within-subject correlation between test and retest (r = 0.88) (Figure 3).
The current results for test–retest reliability of the HSE device is in line with previous
studies [9,17,19,28,29]. For example, Lodge et al. [17] found high test–retest reliability, ICC
0.91 (CI, 0.76–0.96), and 0.91 (CI, 0.78–0.96) for left and right eccentric knee flexor muscle
strength peak forces, respectively, using an eccentric hamstring strength measurement
device similar to the portable dynamometer used in the current study compared to an
isokinetic dynamometer. Moreover, similar results showed an inter-rater reliability and
correlations between the isometric and eccentric knee extension and flexion strengths
using hand-held dynamometry and an isokinetic test for knee flexion extension of athletic
participants. Therefore, it is vital to highlight that eccentric knee flexor muscle strength
devices are already validated and the aim of this study was to evaluate the reliability of
test–retest of a portable dynamometer. In a practical application, the current portable device
can be used to evaluate and train eccentric flexor muscle strength on a daily basis.

Considering RFD showed good reliability (ICC = 0.76; 4.6%) and moderate within-
subject correlation between test and retest (r = 0.63) (Figure 3). To the authors’ knowledge,
this is the first study measuring the RFD reliability (i.e., test–retest) during a knee flexor
strength test. Compared with the assessment of RFD for the hip muscles (i.e., hip adductor,
flexor, and external rotator), RFD for the hamstrings can be measured with confidence
(i.e., ICC > 0.70 and standard error < 10%) [30]. Considering the moderate within-subject
correlation between test and retest, it is important to highlight that RFD assessments might
be challenging and need more time for familiarization with the test [31]; also, it is important
to highlight that the NHE is not performed in a maximal isometric contraction, as it is
in traditional RFD evaluations. Therefore, due to the controlled and slow movement in
the NHE, the highest RFD may not occur at the beginning of the exercise. Therefore,
RFD is acceptable to evaluate by the hamstring strength portable device, but it should be
conducted with caution and familiarization. In an applied setting, the RFD value can be
recorded from the portable dynamometer.

This study is limited by the NHE itself, as factors such as lack of control on the velocity
of the movement, the intervention from other muscle groups, such as the lumbo-pelvic
zone, and the determination of the “optimal” angle peak torque of the knee flexor muscle
group, which would be useful when targeting strength improvements at a specific joint
angle (that could be measured by the gold standard measurement such as an isokinetic
dynamometer). Furthermore, regarding Assessing the NHE quality [21] scale knee position
is a key component of NHE execution as, on a rigid surface, the pressure on the knees
may cause an uncomfortable feeling and pain. Additionally, the RFD metric, even with
good reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject correlation between
test and retest [r = 0.63 (0.22; 0.85)], should be used cautiously as it is a controlled and
slow movement. The current study was designed to examine the test–retest reliability,
considering essential to use on a daily basis, avoiding misrepresentation of changes in
strength and minimizing the error of measurement. Further research about the validation
of the current portable dynamometer when compared to gold standard measurements,
such as isokinetic dynamometers or other similar portable devices that have already been
validated, is warranted. Lastly, more investigation is warranted regarding NHE variations
with rapid muscle activation, i.e., reactively bouncing and decelerating exercises which
elicit much higher peak moments than the standard NHE [6].

5. Conclusions
In conclusion, the current device presented no significant test–retest differences during

the NHE for MS and RFD. Furthermore, MS and RFD variables showed good–high reliability
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and moderate–large within-subject correlation between test and retest, respectively. Lastly,
MS and RFD showed CV values of 3.4% and 4.6%, respectively, between test and retest.
This study shows that MS can be measured during the NHE using a portable dynamometer,
but this should be performed with caution and with previous familiarization due to the
slow and controlled movement of the NHE that may not favor the attainment of the highest
RFD at the beginning of exercise.
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Abstract: Football is a very demanding sport which requires players to exert maximum effort,
producing fatigue and eventually injuries. Thermography can be used to detect fatigue and prevent
its consequences through thermal asymmetries in the bilateral body areas; however, its adequacy for
elite footballers has not been widely studied. Therefore, the objective of the present investigation
was to determine the suitability of thermography to detect fatigue in male football players. For
this reason, twenty participants were gathered into a pair of subgroups (low [<0.2 ◦C] vs. high
thermal asymmetry [≥0.2 ◦C]) based on a thermography session of the lower limbs (thighs, calves,
and hamstrings). After the thermography session, players performed CMJs before and after an
RSA test (6 × 30 m/20′′). A mixed two-way analysis of variance and Bonferroni post hoc pairwise
comparisons were undertaken to analyse the results. No significant differences (p > 0.05) were found
in any of the RSA test variables between low and high thermal asymmetry groups for thighs and
calves. On the other hand, the low thermal asymmetry hamstring group reported a smaller percentage
difference in sprints for the first sprint (%Diff) and a larger percentage difference in sprints two
and three with respect to the best sprint (%Best). For CMJs, the low thermal asymmetry hamstring
group reported significantly higher values post-RSA test, indicating better performance. Accordingly,
thermography can provide information about performance in CMJ and RSA tests through hamstring
asymmetries over 0.2 ◦C. Meanwhile, larger asymmetries than 0.2 ◦C in calves and thighs do not
seem to be related to performance in these tests; therefore, coaches should consider if it is optimal to
align players with high hamstring asymmetries.

Keywords: asymmetries; fatigue; temperature

1. Introduction
Injuries and performance are important factors in football, which is a sport charac-

terized by continuous changes in activity, alternating high-intensity actions with short
resting periods [1]. In addition, the game demands tackles, shots, jumps, accelerations,
decelerations, changes of direction and dribbles, making the sport highly physiologically
demanding [2]. This is why muscle injuries of the lower extremities occur frequently in elite
and amateur football players during matches [3]; however, only 5% of these injuries occur
as a consequence of faults and contacts, which means that it may be possible to prevent
these injuries to some extent [4]. A congested calendar of matches and training can induce
fatigue, understood as several alterations in the central nervous system that produce an
inability to maintain the required level of strength or an inability to complete a physical
task that was previously achievable [5]. In terms of football, fatigue can appear because
some players can be unable to assimilate matches and training loads, increasing the risk
of injury and underperformance [6]. In this sense, coaches and researchers agree about
the importance of managing fatigue to achieve optimal muscular adaptations, increase
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progress, prevent overtraining, decrease injury risk and improve performance [7]. However,
very few studies have actively investigated how to measure fatigue and adjust training
accordingly.

