
Citation: Silva, I.; Salvador, C.; Miller,

A.Z.; Candeias, A.; Caldeira, A.T. The

Role of Bacteria in Pink Stone

Discoloration: Insights from Batalha

Monastery. Micro 2024, 4, 778–797.

https://doi.org/10.3390/micro4040048

Academic Editor: Nurettin Sahiner

Received: 30 September 2024

Revised: 6 November 2024

Accepted: 12 December 2024

Published: 14 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micro

Article

The Role of Bacteria in Pink Stone Discoloration: Insights from
Batalha Monastery
Inês Silva 1 , Cátia Salvador 1 , Ana Z. Miller 1,2 , António Candeias 1,3,4 and Ana Teresa Caldeira 1,3,4,*

1 HERCULES Laboratory & IN2PAST—Associate Laboratory for Research and Innovation in Heritage, Arts,
Sustainability and Territory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal

2 Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas,
Avenida Reina Mercedes 10, 41012 Sevilla, Spain

3 Chemistry and Biochemistry Department, School of Sciences and Technology, University of Évora, Rua
Romão Ramalho 59, 7000-671 Évora, Portugal

4 City U Macau Chair in Sustainable Heritage & Sino-Portugal Joint Laboratory of Cultural Heritage
Conservation Science, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal

* Correspondence: atc@uevora.pt

Abstract: The colonization of historical buildings and monuments by fungi, algae, and bacteria
is a common phenomenon. This often leads to deterioration processes that cause either visual or
structural harm. The Batalha Monastery in Portugal, a UNESCO World Heritage Site, currently shows
significant surface changes to the stone architectural elements within both the Founder’s Chapel and
the church, including a widespread pink discoloration on the walls and columns. The main goal of
this study was to analyze the biological colonization and assess the influence of bacterial communities
on the biodeterioration of Ançã limestone, providing valuable insights to help conservators and
restorers select the best preservation strategies for the monastery. The prokaryote population was
characterized using both high-throughput DNA sequencing and culture-dependent methods and
several orange-pink pigment-producing bacteria were identified, for example, Bacillus, Gordonia,
Serratia and Methylobacterium, as well as Halalkalicoccus, an abundant archaeal genus. The pink
discoloration observed could be due to biofilms created by bacteria that produce pigments, namely
carotenoids. Biocolonization tests were performed using stone mock-ups, which were prepared
and inoculated with the bacteria isolated in this study. These tests were designed to replicate
the natural conditions of the monastery and monitor the colonization process to understand the
discoloration phenomenon.

Keywords: Batalha Monastery; biodeterioration phenomena; pink discoloration; metagenomic
approach; stone materials

1. Introduction

The Batalha Monastery is classified as a UNESCO World Heritage Site and is located in
central Portugal [1]. Known in the country as the ‘Monastery of Santa Maria da Vitória’, it
was built by D. João I, master of the Military Order of Aviz, in gratitude to the Virgin Mary
for the victory in the Battle of Aljubarrota. It is considered an architectural masterpiece,
demonstrating a perfect blend of Gothic and Manueline styles. Initial construction began
in 1386 and took two centuries to complete. The building achieved the status of a royal
pantheon when it received the funerary monuments of D. João I, his wife D. Filipa de
Lencastre, as well as their children and grandchildren, up to D. Manuel I, in the Founder’s
Chapel [2]. In 1840, after the near abandonment of the monastery due to the extinction of
the religious orders in 1834, the first restoration program began, and more than a century
has passed since the last large-scale restoration was completed [3,4].

The microbial colonization of built heritage and monuments by fungi, algae, and
bacteria is a well-known phenomenon. Cultural objects, even though they are made of
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highly resistant materials, are influenced by environmental and microbiological parameters,
which can modify their structure and composition. Biodeterioration caused by microorgan-
isms results not only in the irreversible and irreparable loss of materials’ physical strength,
aesthetic appearance, value, and information but also, occasionally, in the destruction of
the structural integrity of the valuable heritage asset. As the world’s cultural heritage is
unique and irreplaceable, many objects can lose part of their cultural and monetary value,
making it crucial to study biodeteriorative phenomena and find appropriate mitigation
strategies for the conservation and restoration of the damage caused [5–10].

