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Abstract: This paper introduces EIF-SlideWindow, a novel enhancement of the Extended Information
Filter (EIF) algorithm for Simultaneous Localization and Mapping (SLAM). Traditional EIF-SLAM,
while effective in many scenarios, struggles with inaccuracies in highly non-linear systems or environ-
ments characterized by signicant non-Gaussian noise. Moreover, the computational complexity of
EIF/EKF-SLAM scales with the size of the environment, often resulting in performance bottlenecks.
Our proposed EIF-SlideWindow approach addresses these limitations by maintaining a xed-size
information matrix and vector, ensuring constant-time processing per robot step, regardless of tra-
jectory length. This is achieved through a sliding window mechanism centered on the robot’s pose,
where older landmarks are systematically replaced by newer ones. We assess the effectiveness of
EIF-SlideWindow using simulated data and demonstrate that it outperforms standard EIF/EKF-
SLAM in both accuracy and efciency. Additionally, our implementation leverages PyTorch for
matrix operations, enabling efcient execution on both CPU and GPU. Additionally, the code for this
approach is made available for further exploration and development.

Keywords: SLAM; Kalman lter; extended Kalman lter (EKF); Gaussian noise

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a core problem in robotics and
autonomous systems involving the estimation of a robot’s pose (its position and orientation)
and the creation of a map of an unknown environment using sensor data. SLAM is
inherently complex and typically requires the integration of multiple sensor types, including
cameras, LIDAR, and inertial measurement units (IMUs), to yield accurate and reliable
estimates of the robot’s pose and the surrounding environment map.

SLAM is commonly framed as a probabilistic inference problem, where the objective is
to estimate an optimal robot pose and map by maximizing the posterior probability, based
on sensor measurements. Various algorithms exist to solve SLAM, notably the Extended
Kalman Filter (EKF) [1], Particle Filters (PFs) [2], and Graph-based SLAM [3].

The EKF (and its variants) and GraphSlam are among the most widely used SLAM
algorithms (see examples of applications listed (https://www.cvlibs.net/datasets/kitti/
eval_odometry.php, accessed on 1 November 2024) using [4,5]. However, GraphSlam heav-
ily depends on detecting loop closures, which are crucial for correcting accumulated errors
but can be challenging to identify. This requires robust and efcient methods to determine
when a robot revisits a previously seen location. Additionally, GraphSlam’s complexity can
increase quadratically with the number of landmarks and poses in the environment.

Other proposals focus on optimizing the efciency of the algorithm, as demonstrated
in approaches that employ sub-maps [6–8]. However, dividing a map into sub-maps
can lead to inaccuracies when integrating these sub-maps, as error accumulation across
boundaries can disrupt global consistency. Additionally, sub-map management often
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requires assumptions about independence or minimal correlation between regions, which
may not hold in complex or densely featured environments, potentially degrading accuracy.
Moreover, while sub-mapping reduces immediate computational load, it can introduce
overhead in tracking and updating sub-map boundaries, which becomes particularly
challenging in dynamic or large-scale environments. Lastly, the memory required to store
and update multiple sub-maps in real-time scales linearly with the number of sub-maps,
potentially constraining performance in resource-limited systems.

Recent advancements in the eld include approaches that incorporate deep learning,
as outlined in [9]. However, the quasi-analytic solutions derived from the EKF and its
SLAM variants remain among the most effective methods currently available [4,10]. Deep
learning solutions are increasingly applied in Visual SLAM (camera-based data), beneting
from advancements in image and video processing [11].

The EKF is arguably themostwidely used estimation algorithm for nonlinear systems [12,13].
A notable variant of the EKF is the Extended Information Filter (EIF); mathematically, the
EKF and EIF are equivalent, but EIF matrices link poses and landmarks, which is critical to
our proposed method, EIF-SlideWindow.

EIF-SLAM is a recursive algorithm that estimates the robot’s pose and environment
map by iteratively updating the state estimate using sensor data. The EIF operates un-
der the assumptions of Gaussian noise and linearity, which may lead to inaccuracies in
highly nonlinear systems or in environments with signicant non-Gaussian noise. Addi-
tionally, the computational complexity of the EIF/EKF can grow substantially with larger
environments, resulting in performance issues.

