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c Instituto Politécnico de Portalegre, 7300-110 Portalegre, Portugal
d School of Business Administration, Al Akhawyan University, Ifrane, Morocco
e Department of Management Sciences, COMSATS University Park Roada, 45550 Islamabad, Pakistan

A R T I C L E  I N F O

Keywords:
Energy markets
Geopolitical risk index
Detrended fluctuation analysis
Informational efficiency
Transfer entropy
Sliding windows

A B S T R A C T

This study delves into the complexities of energy commodity futures and clean energy indexes, analyzing their 
responses to geopolitical risk. The detrended fluctuation analysis was applied, and the efficiency index was 
estimated to assess energy market behavior better. This approach allows the evaluation of long-range depen
dence and market efficiency. The findings show evolving patterns influenced by significant geopolitical events 
such as the COVID-19 pandemic and geopolitical conflicts. Transfer entropy analysis also uncovers directional 
dependence between energy markets and geopolitical risk, highlighting energy commodities’ influential (or 
anticipated) role on geopolitical indexes. The dynamic analysis emphasizes time-varying relationships, with 
fluctuations notably impacted by global events like the European sovereign debt crisis and escalating geopolitical 
tensions. Additionally, clean energy indexes exhibit sensitivity to geopolitical risk, offering valuable insights into 
market behavior and informing risk management strategies. The study highlights the complex and dynamic 
relationships between energy markets and geopolitical factors and provides useful information for investors and 
policymakers on energy markets.

1. Introduction

Over the past decades, energy markets have experienced challenging 
transformations, motivated market deregulation, technological ad
vances, and even renewable energy deployment. These transformations, 
combined with extreme events (such as occasional shocks and crises 
with financial or non-financial origin), can not only impact and influ
ence market behavior and investors’ sentiment but also disrupt the dy
namics of spillovers in the energy markets and make it more complex. 
This situation will have important implications for price discovery, asset 
allocation, and risk management, highlighting the need for a deeper 
understanding of these interconnections.

A critical focus in financial markets is determining whether prices 
follow a random walk, as Fama’s (1970) Efficient Market Hypothesis 
(EMH) suggests. According to this theory, all the information available is 
reflected in the asset prices, so it is impossible to consistently predict 
when prices will go up or down, i.e., consistently obtaining abnormal 
returns. In finance, several models attempt to price assets efficiently [e. 
g., the Capital Asset Pricing Model (CAPM) of Sharpe (1964) or the Fama 

and French (1993)]. However, extensive empirical evidence has ques
tioned this hypothesis, demonstrating inefficiencies in several markets. 
Consequently, evaluating market efficiency, particularly during periods 
of uncertainty, remains an essential area of research.

In parallel, understanding the relationships between different mar
kets and assets has gained renewed importance, especially with the 
increasing integration of financial markets due to globalization and 
deregulation. For energy markets, the stakes are particularly high, given 
their pivotal role in economic stability and their sensitivity to external 
shocks. Historical examples, such as the 1973 OPEC oil embargo, caused 
oil prices to skyrocket, leading to a global recession and job losses 
(Mitchell, 2010). Moreover, the 2008 oil price surge and the 2022 
Russia–European Union (EU) gas prices dispute have demonstrated the 
profound impact geopolitical events can have on energy prices and their 
ripple effects on the global economy.

While traditional approaches to analyzing relationships in financial 
markets often rely on linear and static methods, these are insufficient to 
capture the bidirectional and dynamic linkages between markets during 
crises. This study addresses this limitation by employing advanced 
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techniques, including detrended fluctuation analysis (DFA) and transfer 
entropy (TE), which can capture non-linear dynamics, directional de
pendencies, and time-varying relationships.

Energy commodities such as oil and natural gas remain cornerstones 
of the global economy, characterized by their high liquidity and crucial 
role in trade, portfolio diversification, and economic growth. Spot and 
future contracts are usually used to trade several energy commodities. 
As long as commodity contracts become more acceptable as a viable 
asset class, due to their increasing access and liquidity, they have 
attracted more investors’ attention and increased commodity futures 
trading (Tang and Xiong, 2012) on what is called financialization (Duc 
Huynh et al., 2020). For several reasons (e.g., lower costs, high leverage 
effect of futures, less liquidity risk, the dominance of futures to the 
contribution to price discovery in commodities), investors prefer future 
contracts over the spot market (Ameur et al., 2022). Thus, commodities 
futures markets were selected.

At the same time, the growing focus on sustainability and environ
mental concerns has led to increased interest in clean energy in
vestments. Climate change and shifting energy policies have elevated 
the importance of renewable energy, making the study of clean energy 
indexes particularly timely and relevant (Chang et al., 2020). 
Comparing the performance of clean energy indexes with those of en
ergy commodities is also important, as it provides new insights into the 
effectiveness of conventional versus clean energy investment strategies 
and the response of financial markets to changes in environmental 
policies and energy.

The energy market is one of the world’s largest, most liquid, and 
most important, which motivates this study. Understanding the effi
ciency of energy indexes can help investors and portfolio managers 
make informed decisions about resource allocation and diversification. 
Crises or extreme events often have a significant impact on financial 
markets, and geopolitical risk has gained increasing relevance (Engle 
and Campos-Martins, 2023). Therefore, including a geopolitical risk 
index can help quantify and evaluate this impact, allowing investors and 
analysts to adjust their investment strategies according to risk condi
tions. Furthermore, a geopolitical risk index can help anticipate poten
tial crises, allowing more effective decision-making regarding adverse 
events, whether regarding asset allocations, hedging positions, or even 
adopting defensive strategies to protect investments. Although much of 
the literature focuses on traditional energy commodities, there is limited 
critical analysis of how clean energy assets respond to geopolitical risks 
compared to conventional counterparts. This gap is significant because 
clean energy investments are often considered key to the global energy 
transition, yet their market dynamics and sensitivity to external shocks 
remain underexplored. Therefore, the present study evaluates the effi
ciency and spillover dynamics of six energy commodity futures and two 
clean energy indexes across a broad timeframe encompassing major 
crises such as the COVID-19 pandemic and the Russia-Ukraine conflict.

This study has two major goals: (i) to assess whether the energy 
commodities and indexes are (in)efficient (considering the weak form of 
informational efficiency); (ii) to identify whether specific global risk 
factors could act as net transmitters of spillovers for the energy markets. 
Considering both main goals, we apply the DFA and estimate the effi
ciency index (EI) to analyze the fluctuations of six energy commodities’ 
futures prices and two indexes for renewable energy. As we aim to 
explore their dynamics over time, we applied sliding windows in both 
analyses. The EI, calculated using the estimated values of the dynamic 
DFA as a reference, allows us to evaluate the efficiency level of the 
analyzed time series. To assess and quantify the dynamics of the infor
mation flow and simultaneously identify the direction of the information 
flow between energy commodities and energy indexes and the geopo
litical risk, we also estimate the TE. The geopolitical risk was measured 
by the geopolitical risk index (GPR) and by its two sub-indexes, namely 
the geopolitical threats (GPRT) and the geopolitical acts (GPRA). This 
analysis will allow us to identify whether specific global risk factors 
could act as transmitting channels for spillovers in energy markets and 

offer new insights into how energy markets respond to crises and 
external shocks.

These two main goals are interconnected and complementary. 
Assessing the informational efficiency of energy commodities and in
dexes provides insights into the predictability and behavior of these 
markets, particularly during periods of external shocks. Informational 
efficiency is crucial to understanding how quickly and accurately mar
kets absorb new information, such as changes in geopolitical risks. An 
inefficient market may exhibit delayed or disproportionate responses to 
new information, influencing the dynamics of spillovers within the 
system (Kristoufek and Vosvrda, 2013). Simultaneously, identifying 
whether global risk factors act as net transmitters or receivers of spill
overs complements this assessment by shedding light on the external 
drivers that may affect market efficiency. For instance, geopolitical risks 
can amplify inefficiencies by introducing uncertainty and changing the 
flow of information between markets (Gabriel et al., 2024). Under
standing these dynamics helps to clarify how exogenous shocks propa
gate through energy markets and how such shocks influence market 
stability and interconnections. The complementary nature of these goals 
lies in their focus on endogenous market characteristics (efficiency) and 
exogenous influences (spillover transmission).