Fatigue can be measured through internal and external loads [5]. In football, there are
several internal load methods that are very popular to measure fatigue and response to
exercise; however, most of them present some disadvantages, so they should be combined
with other methods. Heart rate measurements are the most common, but they are imprecise
in high-intensity actions and sprints, which are crucial aspects of football [8]. Blood and
bone markers are more precise, but they are difficult to extract on a weekly basis (price
and time), and some players can feel uncomfortable being exposed continuously to them.
Therefore, extracting them whenever the physical status of the player needs to be known
can be unsustainable during regular-season training [9]. Questionnaires are very simple to
administer but particularly subjective, introducing a high risk of bias [10].

Conversely, there are some physical tests that can help to check the current physical
condition of the athletes through external loads. It has been evidenced that velocity loss
is a reliable marker of neuromuscular fatigue, which is described as a decrease in the
physical and mental functions [11]. This is why most of the scientific literature has used
the repeated sprint ability (RSA) test to measure fatigue, especially in team sports such as
football; this is because RSA and the ability to exercise at high intensity are key capacities
for optimal performance, and a decreased sprint repetition capacity is a good indicator
of fatigue in sports [12]. However, this method can lack precision in some situations, as
the scientific literature has found that sprint performance can be maintained in situations
of neuromuscular fatigue after match play [13]. This is why some coaches incorporate a
stretching–shortening movement, such as a countermovement jump (CMJ) to detect fatigue,
as it can highlight impairments in jump performance between two events [14]; a good
relationship between sprint ability and CMJ capacity has been verified [14].

Therefore, scientific evidence has shown CMJ performance to be an objective marker
of fatigue and supercompensation, as neuromuscular fatigue has been associated with a
decrease in the average CMJ height [15], causing this method to be used frequently to assess
neuromuscular fatigue [16]. However, when using RSA to assess neuromuscular fatigue,
the number of sprints induces great variability between athletes [17]. In addition, when
using CMJs, it is important to consider that the same fatiguing stimuli can elicit different
effects between individuals, and sometimes athletes can adjust their jumping strategy
to maintain their performance [18]. Moreover, players’ need to exert maximal effort to
measure fatigue is not optimal, as this effort increases injury risk. Hence, the use of other
technologies which can provide information and help coaches without the need to perform
a physical test, can be considered. In this sense, one option is infrared thermography (IRT),
which is a non-radiating, contact-free, safe and non-invasive technology that monitors
physiological variables through the control of the skin temperature [19].

This technology gauges the correlation between muscle activation and skin tempera-
ture, as muscle and skin temperature are directly correlated. The information this technol-
ogy provided is based on the hyperthermic and hypothermic responses of the skin [20], due
to the fact that thermography is a reliable method to assess skin temperature [21]. Moreover,
athletes are presumed to keep their thermal pattern constant in baseline conditions, and
thermal asymmetries in the bilateral body areas (e.g., ankle, knee, hamstring or elbow) are
linked to factors related to injuries, such as inflammation or secondary trauma, as in normal
conditions, the temperature of both sides of the bilateral areas should increase equally [22].
IRT can detect these asymmetries by comparing bilateral body areas, showing potential in-
jury risk due to incorrect work assimilations provoked by factors such as excessive training,
poor technique or muscle overload [23].

The relevance of IRT is that it can detect temperature asymmetries (and consequent
risks) before other markers such as pain, making this method extraordinarily effective and
applicable in preventing injuries [23]. If IRT provides coaches with the ability to detect
impairments in bilateral body areas before pain, it can allow them to modify the training
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load proactively, decreasing injury risk and increasing performance [15]. This advantage
is especially remarkable in sports like football, in which high-intensity interval training
combined with weekly competition can lead the locomotor system to its anatomical and
physiological limit [19], exponentially increasing the risk of minor injuries, overuse injuries,
lower-limb injuries and muscle strains [19]. In recent years, authors have explained the
efficiency of this technology for injury prevention in medicine [24]; however, IRT has not
been widely investigated in athletes such as football players, as only a couple of studies
have explored the use of IRT for preventing football injuries [25,26]. Nevertheless, none of
the studies performed with thermography have aimed to compare thermography results
with the information that external loads provide about players’ physical condition in
order to adapt their training loads in accordance with the results; therefore, this concept
demands research.

In this sense, the aim of the study was to determine if there is a relationship between
thermal asymmetries provided by thermography and performance in a repeated sprint
ability (RSA) test and in countermovement jumps (CMJs) before and after the RSA test. If
thermography can predict these tests´ performance without the need to execute them, it
can offer coaches the possibility of adapting players’ training loads without the need for
them to exert maximal efforts.

2. Materials and Methods
2.1. Experimental Approach to the Problem

This study used repeated measures within participants to determine the relationship
between skin temperature and/or thermal asymmetries in the bilateral body areas, CMJ
performance and RSA performance. The protocol consisted of a thermography session of
the lower limbs (anterior and posterior parts) of each player in basal conditions after 48 h
resting, followed by a standardized warm-up that included 5 min of continuous running,
5 min of joint mobility and two sprints of 30 m with a recovery process of 2 min, and a
vertical jump test (CMJ) + repeated sprint ability (RSA) test (6 × 30 m/20′′) + vertical jump
test (CMJ) (See Figure 1 for more clarity).

Figure 1. Flowchart of the protocol.