The Batalha Monastery (Portugal) currently exhibits a high degree of surface alter-
ations of the stone architectural elements both inside the church (Figure 1a,b) and the
Founder’s Chapel (Figure 1b), including an extensive pink coloration in the walls and
columns, which appears to be the result of the formation of bacterial biofilms on the surface
of the stone materials.
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Figure 1. Surface alterations of the stone architectural elements both inside (a,b) the church and
(c) the Founder’s Chapel at Batalha Monastery.

Since some microbes might generate colored substances, they can cause chromatic
changes and permanent staining. Carotenoids, which are highly unsaturated isoprene
derivatives of tetraterpenoids and are mostly produced by bacteria but are also produced
by filamentous fungi [11], yeasts [12], algae [13], and lichens [14], are an example of
these colored molecules. Carotenoids exhibit yellow, orange, and red colors and are the
most abundant class of dyes found in nature. This type of pigment plays a key role
in the extraction of light energy, quenching photosensitizers to protect organisms from
oxidative damage, interacting with singlet oxygen and scavenging peroxy radicals to
prevent the formation of dangerous oxygen species, and stabilizing specific pigment–
protein complexes [15–18].

Thus, to identify the phenomena that promote the appearance of these stains on the
walls, a multidisciplinary approach was adopted, incorporating both culture-dependent
and -independent methods, as well as spectroscopy and colorimetry techniques. The
main objectives of our research were to (i) characterize the bacteria colonizing the stone
surfaces, (ii) evaluate the distribution patterns of the bacteria across different sampling
zones, (iii) characterize the pigments produced by these microorganisms, (iv) replicate the
discoloration process observed in the monument, and (v) identify potential solutions to the
staining problem.

2. Materials and Methods
2.1. Sampling Process

The Monastery of Batalha is a Dominican monastery, constituting a cultural, tourist,
and devotional architectural complex, located in the Portuguese village of Batalha, in the
district of Leiria, in the central region of Portugal (39◦39′ 32′′ N 8◦49′33′′ W).
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The sampling process focused on two representative areas of the monastery, selected
due to their evident signs of contamination and alteration, corresponding to (1) walls and
columns of the Church (samples A1 and B1) and (2) walls and columns of the Founder’s
Chapel (samples A2, A3, B2, B3, B4, B5, and B6). The samples were collected under the
coordination of conservators and restorers, fulfilling the conservation requirements and
minimizing the structural and aesthetic impact on the monument, collecting the mini-
mum quantity necessary for testing. Non-invasive methods (swab samples identified with
letter B) and semi-invasive methods (collection of stone microfragments, taken with steril-
ized scalpels, identified with letter A) were used to collect the samples, under semi-aseptic
conditions (collection carried out with sterile material, but in an external environment).
Stone microfragments were collected close to losses or cracks to avoid additional damage.

2.2. Culture-Dependent Methods

The swabs were cultivated aseptically in Nutrient Agar (NA, HIMEDIA—5 g/L peptic
digestion animals, 1.5 g/L beef extract, 1.5 g/L yeast extract, 5 g/L sodium chloride, and
agar 15 g/L). The plates were sealed with biofilm and incubated at 30 ◦C for 24 to 48 h
for bacterial growth. To detect slow bacteria growth, the inoculated Petri dishes remained
in incubation for longer, up to 30 days, and were monitored periodically. Pure bacterial
strains were obtained after successive subcultures of colonies that grew during that period
with different macromorphological characteristics.

The identification of microbiological isolates was based on macroscopic characteristics,
such as texture, colony color, cell dimensions, and morphology. The bacterial strains isolated
from the stone samples were cataloged and stored in the culture collection HERCULES-
Biotech laboratory, University of Évora, and were maintained at 4 ◦C.

Prokaryotic DNA was extracted following the protocol outlined by Rinta-Kanto et al.
(2005) [19]. The PCR products were then purified and sequenced by the external service
provider STAB VIDA (Lisbon, Portugal). The nucleotide sequences were aligned with those
retrieved from the GenBank (NCBI) databases, and homology analysis was performed
using the BLASTN 2.8.0 program.

2.3. Culture-Independent Methods

The NGS approach required the extraction of metagenomic DNA from the original
microsamples, which was performed using the Soil DNA Purification Kit (OMNI Inc., Ken-
nesaw, GA, USA), according to the manufacturer’s instructions. The DNA was quantified
by a fluorometric technique with the Quantus™ Fluorometer equipment (E6150, Promega,
Madison, WI, USA) using the QuantiFluor® dsDNA System Kit (E487, Promega, Madison,
WI, USA).

