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ABSTRACT
New remote-sensed biomass change products will transform our capacity to monitor and 
validate large-scale carbon dynamic in the next decade. In this study, we evaluated the use 
of multitemporal Airborne Laser Scanning (ALS) and the Climate Change Initiative (CCI) 
BIOMASS spaceborne mission to estimate AGB dynamics in different Mediterranean forest 
over an 8-year period (2010–2018). To do so, we evaluated different maps to estimate change 
in AGB, specifically indirect approach using forest-type specific ALS-based AGB maps using i) 
countrywide ALS coverage at 25 m resolution (2010–2018) and ii) the global, 100-m resolution 
CCI maps version 3 (2010–2018). The change in AGB (ΔAGB) was mapped across the study 
region to compute dynamics by forest type. Our results suggest that the indirect approach 
using ALS-model-based produced more accurate estimates in change of AGB than CCI when 
we compared with the design-based AGB estimation using Spanish National Forest Inventory 
(SNFI) at strata level. The spatial representation of the AGB change indicated that ΔAGB-ALS 
changes by forest type had an overall gain in biomass at regional level. The ΔAGB total and net 
annual changes by year and area (ΔAGB, Mg ha−1 year−1) were closed to the values obtained 
using SNFI at strata level. This study demonstrates the feasibility of enhancing carbon seques
tration and stock capacity in Mediterranean forest using multitemporal ALS data and the 
limitations of global AGB maps at Regional Scale.
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Introduction

Forest information on aboveground biomass (AGB) is 
particularly important to support local, regional and 
national forest planning strategies. The capability of 
forests to act as carbon pools makes them a key actor 
to reduce CO2 concentration in the atmosphere since 
they absorb 30% of the total CO2 emitted into the 
atmosphere globally by year (Houghton & Nassikas,  
2017; Vangi et al., 2022). While other carbon pools 
such as soil organic matter, roots and understory 
vegetation can store huge amounts of biomass, quan
tification of these reservoirs is more difficult and 
expensive (Fahey et al., 2010; Kilpeläinen & Heli,  
2022; Pérez-Cruzado et al., 2012). The carbon seques
tration in AGBD stocks is the most dynamic carbon 
sink in forests and might fluctuate greatly in a forest 
ecosystem during a period of time (Routa et al., 2019). 
Therefore, AGB has a central role to fight climate 
change and anthropogenic emissions by maintaining 

the global climate balance since AGB represents 
nearby 30% of the total carbon sink from terrestrial 
ecosystems (Eggleston et al., 2006; Kumar & Mutanga,  
2017). Despite their importance, there is a lack of 
knowledge about large-scale carbon dynamic from 
Mediterranean forest ecosystems in Europe, and 
incomplete knowledge concerning their functions in 
the global carbon cycle (Keenan et al., 2015). A better 
understanding of the AGB stocks in Mediterranean 
forests is also essential for optimizing land carbon 
sequestration policies (Guerra-Hernández et al.,  
2016; Pascual et at., 2021; Guerra-Hernández, 
Botequim, et al., 2022; Guerra-Hernández, Narine, 
et al., 2022).

Following the recommendations of The 
Intergovernmental Panel on Climate Change (IPCC), 
a combination of field-based inventory plots and Earth 
Observation (EO) data should be used to estimate 
temporal and spatial changes in carbon stocks and 
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forest area (Espejo et al., 2020). Various approaches 
have been applied to report forest biomass stocks and 
fluxes which depend on the technical and financial 
support at national level with different levels of infor
mation (Rozendaal et al., 2022a, 2022b). AGDB can be 
computed using Spanish national forest inventory 
(SNFI) through repeated measurements from plots to 
estimate biomass change (Alberdi et al., 2017; Álvarez- 
González et al., 2014; Eggleston et al., 2006; MITECO,  
2020). Traditionally, forest carbon stocks have been 
estimated with SNFI plots by using tree forest vari
ables (diameter, height and wood density) to apply 
allometric equations (Montero et al., 2005; Ricardo 
et al., 2012; Ruiz-Peinado et al., 2011). Assessing car
bon stock changes between multi-dates NFIs is crucial 
to complete the reports and requirements of an inven
tory of anthropogenic greenhouse gases (GHGs) emis
sions and removals by all the carbon pools at national 
scale (Vangi et al., 2022). However, NFI has certain 
limitations: (i) They are not designed to provide reli
able estimates for geographic sub-populations using 
traditional design-based inference due to the smaller 
sample size networks (Guerra-Hernández, Botequim, 
et al., 2022), (ii) the NFI may be cost-inefficient to 
generate forest inventory information over large spa
tial scales with high frequency (Karimon et al., 2022) 
and (iii) large cycles of NFIs cannot achieve the 
required international reporting frequency of two- 
year carbon stock change in the context of United 
Nations Framework Convention on Climate Change 
(UNFCCC) following IPCC guidelines (McRoberts 
et al., 2018).