2.2. Participants
The participants were 20 male football players from a professional team of the Smart-

bank league (the second Spanish football division) (age 28.9 ± 3.9 years; height 178.7 ± 9 cm;
body mass 74.8 ± 6.4 kg). Players with recent injuries or pain were excluded, as they could
interfere with the results. Each player signed informed consent with an explanation of the
study procedure as well as the associated risks.

2.3. Ethical Statement
The study was conducted according to the requirements of the Declaration of Helsinki

(2013) and was approved and followed the guidelines stated by the Ethics Committee of the
European University of Madrid (CIPI35/2019). The research also received formal approval
from the professional football club involved.
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2.4. Measures
2.4.1. Thermography

The collection of thermographic data followed the standards proposed by the consen-
sus statement of TISEM on the measurement of human skin temperature [27]. Thermograms
were evaluated before the protocol and used as a control variable prior to testing. Ther-
mograms were performed in an air-conditioned room; the temperature was set at 22 ◦C
( ±1.5 ◦C) with about 40–60% of relative humidity, and the skin temperature of the lower
limbs at the anterior and posterior parts was recorded. The thermal camera FLIR T420bx
(FLIR Systems, Sweden) with a resolution of 320 × 240 pixels was placed 3 m away from
the participants and at a perpendicular angle to them. The players were instructed to
rest 24 h prior to the thermograms and to avoid behaviours that could interfere with the
assessment of thermal images, such as drinking alcohol, smoking or consuming caffeine.
During testing, the participants were dressed in underwear and were barefoot, so selected
areas of skin were continuously exposed during the exercises and measurements. Follow-
ing the Thermohuman technology protocol, to facilitate the analysis, the body regions of
interest (ROIs) analysed included the thighs, calves and hamstrings, as these are the main
muscles of the lower limbs [23]. Computerized image analysis allowed the selection of
the measurement area in the thermograms (see Figure 2). The areas were analyzed with
the Thermohuman software (PEMA THERMO GROUP, Spain). From the analyzed ROIs,
average, minimum, maximal temperature was extracted to calculate thermal asymmetries
between bilateral ROIs.

 

Figure 2. Measurement areas provided by the Thermohuman software (anterior and posterior parts).

The players were gathered into pairs in subgroups (low [<0.2 ◦C] vs. high thermal
asymmetry [≥0.2 ◦C]) based on the results of the thermography session. Previous literature
has considered clinically significant skin temperature asymmetry to be over 0.5 ◦C, but it
was decided to establish the cut-off point at 0.2 ◦C, because the sample is from a professional
club and the members were highly supervised. The physical department of the club made
the political decision to start following, taking care of and monitoring players when they
have ≥0.2 ◦C asymmetry. Thus, not many players reached 0.5 ◦C asymmetry. Therefore, the
sample was divided into low and high thermal asymmetry of thighs, hamstrings and calves.
The players were grouped in terms of their asymmetry for each muscle group; accordingly,
one player could be in the high-asymmetry group for one of the studied muscles and the
low-asymmetry group for another muscle.

2.4.2. Vertical Jumps
Players completed 2 CMJ tests: (1) after warming up and (2) after the RSA test, with

some minutes to recover from it. To measure the height of the jumps, infrared technology
was used (Optojump Next, Microgate, Bolzano, Italy). The participants were already
familiar with the movement, and they were instructed to undertake it in the most precise
way, keeping their hands on their hips to eliminate the influence of arm movement on the
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jump performance. Each player performed three jumps before and after the RSA test (with
2 min of recovery between jumps). The average of the three jumps was calculated for the
statistical analysis.

2.4.3. Repeated Sprint Ability (RSA)
The RSA test included six sprints of 30 m with 20 s recovery between sprints. Two

pairs of photocells (Witty, Microgate, Bolzano, Italy), placed at 0 and 30 m, were used. The
following measures were calculated: sprint time (RSAt), best sprint time, average time,
total time, percentage difference between the first and the rest of the sprints during the RSA
test − %Diff − [((sprint time − first sprint time)/first sprint time) × 100] and percentage
difference between the best and the rest of the sprints during the RSA test − %Best −
[((sprint time − best time)/best time) × 100]. The previous two sprints performed during
the warm-up were used as a control measure to ensure that players performed the RSA test
at maximum speed. If the time of the first RSA test sprint was longer (>5%) than the best
individual sprint performed before the start of the test, the RSA test was not considered
valid, and the player had to repeat the test after 5 min of recovery.

2.5. Statistical Analysis
The data are presented as means ± standard deviations. The normal distribution of

the variables was confirmed by histogram charts and the Shapiro–Wilk distribution test.
A mixed two-way analysis of variance was performed to analyse the effect of the level of
thermal asymmetry on the RSA variables depending on the sprint number. The thermal
asymmetry group was used as an independent factor, and the sprint number as a repeated
measured factor to control the interaction of the thermal asymmetry group with the sprint
progression. Bonferroni post hoc pairwise comparisons were undertaken to compare the
RSA variables of the two groups of thermal asymmetries in each of the sprints, including
the confidence interval (95%). The effect size (ES) was calculated for all the inference
tests using the partial eta squared (ηp2 = ES) value with the following interpretation:
small (ES = 0.01–0.059); medium (ES = 0.06–0.14); and large effects (ES > 0.14). The level of
significance was set at p < 0.05 for all the tests, and all the data were statistically analysed
using SPSS V24.0. (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version
24.0. Armonk, NY: IBM Corp.)