Bacterial communities were analyzed through Illumina sequencing targeting the V3-
V4 region of the 16S rRNA gene. The DNA was initially amplified for the hypervariable
regions using specific primers and subsequently underwent limited-cycle PCR t o incor-
porate sequencing adaptors and dual indexes. For bacteria, the following primers were
used: forward primer Bakt_341F (5′-CCTACGGGNGGCWGCAG-3′) and reverse primer
Bakt_805R (5′-GACTACHVGGGTATCTAATCC-3′) [20,21].

The procedures for DNA amplification, purification, quantification of amplicons, and
data analysis were performed according to Silva et al. (2024) [22].

2.4. Bacterial Biofilm Formation Capacity Assay

The ability to form bacterial biofilms was determined using the crystal violet method,
which is a classic method for testing this ability from bacterial isolates. The halophilic
isolates were incubated at 30 ◦C, 100 rpm for 7 days in HS liquid medium (250 g NaCl,
20 g MgSO4·7H2O, 3 g trisodium citrate ·2H2O, 2 g KCl, and 10 g bacteriological peptone,
pH 6.5–7.4).

After the growth of the liquid cultures, 90 µL of HS medium and 10 µL of the bacterial
isolates were added to a 96-well polystyrene plate, which was left to incubate at 37 ◦C for
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72 h. After this period of time, the medium was discharged from the plate where the culture
was incubated. The wells were stained with 125 µL of crystal violet (0.1%) for 15 min.
Excess dye was discharged, 200 µL of acetic acid (30% v/v) was added for solubilization,
and the absorbance was read at 595 nm.

To evaluate differences in the capacity of formation of biofilms by the different bacteria
isolates, a one-way variance analysis (ANOVA) was performed with the software IBM
SPSS® Statistics (version 25.0) for Windows (Microsoft Corporation, Redmond, WA, USA).
The homogeneity of population variances was confirmed by Levene’s test, and multiple
comparisons of means were measured using Tukey’s test. A p-value less than 0.05 was
considered statistically significant.

2.5. In Situ Biocolonization Tests
2.5.1. Inoculation

Biocolonization tests were performed by preparing stone mock-ups that were inocu-
lated with the bacteria isolated during the study. This aimed to simulate the monastery’s
natural conditions and monitor the colonization process, providing insights into the discol-
oration phenomenon.

The limestone mock-ups (6 cm2) were washed, dried, and sterilized. To make a liquid
culture, the bacterial isolate (CCLBMBatB3) was diluted in 50 mL of HS liquid medium and
was incubated at 30 ◦C, 100 rpm, for 7 days. The test was carried out using two different
mock-ups, inoculated with the same bacterial isolate: one of them kept under sunlight,
on an incubator shaker, the other kept in darkness, inside an incubator. Both pieces of
equipment were kept at 30 ◦C.

Then, 1 × 1010 CFU/mL of these bacterial suspensions was applied to the stone,
spreading it evenly over the entire stone surface. The assay was monitored by inoculating
1 mL of HS culture medium every two days, and the growth of biofilms on the stone was
monitored every day. A control stone was included in the tests, without any bacterial inoculation.

2.5.2. Colorimetry Approach

The color change of each mock-up used in the simulation tests was measured by a
non-invasive spectrophotometer, KONICA MINOLTA CM-700d (Japan, Osaka). For the
reference measurements, the colorimeter was previously calibrated in terms of black and
white, and the results were checked to ensure that the L*a*b* values for the black and white
referenced samples were approximately (100, 0, 0) and (0, 0, 0), respectively.

The results obtained in the CIE L*a*b* color space defined by the CIE represent the
average of five measurements carried out on the stone surface. The chromatic coordinates
measured were L*, which represents luminosity (0–100); a*, which represents the red/green
axes; and b*, which represents the yellow/blue hue axes (0–100). The C* coordinate,
derived from the previous color space (CIE L*C*h*), which represents chroma (color purity
or saturation), was also analyzed [23]. Changes in these parameters were determined by
calculating the E parameter (total color difference), using the following equation:

∆E = ((∆L) 2 + (∆a)2 + (∆b)2)1/2 ∆L = (L2 − L1); ∆a = (a 2 − a1); ∆b = (b2 − b1)

2.5.3. Raman Spectroscopy

To complement the tests, selected samples were analyzed by Raman spectroscopy
to confirm the identification of the pigments in vitro and in situ, using a Horiba Xplora
Raman spectrometer coupled to an Olympus microscope. Raman spectra were acquired in
extended mode in the 0–2500 cm−1 range. A laser with a wavelength of 785 nm and a 10%
filter was applied. Raman spectra were obtained by accumulating 10 acquisitions of 30 s with a
spectral resolution of 5 cm−1. No sample preparation was required. The spectra were analyzed
with the equipment software (LabSPEC 5 from Horiba Jobin Yvon, France, Longjumeau).
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2.6. In Situ Pigment Cleaning Tests

In an attempt to eliminate the carotenes produced by bacteria on the stone, cleaning
tests were carried out on the limestone mock-ups.