This dual perspective allows for a more comprehensive under
standing of energy market behavior. For instance, findings from effi
ciency analysis can inform the evaluation of spillover dynamics by 
identifying periods of heightened inefficiency that may be more sus
ceptible to external shocks. Conversely, understanding spillover effects 
can help contextualize inefficiency patterns by linking them to specific 
global risk events, as supported by recent literature (Hoque et al., 2023). 
These goals are particularly relevant given the interconnected nature of 
energy markets and their sensitivity to global risks. By addressing them 
jointly, this study provides a comprehensive framework to analyze en
ergy market dynamics, offering valuable insights for investors, policy
makers, and academics seeking to understand and mitigate risks in these 
complex systems.

This study contributes to the literature in three key ways. First, it 
provides an in-depth evaluation of energy market efficiency, offering 
evidence of persistent and evolving inefficiencies in conventional and 
clean energy markets. Second, it analyzes the directional in
terconnections between energy markets and geopolitical risks, identi
fying how information is transferred within these systems. Third, it 
highlights the time-varying nature of these relationships, particularly 
during heightened geopolitical tensions, providing practical implica
tions for investors, policymakers, and risk managers. Moreover, we 
cover a broad period where extreme events (geopolitical and others) 
occurred, which allows a deeper assessment of the impact of these events 
on the energy sector. By doing so, we aimed to shed light on how these 
critical occurrences can influence the energy sector dynamics, including 
in different regions. Thus, our work is valuable for understanding the 
intricate web of relationships within energy commodities markets and 
how significant events and global risks can profoundly influence them. 
By understanding these dynamics comprehensively, we can confidently 
make informed decisions.

After this introduction, Section 2 presents a literature review. Section 
3 describes the data used and the methods applied. Section 4 discusses 
the empirical results. Finally, Section 5 presents the main conclusions, 
implications, and future lines of research.

2. Literature review

Since 2002, the commodity market has undergone several funda
mental changes that financialization may explain. This trend has 
increased the flow of investments into commodity markets, attracting 
specialized investors and creating new financial instruments and de
rivatives (Domanski and Heath, 2007). While these developments have 
enhanced market liquidity and accessibility, they have also introduced 
periods of instability, heightened volatility, and pronounced seasonal 
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patterns. These stylized facts revive the issue of price discovery and 
market efficiency.

In the energy sector, there exists a broader set of energy commod
ities, and they do not necessarily exhibit homogenous relationships 
between them but rather heterogeneous ones that can be shaped by 
crisis periods [see, for example, Lin and Su, 2021 or Umar et al., 2021]. 
Furthermore, the market participants consider several energy com
modities as alternative investment options (Lin and Bai, 2021), accen
tuating one energy commodity’s difficulty in resisting the shock 
spillovers faced by another. Thus, the study of energy price linkages is of 
extreme importance not only for market participants but also for aca
demics [see, for example, Bravo Caro et al., 2020] due to the important 
role played by energy commodities for international trade, economic 
activities, accumulation of wealth, and portfolio diversification. One 
area of academic debate concerns the relationship between fossil fuel- 
based energy and clean energy investments. Reboredo (2015) argues 
that these markets exhibit a competitive substitution relationship, where 
higher fossil energy prices make clean energy investments more 
attractive. In contrast, Ahmad (2017) and Ferrer et al. (2018) argue that 
crude oil and clean energy assets operate in distinct markets with limited 
substitutability. However, these studies provide little evidence of the 
key influencers in the energy markets and lack comprehensive insights 
into the dynamic interconnections between traditional and clean energy 
markets, particularly under extreme events. Given the extreme events, 
crisis periods, and potential asymmetry and nonlinearity features, this 
situation is extremely important.

Energy markets and geopolitics have always been closely intertwined 
(Liu et al., 2021), but our understanding of how energy commodities 
react to geopolitical risk remains limited. Some studies show that, 
especially in the post-financialization era, macroeconomic and political 
uncertainty significantly impacts the commodity markets (Bakas and 
Triantafyllou, 2018; Joëts et al., 2017; Kelly et al., 2016; Wei et al., 
2017; among others). However, most studies focus narrowly on equity 
markets[see, for example, Shahzad et al., 2023 for an extensive litera
ture review], on oil-specific analyses (e.g., Antonakakis et al., 2017; 
Bouoiyour et al., 2019; Liu et al., 2020, 2021; Mei et al., 2020; Noguera- 
Santaella, 2016; Omar et al., 2017; Ramiah et al., 2019), and on natural 
resources, agricultural and metal commodities (e.g., Zheng et al., 2023), 
often neglecting other energy commodities and clean energy indexes.

Recent research has begun to explore the impact of geopolitical risks 
on energy markets using advanced methods. For instance, Alqahtani and 
Taillard (2020) analyzed the impact of GPR on oil price returns and 
found that oil prices do not respond to shocks in GPR, and the GPR does 
not cause oil returns. Liu et al. (2021) show that geopolitical uncertainty 
increases the volatility of crude oil and natural gas. Meanwhile, Zheng 
et al. (2023) highlighted that short-term geopolitical risk shocks induce 
substantial and prolonged volatility changes in commodity futures pri
ces. Hoque et al. (2023) analyzed returns and volatility connectedness 
and spillover among carbon, climate, and energy futures. The authors 
found that geopolitical risk, equity market volatility, financial stress, 
and clean energy innovations drive market connectedness.

Despite these advances, several limitations persist in the literature. 
Many studies are restricted to specific crises, such as the COVID-19 
pandemic or the Russia–Ukraine war (Chatziantoniou et al., 2022; 
Armeanu et al., 2023), and predominantly analyze oil and gas com
modities (Gong et al., 2021). Few studies adopt a comprehensive 
approach that spans multiple crises and integrates clean energy markets 
with traditional energy commodities (Ferreira et al., 2022). Addition
ally, conventional methods often rely on static or linear frameworks, 
which fail to capture the non-linear and time-varying nature of spill
overs and information flow in energy markets.

Despite these advances and although some recent studies evaluate 
the return relationship between energy commodities or between energy 
commodities and clean energy indexes (Ahmad, 2017; Asl et al., 2021; 
Batten et al., 2017; Bondia et al., 2016; Dawar et al., 2021; Ferreira 
et al., 2022; Geng et al., 2017; Saeed et al., 2020; Saeed et al., 2021), 

several limitations persist in the literature. Many studies are restricted to 
specific crises, such as the COVID-19 pandemic or the Russia–Ukraine 
conflict [e.g., Armeanu et al., 2023, Chatziantoniou et al., 2022 or Roy 
et al., 2023 for an extensive literature review in this regard] and 
consider mostly oil and gas commodities (Gong et al., 2021; Mensi et al., 
2021). Few studies adopt a comprehensive approach that covers mul
tiple crises, integrates clean energy markets with traditional energy 
commodities, consider the geopolitical risk and its sub-indexes in their 
evaluation (except Alqahtani and Taillard, 2020; Hoque et al., 2023; Liu 
et al., 2021; Zheng et al., 2023) and apply methods that simultaneously 
can capture the non-linear dependence, identify the direction of the 
influence between commodities (allowing a refined analysis of the 
cause-effect relationship), and be robust against noise (which is partic
ularly useful in markets with high levels of volatility, as in this case) or 
can be applied in situations of non-stationarity and asymmetries. 
Additionally, traditional methods often rely on static or linear frame
works, which fail to capture the non-linear and time-varying nature of 
spillovers and information flow in energy markets. This study adopts a 
dynamic and non-linear approach to address these gaps, using DFA and 
TE to evaluate market efficiency and directional spillovers. By incor
porating six energy commodities and two clean energy indexes over a 
broad period, this research extends existing studies by focusing on the 
role of geopolitical risks as net transmitters/receivers of spillovers. We 
used the Geopolitical Risk Index (GPR) created by Caldara and Iacoviello 
(2018) and its sub-indexes, Geopolitical Threats (GPRT) and Geopolit
ical Acts (GPRA), to measure risk transmission dynamics. This index has 
been used in several recent studies [see, for example, Gabriel et al., 2024
for an extensive list of studies where it has been applied]. Indeed, this 
comprehensive approach provides a deeper understanding of how en
ergy markets respond to geopolitical risks and extreme events, offering 
new insights for investors and policymakers.