On the other hand, integrate remotely sensed (RS) 
data in the methods could help get over the above
mentioned problems related to spatial and temporal 
factors of field AGB data (Liu et al., 2023). Spatially 
continuous information on forest 3D structure is 
needed to better resolve forest biomass distribution 
(Saarela et al., 2020). Some studies have demon
strated the potential of using multitemporal ALS 
data to accurately estimate AGB and its change 
along time from global to more local showcases 
(Cao et al., 2016; Hudak et al., 2012, 2020; Mauro 
et al., 2019; Poudel et al., 2018; Zhao & Popescu,  
2009). However, there are very few studies that show 
the evaluation of AGB at fine-scale resolution over 
large-scale areas and a lack of knowledge about the 
accuracy of estimating AGB change and carbon flux 
using repeated countrywide ALS coverage in 
Mediterranean forest. Otherwise, numerous AGB- 
global maps have been created in the last decade, 
but they are still imprecise for climate and carbon 
cycle modelling (Arnan et al., 2022). Global maps of 

AGB are becoming increasingly available from 
spaceborne satellite missions (Dubayah et al., 2022; 
Harris et al., 2021; Labrière et al., 2022; Santoro & 
Cartus, 2021; Yang et al., 2020). Consistent methods 
and a fair evaluation of global AGB products are of 
increasing importance (Abbas et al., 2020; Arnan 
et al., 2022; Bastos et al., 2022; Hunka et al., 2023). 
Factors such as scale, tree allometries, remote sen
sing technology must be carefully compared to exist
ing AGB data (Karimon et al., 2022). Thus, it is 
important to assess the accuracy of global-AGB 
map, in order to determine the consistency and 
uncertainty of the map at more local scale 
(McRoberts et al., 2022; Persson & Ståhl, 2020).

Transparent, consistence and accurate estima
tions of Mediterranean forest AGB stocks are impor
tant in determining the contribution in global 
carbon dynamics of the Mediterranean forests. This 
study aims to evaluate the utility of multitemporal 
ALS data to account for large-scale aboveground 
carbon dynamics carbon dynamics in 
Mediterranean Forest. This paper provides 
a framework to compare AGB-maps estimates from 
CCI biomass products, AGB-ALS maps, and NFI 
research plots that account for capacity to estimate 
biomass change at regional level. The main of objec
tives of this study were (i) generate spatial estimates 
of AGB and changes (ΔAGB) in large Mediterranean 
forests area using multitemporal ALS-AGB-based 
maps, (ii) evaluate the capability of Mediterranean 
forests to store biomass by using the ALS-based and 
design-based estimations using SNFI and ALS data 
in different forest ecosystems and (iii) comparing 
AGB and ΔAGB using CCI Global AGB maps v3 
product in order to assess the usefulness of global 
maps for AGB estimations at Regional scale.

Data and methods

Study area

Extremadura Region is located in the south-west of 
Spain. The Region is the fifth largest of the Spanish 
autonomous communities with a total area of 
41,633 km2. The forested area covers 19,744.15 km2 

(Figure 1). Eight Forest types from the Spanish 
Forest Map of Spain (SFM) (E:1:25000) (MAPA,  
2018) and the Spanish National Forest Inventory 
(SNFI) sampling desing were used for this study 
(MAGRAMA, 2017). They cover an area of 
18,335.41 km2 i.e. 92.54% of the whole forest area 
(Table 1). Dehesas and Montados are the largest 
formation areas with a 67% of the total forested 
area, followed by Quercus ilex formation 
(Encinares) and Pinus Pinaster with 9.9% and 
4.41%, respectively. We excluded the formation of 
deciduous oak forests dominated by Quercus faginea 
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and Quercus pyrenaica species since some part of 
ALS coverage in Extremadura North from 
the second ALS flight were obtained under leaf-off 
conditions in the winter (Sophie et al., 2020) and 
leaf-on conditions during the summer for the first 
ALS flight. We selected the following eight 
Mediterranean forest types to analyse in this study 
(Table 1) 