A cleaning solution was prepared with a mixture of pure isopropyl alcohol (E.Merck)
and distilled water, in different concentrations (50, 25, 10, and 5%), and applied to the
stones (500 µL/2 cm2) where the pigmented bacterial biofilm was observed, to evaluate the
pigment removal capacity. The effectiveness of the cleaning solution was measured using
colorimetry, as described in point 2.5.2 of the methodology.

3. Results and Discussion
3.1. Characterization of Microbiota Through Culture-Dependent Methods

Culture-dependent methods allowed the characterization of the cultivable isolated popula-
tion (Table 1), composed of prokaryotic microorganisms, producing interesting pigments.

Table 1. Macromorphological characteristics of bacterial isolates with identification by Sanger
sequencing.

Sample
Macroscopic Characteristics

Bacterial Strain Most Probable
Identification

GenBank
Accession NumberFront Back

B1
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Although conventional culture methods are not sufficient for the complete characteri-
zation of the microbiota, one of the main advantages of culture isolation is that different
organisms can be preserved for further testing, to understand their ecological functions
and identify specific interactions with materials and other organisms. Moreover, isolation
is essential for obtaining new strains for further characterization and description, thereby
enhancing our current understanding of true microbial diversity.

The results of this analysis are described below.
Using culture-dependent methods, it was possible to identify the cultivable popula-

tion present on the degraded areas of stone samples. The isolated strains were identified
as Pseudomonas sp. (CCLBMBat1), Kocuria sp. (CCLBMBatB1-2), Bacillus sp. (CCLBM-
BatB2), Citricoccus sp. (CCLBMBatB2-2), Gordonia sp. (CCLBMBatB3), Micrococcus sp.
(CCLBMBatB4-1_2), and Serratia sp. (PRJNA1140600).

Sample B2 showed a high percentage of identity with Bacillus sp., which is a Gram-
positive, aerobic, neutrophilic, saprophytic, spore-forming bacterium found in diverse
habitats but commonly considered as a soil bacterium [24]. B. megaterium spores, for
example, contain a unique reddish pigment (identified as being consistent with a carotenoid
structure) in their membranes that is not found in other species. This pigment may play a
role in the stability of the spore membranes of this microorganism and therefore may be
important in the resistance properties of the spores [25–27].

Gordonia sp., identified in sample B3, is a Gram-positive, aerobic, and desulfurizing
actinomycete [28], orange-pink in color and capable of using alkanes as a carbon source. It
is described as producing strong pigmentation, associated with reddish carotenoids, espe-
cially when exposed to intense light [29,30]. Of the different carotenoids produced, three
were identified as canthaxanthin (reddish pigment), astaxanthin (salmon pink carotenoid
pigment), and lutein (yellow-orange pigment) [16].

The genus Serratia belongs to the Enterobacteriaceae [31] family and produces pink/red
pigmentation known as prodigiosin [32].

3.2. Characterization of Microbiota Through Culture-Independent Methods

Due to the known limitations of culture-dependent methods for the purpose of this
study, a phylogenetic metagenomic approach was used through Next-Generation Sequenc-
ing (NGS), which has evolved exponentially in recent years, allowing the characterization
of microbial diversity, but also a better understanding of the functions, activities, and
dynamics of microbial communities. This method makes use of small subunit ribosomal
DNA genes, such as 16S, which are found in all prokaryotes and offer a reliable way to
identify microorganisms [33].
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Considering the set of all samples, the dominant phylum (Figure 2a) is Firmicutes (69.40%),
followed by Euryarchaeota (22.14%), Proteobacteria (5.14%), Actinobacteria (2.52%), and 0.80%
for “others” (generic designation corresponding to species with lower representation).
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The results show that the prokaryotic population present on the Batalha Monastery
belongs to the following families (Figure 2b): Planococcaceae (29.72%), Bacillaceae (25.55%),
Halobacteriaceae (22.25%), Paenibacillaceae (6.76%), Staphylococcaceae (6.05%), Burkholde-
riaceae (2.97%), Pseudonocardiaceae (1.09%), Nocardioidaceae (0.60%), and Enterobacteri-
aceae (0.37%). Families classified as “others” represented 4.65% of the population.