3. Data and methods

3.1. Data

The data comprises six energy commodity futures, two clean energy 
indexes, the geopolitical risk index (GPR), and its two subindexes (GPRA 
and GPRT). All the variables are identified and described in detail in 
Table A1. The selection of variables for this study reflects their signifi
cance in capturing key dynamics within the energy sector and the 
geopolitical environment. Each variable contributes uniquely to un
derstanding market behaviors, spillovers, and the influence of external 
risks, as detailed in Table A1 in the Appendix. The combination of these 
variables ensures a comprehensive analysis of energy market efficiency, 
spillover dynamics, and the role of geopolitical risks, capturing both 
traditional and renewable energy markets. Their inclusion provides 
robust insights into market behaviors under diverse economic and 
geopolitical conditions, enabling a nuanced understanding of energy 
sector dynamics.

Considering the referred and the market significance, the sample 
covers different energy types, allowing a better understanding of the 
relationships in this sector. Furthermore, these energy commodities are 
extensively traded in the global energy market, exerting a significant 
influence on the dynamics of the worldwide energy market and the 
overall economic situation. Considering geographic dispersion, com
modities and indexes from different continents were selected, increasing 
coverage of the analysis performed.

The data on the commodity futures in the energy sector were ob
tained from the Thomson Reuters DataStream, and the GPR data and its 
sub-indexes were retrieved from the Geopolitical Risk website 
(https://www.matteoiacoviello.com/gpr.htm). The data covers 
February 13, 2007 (due to data availability) to February 20, 2024. This 
period includes several extreme events, such as the European Sovereign 
Debt Crisis (ESDC) of 2011/2012, the Arab Spring of 2011/2012, the 
Crimea occupation by Russia in March 2014, Brexit in June 2016, the 
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COVID-19 pandemic, which began at the end of 2019 but intensified in 
2020, and the war between Russia and Ukraine, among others. This long 
period allows a comprehensive view of long-term market trends and 
structural changes in commodity markets.

Including these crises provides a comprehensive understanding of 
how cleaner energy markets react to diverse economic, geopolitical, and 
social disruptions. The ESDC, which destabilized financial systems, 
tested the resilience of cleaner energy investments under financial stress. 
Similarly, the Arab Spring highlighted the role of geopolitical instability 
in driving the need for energy diversification and secure alternatives. 
The Crimea occupation by Russia in 2014 marked a significant escala
tion in geopolitical tensions, impacting energy supply chains, particu
larly in Europe. Brexit in 2016 introduced political and economic 
uncertainty, influencing European energy policies and investment flows. 
The COVID-19 pandemic intensified in 2020, disrupting global supply 
chains and emphasizing the importance of resilient energy systems. 
Finally, the Russia–Ukraine war, ongoing since 2022, has drastically 
impacted global energy markets by reshaping energy trade dynamics 
and pricing mechanisms and the prioritizing cleaner energy alternatives. 
These crises collectively offer a unique lens to examine the intercon
nectedness of cleaner energy and traditional energy commodities during 
systemic shocks, enabling a nuanced analysis of market efficiency and 
spillover dynamics.

The frequency of data is of utmost importance, both statistically and 
economically (Narayan and Sharma, 2015). As we aim to assess the 
informational efficiency of energy commodity markets and continuously 
evaluate the connectivity between energy commodities’ future markets 
and the GPR index (and its sub-indexes), having as much information as 
possible is important. Since daily frequency is superior to monthly, 
quarterly, or weekly data when the objective is to extract maximum 
information (Bannigidadmath and Narayan, 2016; Umar et al., 2020), 
our data has a daily frequency.

As already mentioned, the data set comprises six energy commodity 
futures, two renewable energy indexes, and the GPR index (as its two 
sub-indexes) GPR, as detailed in Table 1. Before starting to apply the 
DFA approach with sliding windows, the daily return rates of the 
different commodities were calculated as the difference of logarithms 
between consecutive observations, i.e., rt = ln(Pt) − ln(Pt− 1), where Pt 
and Pt− 1 represent the daily values of a given series on days t and t − 1, 
respectively. On April 20, 2020, crude oil prices briefly dipped into 
negative territory, with WTI futures contracts for May delivery closing at 
around − 37.63 USD/Bbl. As the return rate is calculated as the differ
ence of logarithms, the price observation of this date was not considered 
for all commodities.

To evaluate the stationarity, we performed an augmented Dick
ey–Fuller (ADF) test, being the return series stationary. The Shapir
o–Wilk (S–W) test was conducted to determine whether the return series 
is normally distributed. The null hypothesis was rejected, meaning the 

returns do not follow a normal distribution, i.e., the return series are fat- 
tailed. All the energy commodities (except HB_NatGas) show positive 
mean and high kurtosis values, i.e., leptokurtic distributions (a stylized 
fact in financial markets). Both renewable energy indexes display high 
kurtosis values but negative mean (i.e., these indexes decrease their 
values). Regarding the skewness, only gas commodities reveal positive 
values, meaning a higher probability of positive returns than negative 
ones.

4. Methods

The weak form of efficiency is based on the historical independence 
of returns. Although short-term memory in financial series can incen
tivize investors to exploit additional returns (Bariviera, 2017), the long- 
term correlations motivate investors. Thus, it is important to use 
methods that allow identification of long-term memory rather than 
solely providing information about its presence when, in fact, what 
exists is short-term memory.

Peng et al. (1994) created the DFA to analyze DNA behavior. How
ever, considering its main goal is to evaluate temporal autocorrelation at 
different moments, it was quickly applied to other research areas. It is 
frequently used to study financial market behavior (Liu et al., 1997; 
David et al., 2020; Sukpitak & Hengpunya, 2016; Tiwari et al., 2018; 
among others), even in the case of non-stationarity.

One of the main goals of this study is to study the long-range auto
correlation in the commodity markets, analyze the existence of serial 
dependence, and evaluate the efficiency of these markets. The DFA 
could be employed to this end. As we aim to explore its evolution, we 
performed a dynamic analysis by applying the DFA approach with 
sliding windows. This approach allows us to analyze the evolution of the 
DFA exponent over time.

The DFA is then applied to the return rates series, which are time 
series xk with k = 1,…., t equidistant observations. Considering Peng 
et al. (1994) and Peng et al. (1995), the DFA follows the next steps: (i) 
integration of the return series, as presented in Eq. (1): 

Xk =
∑k

t=1
xi − 〈x〉 (1) 

being 〈x〉 the average of x; (ii) division of the new series Xk into non- 
overlapping boxes of size n; (iii) calculate, with ordinary least squares 
(OLS), the local trend (X̃k) of each box. This step is used to detrend the 
profile Xk and to obtain the fluctuation function given by Eq. (2): 

F(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

k=1

(

Xk − X̃k

)2
√
√
√
√ (2) 

The DFA procedure aims to estimate the log–log relationship be
tween the fluctuation function (F(n)) and the dimension n, with this 

Table 1 
Description of the data used and descriptive statistics, stationarity (ADF), and normality (S–W) tests.

Mean Std. Dev. Kurtosis Skewness ADF S–W n

WTI 0.00006 0.030 87.680 − 2.344 − 14.386*** 0.777***

4131

Brent 0.00009 0.024 9.738 − 0.398 − 14.117*** 0.918***
UK_NatGas 0.00019 0.047 12.293 0.682 − 15.976*** 0.849***
HB_NatGas − 0.00037 0.035 7.658 0.306 − 15.290*** 0.944***
NY_ULSD 0.00012 0.023 9.665 − 0.690 − 15.071*** 0.920***
EU_LS 0.00012 0.023 28.775 − 1.288 − 14.967*** 0.888***
RENIXX − 0.00006 0.022 9.160 − 0.139 − 14.102*** 0.913***
SP_GCE − 0.00017 0.020 10.682 − 0.447 − 14.497*** 0.887***
GPR 0.00017 0.412 1.529 0.016 − 24.426*** 0.991***
GPRA 0.00040 0.010 1.381 0.003 − 24.476*** 0.033***
GPRT 0.00002 0.008 1.049 − 0.056 − 24.341*** 0.023***