3. Results
The normal distribution of the variables was confirmed by histogram charts and the

Shapiro–Wilk distribution test (the statistic varies between 0.926 and 0.984, p > 0.005 in
all cases). Figure 3 shows the results for the RSA variables: the sprint time (RSAt), the
percentage difference between the first and the rest of the sprints during the RSA test −
%Diff − [((sprint time − first sprint time)/first sprint time) × 100] and the percentage
difference between the best and the rest of the sprints during the RSA test − %Best −
[((sprint time − best time)/best time) × 100]. The results are calculated based on thermal
asymmetry clusters (a group with low asymmetry and a group with high asymmetry in
each of the three muscle groups). Thigh and calf asymmetry did not show a significant
effect on any variable (p > 0.05). Moreover, no significant interaction was found between
thigh and calf asymmetry and the number of sprints (p > 0.05). Conversely, hamstring
asymmetry did not show a significant effect in the RSA test and %Diff (p > 0.05), but it did
in %Best (F = 6.59; p = 0.018; ES = 0.25), highlighting fewer differences in high asymmetry
with respect to the best sprint. Furthermore, a significant interaction was found between
hamstring asymmetry and sprint number 2 in the RSAt (F = 2.42; p = 0.041; ES = 0.11)
and in %Diff (F = 2.50; p = 0.049; ES = 0.11) but not in %Best (p > 0.05). Regarding the
pair-wise comparison, the hamstring high-asymmetry group showed a higher %Diff in
sprint 2 (F = 7.40; p = 0.013; IC: −4.20 to −0.55; ES = 0.27), and there was also a higher
%Best in the hamstring low-asymmetry group in sprints 2 (F = 5.76; p = 0.026; IC: 0.11
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to 1.55; ES = 0.22), 3 (F = 15.59; p = 0.001; IC: −1.55 to −0.11; ES = 0.44) and 4 (F = 9.36;
p = 0.006; IC: 0.67 to 2.22; ES = 0.32).
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Figure 3. Time differences based on low (LA) and high (HA) thermal asymmetry groups. * Significant
differences between groups (p < 0.05). (RSAt = sprint time). (%Diff = [((sprint time − first sprint
time)/first sprint time) × 100]). (%Best = [((sprint time − best time)/best time) × 100].

Table 1 shows the differences in CMJ variables between all the defined groups. There
are no significant differences in any of the variables between the low and the high thermal
asymmetry group for thighs and calves. However, for hamstrings, while there are no
significant differences between the low and the high thermal asymmetry group in the CMJ
Pre-RSA and Diff CMJ tests (p > 0.05), the low asymmetry group has significantly higher
values for the CMJ Post-RSA (F = 7.55; p = 0.013; IC: 1.06 to 7.84; ES = 0.28).

Table 1. Differences in CMJ variables depending on low and high asymmetry.

Low Asymmetry High Asymmetry

Thigh asymmetry
CMJ Pre 39.30 ± 3.59 38.78 ± 4.74
CMJ Post 34.35 ± 4.07 35.13 ± 4.64
Diff CMJ −4.96 ± 3.12 −3.65 ± 3.17

Hamstring
asymmetry

CMJ Pre 40.80 ± 3.62 37.79 ± 3.95
CMJ Post 37.23 ± 3.78 32.78 ± 3.59 *
Diff CMJ −3.58 ± 3.28 −5.01 ± 3.01

Calf asymmetry
CMJ Pre 38.98 ± 4.41 39.19 ± 3.77
CMJ Post 34.15 ± 3.97 35.27 ± 4.64
Diff CMJ −4.83 ± 2.53 −3.92 ± 3.77

* Significant differences between groups (p < 0.05).

4. Discussion
The purpose of this study was to determine if there is a relationship between thermal

asymmetries provided by thermography and performance in a repeated sprint ability (RSA)
test and in countermovement jumps (CMJs) before and after the RSA test. The results of the
RSA test showed a significant interaction between hamstring asymmetry and the number
of sprints in the RSAt and in the % Diff. The hamstring high-asymmetry group showed a
higher %Diff in sprint 2, which means that there is a significative longer time with respect
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to sprint 1 (worse performance) than in the low-asymmetry group. On the other hand,
the hamstring low-asymmetry group reported a higher %Best in sprints 2, 3 and 4. The
cause of this difference in the hamstring %Best may be attributable to the fact that the
low-asymmetry group had the best sprint, which was very fast; therefore, the following best
ones have a significant difference (worse). On the other hand, no differences were found in
the thigh and calf groups for any variable. The reason why the only thermal asymmetry that
influenced the performance was that of hamstrings could be their importance in sprinting,
as they play a crucial role in generating force in the propulsive part of the sprint [28]
and are clearly the most frequently injured muscle during sprinting [4]. The majority of
hamstring muscle injuries occur while the athlete is running at maximal or close to maximal
speeds [29] Many investigations have measured hamstring activity during sprinting with
electromyographic (EMG), and found that the hamstrings are active from the middle of
the swing to the final stance Some of these studies have reported that peak activity occurs
during terminal swing [30], whereas others have found it to occur during stance [31]. Proof
of the effort that these muscles exert in the sprint is that an increase in running speed of
80–100% is linked with an increase in net hamstring muscle force and energy absorption of
1.4 and 1.9 times, respectively [32]. However, this study took data from athletes running on
a treadmill, and the mechanical properties of treadmill surfaces are different from those
of the surfaces on which the athletes usually train and compete (e.g., artificial turf or an
athletic track) [33]. This factor may influence running anatomy, so the results should be
interpreted with caution.

Regarding the CMJ results, the low thermal asymmetry hamstring group has signif-
icantly higher values in the CMJ post-RSA, while in the calf and thigh groups, there are
no significant differences in either CMJ pre- or CMJ post-RSA. Thus, the high thermal
asymmetry hamstring group’s performance was similar to that of the low thermal asym-
metry hamstring group before the RSA, and then its performance decreased in the CMJ
post-RSA. This can be indicative of fatigue, as a decreased average CMJ jump height can
indicate neuromuscular fatigue [34]. The reason why significant differences are only found
in the high-asymmetry hamstring group (and not in the calf and thigh groups) may be that
hamstrings are the most implicated and frequently injured group in sprinting [28], while
calves and thighs seem to play a less crucial role in sprinting; therefore, asymmetry takes
longer to turn into fatigue when performing an RSA test, as they are less implicated in
this activity.