In this paper, we present a novel approach to EIF-SLAM, the EIF-SlideWindow, de-
signed to address these limitations by maintaining accuracy and improving efciency. Our
approach processes each step in constant time, regardless of the trajectory length, making it
suitable for real-time scenarios.

Our EIF-SlideWindow approach modies the EIF algorithm to keep the information
matrix and vector at a xed size. This sliding window is designed to act as a queue, where
outdated landmarks are removed, and new ones are inserted as the robot moves, preserving
a consistent matrix size along the trajectory. The sliding window is centered on the robot’s
current pose, allowing for efcient computation without sacricing recent information.

It is important to note that our approach does not use the sub-map technique; instead,
the environment is treated as a whole, maintaining correlation throughout the entire
trajectory. However, we leverage the sliding window concept due to the limited inuence
of more distant or disconnected points relative to the current points [14], allowing us
to use only a data window that achieves an optimal balance of efcacy and efciency
in the calculations.

We evaluate our proposed method using simulated data and compare its performance
to the standard EIF/EKF-SLAM algorithm. Results indicate that our approach improves
both accuracy and efciency. We further demonstrate the real-time capabilities of our
approach, highlighting its potential for practical applications.

For experimentation, we developed our code in Python, leveraging PyTorch for ef-
cient matrix operations and compatibility with both CPU and GPU processing. This setup
also facilitates future integration with the Python Rosbag package for real-data evaluation.

The rest of this paper is organized as follows: Section 2 provides a detailed overview
of the EIF-SLAM algorithm and its limitations. Section 3 describes our proposed EIF-
SlideWindow approach. Section 4 presents our experimental results, comparing the perfor-
mance of our approach with that of the standard EKF and EIF-SLAM algorithms. Finally,
in Section 5, we conclude the paper and discuss future research directions.

2. Extended Information Filters (EIFs)

The Extended Information Filter (EIF) builds on the same mathematical foundation as
the Extended Kalman Filter (EKF) to solve the Simultaneous Localization and Mapping
(SLAM) problem, but it represents the information in a different form. The EKF extends
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the standard Kalman lter to handle nonlinear systems, which makes it suitable for SLAM
applications. Both the EKF and EIF estimate a posterior distribution over the robot state,
denoted by E, which is modeled as a multivariate Gaussian distribution. The posterior
distribution is conditioned on previous measurements (e.g., from LIDAR) and past robot
motion commands.

The mathematical formulation of the EKF/EIF assumes that measurement errors
follow a Gaussian distribution N(µ, σ2), whose probability density function, evaluated at
x = E, is given by:

f (x  µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 . (1)

When applying the EKF/EIF to the SLAM problem, the likelihood function seeks to
estimate the most probable conguration of the state E given the robot motion commands
and measurements (e.g., LIDAR-based landmark detections). Since we are interested in
the maximum-likelihood estimate, rather than the absolute probability values, we can
disregard constant factors in Equation (1). Thus, Equation (1) simplies to:

f (x  µ, σ2) ∝ e−
(x−µ)2

2σ2 . (2)

Given the large number of measurements typically available in real-world scenar-
ios (e.g., multiple landmark detections per robot step), a matrix representation is more
computationally efcient.

Let pt represent the robot’s pose at time t, where we dene pt = (xt, yt, θt). Here, xt
and yt are the Cartesian coordinates at time t, and θt is the robot’s orientation (heading
angle) from time t− 1 to t. Let N denote the total number of landmarks in the environment,
with each landmark ln dened by its Cartesian coordinates (xn, yn), where 1 ≤ n ≤ N.

The complete state E of the environment at time t can then be dened as:

Et = (pt, l1, . . . , lN), (3)

which can be expanded to:

Et = (xt, yt, θt, x1, y1, x2, y2, . . . , xN , yN).

Equation (3) represents a vector that includes the robot’s pose at time t, as well as the
coordinates of all landmarks in the environment (see Figure 1).