Notes: (i) The table presents the six commodity futures, the two renewable energy indexes analyzed, and the geopolitical risk index (as its two sub-indexes) used. It also 
presents the symbol of each commodity/index used; (ii) n represents the number of observations; (iii) Std. Dev. represents the standard deviation; (ii) ADF corresponds 
to the Augmented Dickey-Fuller Test; (iv) S–W corresponds to the Shapiro-Wilk normality test; (v) n represents the number of observations; (vi) *** means the values 
are statistically significant at a 1 % significance level; (vii) the start date is February 13, 2007, and the end date is February 20, 2024.
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relationship being a power-law of n, equal to F(n) = ∝nα, meaning that 
F(n) increases with the box size (n). The α exponent corresponds to the 
slope of the line relating log(F(n) ) to log(n) quantifies the empirical 
strength of the long-range power-law auto-correlations of the signal, and 
it can be used to identify the level of persistence (Zebende et al., 2017). 
Function F(n) behaves as a power of n, and α can be interpreted as fol
lows: (i) if α = 0.5, the series could be described as a random walk, 
meaning there is no long-range dependence, and the autocorrelation 
function is zero for any period. This interpretation is consistent with the 
EMH, and the market could be considered efficient. The series is a white 
noise; (ii) if 0 < α < 0.5, there is negative long-range dependence, and 
the series has an anti-persistent behavior related to the market’s in
efficiency; (iii) if 0.5 < α < 1, there is positive long-range dependence, 
and the series has persistent behavior, which is also related to the 
market’s inefficiency; (iv) If α > 1, long-range dependence is not 
explained by a power-law relation, the series is non-stationary.

The DFA with a sliding windows approach is relatively common in 
financial literature [Cajueiro and Tabak, 2004a, 2004b]. This approach 
allows the detection of the evolving nature of non-linear predictability, 
the changing degree of market efficiency and the analysis of the dynamic 
behavior of the αDFA exponent. Furthermore, this approach can smooth 
the trend signal and eliminate the possible discontinuities in the 
detrended signal (Almeida et al., 2013). In this approach, it is necessary 
to limit the size of windows, which could be understood as a limitation 
because it just covers a part of the sample. In financial literature, several 
window lengths have been used [for example, Vogl (2023) for a detailed 
overview]. The window length should not be too large or too short to 
retain sensitivity to changes in the scaling properties occurring over time 
and provide good statistical significance, respectively (Morales et al., 

2012). Thus, our estimations were based on a window of 500 observa
tions (about two years). This situation means that we transform our 
whole sample into sequential samples of 500 observations, i.e., starting 
by calculating the DFA for the sample from t = 1,…,00; then for t = 2,
…,501; and so on. With this procedure, we have a wide set of exponents, 
as shown in Figs. 1 to 4. Thus, we will ultimately have a set of DFA 
exponents instead of a single DFA exponent.

To evaluate each commodity market’s degree of efficiency and 
evolution over time, we adapted the EI introduced by Kristoufek and 
Vosvrda (2013) and applied a sliding windows approach, too. This index 
has already been used in several studies that aim to evaluate and 
conclude about the efficiency of financial markets [e.g., Costa et al., 
2019]. This index is given by Eq. (3): 

EI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
M̂i − M*

i
Ri

)2
√

(3) 

Where M̂i and M*
i are each of the values for the DFA exponent and the 

expected value for market efficiency, respectively. The last is equal to 
0.5 in the case of the DFA. The Ri is the range of the measure, equal to 
one in the case of the DFA. The difference between M̂i and M*

i allows us 
to assess the distance to the random level (0.5).

Specific time-series properties and an asymmetric measure are 
required to quantify the information flow in a financial context (Dimpfl 
and Peter, 2014). Based on the Shannon entropy, precisely on mutual 
information, Schreiber (2000) proposed a measure of the information 
flow, the TE, as displayed in Eq. (4): 

Fig. 1. Evolution of the DFA exponents (on the top) and the EI (on the bottom) for the WTI and Brent commodity futures. 
Note: (i) the figure shows the evolution of the DFA exponents for WTI (on the top left) and for Brent (on the top right) commodity futures; (ii) the length of the 
window is 500 observations.

D. Almeida et al.                                                                                                                                                                                                                                Energy Economics 141 (2025) 108113 

5 



TEYX(k, l) =
∑

x,y
p
(

yt+1, y(k)
t , x(l)

t

)
log

p
(

yt+1|y(k)
t , x(l)

t

)

p
(

yt+1|y(k)
t

) (4) 

The TE is a directional measure of the dependence between two 
variables [see, for example, Behrendt et al., 2019] and widely used in 
several research areas, from neuroscience (Haresign et al., 2022), en
gineering (Naef et al., 2022), physics (Fidani, 2022), economics and 
finance (Dimpfl and Peter, 2013; Ferreira et al., 2022; Kwon and Yang, 
2008; Sensoy et al., 2014), among others. The presence of information 
flow may be tested using the bootstrap method proposed by Dimpfl and 
Peter (2013). To identify which of the paired variables influence each 
other, we used the net TE, which is given by NET TEYX = TEYX − TEXY. 
Thus, the dominant direction of the information flow could be, in this 
case, (i) positive, if TEY→X(k, l) > TEX→Y(k, l), meaning the dominant 
direction flow is from Y to X; (ii) negative, if TEY→X(k, l) < TEX→Y(k, l), 
meaning the dominant direction flow is from X to Y; (iii) equal to zero, if 
TEY→X(k, l) = TEX→Y(k, l), meaning the flow in both directions has the 
same dominance.

For a time-varying analysis of the behavior between variables and to 
evaluate the relationship dynamics between them, we apply the sliding 
windows approach considering consecutive windows of 500 observa
tions, as was done in the dynamic long-range autocorrelation assessment 
(when the DFA approach was used). For example, this approach facili
tates, as in the case of crises or other extraordinary events, the identi
fication of how those events affect the bidirectional relationship 
between variables. All the estimations of the TE were made using the R 
package RTransferEntropy.

The combination of DFA and TE provides a robust framework for 

analyzing long-range dependence, market efficiency, and information 
flow dynamics in energy markets. DFA helps identify persistence in 
time-series data, while TE quantifies bidirectional information flow 
between variables. EI captures deviation from randomness in market 
evolution. Integrating these methods allows for a comprehensive un
derstanding of market behavior, particularly in the context of energy 
markets and geopolitical risks. TE’s directional analysis reveals how 
global risk factors impact the energy sector, enriching assessments of 
market interconnectivity. The sliding windows approach in TE analysis 
helps identify temporal changes in bidirectional relationships during 
crises. This multidimensional perspective enhances understanding of 
energy market efficiency and interdependence.

5. Empirical results and discussion

5.1. Long-range dependence and market efficiency

Aiming to analyze the dependence dynamically, we performed a 
sliding windows DFA based on windows of 500 observations. These 
windows were considered to allow the analysis of these markets’ 
behavior under several extreme events, including the ESDC. With this 
analysis, we can understand the evolution of those exponents over time, 
obtaining information about the evolution of long-range autocorrela
tion. The results are presented in Figs. 1–4, where the black lines 
represent the evolution of the αDFA exponents over time and the red bars 
are the standard deviations of the DFA estimations.

We calculated the EI using the estimated values of the dynamic DFA 
as a reference and applied a sliding windows approach to evaluate the 
efficiency level of the commodity futures series. In this case, an EI = 0 

Fig. 2. Evolution of the DFA exponents (on the top) and the EI (on the bottom) for the UK_NatGas and HB_NatGas commodity futures. 
Note: (i) the figure shows the evolution of the DFA exponents for UK_NatGas (on the top left) and for HB_NatGas (on the top right) commodity futures; (ii) the length 
of the window is 500 observations.
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means the market is considered efficient, while on the opposite side, the 
higher the value of the EI, the further away from the efficiency of the 
market. The evolution of EI is displayed in Fig. 1 to Fig. 4.

5.1.1. Crude oil
Brent and WTI display a similar pattern except from 2020 to 2022, 

where Brent clearly shows persistent behavior, while WTI displays αDFA 
exponents near 0.5, a result that aligns with Cheong (2009). In the 
period near the ESDC and the Arab Spring, both changed their behavior 
from anti-persistent to persistent. The beginning of this period, in which 
Brent and WTI display different behavior, coincides with the spread of 
COVID-19, and the WTI reversed its anti-persistent trend, approaching 
what is considered an efficiency level. At the same time, Brent accen
tuated its persistent trend, moving away from the considered efficiency 
level. Thus, this crisis seems to have affected the efficiency of these 
commodities, corroborating Agyei et al. (2023) and Shehzad et al. 
(2021). In the period near the beginning of the war between Russia and 
Ukraine, both commodities changed their pattern, with Brent changing 
from a persistent to anti-persistent behavior and WTI changing from a 
pattern near the efficiency level to an anti-persistent behavior.