Although the results of this study seem to provide evidence in terms of using and
interpreting thermography to assess RSA and CMJ performance in elite football players,
the results must be interpreted with caution, as certain limitations should be considered.
First, thermography was carried out in just one session; applying thermography in a higher
number of sessions would allow us to corroborate the results of the study. Second, a low
asymmetry cut point was established, and settling a higher asymmetry cut point would
probably show stronger correlations. Finally, the sample was very small, so future research
should be carried out to look for evidence and to check whether these results apply to
different genders, ages and competitive levels.

From a practical point of view, if football coaches can access the thermographs of their
players, they should focus especially on hamstrings (rather than calves and thighs) and
modify the training if necessary. These muscles appear to be the ones with more influence
on the test results, as they are the only ones for which thermal asymmetry of over 0.2 ◦C
had an effect.

5. Conclusions
Thermography can provide information about performance in CMJ and RSA tests for

hamstring asymmetries over 0.2 ◦C; meanwhile, calf and thigh asymmetries over 0.2 ◦C do
not seem to have a relationship with performance in these tests. In short, thermography
results have some correlation with CMJ and RSA performance, but stablishing higher cut
off points would probably allow us to find stronger correlations for hamstring asymmetries,
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and maybe some correlation for calf and thigh asymmetries which would be helpful for
coaches and athletes.
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Abstract: Football performance behaviour relies on the individual and collective perceptual attune-
ment to the opportunities for action (affordances) available in a given competitive environment. Such
perception–action coupling is constrained by players’ spatial dominance. Aiming to understand the
influence of team formation and players’ roles in their dynamic interaction (interpersonal linkages),
Voronoi diagrams were used to assess the differences in players’ spatial dominance resulting from
their interactions according to ball-possession status in high-performance football. Notational (i.e.,
team formation, players’ role, and ball-possession status) and positional data (from optical sensors)
from ten matches of the men’s French main football league were analysed. Voronoi diagrams were
computed from players’ positional data for both teams. Probability density functions of the players’
Voronoi cell areas were then computed and compared, using the Kolmogorov–Smirnov test, for the
different variables (i.e., team formation, player role, and ball-possession status) and their classes. For
these variables, the players’ Voronoi cell areas presented statistical differences, which were sensitive
to team formation classes (i.e., defenders, midfielders, and forwards) and relative pitch location
(interior or exterior in the effective play space). Differences were also found between players with
similar roles when in different team formations. Our results showed that team formation and players’
roles constrain their interpersonal linkages, resulting in different spatial dominance patterns. Using
positional data captured by optical sensors, Voronoi diagrams can be computed into compound
variables, which are meaningful for understanding the match and thus offer information to the design
representative training tasks.

Keywords: affordances; spatial dominance patterns; performance; team synergies; Voronoi cells

1. Introduction
In recent years, the technological progress around spatial location systems and posi-

tional data has had a growing impact on our societies and in all investigation fields [1,2],
including sport sciences [3] and high-performance football [4].

This increase in the volume of data [5] can better inform coaches about the performance
of their teams, including tactical behaviour [6]. Importantly, teams’ performance is based on
the coordinated decisions of their players [7], which form team synergies (spatial-temporal
patterns of coordination) guided by shared affordances [8].

Affordances are properties of the environment that relate to the individual charac-
teristics, implemented by specific perception–action cycles, i.e., “action specific relations
that exist between the skills/capacities of an individual performer and the action relevant
properties of a [perceived environmental] task” ([8] p. 4). Training develops football players
to become attuned to affordances of the match, namely, those constrained by match phases
such as ball possession status [9,10]. Such attunement is better developed if coaches pursue
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the representativeness of their training exercises [11] through the manipulations of relevant
task constraints [12].

When training for a match, coaches constrain the emergence of the affordances per-
ceived by players and, consequently, their interactions with teammates and opponents [13].
For this purpose, there are evidence-based match-space criteria for training design. For
example, coaches can define the space of their training exercises from generic benchmarks
such as the Game Intensity Index (GII) [14]. The GII establishes a parallelism of the training
surface in terms of square meters per player with that of competition. However, this is a
very broad reference, which, in high-competition football, is equivalent to an area of 325 m2

per player (68 m × 105 m/22 players). It is no surprise that studies with small-sided and
conditioned games (SSCG) suggest the use of relative space per player (RSP). The RSP corre-
sponds to an area per player that derives from the smallest rectangle where all field players
fit [15]. Similarly, Silva and colleagues [16] divided the effective play space (EPS), which is the
polygon of the smallest convex hull, by the number of players. Both RSP proposals have the
merit of measuring what occurs in game spaces in training and competition. However, they
do not consider the space outside the EPS and, consequently, the impact of team formation
on players’ and teams’ metrics.

During a football game, players do not move randomly throughout the space [17].
Players’ movements and team coordination [18] are constrained by strategy [7], including
the game system or team formation [19]. These formations constrain the spatial organisation
of players in a team [20] and, thus, how they can form synergies [18]. Team formations
are especially relevant to understand interpersonal linkages as “the specific contribution of
each element to a group task” ([8] p. 8). Team formations are typically represented via a set
of three or four numbers that indicate the number of players in each line (or sector) and
express how the team is organised on the pitch. For example, “3-5-2” expresses that the
team formation is composed of three defenders, five midfielders, and two attackers [20].
Moreover, each player in his/her sector has a specific spatial role [21,22] or playing posi-
tion [21], which is tagged with a specific designation. Usually, it describes the player’s main
role, considering both the sector to which they belong (e.g., defenders—all outfield players
that are more implicated in defensive tasks) and information about their corridor and
side (e.g., right lateral defender or left centre midfielder). Currently, in high-performance
football, 3-5-2, 3-4-1-2, and 4-2-3-1 are among the most commonly used tactical team
formations [6,23].

Team formation affects performance by, for example, influencing key performance
indicators (KPIs) such as the Effective Play Space (EPS) or Team Separateness [22]. Although the
clear influence of team formations and players’ role in individual and team performance,
its relevance for understanding the synergies that emerge from players interaction in
competition are still unclear.