At the genus level (Figure 3), the most frequently identified genus was Bacillus
(25.06%), followed by Halalkalicoccus (21.91%), Sporosarcina (12.63%), Rummeliibacillus
(7.98%), Paenibacillus (6.82%), Planococcaceae_incertae_sedis (6.23%), Staphylococcus (6.07%),
Ralstonia (2.17%), Paenisporosarcina (1.32%), Lysinibacillus (0.95%), Oceanobacillus (0.86%),
Burkholderia (0.80%), Haloechinothrix (0.77%), Domibacillus (0.69%), Kribbella (0.58%), Halori-
entalis (0.27%), Halococcus (0.26%), Methylobacterium (0.24%), Tissierella (0.12%), and Paucisal-
ibacillus (0.01%). A total of 4.27% were classified as “others”.
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Bacillus was identified in all of the samples of this study, remarkably in samples B2
(46.48%), B3 (68.14%), B5 (46.65%), and B6 (32.52%). This genus consists of aerobic, spore-
forming, rod-shaped bacteria with great metabolic versatility [34], thriving in almost all
natural environments (soil, water, rocks, etc.). Bacillus endospores are highly resistant to a
variety of environmental stress factors [27,35], and the prevalence of this genus is closely
linked to its ability to form spores, providing significant advantages for microbial survival
and growth in harsh environments. It has been frequently documented in a wide range
of cultural heritage objects, including wall paintings, frescoes, catacombs, paintings, and
stone monuments [36]. Kiel and Gaylarde (2006) reported that some strains of Bacillus
produce acids and surfactants with self-emulsifying activity, indicating that they have the
ability to accelerate processes that lead to the degradation of stone substrates [37].

In the genus Bacillus, there is a wide spectrum of species that produce carotenoid
pigments (such as B. firmus, B. megaterium, B. licheniformis, B. aquimaris, B. atrophaeus, B.
indicus, among others) with a predominance of yellow, orange, and pink, with the intensity
of the color varying depending on the species and the corresponding strain. This type of
pigment in Bacillus has a protective effect against UV radiation, as antioxidants, and located
in membranes, carotenoids are capable of eliminating reactive oxygen species generated by
radiation [26,27].

The genus Halalkalicoccus was identified mainly in samples A1 (22.71%), A2 (93.97%),
and A3 (78,60%). Most species in this genus are pigmented pink, orange, or red due to
carotenoid pigments, and they have been well documented in numerous historical monu-
ments, especially in cases of contamination involving pink discoloration and the production
of saline efflorescences [38–44]. Salts, along with other factors such as temperature, hu-
midity, and sunlight exposure, play a crucial role in influencing microbial communities on
various substrates. Specifically, high salt concentrations create osmotic stress conditions
that favor halotolerant and halophilic microorganisms. This high salinity alters community
structure by selecting for species with specialized adaptations, which can significantly
impact biofilm development and microbial interactions [22]. As a result, high-salinity
environments often lead to the predominance of halophilic taxa, such as Halalkalicoccus,
which are well adapted to thrive under these conditions.

In addition to the genus, some bacterial species were identified by sequencing the
V3-V4 region of the 16S rRNA gene, which are relevant for the production of carotenoids
and pink pigments and, in this context, can contribute to the formation of biofilms, leading
to the pink discoloration observed on the monument. Some of the relevant bacteria were
Halalkalicoccus tibetensis, Rummeliibacillus stabekisii, Bacillus firmus, Bacillus aryabhattai, and
Bacillus cereus.

Bacillus firmus has been scientifically correlated with cultural heritage, as it produces
pink pigments, including carotenoids like astaxanthin [26,45–47]. Another species, Bacillus
aryabhattai, is a UV-resistant and halotolerant rhizobacterium with a strong capacity for
biofilm formation under high-salinity conditions [48,49].

Bacillus cereus produces a reddish-pink pigment (pulcherrimin a) and has been doc-
umented throughout the world mainly (i) in deteriorated wall paintings [50,51]; (ii) on
biodeteriorated stone surfaces, producing a biofilm that leads to the phenomenon called
biopitting [52,53]; (iii) as a biodeteriogen in textiles, especially wool fibers [54]; (v) as a
significantly abundant microorganism that causes serious biodeterioration in limestone—as
it has the capacity to dissolve calcium carbonate [55].