The EI for both WTI and Brent commodity futures display similar 
patterns almost all the time, with Brent displaying a higher level of in
efficiency. After the first quarter of 2020, Brent and WTI increased the 
level of EI, meaning they became more inefficient. Near March 2021, 
WTI reversed this pattern, reducing its level of EI, while Brent only 
reversed this pattern by the end of the first quarter of 2022. Although 
Brent displays a higher level of inefficiency, their values converge to a 
similar level by the end of the sample.

Our findings align with those of Tiwari et al. (2019), who found that 

Brent oil futures are less efficient compared to WTI oil futures but 
contradict those of Mensi et al. (2014), whose results show that the 
European Brent index is less inefficient than the WTI index. This evi
dence highlights the need for continuous assessment of market 
efficiency.

5.1.2. Natural gas
Concerning both natural gas commodity futures, they display pat

terns that change from persistence to anti-persistence, with HB_NatGas 
closer to the level of 0.5 from the middle of 2013 until the middle of 
2014, when it also displays lower EI values. On the other hand, the 
UK_NatGas is closer to the level of 0.5 near the period of the Brexit 
referendum, which could mean that the British government could have 
implemented more transparent policies and regulations related to the 
energy sector during the Brexit process, including the adequate disclo
sure of relevant information about energy policies, infrastructure pro
jects and regulatory changes, allowing market participants to make 
informed decisions.

At the beginning of the COVID-19 pandemic, the UK_NatGas became 
less anti-persistent, while the HB_NatGas did not significantly change its 
behavior. On the other hand, near the period of the invasion of Ukraine 
by Russia, the HB_Natgas became less anti-persistent, while the 
UK_NatGas did not significantly change its behavior. This result could 
indicate that these two energy commodities do not react similarly under 
the same events. The UK_NatGas seems less sensible to geopolitical 
events, while the HB_NatGas seems less sensible to pandemic events. It is 
curious to observe that a geopolitical event in Europe appears to exert a 
higher effect on the US natural gas market than the UK’s.

Our results are consistent with those of Anderson and James (2021)

Fig. 3. Evolution of the DFA exponents (on the top) and the EI (on the bottom) for the NY_ULSD and EU_LS commodity futures. 
Note: (i) the figure shows the evolution of the DFA exponents for NY_ULSD (on the top left) and for EU_LS (on the top right) commodity futures; (ii) the length of the 
window is 500 observations.
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and Biresselioglu et al. (2023), who observed significant changes in 
energy demand and emissions during the COVID-19 pandemic. For 
instance, the UK experienced a notable reduction in energy demand and 
shifts in the energy mix, with a decrease in fossil fuel usage and an in
crease in renewable energy sources. These changes could correlate with 
the observed less anti-persistent behavior of UK_NatGas. Regarding the 
Russia–Ukraine invasion, this event caused significant disruptions in the 
European energy market, particularly affecting natural gas supplies. 
This observation aligns with the findings of Aliu et al. (2023), Astrov 
et al. (2022), Moskalenko et al. (2024), Nikas et al. (2024) and Zhou 
et al. (2023), and with our observed changes in the anti-persistence 
behavior of HB_NatGas.

The UK_NatGas reveals a higher EI than HB_NatGas during almost all 
the periods; the exceptions are between September 2016 and June 2017 
and after February 14, 2022. The HB_NatGas significantly increased its 
inefficiency level near the beginning of Russia’s invasion of Ukraine. The 
HB_NatGas efficiency seems to be more affected by geopolitical events 
occurring in Europe or the Middle East, which could mean that US 
natural gas production appears to be more affected by these kinds of 
events than European natural gas production. This evidence may also 
reveal that demand and supply dynamics for each natural gas com
modity can vary significantly. While sudden changes in demand or 
supply may have impacted the HB_NatGas due to this crisis, the natural 
UK_NatGas market may have been less affected. Factors like seasonality 
in demand (e.g., winter heating demand in the US) and the availability 
of domestic production can explain this different pattern between the EI 
of UK_NatGas and HB_NatGas.

The natural gas market is more geographically diverse than other 
commodities, which can help mitigate the impact of specific events in a 

region. As natural gas can be produced in various parts of the world and 
transported through pipelines and LNG (liquefied natural gas) terminals, 
shocks in a specific region can offset supply from other regions. These 
facts may explain the lower EI of the natural gas commodity futures than 
the remaining ones.

5.1.3. Refined oil product futures
Regarding the low sulfur diesel and gasoil, both commodities’ fu

tures display similar patterns oscillating between persistence and anti- 
persistence. In contrast, the low sulfur gasoil has persistent behavior 
during a higher period. At the beginning of 2011, NY_ULSD and EU_LS 
changed their behavior from anti-persistent to persistent (a similar 
pattern to Brent and WTI). EU_LS maintained this behavior until the 
middle of 2014, while NY_ULSD changed to an anti-persistent behavior 
in the middle of 2011. Between 2014 and 2015, the NY_ULSD changed 
from persistent behavior to anti-persistent, while the EU_LS reduced its 
persistence level (becoming closer than 0.5 level). These changes in the 
behavior of both commodity futures may be a response to the annexa
tion of Crimea by Russia in 2014, where the US and the EU imposed 
economic sanctions against Russia (Klomp, 2020), which may have 
affected energy trade and may have influenced the prices of diesel and 
low sulfur diesel since Russia is a major producer and exporter of oil and 
oil products. Since the beginning of 2022 (with the worsening tension 
between Russia and Ukraine), both commodity futures changed their 
pattern, displaying anti-persistent behavior. Both commodity futures 
seem highly sensitive to this kind of regional geopolitical events.

By November 2016, the Organization of the Petroleum Exporting 
Countries (OPEC) agreed to reduce oil production by about 1.2 million 
barrels per day, starting in January 2017. This decision was made to 

Fig. 4. Evolution of the DFA exponents (on the top) and the EI (on the bottom) for the RENIXX and SP_GCE commodity futures. 
Note: (i) the figure shows the evolution of the DFA exponents for RENIXX (on the top left) and for SP_GCE (on the top right) commodity futures; (ii) the length of the 
window is 500 observations.

D. Almeida et al.                                                                                                                                                                                                                                Energy Economics 141 (2025) 108113 

8 



stabilize oil prices, which were historically low due to global oversupply. 
The announcement of the OPEC production cut had an immediate 
impact on oil prices, which may be a possible explanation for the 
reduction of the level of inefficiency, which is more pronounced for 
EU_LS and Brent. On the other hand, natural gas commodities have 
increased their level of inefficiency.

5.1.4. Clean energy indexes
The behavior of the renewable energy indexes is quite different from 

that of the energy commodities, with both energy indexes displaying a 
persistent behavior almost always. Only RENIXX displayed anti- 
persistent behavior uninterruptedly from February 2019 to February 
2020. At the beginning of 2011, during the intensification of the ESDC 
and Arab Spring, both clean energy indexes intensified their persistent 
behavior. Both clean energy indexes display similar patterns regarding 
the EI, with SP_GCE being more inefficient than RENIXX almost all the 
time. The exceptions occurred from the beginning of the analyzed period 
until the beginning of 2015 and during 2020 (from January 2020 until 
the middle of January 2021). During the spread of the COVID-19 
pandemic, both renewable energy indexes became more inefficient, 
but the increase in the EI was higher for the SP_GCE than for RENIXX.