Aiming to bridge this gap, we argue that if the players’ roles within a team formation
influence team synergies, then it will be possible to identify their specific contributions.
Nowadays, we can compute positional data obtained by different types of sensors (e.g.,
optical tracking, GPS, or RFID) and calculate team spatial–temporal patterns such as spatial
heatmaps [24], major ranges [25], or Voronoi diagrams (VD). VD in particular assess players’
space dominance [26], as well as, at the team synergetic level, their interpersonal linkages ([8]
p. 8), (e.g., maintain ball possession).

This paper aims to understand the influence of team formation and players’ roles
in the players’ spatial dominance resulting from the dynamic interaction (interpersonal
linkages) of both teams. Therefore, we expect the following:
• Interpersonal linkages among players are expressed by their spatial interactions and

are constrained by team formation and players’ roles.
• Players’ spatial dominance could be operationalised by Voronoi diagrams (and related

spatial statistics), which could capture differences according to team formations,
players’ roles, and ball-possession status.
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2. Materials and Methods
2.1. Data Sources

The data used in this paper were provided by STATS© and obtained through their
systems of semi-automatic tracking [27] in ten Ligue 1 matches (France) of the 2019–2020
season. Data were composed of players’ positional data (longitudinal and lateral coordi-
nates) sampled at 10 Hz, and notational data describing match events (representing players’
contacts with the ball) and possession episode (PE) information (initial and final instants,
team with ball possession).

2.2. Data Processing
The raw data were processed before analysis using the following procedures:

• For each match, the determination of team formations was performed in two steps:
1. Using the STATS Edge Analysis application:

a. The match time was divided into six periods of 15 minutes, as suggested
by Duarte and colleagues [28]; each period was subdivided in case there
was a substitution.

b. The average longitudinal and lateral position of each player was computed
throughout each time period.

2. From these results and following the suggestion of Carling [29] and Bradley and
colleagues [30], a panel of experts identified both team formations during each
of the match intervals. The panel was composed of five coaches with at least
ten years of professional experience at the highest level and holding an UEFA
PRO certification.

• Team formation, players’ roles, and ball-possession status were considered crucial to
data analysis in this paper; consequently, matches and periods within the matches
were grouped and selected according to the following criteria:
a. For each match, there was an analysed team and an opponent team. For all

matches and time periods, the opponent team was always the same and organ-
ised under the same team formation (3-5-2). The analysed team was always a
different one, forming two groups of five matches. In one group, the analysed
team played mostly in a 4-2-3-1 team formation, and in the other group mostly
with a 3-4-1-2 team formations.

b. Within each match, only periods in which teams maintained their team forma-
tion (4-2-3-1 or 3-4-1-2 for the analysed team and 3-5-2 for the opponent team)
were used. All other periods, either where teams played with different forma-
tions or where they were not complete (e.g., after a red card), were discarded.

• Match periods were further filtered so that only open plays were considered; i.e., set
plays and time gaps without play were discarded. Each open play was subdivided
into ball-possession episodes (PEs). Each PE starts at the instant when a team recovers
the ball and ends when that team loses control of the ball. According to STATS©
reference manual [31], at least two consecutive events were necessary to form a
PE. Each PE was classified, given the analysed team’s ball possession status, as in
possession or out of possession. The 4-2-3-1 formation comprised 999 possession episodes
(499 in possession, 500 out of possession), whilst the 4-2-3-1 formation comprised
1199 possession episodes (601 in possession, 598 out of possession).

• The role of each player of the analysed team was classified according to his spatial
average position in the respective team formation. Table 1, adapted from Riezebos [21],
identifies these roles for the two team formations: 4-2-3-1 and 3-4-1-2.

• The average value of the Voronoi cell area (VA) during the PE was computed for
each player of the analysed team. VAs are computed at each time frame, using the
procedures described by Kim [32], considering all the players of both teams.
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Figure 1 illustrates the Voronoi diagrams (VDs) obtained from players’ roles with
different analysed team formations. Although VDs are computed at each time frame, in
Figure 1, each player is represented at the average position along the longitudinal and
lateral axes for the five matches considered, and their Voronoi area is circumscribed by
dashed lines. Players from the analysed teams (in blue) are indicated using their role tag.

GK

RLB

LLB

RCB

LCB

RCM

LCM

CAM

CF

RAM

LAM

(a) 4−2−3−1 Team Formation

GK

RLM

LLM

RCB

CCB

LCB

RCM

LCM CAM
RCF

LCF

(b) 3−4−1−2 Team Formation

Figure 1. Voronoi diagrams for analysed teams (blue) in two team formations ((a) 4-2-3-1 and
(b) 3-4-1-2) and the opposing team (red).

The VDs in Figure 1 exemplify the influence of the opponent team in the VA of the
analysed team players, thus capturing the interaction of all players on the pitch and not
only with his teammates [33]. This interaction is crucial for the relative position of a given
player in the effective play space (EPS). For example, the Right Centre Forward (RCF) and
the Left Centre Forward (LCF) in the 3-4-1-2 team formation, despite being the most forward
elements of their team, occupy interior areas in the game space due to the interaction with
their opponents.
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Table 1. Player’s role in 4-2-3-1 and 3-4-1-2 team formations.

4-2-3-1 3-4-1-2

Tag Description Tag Description

GK Goalkeeper GK Goalkeeper
LLB Left Lateral Back CCB Centre Central Back
LCB Left Central Back LCB Left Central Back
RCB Right Central Back RCB Right Central Back
RLB Right Lateral Back LLM Left Lateral Midfielder
LCM Left Centre Midfielder LCM Left Centre Midfielder
RCM Right Centre Midfielder RCM Right Centre Midfielder
LAM Left Attacking Midfielder RLM Right Lateral Midfielder
CAM Centre Attacking Midfielder CAM Centre Attacking Midfielder
RAM Right Attacking Midfielder LCF Left Centre Forward
CF Centre Forward RCF Right Centre Forward

2.3. Statistical Analysis Methods
Statistical analysis was performed by computing and comparing the probability den-

sity functions of the players’ mean Voronoi areas (VAs) during each possession episode
(PE). Probability density functions are represented as violin plots using kernel smoothing
and compared using the Kolmogorov–Smirnov statistic. For the Kolmogorov–Smirnov test,
“H0: same distribution” is used as the null hypothesis, with a significance level set at 0.05
(i.e., the alternative hypothesis is assumed if p < 0.05).