Then, the posterior distribution of the robot state is dened as:

p(Et  zt, ut) ∝ e−
1
2 (Et−µ)TS−1

t (Et−µ), (4)

where:

• zt = z1, . . . , zN denotes the set of observations up to time t, with each observation
zn = (distn, θn) representing the distance and bearing from the robot’s pose pt to
a landmark ln, for 1 ≤ n ≤ N.

• ut = u1, . . . , ut represents the sequence of motion commands up to time t, with each
motion command ut = (distt, θt) specifying the distance and bearing over the interval
[t− 1 : t], i.e., from pose pt−1 to pt.

• µ is the mean of the distribution.
• St is the covariance matrix.
• T denotes the transpose operation.



Big Data Cogn. Comput. 2024, 8, 193 4 of 16

Figure 1. Example of trajectory and landmarks.

Starting from Equation (4), we expand the exponent term, yielding:

p(Et  zt, ut) ∝ e−
1
2 E

T
t S

−1
t Et+µTS−1

t Et− 1
2µ

TS−1
t µ. (5)

Following the simplication used in Equation (1), the constant term (last term in
Equation (5)) can be removed without affecting the outcome of this development. Thus,
we have:

p(Et  zt, ut) ∝ e−
1
2 E

T
t S

−1
t Et+µTS−1

t Et . (6)

The term S−1
t in Equation (6) is known as the information matrix, denoted by Ht,

and µTS−1
t is called the information vector, denoted by bt. Therefore, we dene:

Ht = S−1
t , bt = µTS−1

t = µTHt.

Using this alternative representation, we obtain the Extended Information
Filter (EIF) formulation:

p(Et  zt, ut) ∝ e−
1
2 E

T
t HtEt+bTt Et . (7)

Finally, the estimate of the state Et can be computed as:

Et = H−1
t bt. (8)

From a mathematical perspective, the EKF and EIF formulations are equivalent. How-
ever, the information matrix Ht is symmetric, and its entries directly correspond to the
elements (i.e., poses and landmarks) in the environment. Figure 2 illustrates the matrix Ht
and its relationships with the robot’s poses and landmarks in the environment.

This property will be crucial in our proposed approach, as the information matrix H
and vector b will serve as the basis for the sliding-window EIF.
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Figure 2. Information matrix Ht=3 at time step t = 3, showing the connections between the robot’s
pose Pt=3 and the environmental landmarks. Panel (a) depicts the robot’s pose and the environ-
mental landmarks, while panel (b) shows the information matrix Ht=3 (left) and the information
vector bt=3 (right).

According to the SLAM process, with each LIDAR measurement, the information
matrix H and vector b must be updated as follows:

1. Prediction of the robot pose and covariance S from (t− 1) to t;
2. Update (or correction) of the robot pose and covariance: Adjust the state estimate

with the new LIDAR measurements and rene the covariance.

It is worth noting that the entries in Ht in Figure 2b do not directly represent coordi-
nates in the environment as shown in Figure 2a.

In a real-world scenario, the robot operates in a nonlinear environment (such as
2D space with x and y coordinates), which complicates the analytical computation of
the Gaussian distribution. To address this, a linearization process is commonly used,
making it possible to apply either the Extended Kalman Filter (EKF) or the Extended
Information Filter (EIF).

To incorporate both the motion command ut = (dist, θ) (between consecutive poses)
and LIDARmeasurements (between pose and landmark), both quantities must be linearized
before updating the information matrix H and vector b.

Following traditional Kalman lter methodology, we approximate nonlinear functions
with a rst-order Taylor series expansion, replacing the rst derivative with the Jacobian
matrix of partial derivatives.

We avoid further mathematical details here, which are available in [15]. However,
a critical component of the Kalman lter algorithm is this linearization process, applied in
each of the two steps outlined above.

In the rst step (motion prediction), the next robot pose is modeled by a deterministic
nonlinear function g plus independent Gaussian noise:

Et = Et−1 + ∆t where ∆t = g(Et−1, ut) + Pt, (9)

where ∆t is the change from state Et−1 to state Et, t is a Gaussian random variable with zero
mean and covariance determined by the sensor properties (LIDAR or IMU) or manually
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set for simulated scenarios, P is a projection matrix that scales t, and g is the nonlinear
function of the robot’s motion.