The clean energy indexes display the higher levels of EI of all the 
samples, and for almost all the periods analyzed, aligned with the 
findings of Ren et al. (2024) but contradicted those of Choi et al. (2023), 
who found that clean energy stocks are reaching parity in terms of price 
fairness and information discovery, suggesting that they may not be as 
informationally inefficient as implied. Factors such as liquidity, trading 
volume, experience and knowledge of investors, regulation, or even the 
profitability-risk binomial can explain this behavior. Energy sector 
commodities generally have a much higher trading volume and greater 
market liquidity than clean energy indexes, making it easier and cheaper 
for investors to buy and sell contracts for these commodities, thereby 
reducing transaction costs and improving market efficiency. Likewise, 
investors and traders in traditional energy commodity markets generally 
have more experience and knowledge about these markets, which can 
lead to better resource allocation and more accurate price assessment. 
On the other hand, clean energy markets may be relatively new and less 
familiar to many investors, resulting in greater volatility and less effi
ciency due to a lack of experience and understanding of the market. 
Additionally, clean energy markets may be more susceptible to gov
ernment regulation and incentive policy changes, which can introduce 
price uncertainty and volatility. For example, changes to solar or wind 
energy tax incentive policies could significantly impact investment 
returns in these areas, making markets less efficient. Due to regulatory 
uncertainty, dependence on emerging technologies, and commodity 
price volatility, investors may perceive clean energy investments as 
riskier than traditional energy commodities. This scenario can result in a 
lower efficient capital allocation for clean energy projects and lower 
investor interest, which could affect market efficiency.

5.2. Directional dependence

As previously explained, we applied the TE in two ways. We began 
with a static analysis and then performed a dynamic analysis (consid
ering sliding windows) for a time-varying assessment.

5.2.1. Static analysis
Our main goals are to evaluate the non-linear and directional 

dependence between energy commodity futures and clean energy in
dexes and the geopolitical risk. To perform this analysis, we applied the 
TE. The results of the TE for the whole sample are presented in the 
heatmap in Fig. 5. The heatmaps should be read as the variables on the 
row transmitting information (influencing) to the variable on the col
umn. The lighter shaded pixels are associated with lower TE values and 
the darker ones with higher TE values. The evidence of the existence of 
these relationships highlights the non-linear complexity of energy 

markets and asymmetric relationships between energy and geopolitical 
risk. These results show that the prices of energy commodities and 
geopolitical risk are inextricably linked, which is consistent with the 
findings of Foglia et al. (2023), who also found an inextricable linkage 
between geopolitical risk and commodity prices, with no persistent 
exogenous shocks (they are quickly absorbed).

All the energy commodity futures and indexes are strong sources of 
information share (influencers) to the GPR index and its sub-indexes (as 
evidenced by darker cells). The results could be a sign that oil prices do 
not respond to shocks in GPR and are aligned with Alqahtani and Tail
lard (2020) and Liu et al. (2021). However, these findings contradict 
those of Yang et al. (2024), who found that GPR significantly affects 
fossil energy prices. Armed conflicts, political tensions, and adverse 
events in major producers (such as the Middle East and Russia) can lead 
to interruptions in production, affecting prices and increasing the 
perception of geopolitical risk. Volatility in energy commodity prices 
often reflects geopolitical uncertainties, such as territorial disputes, 
economic sanctions, or changes in government policies. These un
certainties are reflected in media coverage of adverse geopolitical 
events, which influence the GPR index. Events such as interruptions in 
oil supplies due to natural disasters, terrorist attacks on energy infra
structure, or environmental issues related to oil and gas exploration can 
be interpreted as indicators of geopolitical instability, influencing in
vestors’ risk perception and, therefore, the index GPR. Commodity pri
ces also reflect future expectations. If investors anticipate more 
geopolitical tensions, they may adjust their positions. Thus, these ex
pectations influence prices in the present, even before specific events 
occur, and are covered by the media. Certain energy commodities, such 
as WTI, Brent, HB_NatGas, UK_NatGas, EU_LS, and the clean energy 
index RENIXX, appear to exert a greater influence on the GPRA and 
GPRT sub-indexes than on the GPR index. The GPRA and GPRT are more 
related to the initiation and escalation of war events, terrorist acts and 
threats to peace, which can be influenced by energy availability and 

Fig. 5. Heatmaps for the transfer entropy (TE).

D. Almeida et al.                                                                                                                                                                                                                                Energy Economics 141 (2025) 108113 

9 



prices in different regions. For example, disruptions in natural gas sup
plies could trigger regional geopolitical tensions, affecting these sub- 
indexes. Oil prices, such as WTI and Brent, are key indicators of 
geopolitical instability, as significant changes in these prices can reflect 
events such as conflicts in the Middle East or economic sanctions on 
large producers. These events often have a direct impact on GPRA and 
GPRT indexes. Conversely, the UK_NatGas commodity futures influence 
the GPR and GPRA more than the GPRT, and the SP_GCE influences the 
GPR and GPRT more than the GPRA.

The UK_NatGas and HB_NatGas seem to have no similar influence on 
the GPR, GPRA, and GPRT indexes. The UK_NatGas may influence GPR 
and GPRA more than GPRT for several reasons. Natural gas is a crucial 
energy commodity, and the UK significantly depends on it for domestic 
consumption and its industries. Therefore, fluctuations in the UK_Nat
Gas commodity futures prices can directly impact the country’s econ
omy and, consequently, the perception of geopolitical risk, aligning with 
Zakeri et al. (2023). Issues relating to energy security and UK energy 
policy may be more directly related to the categories included in the 
GPRA, such as war initiation and escalation of war, than those in the 
GPRT, such as nuclear threats and terrorism.

On the other hand, the HB_NatGas commodity futures influence 
GPRA and GPRT more than GPR. Fluctuations in HB_NatGas prices may 
reflect changes in production, supply, and demand in the US, which may 
have more direct implications for regional and global geopolitics events. 
The US plays a significant role in geopolitical affairs, and events or 
policies that affect US natural gas production and trade can directly 
influence risk perceptions regarding geopolitical threats, including 
escalation of war and terrorist acts. Furthermore, natural gas is a global 
commodity, and changes in HB_NatGas prices can influence interna
tional energy market dynamics, thus impacting the categories included 
in GPRA and GPRT.

Notes: (i) lighter red corresponds to lower TE levels and darker red to 
higher levels of TE; (ii) ** depicts the significance of the causality at a 5 
% level; (iii) on the top heatmap – panel a), the geopolitical risks 
transmit information (influence) the energy commodities and indexes; 
(iv) on the heatmap below – panel b), the GPR index and its sub-indexes 
(GPRA and GPRT) receive information (are influenced) from the energy 
commodities and indexes, i.e., the energy commodities transmit infor
mation (influence) the GPR and it sub-indexes.

Heatmaps are useful tools that provide an image of the results. 
However, we calculated the NET TE to assess better what energy 

commodities and indexes are net influencers or influences. The results 
are presented in Fig. 6. Blue means that the energy commodities and 
indexes are net-influenced, while red means that energy commodities 
and indexes are net influencers. The reference is the column on the left 
side of the heatmaps. From the heatmap on the top (Fig. 6 – panel a)), it 
can be easily seen that most of the GPR and its sub-indexes (GPRA and 
GPRT) are net influenced by the energy commodities and indexes. On 
the other hand, the heatmap below (Fig. 6 – panel b)) highlights that 
most of the energy commodity futures and clean energy indexes are net 
influencers of the GPR and its sub-indexes.

Note: Positive and negative NET TE values are represented in red and 
blue, respectively. The red color indicates that the commodity or index is 
a net influencer, while the blue color indicates that it is net-influenced.

Dutta and Dutta (2022) analyzed the impact of GPR on renewable 
energy ETFs. They found that increased GPR leads to a shift towards 
clean energy, reducing market volatility. This result suggests that clean 
energy indices can act as influencers in the context of geopolitical risks, 
which our findings also indicate. Exceptions to the referred are the 
NY_ULSD and RENIXX, with the former being a net influencer of GPR 
and GPRT and the second a net influencer of GPR and GPRA. The results 
demonstrate that energy markets feel risk first, which can then be 
measured by the GPR index or its sub-indexes, which are influenced by 
energy prices. Economically, the fact that the GPR index and its sub- 
indexes are net-influenced by the energy sector could mean that en
ergy markets are less sensitive to geopolitical events, which could signify 
a lower energetic dependence between countries and regions. Our re
sults are aligned with Jin et al. (2023), who found that three energy 
markets (namely, the West Texas Intermediate crude oil futures, heating 
oil futures and natural gas futures) exert a net transmitting effect on 
geopolitical risk.