Design-based estimations AGB at regional scale 
using SNFI3 and SNFI4 plots

1872 permanent circular plots with 50 m of diameter 
from the sampling desing of SNFI were used from 
SNFI3-SNFI-4 (Figure 1, Table 2). The design-based 

inference method SNFI-3-4 established permanent 
plots using 1 km x 1 km grid inside of forested areas 
of SFM. For further details about the SNFI-4 field data 
and processing, see Álvarez-González et al., (2014) and 
Dorado-Roda et al. (2021).The AGB stock estimates 
for the stock-difference method were estimated using 
only SNFI plots marked with iron poles with the 
centre of each plot located correctly with a metal 
detector between SNFI3-SNF4 (called “A1” in SNFI 
field data protocol). Species-specific tree-level allo
metric equations used by the SNFI (Montero et al.,  
2005; Ricardo et al., 2012; Ruiz-Peinado et al., 2011) 
were used to compute the AGB at time T1(2002) and 
time T2 (2017), respectively, and then aggregated to 
units per surface area at plot level (AGBD) The IPCC 

Table 1. Summary table of the forest types evaluaed in this study.

Code Forest type (FT) main species and description
Sup 

IFN4 (ha)

L101 Dehesas Quercus spp. forest with low tree density,canopy cover > 10% and less than < 20%, extensive 
agrosilvopastoral activity and the presence of sparse old-growth over mature oak forests (Quercus spp.)

1323262.86

L102 Encinares Quercus ilex subsp. ballota (Desf.) Samp) forest without agrosilvopastoral activity and the presence of Middle- 
age oak forest and young stands

196054.13

L103 P.Pinaster Pinus pinaster; Mediterranean resin pine forests 87088.14
L104 Mixed forest 

Quercus ilex
Mixed forest of Quercus ilex and other species broadleads 70596.85

L107 Eucalyptus spp. Eucalyptus spp. forest 57822.57
L108 Alcornocales Quercus suber 56898.69
L109 P.pinea Pinus pinea L. managed for cone production 30664.50
L115 Mixed conifers 

forest
Mixed coniferous forest 4752.10

Figure 1a. 
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guidelines differentiates between two approach to esti
mated annual rates of change in all carbon pools 
(Espejo et al., 2020). We used the AGB stock- 
difference method using the difference in total AGB 
stocks at two points in time divided by the number of 
intervening years. For calculation of design-based 

estimates, stratified estimation required two steps: 
(i) assigning of each SNFI plot to a single stratum, 
and (ii) calculation of the strata weights as the relative 
proportions of the population area corresponding to 
SFM strata.

The AGB estimated for design-based inference for 
SNFI 3 (2002) and SNFI4 (2017) are listed in 
Table 2 using the time interval as the period of 
measurements between the plots. Multi-dates SNFIs 
plot permits the calculation of ΔAGB (Mg ha−1) 
change plot as the difference between the AGB 
stock at T2 and T1. The ΔAGB total changes 
(Column 6, Table 2) were calculated at strata level 
using design-based estimations from SNFI3 and 
SNF4 considering permanent plots with or without 
and natural disturbances. The ΔAGB total changes 
by year and area (Colum 7, Table 2) were calculated 
by dividing ΔAGB total changes by the period of 
measurements between the plots. In the case of 
ΔAGB net changes by year and area (Column 9, 
Table 2) we considered only the plots that have 
not been suffered silvicultural operations or natural 
disturbances into the SNFI plots to extrapolate the 
values at strata level. Only sample plots (Column 8, 
Table 2) showing non‐negative increments in terms 

Figure 1b. (a) Extremadura region limits (orange lines) and SFM showing the eight forest types strata and SNFI plots (black dots) 
evaluated in this study). (b) Examples of the main forest strata modelled in Extremadura and associated extracted ALS point cloud 
and distribution of point cloud heights from ALS.