Halalkalicoccus tibetensis is a haloalkaliphilic archaea that thrives in environments with
high pH and salinity, and it produces orange pigments [56].

The HTS approach has proven to be a valuable complement to traditional micro-
biological methods by providing detailed and high-quality data. However, while the
strains isolated through cultivation do not exactly align with the top 20 genera identified in
the NGS data, it remains crucial to continue characterizing the cultivable population for
conducting laboratory simulation assays.
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3.3. Determination of Bacterial Biofilm Formation Capacity

The ability of the bacterial isolates to form biofilms was assessed using the crystal
violet staining method, a widely employed technique for biofilm quantification. This
method involves staining biofilms in microplate wells (Figure 4) to evaluate the early stages
of biofilm formation. The intensity of the resulting stain is directly proportional to the
biofilm biomass, providing a reliable measure of biofilm production [57–59].
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Figure 4. Formation of biofilms on microplates by the bacterial isolate Gordonia.

The ability of the bacterial isolates to form biofilms was determined spectrophotomet-
rically, by reading the absorbance at 595 nm. The results are presented in Figure 5.
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Figure 5. Determination of biofilm formation capacity. The values shown are the mean ± standard
deviation of 16 replicates. Different letters (a or b) indicate different levels of significance.

To compare the biofilm formation capacities of the different bacterial isolates, a one-
way ANOVA followed by Tukey’s post hoc test was conducted at a significance level
of 0.05. This analysis revealed statistically significant differences between the samples
(p < 0.05). Specifically, the isolate SAMN42837401 exhibited a significantly lower absorbance
value, as shown in Figure 5, indicating a reduced capacity for biofilm formation compared
to the other isolates. In contrast, the remaining isolates—CCLBMBat1, CCLBMBatB2,
CCLBMBatB1-2, CCLBMBatB4-1_2, CCLBMBatB2-2, and CCLBMBatB3—demonstrated
similar biofilm-forming abilities.

Given the extended duration of the biocolonization tests and the pigment production
by the other bacteria, which primarily produced yellow and cream-colored pigments,
the isolate CCLBMBatB3, a member of the genus Gordonia and producer of pink-orange
carotenoids, was selected for subsequent in situ testing.
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3.4. Assessment of Carotene Production in In-Situ Biocolonization Tests

The result of the production of the pigmented bacterial biofilm is illustrated below, in
Figure 6a,b.
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3.4.1. Measurement of the Colorimetric Parameters

To evaluate the difference in color between the two stones where the colored biofilm was
produced and the control stone, in situ analyses were carried out using colorimetric techniques.

The measurement of colorimetric parameters in the stone kept in the dark and in
sunlight, using the CIELAB system and the determination of ∆E, is shown in Table 2. These
parameters are also represented in the CIELAB color space (Figure 7).

Table 2. Measurement of colorimetric parameters, using the CIELAB system and determination
of ∆E.

Stone Sample L* a* b* ∆E 1

Control 82.48 ± 0.68 2.19 ± 0.06 10.24 ± 0.13 -
Stone

(dark conditions) 67.39 ± 0.25 14.46 ± 0.76 24.21 ± 0.66 23.95 ± 0.85

Stone
(bright conditions) 70.33 ± 2.40 20.68 ± 4.38 28.57 ± 4.64 28.74 ± 6.61

1 Based on the difference between stained stones and control stone.

The CIELAB color space (Figure 7) uses three values to determine each color (L*a*b*)
and is based on the vision-opposing color theory, which states that a color cannot be green
and red at the same time, nor blue and yellow at the same time [60].

The results clearly suggest a change in the original color of the stone, both in terms of
visualization with the naked eye and observation of the Cartesian coordinates and also in
the measurement of ∆E, calculated from the comparison between the CIELAB parameters
of the two stones. The high ∆E values (>16 units) indicate that the original color of the stone
surfaces in stained regions is significantly compromised. The areas with the development
of biofilms were those that showed significant changes in color, which is largely responsible
for the aesthetic damage observed.

There is also a slight difference in the colorimetric parameters and the color observed
between the stone exposed to sunlight and the stone kept in the dark during the test. The
first presents a higher ∆E (28.74) than the second (23.95), and a more vivid color was also
observed in the stone exposed to light.