This study reveals the interconnectedness of energy markets with 
geopolitical risks and underscores actionable insights for different 
market participants. For example, they can use the NET TE results to 
predict price shifts and volatility spikes, optimizing investment strate
gies during geopolitical crises. Policymakers can interpret these dy
namics to draft contingency plans that buffer domestic markets from 
external geopolitical shocks. At the same time, renewable energy ad
vocates could advocate for policies that reduce the susceptibility of clean 
energy investments to international conflicts.

5.2.2. Dynamic analysis
To identify the time-varying dynamics of the TE and net TE, we apply 

the sliding windows approach considering consecutive windows of 500 
observations, i.e., we estimate 3632 TEs for each pair under analysis.

In Fig. 7, it is possible to see the evolution of the NET TE between the 
Brent and the GPR index, as well as between Brent and both GPRA and 
GPRT indexes (we made similar analysis for all the commodities and 
indexes used. Due to space constraints, they are not displayed, but they 
are available upon request). On these graphs, a positive value of the NET 
TE (in red) means that the net information flow is from Brent to the GPR 
and its sub-indexes. For example, the graph on the top left means that 
TEBrent→GPR > TEGPR→Brent . On the other hand, a negative value (in blue) 
of the NET TE means that net information flow is from Brent to the GPR 
and its sub-indexes. For example, on the graph on the top left means that 
TEGPR→Brent > TEBrent→GPR.

Between 2009 and 2012, Brent was a net influencer of the GPR and 
its sub-indexes, and there are no very different patterns between the GPR 
and its sub-indexes. During this period, several events, such as China’s 
growing demand for energy, international sanctions imposed on Iran 
due to its nuclear program, and the Arab Spring, among others, 
contributed to high pressure on oil prices and to keep the prices of en
ergy sector commodities at relatively high levels, which may justify the 
evidence found.

Between mid-2012 and the beginning of 2014, the GPR proved to be 
a net influencer of Brent, which is not the case for its sub-indexes GPRA 
and GPRT. During this period, tensions worsened in the Middle East, Fig. 6. Heatmaps for net transfer entropy (NET TE).
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especially concerning Iran’s nuclear program and the conflict in Syria, 
with the potential to interrupt oil production in the region. These 
geopolitical events may have been captured by the GPR index (more 
general than the GPRA and GPRT), thus influencing investors’ percep
tions of geopolitical risk and, in turn, Brent prices.

Between 2017 and 2020, the GPRT was revealed to be a net influ
encer of Brent. This result aligns with previous studies showing that the 
GPR index, particularly the GPRT, is associated with short-term oil fu
tures price volatility (Liu et al., 2024) and that increases in GPRT 
significantly affect the long-run volatility of Brent crude oil prices (Mei 
et al., 2020), supporting the notion that the GPRT index impacts Brent 
prices. In this period, various geopolitical events occurred, such as the 
escalation of tensions between the US and North Korea (with a peak in 
2017), tensions in the Middle East (especially between Saudi Arabia and 
Iran), the increase in large-scale military maneuvers (e.g., those carried 
out by Russia near its borders), and various terrorist attacks (on public 

places, military installations and civilian targets) in multiple countries 
around the world (e.g., the UK, Spain, Austria, France). These events 
may justify the net influencer behavior of the GPRT, considering the 
news categories covered by this index.

Notes: (i) the analysis involves a sliding windows approach based on 
a window size of 500 observations; (ii) positive values of NET TE are 
traced in red, meaning Brent is a net influencer of the GPR and its sub- 
indexes during the periods signaled; (iii) negative values of NET TE are 
traced in blue, and mean that the Brent is a net influenced by the GPR or 
its sub-indexes, i.e., GPR or its sub-indexes are net influencers of Brent.

One of the TE properties is its additivity. Thus, it is possible to 
calculate the mean NET TE. Considering this property and to better 
understand (visualization and interpretation) the information, we con
structed yearly-based heatmaps based on the whole set of TE estimated. 
Fig. 8 displays the yearly evolution of the NET TE between GPR and the 
energy commodity futures and indexes analyzed. We made a similar 

Fig. 7. Time evolution of the NET TE between Brent and the GPR index (on the top left) and its sub-indexes GPRA (on the top right) and GPRT (on the bottom).

Fig. 8. Yearly evolution of the NET TE between GPR and the energy commodity futures and indexes analyzed.
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analysis for the GPRA and GPRT. However, due to space constraints, the 
results are not displayed; they are available upon request. The changing 
colors allow us to identify interesting time-varying patterns in several 
cases.

Brent and RENIXX were revealed to be the most influenced by 
geopolitical risk, while UK_NatGas was shown to be the least influenced 
by this risk. These results are aligned with the results of Ganepola et al. 
(2023), Mgadmi et al. (2024) and Zakeri et al. (2023), with the former 
showing that while geopolitical events influence natural gas prices in the 
UK, other unique factors also play a significant role in electricity price 
fluctuations. This finding suggests that UK_NatGas may be less influ
enced by geopolitical risks than other factors. The GPRA was to be the 
most influential geopolitical risk index of the energy commodities and 
clean energy indexes studied, while the GPRT was the least influential. 
Thus, geopolitical acts influence the energy markets more than geopo
litical threats. The GPRA was a more informative index for the different 
players in this market compared to the GPR and GPRT indexes. 
Regarding commodities in the energy sector, commodities traded in the 
EU markets were more influenced by geopolitical risk than those traded 
in the US market. The exception is natural gas commodities, which are 
more influenced by the US market. The clean energy indexes were the 
most influenced by the GPRA and the GPR, which could mean that these 
markets are more sensitive to geopolitical risk than commodities in the 
energy sector. On the other hand, the clean energy indexes were the least 
influenced by the GPRT, meaning that in situations where geopolitical 
threats are frequent, these indexes can be a hedge for investors. The 
clean energy indexes are net influencers of the GPRT during almost all 
the analyzed periods, aligned with Su et al. (2021).

Although the ESDC began in 2009, it became clear that some EU 
countries faced significant financial difficulties in paying off their sov
ereign debts. The crisis intensified in 2010, when Greece revealed the 
true extent of its fiscal crisis, with a much larger budget deficit than 
initially presented. This crisis reached a critical point in 2011, with 
concerns about the ability of countries like Greece, Portugal, Ireland, 
Spain, and Italy to repay their debts. This situation led to a series of 
financial bailouts and austerity plans. In 2011, the Arab Spring (which 
began in 2010) and the civil war in Syria also peaked. All these events 
may justify the evidence that in 2011, the GPR became a net influencer 
of commodities such as WTI, HB_NatGas, UK_NatGas, and even clean 
energy indexes.

Notes: (i) on the top left cell of the heatmap is represented the basis 
index, i.e., the GPR in this case; (ii) the blue color means that the GPR is 
net influenced by the energy commodities and indexes on the rows. On 
the other hand, the red color means that the GPR is a net influencer.

The GPR is a net influencer of the renewable energy indexes most of 
the time. However, the same does not happen with the energy com
modities analyzed, which contradicts what was expected because crude 
oil commodities and natural gas commodities are generally more 
directly affected by geopolitical events due to the strategic importance 
of these kinds of commodities to the global economy, its established 
market infrastructure, and its interconnectedness with the energy. The 
GPR and GPRA are net influencers, particularly for WTI and Brent since 
2022, which may reflect the conflict between Russia and Ukraine, 
aligning with the findings of Jin et al. (2023). It is curious to observe that 
at the beginning of the analyzed period (2009–2010), GPR and GPRT 
were strongly influenced by almost all of the energy commodity futures 
and clean energy indexes, which may reflect the consensus achieved 
during the Copenhagen Conference.

In 2023, the GPRA was a net influencer for all commodities in the 
energy sector —except for WTI and the clean energy indexes. The 
intensification of tension between Russia and Ukraine and the trade 
disputes between the US and China can be possible explanations for this 
evidence. In 2023, there were also signs of a new financial crisis (e.g., 
the collapse of Silicon Valley Bank and the takeover of Credit Suisse 
Bank) and a global recession, which may explain why in 2023, geopo
litical risk indexes became influencers in the energy sector. Most of these 

events will take place in 2024, which may also justify the influence of 
these indexes on the energy markets considered.

6. Conclusions

In this study, we investigate the dynamics of energy markets (crude 
oil and natural gas commodities and clean energy) and the geopolitical 
risk, focusing on long-range autocorrelation, serial dependence, and 
market efficiency evolution over time. Our goal is to identify the influ
encer and the influenced between energy commodities and geopolitical 
events. All the applied approaches allow the evaluation of the dynamics 
in the energy sector, including non-linear relationships.