The function g can be approximated using a rst-degree Taylor series expansion
as follows:

g(Et−1, ut) ≈ g(µt−1, ut) +
∂g(µt−1, ut)

∂E
(Et−1 − µt−1), (10)

where the Jacobian matrix ∂g (also written as ∂g(µt−1,ut)
∂E ) captures the partial derivatives of

g with respect to the state E.
In the second step (update or correction), a second deterministic nonlinear func-

tion h plus independent Gaussian noise ϵt is used to model the robot’s measurements,
e.g., LIDAR observations:

lt = h(Et) + ϵt, (11)

where h is similarly approximated by a Taylor series expansion:

h(Et) ≈ h(µt) +
∂h(µt)

∂E
(Et − µt). (12)

Here, ∂g and ∂h are the Jacobians of g and h, respectively.
Choosing the values of µt−1 and µt is crucial for accurate linearization of these nonlin-

ear functions. A typical choice is to use the following approximation:

µt = bt−1H−1
t−1 + ∆̂xyθ ,

µt−1 = bt−1H−1
t−1,

where ∆̂xyθ represents the displacement in x, y, and θ from time (t− 1) to t, calculated
using ut = (dist, θ). This estimate may lead to drift over time, as errors accumulate
with each movement. One solution is to repeat the linearization several times, each time
using progressively better estimates to linearize g and h, achieving convergence after
sufcient iterations [16].

However, this iterative approach can be computationally expensive, especially during
the update step, as each landmark measurement requires a separate linearization and
update. The prediction step, on the other hand, involves a single linearization of g.

Finally, we can express H and b for the two steps as follows:

1. Prediction of the robot pose:

Ĥt =

(I + ∂g)H−1

t−1(I + ∂g)T + PtPT
−1

, (13)

b̂t = µT
t Ht. (14)

2. Update or correction of Ĥt and b̂t:

Ht = Ĥt + ∂hϵ−1∂hT , (15)

bt = b̂t +

Z+ ∂hTµ


ϵ−1∂hT , (16)

where:
Z = h(ξt)− h(µt),

and ξt is an initial estimate of the robot state, computed as ξt = g(ξt−1, ut), with
ξt=0 = Et=0.

Here, I is the identity matrix with dimensions [dim(E), dim(E)].
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3. Our Proposal: EIF-SlideWindow

As is well known, nonlinear Kalman lter (KF) variants share a common limitation:
computational cost and memory requirements grow with the trajectory length, even in
environments with limited spatial extent.

Specifically, the update step in the Extended Kalman Filter (EKF), where measurements for
N active landmarks are processed at each robot timestep, represents a computational bottleneck.

For the EKF, the dimensions of the observation matrix H and the measurement vector b
are determined primarily by the total number of timesteps T and the number of landmarks.

In practical scenarios, two distinct cases may arise:

1. Online Estimation : Data from sensors (e.g., LIDAR) are processed in real-time at
each timestep. Here, the nal values of T and N are unknown, so H and b grow
incrementally as new observations are incorporated.

2. Ofine Estimation: All data are collected before processing, so T and N are xed
in advance.

In both cases, signicant data volumes must be handled. For instance, a typical LIDAR
sensor may capture thousands of points per second, posing challenges in both processing
time and memory usage.

This results in a key trade-off for the EKF algorithm and its variants between accuracy,
computational load, and memory usage. Reducing the number of landmarks or robot poses
over a xed trajectory length reduces both memory and processing time but at the cost of
reduced estimation accuracy and vice versa.

In this paper, we propose a modication to the Extended Information Filter (EIF)
algorithm to maintain xed dimensions for H and b. At each timestep, newly observed
landmarks are incorporated and the robot’s current state is updated. To keep the dimensions
of H and b constant, we employ a sliding-window approach where older landmarks are
removed from consideration as new ones are added. This window centers on the current
robot pose, effectively maintaining a xed-size state representation over the entire trajectory.

Figure 3 illustrates the sliding window (highlighted in blue) associated with a robot
pose (indicated by a circle) at time t. As shown in Figure 3, the state Et consists of the
current robot pose and the landmarks within the window (see Equation (3)).

Figure 3. Slide window (square) associated with a robot pose (highlighted with a circle);
RectangleSize = size(H).