The slightly more intense color in the stone exposed to sunlight can possibly be
justified by previous studies, which suggested that Gordonia sp. is a light-induced producer
of carotenoids, based on the selective production of reddish color that is more intense
under higher light and whose growth increases under these conditions [61]. Fernandes et al.
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(2018) also highlighted the importance of incubation time for the development of pigments,
demonstrating that longer cultures, exposed to light, achieve a higher concentration of
carotenoids [62].
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3.4.2. RAMAN Spectroscopy

Raman spectroscopy analyses were carried out to support previous results. This
approach enables the detection of carotenoids, which are compounds generated by the
metabolic activity of particular microorganisms. As previously stated, carotenoids may
range in color from yellow to red; therefore, the presence of these molecules is likely
responsible for the reddish stains in the stone.

Raman spectroscopy was applied (i) in vitro, to confirm the production of carotenes by
the isolate CCLBMBatB3, Gordonia sp., and (ii) in situ, in order to characterize the pigments
that were produced in the biofilm developed on the stones.

The results obtained by this technique are illustrated and described below, in Figures 8–10
for in vitro and in situ analysis, respectively.
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Figure 9. In situ Raman spectra of the stone kept in the dark considering the scales (a) 930–1270 cm−1

and (b) 1160–1560 cm−1. The connotation (*) represents peaks corresponding to calcite.

According to the literature, for natural carotenoids, regardless of the end group,
the Raman spectrum is dominated by three characteristic bands at ~1520, ~1160, and
~1000 cm−1 [63].

The Raman spectrum of the CCLBMBatB3 (Gordonia sp.) isolate in vitro (Figure 8)
allowed the identification of the bands 1009.8, 1157.2, and 1516.4 cm−1, characteristic of
carotene compounds [64,65], so spectrophotometric analysis revealed that these microor-
ganisms have the ability to promote pigmentary changes in culture.

In the limestone mockup kept in the dark (Figure 9), the peaks 1000, 1006.6, 1155.6,
1260, and 1517.9 cm−1 were identified, equally characteristic of carotene compounds. In
the stone exposed to sunlight (Figure 10), the peaks 1000, 1160.6, 1260, and 1279.7 cm−1

were identified, corresponding to the identifying peaks of carotenes.
Gordonia sp., the bacterial isolate used in the test, is described as producing the

well-known pigments lutein, canthaxanthin (4,4′-diketo-β-carotene), and astaxanthin (3,3′-
dihydroxy-β,β′-carotene-4,4′-dione) [16]. The theoretical values of these compounds were
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identified as 966, 1009, 1159, 1195, 1277, 1448, and 1520 cm−1 for astaxanthin [66]; 1008,
1159, and 1525 cm−1 for lutein [67,68]; and 1512, 1269, 1189, 1159, and 999 cm−1 for
canthaxanthin [69].
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Figure 10. In situ Raman spectra of the stone exposed to the sunlight. The connotation (*) represents
peaks corresponding to calcite.

In fact, the carotenes lutein, canthaxanthin, and astaxanthin present similar resonance
Raman spectra in terms of Raman shifts and relative signal intensities [67].

3.5. Evaluation of Cleaning Solution Effectiveness in Pigment Removal
3.5.1. Stone Mockup Kept in the Dark

Cleaning material-based works of art involves preserving the aesthetics, legibility, and
physical and chemical stability of the materials [70]. The results before and after cleaning
the stone and the resulting colorimetric parameters are represented in Figure 11 and Table 3,
respectively.
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Figure 11. Cleaning test on stone (in conditions of darkness) stained by bacterial biofilms: (a) before
and (b) after the cleaning process.
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Table 3. Measurement of colorimetric parameters: cleaning test with the stone mockup in conditions
of darkness.

Sample L* a* b* ∆E 1

Stone
(dark) 67.39 ± 0.25 14.46 ± 0.76 24.21 ± 0.66 -

Sol. 50% 77.82 ± 0.50 5.33 ± 0.18 15.51 ± 0.24 16.37 ± 0.44
Sol. 25% 74.73 ± 0.86 5.49 ± 0.24 16.40 ± 0.27 13.99 ± 0.68
Sol. 10% 71.95 ± 3.90 4.76 ± 0.45 15.40 ± 1.12 14.40 ± 0.74
Sol. 5% 74.32 ± 0.16 4.71 ± 0.07 15.83 ± 0.30 14.60 ± 0.26

1 based on the difference between the spaces where the cleaning solution was applied and the stained stone.