The DFA uncovered evolving patterns in market efficiency over time, 
particularly during significant geopolitical and economic events such as 
the COVID-19 pandemic and the Russia–Ukraine conflict. Energy com
modities like WTI and Brent exhibited changes in behavior amidst crises, 
suggesting sensitivity to geopolitical and economic factors. The findings 
from the DFA and EI indicate the potential for forecasting price fluctu
ations, which raises questions about weak-form market efficiency. This 
result is consistent with the research conducted by Demiralay et al. 
(2020) and Roy et al. (2023). Investors and portfolio managers can use 
the insights provided to adjust their investment strategies, considering 
varying levels of efficiency and persistence across different commodity 
futures of energy. Regulators and policymakers may benefit from un
derstanding the factors contributing to market inefficiencies to imple
ment appropriate measures to enhance market transparency and 
stability.

The directional dependence analysis using TE highlighted complex 
relationships between energy commodities, clean energy indexes, and 
geopolitical risk. Although there exists a bi-directional relationship be
tween geopolitical risks and the energy commodity futures and clean 
energy indexes [aligned with Su et al., 2021], generally (in both static 
and dynamic ways), energy markets were found to influence or antici
pate the GPR, as well as its sub-indexes (GPRA and GPRT), with certain 
commodities and energy indexes exerting more influence on geopolitical 
risk indexes than others. Furthermore, the size and the asymmetry of 
directional information transmission vary over time, in line with Gong 
et al. (2021). Our results lead us to conclude another interesting thing, i. 
e., threats and acts do not have a similar effect on the energy sector 
[aligned with Qin et al., 2020], with the GPRA playing a more important 
role as a net influencer than GPRT. The dynamic analysis of NET TE also 
allowed us to conclude another interesting thing, i.e., while GPR and 
GPRA are net influencers of both clean energy indexes during almost all 
the analyzed periods, the same does not happen with the GPRT. This 
result could mean that geopolitical acts directly impact clean energy 
markets more than geopolitical threats, which aligns with Gong and Xu 
(2022). Thus, investors in clean energy should consider the asymmetric 
effects of geopolitical risk on their investment decisions on clean energy.

Our research has uncovered important implications for various 
stakeholders in the energy market. Energy market participants can uti
lize our insights on market efficiency to create customized risk man
agement strategies tailored to specific commodity behaviors during 
times of crisis. By understanding the directional dependencies we have 
identified, policymakers can work towards enhancing market stability 
by implementing regulations that help mitigate the impact of geopolit
ical risks on energy markets. For example, recognizing the increased 
sensitivity of clean energy indexes to geopolitical risks can lead to the 
development of more effective policy frameworks to stabilize these 
markets during periods of uncertainty.

Furthermore, financial institutions can benefit from our findings by 
using them to develop predictive models that can anticipate changes in 
market dynamics, which can help enhance portfolio diversification 
strategies and hedging approaches and ultimately lead to more effective 
risk management practices. Indeed, our research provides valuable in
sights that a wide range of stakeholders can apply to improve decision- 
making and enhance overall market performance.
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The GPR index is derived from the frequency of geopolitical risk 
phrases in the US, UK and Canadian media, but it does not reflect the 
media coverage in other countries. This situation may lead to neglecting 
some critical geopolitical events, which may be identified as a limitation 
of this study and a possible explanation for the weak net information 
from the geopolitical risk indexes to the energy sectors.

For financial market participants, our results about directional and 
pairwise information flow could be used for risk management and hedge 
strategy. For example, financial institutions could use linkage results to 
forecast energy future market trends and improve their hedging per
formances. In addition, changes in the patterns of the information flow 
are connected with some periods when extreme events or crises occur.
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Appendix A. Appendix

Table A1 
Description of the data and symbols used, and rationale for selecting each variable.

Variable Symbol Description Rationale

NYMEX Light Sweet Crude Oil 
Electronic Energy Future

WTI

It tracks the electronic futures contract for light sweet crude 
oil traded on the New York Mercantile Exchange (NYMEX). It 
reflects the market expectations and price movements of this 
benchmark oil.

It is a widely recognized benchmark for crude oil prices in the 
U.S. and is critical for global oil market trends. It also provides 
insights into North American energy markets and their role in 
price discovery.

ICE Europe Brent Crude Electronic 
Energy Future

Brent

It represents the electronic futures contract for Brent crude oil 
traded on the Intercontinental Exchange (ICE) Europe. It is a 
benchmark for pricing two-thirds of the world’s 
internationally traded crude oil supplies.

It represents the benchmark for two-thirds of internationally 
traded crude oil and is indispensable for understanding global 
oil market movements and intercontinental price interactions. 
It reflects intercontinental price interactions and trends in the 
international crude oil market.

Intercontinental Exchange UK 
NBP Natural Gas Electronic 
Monthly Energy Future

UK_NatGas

It reflects the electronic futures contract for UK National 
Balancing Point (NBP) natural gas traded on the 
Intercontinental Exchange (ICE) and provides a reference for 
natural gas prices in the UK.

It is a key regional indicator for natural gas pricing in Europe 
and essential for understanding European energy market 
dynamics and their role in the broader energy landscape.

NYMEX Henry Hub Natural Gas 
Electronic Energy Future HB_NatGas

Tracks the electronic futures contract for natural gas traded at 
the Henry Hub in Louisiana on NYMEX and serves as a 
benchmark for natural gas pricing in the United States.

It is the benchmark for natural gas pricing in the USA and 
captures the dynamics of North American natural gas markets, 
complementing the European perspective provided by 
UK_NatGas.

NYMEX NY Harbor ULSD 
Electronic Energy Future

NY_ULSD

It represents the electronic futures contract for ultra-low sulfur 
diesel (ULSD) traded on NYMEX and reflects market 
expectations and price movements for diesel fuel in the New 
York Harbor region.

It provides insights into the downstream energy market, 
representing price movements of diesel fuel, which is critical 
for understanding regional refined energy product pricing.

ICE Europe Low Sulfur Gasoil 
Energy Future

EU_LS
Tracks the electronic futures contract for low sulfur gasoil 
traded on ICE Europe and provides a benchmark for pricing 
middle distillates in Europe

It offers an analysis of European refined energy product price 
dynamics, which is essential for understanding regional 
market trends.

RENIXX - Renewable Energy Ind. 
Index RENIXX

It tracks the performance of the world’s 30 largest renewable 
energy companies listed on stock exchanges, reflecting the 
overall performance and trends within the renewable energy 
industry.

Highlights global trends and growth potential in the 
renewable energy sector, focusing on the performance of 
major renewable energy companies.

S&P Global Clean Energy Index SP_GCE

An index that comprises companies involved in clean energy 
production and related technologies and reflects the 
performance of the clean energy sector globally.

It reflects diversification within the clean energy sector and its 
sensitivity to external shocks, providing a balanced view of the 
clean energy industry alongside RENIXX.

Geopolitical risk index GPR

Measures the level of geopolitical risk in various regions or 
countries, assessing factors such as political instability, 
conflicts, and economic uncertainties that could impact global 
markets and investments. It reflects automated text-search 
results of the electronic archives of 10 newspapers (six from 
the US, three from the UK, and one from Canada). The index is 
calculated by counting the number of articles related to 
adverse geopolitical events in each newspaper (as a share of 
the total number of news articles), and the search is organized 
into eight categories.

It captures external influences on global energy markets, 
encompassing various geopolitical factors affecting market 
dynamics.

Geopolitical acts index GPRA
A GPR subindex that includes words belonging to categories 
six to eight, i.e., the beginning of the war, escalation of the 
war, and terror acts, respectively

It provides granularity by focusing on the immediate and 
direct impacts of geopolitical events, such as acts of war and 
terrorism, on energy markets.

(continued on next page)
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Table A1 (continued )

Variable Symbol Description Rationale

Geopolitical threats index GPRT
A GPR subindex that includes words belonging to categories 
one to five, i.e., war threats, peace threats, military buildups, 
nuclear threats, and terror threats, respectively.

It provides granularity by focusing on forward-looking 
geopolitical risks, including military buildups and potential 
conflict, offering an anticipatory perspective on market risks.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2024.108113.
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