This strategy aims to achieve constant processing time as the robot continues its
measurements along its path.

To mitigate the potential loss of accuracy due to reduced constraints (i.e., fewer
landmarks), the time saved can be reallocated to enhancing the linearization process,
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particularly during the prediction step, which has the potential to signicantly improve
estimation accuracy. However, it is important to note that this aspect has not been explicitly
explored within the scope of the current work.

3.1. Size of Sliding Window

At each robot pose, a large set of landmarks in the environment is detected. However,
only a xed subset is associated with each pose for use in the EIF algorithm. The number
of landmarks associated with each pose depends on factors such as computational power,
available memory, and the desired accuracy or error in the trajectory estimation.

By adjusting the sliding window size, these variables (computing load, accuracy,
and memory usage) can be balanced. In real-time applications, the sliding window size is
often constrained by available memory and computational resources.

We dene the sliding window size SW as:

SW =

dim(p) + k · Nlp · dim(l)


k,Nlp ≥ 1 (17)

where Nlp is the number of landmarks selected per pose step, k is the number of previous
robot steps, dim(p) is the dimension of the robot state vector, and dim(l) is the dimension
of the measurement vector. For example, in a planar setting, dim(p) = 3 and dim(l) = 2,
where the robot features vector p is (distx, disty, θ) and the measurement features vector l
is (dist, θ).

Using SW, we can now dene the dimensions of H, b, and the state vector as follows:

size(H) = [SW, SW]

size(b), size(state) = [SW, 1]

Thus, SW determines the dimensions of H, b, and the state vector for the EIF-
SlideWindow algorithm.

3.2. Updating H, b, and E According to the Sliding Window Size

In our approach, updating refers to the process of remove, move, or insert operations on
a matrix or vector. Specically, we dene these operations as follows:

Eupdating = UpdE(E, Lt) ⇒ Chain Process(remove → move → insert) (18)

[Hupdating, bupdating] = UpdHb(H, b) ⇒ Chain Process(remove → move) (19)

where Lt is the set of landmarks associated with the current robot pose. This updating task
incurs minimal computational cost.

Note that until the number of robot steps reaches k (as dened in Equation (17)), no
updating is performed. Once updating begins on H, b, and the state vector, the oldest block
of landmarks of size Nlp is removed, and the remaining blocks are shifted to make room
for the new landmark block. Figures 4–6 illustrate the updating process for the state vector,
vector b, and matrix H, respectively.

Algorithm 1presents a detailed pseudocode of our proposed algorithm, EIF-SlideWindow,
closely following the structure of the corresponding Python implementation. We incor-
porate both mathematical notation and Python-style pseudocode to enhance clarity and
facilitate understanding of the algorithm’s logic and ow. Line 19 performs the updating
process, while lines 24 to 31 carry out the prediction step, during which the linearization
process can also be rened.



Big Data Cogn. Comput. 2024, 8, 193 9 of 16

Figure 4. A simple example of updating the state vector with Nlm = 1 and k = 3. The red box
highlights the items that are moved during the update.

Figure 5. Simple example of updating matrix b where Nlm = 1 and k = 3. The red box highlights the
items that are moved during the update.

Figure 6. Updating the matrix H with Nlm = 1 and k = 3. The middle image is the result of “remove”
items from the top image, and the bottom image is the result of “move” items from the middle image.
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Algorithm 1 EIF-SlideWindow Algorithm

Require:
1: Commands → ut(dist, θrumbo).
2: Nl p, landmarks number by pose.
3: k, number of robot previous steps
4: Ltl1, l2, . . . ln=Nlm Landmarks from a robot step
Initialize:
5: ListStates = [], t = 1, maxItr > 0
6: SW = (dim(p) + k× Nlm × dim(l)) dim(p) = 3, dim(l) = 2
7: State Et=0 = zeros(SW, 1), insert pt=0 and Lt=0

8: Simple estimate State ξt=0 = Et=0

9: Information matrix Ht=0 = diagOnes

SW, SW



10: Information vector bt=0 = ET
t=0Ht=0

11: Covariance Motion  → size

dim(p), dim(p)