3. Results
3.1. Comparing Players’ Voronoi Areas (VA) within the Same Team Formation (TF)

The results of comparing players’ Voronoi Areas (VA), according to their role and ball
possession status (in possession and out of possession) within the 4-2-3-1 team formation
(TF), are presented in the violin plots (a) and heatmaps (b and c) of Figure 2. The values in
Figure 2 correspond to the Kolmogorov–Smirnov statistic values quantifying the differences
between VAs and their statistical significance.

In Figure 2, the value indicated for each role i was computed as VKS(i) = −log(KS(Pi, Qi))
where KS is the Kolmogorov–Smirnov statistic and Pi,Qi are the VA probability density
functions for a player with role i when the analysed team is in and out of ball posses-
sion, respectively. Differences between ball possession status were statistically significant
(p < 0.05) except for roles highlighted in bold.

The differences between VAs for all possible role pairs are represented in the heatmaps
of Figure 2. The value indicated in cell i, j was computed as VKS(i, j) = −log(KS(Pi, Qj))
where KS is the Kolmogorov–Smirnov statistic and Pi, Qj are, respectively, the VA proba-
bility density functions of players with role i and j. Differences between role pairs were
statistically significant (p < 0.05) except for pairs highlighted in bold.

Figure 2 clearly expose the differences in the distribution of players’ VA, according to
their role and ball possession. Apart from the Goalkeeper’s (GK) specific case, the violin
plots also differentiate players’ roles according to their sector (back vs. forward) and to their
relative location (interior vs. exterior) in the Effective Play Space (EPS). Despite the general
trend to find significant differences in the VA of players with different roles, ball-possession
status also has an impact on VA similarity, mainly in the cases where differences were
non-significant.
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(a) Violin plots (in/out of possession).

(b) KS heatmap (in possession). (c) KS heatmap (out of possession).

Figure 2. Players’ Voronoi area probability density function in the 4-2-3-1 team formation. Note: Violin
plots (a) and heatmaps (b,c) comparing players’ Voronoi area probability density function (less similar
in blue, more similar in red). (The differences that are statistically not relevant are highlighted in bold).

When the analysed teams were in possession of the ball, the non-significant differences
were observed between players of the same sector, namely, between central backs (RCB
and LCB), lateral defenders (RLB and LLB), and midfielders (CAM and LCM), and also
between the Centre Forward (CF) and two midfield interior players (CAM and LCM).
On the other hand, when the analysed teams were out of ball possession, non-significant
differences remained between RCB and LCB and between CAM and CF. Except for the
new non-significant differences between the defensive midfielders (RCM and LCM) and
between wingers (RAM and LAM), all the others were now statistically significant.

The same process was applied to the 3-4-1-2 team formation (TF). Players’ VA distri-
bution is presented in the violin plots and their Kolmogorov-Smirnov statistics heatmaps
in Figure 3.
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(a) Violin plots (in/out of possession).

(b) KS heatmap (in possession). (c) KS heatmap (out of possession).

Figure 3. Players’ Voronoi area probability density function in the 3-4-1-2 team formation. (Note:
Violin plots (a) and heatmaps (b,c) comparing players’ Voronoi area probability density function (less
similar in blue, more similar in red). The differences that are statistically not relevant are highlighted
in bold).

Similarly, to the 4-2-3-1 team formation, smaller VAs were found for players who
usually play in the interior regions of the EPS (RCM, LCM, CAM, RCF, and LCF). In
addition, the third central back (CCB) seems to have even smaller areas than the players of
the first defensive line (RCB and LCB).

Once more, the ball-possession status significantly influenced only some of the roles
(GK, CCB, LCB, CAM, RCF, and LCF). All the other roles presented non-significant differ-
ences (highlighted in bold).

In this TF, VA distribution continues to generally allow the differentiation between
players’ roles. However, the number of non-significant differences increases, showing a
higher similarity between the VA of different roles, e.g., in the defensive line (CCB being the
exception). The VA differences between role pairs were statistically significant (p < 0.05),
with the following exceptions (highlighted in bold in Figure 3):
1. In possession: RCB–LCB; RCB–RLM; LCB–RLM; RCM –LCM; LCM–CAM; LCM–RCF;

CAM–RCF;
2. Out of possession: RCB–LCB; RCB–RLM; LCB–RLM; RCM–LCM; RCM–CAM; RCF–

CAM; RCF–LCF.
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3.2. Comparing Players’ Voronoi Areas (VA) between Different Team Formations (TF)
Finally, the distribution of VA was compared according to players’ roles between team

formations (Figure 4).
Both comparisons reveal a natural similarity between players in the same sector. How-

ever, the degree of similarity is not equal across sectors and shows important differences
between defenders, midfielders, and attackers. In fact, in the defensive sector, all central
backs showed significant differences between the TFs. In the lateral backs, the only non-
significant difference was found between the LB and the RM. In the lateral backs, the only
non-significant difference was found between the LB and the RM.

Concerning the midfielders, distinct analyses should be made for the interior and
exterior players. In fact, several non-significant differences were found between the two
TFs regarding the interior roles, showing that, for this sub-group, the choice between the
4-2-3-1 and 3-4-1-2 formation did not have a big influence on players’ VA, regardless of the
team’s ball-possession status.

However, for the wingers (RAM and LAM) of the 4-2-3-1 formation, a clear different
spatial pattern was found in these players’ VA distribution, which does not resemble any
other role in the 3-4-1-2 TF (with the exception of the CCB).