Table 2. Summary of ground data collected in the 3th and 4th 
Spanish National Forest Inventory (SNFI) for the eight forest 
types considered. The mean values are referred at strata-level 
estimates for aboveground biomass (AGB, Mg ha−1), change 
ΔAGB total (mg ha−1), change ΔAGB total by year and change 
ΔAGB net (mg ha−1 year−1) using design-based inference.

Forest 
type

number 
of 

SNFI3- 
SNFI4 
plots

AGB 
SNFI3 
(Mg 

ha−1)

AGB 
SNFI4 
(Mg 

ha−1)

ΔAGB 
change 

total 
(Mg 

ha−1)

ΔAGB 
change 

total 
(Mg 
ha−1 

year−1)

number 
of net 

change 
SNFI3- 
SNFI4 
plots

ΔAGB 
net 

change 
(Mg 
ha−1 

year−1)

L101 613 36.84 41.75 4.91 0.31 436 0.65
L102 150 18.81 23.80 6.99 0.44 131 0.60
L103 271 40.10 57.89 17.79 1.19 211 1.91
L104 63 20.82 28.66 8.03 0.50 54 0.74
L107 189 26.94 30.24 3.30 0.22 147 0.85
L108 75 32.78 39.19 6.25 0.39 55 0.79
L109 155 39.31 58.70 19.13 1.28 125 1.84
L115 34 57.87 66.23 8.36 0.54 34 2.21

L101: Dehesa-Montado; L102: Encinares; L103: P.pinaster; L104: Mixed 
forest Quercus ilex; L107: Eucalyptus spp.; L108: Q. suber; L109: 
P.pinea; L115: Mixed conifers forest.
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of basal area between the 3rd and 4th SNFI were 
used to control the bias from selvicultural and nat
ural disturbances (Bolton et al., 2013).

AGB-ALS and CCI Global AGB maps v3

Data from two ALS point clouds were collected for T1 
and T2 in the study: the first ALS data set from the 
north of Extremadura (EXT-N) was collected between 
August 2010 and July 2011 and between October 2018 
and March 2019, whereas south of Extremadura 
(EXT-S) was acquired between October 2009 and 
September 2010 and between October 2018 and 
July 2019. The methodology and performance of ALS- 
AGB models used to produce AGB maps at regional 

level for each forest strata are described in Guerra- 
Hernández, Botequim, et al., (2022). More specific 
technical characteristics of ALS flights can be found 
in PNOA LiDAR project (Plan Nacional de 
Ortofotografía Aérea). (https://pnoa.ign.es/el- 
proyecto-pnoa-lidar). We used an indirect approach 
to extrapolate a model generated for one date (vali
dated with field data) to another date. The strata from 
SFM and previously published ALS-based models of 
AGB (Appendix A (Table A.1 in Guerra-Hernández, 
Botequim, et al., 2022) were used to generate a regular 
25 m resolution AGB-ALS-based map at the regional 
scale (Extremadura) (Figure 2(a,b) for 2010 and 2018. 
The different point density may affect model 

Figure 2. AGB-ALS maps (year 2010 (a) and 2018 (b) developed under model-based inference using area-based approach (ABA) for 
each forest stratum. CCI biomass map 2010 (c) and 2018(d) version 3.
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performance but did not have a significant impact in 
forest variables estimations as ALS-3D point clouds 
has a stable vertical pattern (Cao et al., 2016). On the 
other hand, the model temporal transferability 

has been evaluated by several studies with satisfactory 
results (Domingo et al., 2019; Marino et al., 2022; 
Tompalski et al., 2019) using low-density ALS- 
Spanish-PNOA project with different point density 

Figure 3a. 
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for two different points in time. Domingo et al., 2019 
found good temporal transferability, the average % 
RMSE differences between the fitted and the extrapo
lated AGB model was 5.85%, even lower than the 
models fitted 2011 (lower density) and extrapolated 

to 2016 (high density). The ΔAGB changes were cal
culated at strata level using estimations from T1 and 
T2 at pixel level. In the case of ΔAGB net changes 
by year and area, increment was calculated consider
ing only the 25-m pixel values showing positive 

Figure 3b. Methodological scheme of the study.
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increments of AGB and divided for a period of 8 years 
(2010–2018). The ALS-model-based uncertainty in 
terms of relative standard error for AGB by forest 
type is described in Guerra-Hernández, Botequim, 
et al., (2022).