12: noisemot = RanMulN

mean=0, 


→ size


dim(p), 1



13: Covariance measurements  → size

dim(l), dim(l)



14: noisemes = RanMulN(mean=0, ) → size

dim(l), 1



15: while Lt ̸= NULL do
16: ξt = ξt−1 + ∆xyθ + noisemot
17: ∆xyθ = [distut × cos(θξt−1 ), distut × sin(θξt−1 ), θ]
18: Et = Et−1 + ∆xyθ
19: if t > k then
20: ξ = UpdE(ξ, Lt) E = UpdE(E, Lt)
21: H = UpdHb(H) b = UpdHb(b)
22: else

23: ξ ←

ξ
Lt


and E ←


E
Lt



24: end if
25: while itr ≤ maxItr do ▷ Prediction and linearization
26: µt−1 = bH−1

27: µ = µt−1 + ∆xyθ ∆xyθ = [distut × cos(θµt−1 ), distut × sin(θµt−1 ), θ]
28: Gmot = diagOnes(ZW,ZW)

29: Gmot[2,0:2]=[distut × (−sin(θµ)), distut × (cos(θµ))]

30: H = GmotH−1GT
mot + PPT

31: b = µTH
32: itr+ = 1
33: end while
34: for each l ∈ Et do l is x,y ▷ measure Update
35: if l is considered from this robot pose then
36: µt = bH−1

37: z = [dist, di f Ang] + noisemes dist=L2dis(ξt, l); di f Ang = atan2(ξ, l)− θξ

38: ẑ = [dist, di f Ang] dist=L2dis(µt, l); di f Ang = atan2(µ, l)− θµ

39: C=zeros(ZW, dim(l))
40: C[0:dim(p)−1,0] = diff/d diff=µt − l; d=L2dis(µt, l)
41: C[indl , 0] = −(diff/d) indl is the index of l in C
42: C[0 : dim(p)−1,1] = [−diff[1]/d2, diff[0]/d2]

43: C[indl , 1] = [diff[1]/d2, −diff[0]/d2]
44: C[dim(p)−1,1] = −1
45: H = H + C−1CT

46: b = b+

(z− ẑ) + CTµt


−1CT

47: end if
48: end for
49: ListStates.Add(bH−1)
50: t+ = 1
51: end while
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4. Experimental Design

To validate our proposal, we present results that demonstrate its accuracy and ef-
ciency through the use of simulated data, offering a controlled environment for rigorous
evaluation. This methodology enables benchmarking across a range of predened scenarios,
ensuring that the algorithm adheres to established performance standards. By leveraging
simulations, we can conduct a comprehensive assessment, allowing for renement and
optimization prior to real-world implementation.

The experiments were conducted on a computer with the following specications:

• RAM: 15 GiB
• Processor: Intel Core i5− 8300H CPU @ 2.30 GHz ×8 cores
• GPU: GeForce GTX 1050 Ti with 4 GiB of VRAM

Using the pseudocode in Algorithm 1, we developed an implementation of the EIF-
SlideWindow algorithm in Python. To optimize performance, particularly for matrix
operations, we leveraged the PyTorch library, allowing us to utilize both CPU and GPU
processing for comparative analysis.

To evaluate trajectory estimation accuracy and computational efciency, we employed
the Extended Kalman Filter (EKF) and the standard Extended Information Filter (EIF) as
reference benchmarks. The code for the EKF and EIF, along with parameter initialization,
was obtained from [15] (https://github.com/theevann/SLAM, accessed on 1 November
2024). This setup enables direct comparison with validated implementations, and all
algorithms were executed under identical hardware conditions to ensure a fair comparison.

In accordance with [15], the following parameters were dened:

• The noise associated with robot motion and sensor measurements is modeled by
zero-mean Gaussian noise:

 =



0.0001 0 0

0 0.0001 0
0 0 0.001




 =


0.002 0
0 0.003



• Dimension of robot state: dim(p) = 3; dimension of measurement features: dim(l) = 2.
• Number of active landmarks per robot step: Nactive

lm = 10, as specied in line 33
of Algorithm 1.

• Length of the trajectory (number of robot steps): T = 100.
• Command for robot motion: u(dist, θ), where 0 ≤ dist ≤ 5 and −π

4 ≤ θ ≤ π
4 .