Based on Figure 11 and Table 3, it can be seen that the cleaning solution efficiently
removed carotenes from the stone at all concentrations used. The 50% concentration
appears to produce the best results (∆E = 16.37), although the other concentrations also have
sufficiently high values to allow effective removal, which is an advantage when they are
applied directly to monumental stone. Figure 12 below also illustrates, through reflectance
measurement, the production of similar results between the different concentrations used
in cleaning.
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Figure 12. Measurement of reflectance (%) for the cleaning solutions (stone kept in the dark).

Sample reflectance (%R) corresponds to the output of the spectrophotometer and is,
by definition, a measure of the ability of a surface to reflect light or other electromagnetic
radiation. Reflectance measurement has been used to detect biofilm-related color changes
and to assess the extent of microbial colonization on various substrates. Additionally,
the relationship between increased reflectance and biofilm removal efficacy has been
documented in previous studies, demonstrating that reflectance measurements can provide
a quantitative assessment of surface cleanliness after biofilm removal [71–73].
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In this case, the stone stained by the pigments will have a characteristic reflectance,
which will be influenced by the presence of these pigments. Generally, microbial biofilms
tend to reduce the reflectance of the surface, making it darker or more opaque. If the
cleaning process is effective, it will remove the biofilms, exposing the original surface of
the stone. The reflectance of the cleaned stone will generally be higher, as the original
stone surface reflects more light than a surface covered by biofilms. Thus, an increase in
reflectance after cleaning generally indicates that the surface of the stone was effectively
cleaned, removing most of the pigments.

As shown in Figure 12, the solution with 50% isopropyl alcohol exhibited the highest
colorimetric parameters for delta E and reflectance, suggesting that this concentration pro-
duced the greatest differences and was the most effective at removing carotenoid pigments.
However, all cleaning solutions were effective and produced similar results, indicating they
should be suitable for removing biofilm-induced coloration from stone surfaces.

3.5.2. Stone Mockup Exposed to Sunlight

The results relating to the cleaning test on the stone in bright conditions are illustrated
in Figure 13 and Table 4.
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Figure 13. Cleaning test on stone (in bright conditions) stained by bacterial biofilms: (a) before and
(b) after the cleaning process.

Table 4. Measurement of colorimetric parameters: cleaning test with the stone mockup in bright conditions.

Sample L* a* b* ∆E 1

Stone
(bright) 70.33 ± 2.40 20.68 ± 4.38 28.57 ± 4.64 -

Sol. 50% 76.51 ± 1.01 5.33 ± 0.38 16.65 ± 0.82 20.42 ± 0.93
Sol. 25% 75.47 ± 0.71 5.02 ± 0.15 17.05 ± 0.47 20.12 ± 0.47
Sol. 10% 75.32 ± 0.44 5.35 ± 0.23 16.84 ± 0.23 19.24 ± 0.28
Sol. 5% 75.22 ± 0.85 4.68 ± 0.32 16.55 ± 0.82 20.61 ± 0.90

1 based on the difference between the spaces where the cleaning solution was applied and the stained stone.

Figure 14 below also illustrates, through reflectance measurement, the production of
similar results between the different concentrations used in cleaning.
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Figure 14. Measurement of reflectance (%) for the cleaning solutions (stone exposed to the sunlight).

In the case of the stone exposed to sunlight, all cleaning solutions produced very
similar and effective results, visible both through colorimetric parameters and through
reflectance measurement. This is advantageous because it allows for the consideration
of using the lowest concentration, which is certainly preferable when treating heritage
materials, as it minimizes potential damage while still being effective.

4. Conclusions

Bacterial biofilms frequently cause discoloration on cultural heritage stone monu-
ments, including the pink discoloration on the Batalha Monastery’s walls and columns.
Using both culture-dependent and -independent methods, we identified key colonizing
genera—Halalkalicoccus, Bacillus, Gordonia, Serratia, and Methylobacterium—as contributors
to the biofilms. Techniques like colorimetry and Raman spectroscopy further characterized
the pigments and color changes, showing that Gordonia biofilms intensified discoloration
in sunlight. Cleaning tests on limestone effectively removed the pigments, demonstrat-
ing the safety of the solution for heritage use. We believe this study is a crucial step
toward developing an accurate and effective conservation and intervention plan (includ-
ing monitoring and mitigation treatments) for the Batalha Monastery, a UNESCO World
Heritage monument.
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