CCI data portal (https://climate.esa.int/en/odp/ 
#/project/biomass) was used to download available 
CCI BIOMASS products. The CCI Global datasets 
v3 provides estimates of AGB for the years 2010 
and 2018, respectively (Santoro & Cartus, 2021). 
A combination of EO data from the Copernicus 
Sentinel-1 mission, Envisat’s ASAR instrument 
and JAXA’s Advanced Land Observing Satellite 
(ALOS-1 and ALOS-2) with additional information 
from Earth observation sources were used to gen
erate the maps. The strata from SFM were used to 
clip the CCI biomass map to compute the AGB 
statistics at Regional level using original resolution 
of 100 m.

Methods

A detailed flowchart is shown in Figure 4. The 
study was guided by the following specific objec
tives: i) generate spatial estimates of AGB and 
changes (ΔAGB) in large Mediterranean forests 

area using multitemporal ALS-AGB-based maps, 
(ii) evaluated the capability of Mediterranean for
ests to store biomass by using the ALS-based and 
design-based estimations using SNFI and ALS data 
and (iii) comparing AGB and ΔAGB using CCI 
Global AGB maps v3 product in order to assess 
the usefulness of global maps for AGB estimations 
at Regional scale Figure 3.

Results

AGB and ΔAGB estimated from ALS

The ALS-based estimates of AGB stocks and the 
ΔAGB changes using the bi-temporal ALS-AGB 
maps data varied by forest type (Table 3, Figure 4). 
The even-age mature pine stands (typically dominated 
by Pinus pinaster and Pinus Pinea) achieved a mean 
value of total ΔAGB = 9.78 Mg ha−1 and 10.06 Mg 
ha−1, respectively, during the period of 8 years across 
the Region. Encinares (L102) with the presence of 
young stands from new reforestations and natural 
regeneration showed noticeable growth of biomass 
during the period of 8 years (mean ΔAGB = 2.34 Mg 
ha−1). Dehesas (L101) with the presence of more over- 
mature stands (typically dominated by sparse old- 
growth holm forests (Quercus spp.) with low tree 

Figure 4. Histogram AGB distributions across the research site from 2010 to 2018 for the main forest strata at regional level and 
the change between the two times for dehesas (a), Encinares (b), P. pinaster (c) mixed forest quercus ilex (d), Alcornocal (e) and 
P. pinea (f).
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Table 3. Summary of statistical analysis results for ALS-derived AGB in 2010, 2018 and their change estimation total ΔAGB (mg 
ha−1), change ΔAGB total by year (mg ha−1 year −1) and ΔAGB net (mg ha−1 year −1) from each forest type including pixel values 
with AGB = 0.

AGB (Mg ha−1) estimation 2010

Strata L101 L102 L103 L104 L107 L108 L109 L115

n 21165912 3136397 1391193 1129576 923977 910064 490602 76040
Mean 31.36 16.23 43.78 18.53 26.68 19.56 34.36 32.81
SD 18.44 16.47 39.97 20.33 14.50 26.38 35.82 34.22
Median 31.95 12.39 35.39 12.87 26.58 8.47 23.04 22.62
CV 0.59 1.01 0.91 1.10 0.54 1.35 1.04 1.04
AGB (Mg ha−1) estimation 2018

Mean 31.82 18.59 53.57 21.98 24.35 22.61 44.50 37.09
SD 18.55 16.78 41.30 20.17 13.90 26.72 42.76 35.44
Median 32.27 16.10 47.04 17.65 23.01 12.63 31.42 26.62
CV 0.58 0.90 0.77 0.92 0.57 1.18 0.96 0.96
ΔAGB total (Mg ha−1) change estimation

Mean 0.46 2.34 9.78 3.39 −2.53 2.96 10.06 4.89
SD 6.48 7.11 27.63 9.30 11.48 11.17 19.58 14.97
Median 0.53 2.02 9.25 2.94 −0.47 1.23 8.52 4.00
CV 14.02 3.03 2.83 2.74 −4.53 3.78 1.95 3.06

ΔAGB total (Mg ha−1 year −1) change estimation by year
Mean 0.057 0.30 1.22 0.42 −0.31 0.37 1.26 0.61
ΔAGB net (Mg ha−1 year −1) change estimation

n 11340296 2814599 941699 854782 418893 624610 418049 55842
Mean 0.56 0.56 2.18 0.77 0.75 0.86 1.83

n= number of pixels at 25 × 25 m resolution, SD: Standard desviation, and CV: coefficient of variations.