• Number of iterations for linearization: maxItr = 1, as we do not consider iterations to
improve linearization in these experiments.

It is important to distinguish between Nactive
lm and Nlm. In this context, Nactive

lm refers
to the number of landmarks accepted (true) in line 33, while Nlm denotes the number of
landmarks selected by each robot step, typically derived from LIDAR measurements.

During each robot pose update, landmarks are measured from the surrounding envi-
ronment. In this implementation, Nlm landmarks are distributed around each pose within
an area of approximately 100 meters, consistent with standard LIDAR congurations.

To assess the accuracy of the estimated trajectory, we utilize the Root Mean Square
Error (RMSE), specically the RMSE between the estimated trajectory and the actual
motion. We employ the Python package evo [17] for this purpose (https://github.com/
MichaelGrupp/evo, accessed on 1 November 2024).

Initially, it is crucial to understand the accuracy behavior for varying slide win-
dow (SW) sizes. Figure 7 illustrates the results of accuracy (RMSE) as the size of SW
is incrementally increased.
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Figure 7. EIF-SlideWindow accuracy (RMSE) behavior in the trajectory estimation for different
SW sizes.

Note that with each iteration, where the slide window (SW) size is xed, a trajectory
consisting of 100 steps is generated. Each trajectory is distinct because the robot’s motion is
determined by a random command u (see Figure 8). Furthermore, the minor variations
in RMSE observed for SW > 400 can be attributed to the random Gaussian noise added
to both motion and measurement processes. Notably, the RMSE for the EIF-SlideWindow
algorithm stabilizes when SW > 400.

Figure 8. According to Figure 7, estimated trajectory with SW = 103 and RMSE = 53.5 on right and
estimated trajectory with SW = 1003 and RMSE = 0.1 on left.

On the other hand, we need to compare our approach with the results obtained from
the EKF and EIF algorithms. Given our approach, it is reasonable to anticipate a decrease
in accuracy due to the utilization of fewer landmarks. As in the previous experiment,
we adhere to the parameters established in [15], as dened above. Table 1 presents the
results obtained.

Table 1. Results using a total of 400 landmarks, with 10 active landmarks (Nactive
lm ) per pose over

100 robot steps. The EKF website was accessed on 5 June 2024.

Methods Nactive
lm SW RMSE Time (s) per Step

EKF (https://github.com/theevann/SLAM) 10 803 0.57 0.31
EIF (https://github.com/theevann/SLAM) 10 803 0.55 1.36

EIF-SlideWindow 10 803 0.1 0.13
EIF-SlideWindow 10 403 0.08 0.06

From Table 1, we observe that our proposal yields superior results in trajectory esti-
mation. This improvement may stem from the fact that the number of active landmarks
per robot pose (as indicated in line 32 of Algorithm 1) is xed to manage computational
costs across all algorithms in the state of the art. This constraint on accuracy arises from not
utilizing all available landmarks. However, it is important to note that an abundance of
non-active landmarks may adversely affect accuracy.
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Our experimental results indicate a relationship among the number of active land-
marks, the slide window size SW (which corresponds to the size of the information matrix
H), and the RMSE (see Figure 9). It is evident that achieving a stable minimum RMSE while
increasing the number of active landmarks necessitates a corresponding increase in SW.

Additionally, from Figure 7 and Table 1, we can conclude that our approach demon-
strates improved accuracy compared to the EKF for values of SW > 400.

Figure 9. The result shows that we need to increase SW when more active landmarks are used.

The next aim is to evaluate the efciency of the EIF-SlideWindow algorithm. In this
case, we observe that the algorithm maintains a constant processing time regardless of
trajectory length, given that both the slide window (SW) and the number of landmarks
(Nlm) are xed. Figure 10 illustrates the results for robot trajectories ranging from 100 to
1000 steps, with SW = 1203 and Nactive

lm = 10.

Figure 10. Average time per robot step for varying trajectory lengths with a xed slide window size
of SW = 1203.