Finally, for the attackers, several non-significant differences were found in the com-
parisons of the central forwards’ VA. These are found between players of the attacking
sector from the two TFs and between players of the attacking and midfield sectors. This
was especially evident in the comparisons with the attacking midfielders (CAM).

(a) KS heatmap (in possession). (b) KS heatmap (out of possession).

Figure 4. Comparison of the VA of players’ roles in both team formations.

4. Discussion
The aim of this study was to understand the influence of team formation (TF) and

players’ roles in their dynamic interaction (interpersonal linkages). For this purpose,
Voronoi diagrams (VD) were used to assess the differences in players’ spatial dominance
resulting from their interactions according to ball-possession status in high-performance
football teams.

The observed results support some important reflections on the division of space,
according to TF, players’ roles, and the ball-possession status. When analysing the spatial
patterns within the same TF, the differences between players’ VA were generally found to
be statistically significant according to their roles.

The results from Fonseca and colleagues [9], showing the influence of ball-possession
status on players’ Voronoi cell areas (VA), do not universally apply but are dependent on
players’ roles. With few some exceptions, these differences demonstrate the existence of
different affordances according to players’ roles, especially between sectors and according to
the relative location (interior or exterior) of each player in the Effective Play Space (EPS). The
VA of each player role varies according to these two general criteria, influencing players’
interpersonal linkages in the establishment of collective synergies.
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Resulting from the teams’ interactions and due to the nature of the VA metric, players
who usually act in the interior of the EPS (midfielders and centre forwards) had smaller
areas; players who play in the periphery of the EPS had larger VAs; and the VAs of the
wingers or attacking midfielders (RAM and LAM) were intermediate (possibly because they
alternate between interior and exterior spaces in the EPS). Additionally, more defensive
players (who occupy positions closer to their own goal) generally deal with wider VAs,
while the most offensive players usually deal with smaller VAs.

Although some role pairs show a certain degree of symmetry (RCB–LCB or RCM–
LCM), this is not found globally. This is the case for the attacking midfielders (AMR–AML)
in the 4-2-3-1 TF or the players of the lateral corridors (RM–LM) in the 3-4-1-2 TF. In com-
paring the two TFs analysed, it is important to note how VA patterns significantly change
across the players of the defensive sector, exposing differences in the spatial affordances
when a team plays with a first defensive line with three or four players. However, other
roles were very similar in both team formations. Apart from the expected case of the GK,
this similarity was especially true in the interior (centre) midfield positions. Our results
also underpin some practical clues that we find relevant to the football coaches’ work.
First is the need to consider TF and players’ roles as important constraints during the
design of training exercises [19]. This implies the need to manipulate and measure the
space per player role that actually occurs within these drills in reference to the competitive
patterns [18].

Additionally, the fact that no significant differences were found between some players’
roles (e.g., between the two central backs or the two more defensive midfielders—a fact
found in both TFs and independent of ball possession status) may indicate that players can
eventually switch more easily between these roles. This is particularly relevant in situations
out of the game plan, e.g., when replacing an injured player.

However, as most role-pair comparisons presented significant differences, coaches
need to be aware of the difficulty for players to adapt to the spatial affordances associated
with different roles. Even within the same sector, switching sides may imply different
spatial affordances due to the non-symmetry detected in some roles. The difference between
players’ role patterns that were expected to be similar between the two TFs highlights
the need for coaches to dedicate enough training time to attune players, individually and
collectively, to the spatial affordances that emerge from the strategical option for a given
TF [34]. Coaches should be aware that a sudden change in TF may cause more difficulties
in adapting to their players than to their opponents. Moreover, differences in VA spatial
patterns, according to the TF and players’ roles, may also imply the need to properly
consider them in the long-term training processes of youth footballers. For example, by
introducing a certain degree of variability in the role, coaches can avoid a possible early
specialisation [35].

Voronoi diagrams can thus be considered a useful tool to study teams in competitions
(match analysis) and as an auxiliary metric to the design of representative training exercises.
After characterising the VA of each player role in a given team organisation (TF) during
competition, the next step is to use the same tools in training exercises. By measuring
players’ VA in each exercise, it will be possible to compare the data obtained in the context
of training with the values of the respective team in the context of competition. This can
constitute a possible way to quantify, in spatio-temporal terms, their representativeness de-
gree, with more detail than with Game Intensity Index [14] or the Relative space per player [15,16].
In particular, and contrary to the relatively simplistic idea proposed in [36] that 320 m2

per player would be more representative to design Small-Sided and Conditioned Games
(SSCG), VD can help coaches to more effectively manipulate training surfaces. In fact, the
adoption of VD to assess players’ spatial patterns can help in the definition of more suitable
dimensions for each training exercise, adjusting them to the global TFs and players’ roles.
The use of VD-based tools can contribute to achieving a higher degree of representativeness
of training exercises, in both SSCG and large-sided games [37].
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The differences between the spatial patterns of players’ roles within the same TF also
underline the importance of coaches designing supraspecific training tasks, i.e., the specific
training that goes beyond simply training with the ball [38]. Supraspecificity implies the
design of tasks that are based not only on the football’s general dynamics but also on the
specific constraints of each team (e.g., coach’s game model, including team formations),
which has an important role in the development of the interpersonal linkages and collective
synergies that underpin team performance [8].

5. Conclusions
This study exposes how team formations and players’ roles influence the spatial patterns

of their Voronoi cell areas. It underlines the importance of considering these features
when coaches design training exercises, as they constrain players’ interpersonal linkages
in the establishment of team synergies and collective performance. Consequently, this
study reinforces the need to train ecologically [39], as a pathway for players’ progressive
attunement to the affordances of the competitive environment, i.e., through representative
training [11]. We believe that the assessed methods and their results can contribute to
leveraging the utility of optical tracking systems in sports and ultimately to the tactical
performance of high-level football teams.
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TF Team Formation
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