Finally, we highlight the advantages of utilizing a GPU. When using the CPU, the pro-
cessing time increases exponentially after SW > 1800 (see Figure 11, top). In contrast,
the GPU exhibits a linear increase in processing time (see Figure 11, bottom). Specically,
we compute the average processing time (in seconds) for each robot pose in a trajectory,
with SW xed. According to Algorithm 1, this average time accounts for all iterations
between lines 15 and 48, which correspond to a single trajectory.
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Figure 11. Processing time when the GPU is used at the top and CPU processing time at the bottom.

4.1. Performance Considerations in Complex Environments

The sliding window approach offers distinct advantages and potential limitations
in moderately complex environments. By maintaining a xed-size state representation
focused on recent poses and landmarks, it ensures computational efciency and real-
time performance by reducing memory and processing demands. In environments with
moderate landmark density or overlapping features, the constrained representation may
reduce accuracy by excluding global correlations. However, its adaptability to local data
makes it effective in scenarios where complexity challenges global methods but remains
manageable for local optimization. This balance highlights its practical benets and areas
for adaptation. Additionally, retaining the entire trajectory in RAM or physical memory
(see Algorithm 1 line 49) enables retrieval and reinsertion to updates process (lines 20, 21).

4.2. EIF-SlideWindow: Parameterization and Design Guidelines

The window size in the EIF-SlideWindow algorithm directly affects its performance,
balancing computational load, estimation accuracy, and adaptability to environmental char-
acteristics. A larger window size retains more landmarks and historical data, which should
improve global correlation and trajectory consistency, particularly in environments with
dense or overlapping features. However, this comes at the cost of increased computational
and memory demands, potentially hindering real-time performance. Conversely, a smaller
window size reduces computational overhead and enhances efciency but may sacrice
accuracy in complex environments by excluding critical correlations.

4.2.1. Relationship with Environmental Characteristics

Environmental complexity plays a pivotal role in determining the optimal window
size. For sparse environments with well-separated landmarks, a smaller window sufces,
as the reduced density minimizes the risk of losing important correlations. In contrast,
medium-to-high-complexity environments, where landmarks are denser or feature overlaps
occur, benefit from larger windows to maintain trajectory consistency and accurate mapping.

4.2.2. Computational Load Considerations

The computational load increases quadratically with the window size due to the
dimensions of the associated matrices, such as H and b. Larger windows necessitate
greater computational resources and may require high-performance hardware for real-
time applications. The sliding window approach ensures that computational demands
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remain predictable, enabling system designers to select a window size appropriate for the
available resources.

4.2.3. Design Guidelines

To balance accuracy and efciency, we propose the following design guidelines:

1. Assess Environmental Complexity: Choose larger windows for dense or overlapping
features and smaller windows for sparse settings with minimal landmark interaction.

2. Consider Computational Resources: Ensure the window size aligns with the available
hardware capabilities, particularly for real-time implementations.

3. Optimize Landmark Selection: Implement heuristics or prioritization strategies to
ensure that the landmarks selected within the sliding windowmaximize informational
gain and contribute effectively to the accuracy of the algorithm.

5. Conclusions and Future Work

This paper has delved into the workings of the EIF-SlideWindow algorithm, an approach
within the field of Simultaneous Localization and Mapping (SLAM). EIF-SlideWindow rep-
resents a signicant advance in addressing challenges typically encountered in SLAM
algorithms. By leveraging the Extended Information Filter, the EIF-SlideWindow algorithm
achieves improved efciency and accuracy, demonstrating a capacity for constant-time
performance across varying trajectory lengths.

The EIF-SlideWindow algorithm provides robust solutions to critical issues such as
computational complexity and real-time operation constraints, enhancing the viability of
SLAM for autonomous systems. The experimental results illustrate the method’s effective-
ness in maintaining accuracy while controlling computational overhead, especially when
compared to traditional EKF and EIF approaches.

Future work will focus on validating this approach with real-world datasets and
exploring the effects of increased iterations on the linearization process to further rene
accuracy. For dynamic or varying environments, future development will aim to incorpo-
rate mechanisms for adapting the window size based on observed changes in landmark
density or environmental conditions. These efforts will aim to expand the robustness and
application of EIF-SlideWindow in diverse, real-time autonomous systems environments.
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