Figure 5a. 
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density) show the lowest growth (mean ΔAGB = 0.46  
Mg ha−1). Mixed forest of Quercus ilex (L104) and 
Mixed forest of conifers forest (L115), ΔAGB had 
a positive rate of AGB storage with mean values of 
3.39 Mg ha−1 and 4.89 Mg ha−1, respectively. Finally, 
the Eucalyptus spp. stands (L107) showed a negative 
rate of ΔAGB (ΔAGB = −2.53 Mg ha−1) in the Region.

Comparison between AGB and ΔAGB-ALS and 
design-based SNFI estimates

The estimation of ΔAGB change estimates from design- 
based SNFI at regional level by strata (MITECO, 2020) 
were comparable by area and year with ΔAGB-ALS incre
ments in terms of total and net changes. ΔAGB-ALS (Mg 
ha−1 year−1) total change values (Figure 5(a)) were closed 
to the values obtained using SNFI at strata level, especially 
with similar AGB store growth rates in mature pine stands 
(1.22 Mg ha−1 year−1 for P. pinaster (L103) and 1.35 Mg 
ha−1 year−1 for P Pinea (L109) from ALS and 1.19 Mg ha−1 

year−1 for L103 and 1.28 Mg ha−1 year−1 for L109 from 

design-based). However, the values varied in Dehesas 
(L101) (0.057 and 0.31 Mg ha−1 year−1 using ΔAGB-ALS 
and SFNI, respectively), in Encinares strata (0.30 and 0.44  
Mg ha−1 year−1 using ALS-AGB based maps and SNFI, 
respectively), whereas Eucalyptus spp (L107) plantations 
showed a negative increment with mean value of ΔAGB- 
ALS = −0.31 Mg ha−1 year−1 and a positive increment 
mean ΔAGB-SNFI = 0.22 Mg ha−1 year−1 using ΔAGB- 
SNFI at strata level. In terms of ΔAGB (Mg ha−1 year−1) 
net change considering the positive increment from both 
sources, the values were more similar from both sources 
(Figure 5(b)), except for the Mixed forest of conifers 
(L115) which showed a net ΔAGB value of 1.24 (Mg 
ha−1 year−1) from ALS estimations and 2.28 (Mg ha−1 

year−1) from the SNFI based approach.

Comparison between AGB and ΔAGB-ALS based 
estimates and CCI Global AGB maps v3

In terms of mean values of AGB by formations 
(Table 4, Figure 6) for the year 2010 and 2018, CCI 

Figure 5b. The bar graphs of: (a) the mean of SNFI design-based and ALS estimated of ΔAGB total (mg ha−1 year −1) change 
estimates and (b) ΔAGB net (mg ha−1 year −1) change.
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Biomass v3 products tended to underestimate the 
AGB for Encinares (L102), Eucalyptus spp (L107), P. 
pinea (L109) and specially in Dehesas (L101) which 
mean value was too strongly biased from the mean 
values of AGB from SNFI and ALS-AGB for this 

formation. CCI Biomass v3 for the year 2010 and 
2018 tended to underestimate AGB comparing with 
SNFI strata and ALS-AGB maps in the most impor
tant strata in the Region. In the case of P.pinaster 
(L103) and Mixed forest of Q,ilex (L1014), CCI 

Table 4. Summary of statistical analysis results for AGB in 2010, 2018 and their change estimation from each forest type using CCI 
global maps v3.

AGB (Mg ha−1) CCI estimation 2010

L101 L102 L103 L104 L107 L108 L109 L115

n 1323752 194823 56617 69134 57401 56656 490013 4209
Mean 5.34 14.51 53.77 23.64 20.27 24.51 40.02 65.02
SD 13.57 24.12 37.21 30.38 24.08 29.52 33.48 39.06
CV 2.54 1.66 0.69 1.29 1.19 1.20 0.84 0.60
AGB(Mg ha−1) CCI estimation 2018
Mean 3.12 12.26 60.23 22.72 17.99 23.23 37.50 61.88
SD 9.72 21.84 29.26 28.84 21.24 28.03 28.36 34.33
CV 3.12 1.78 0.49 1.27 1.18 1.21 0.76 0.55
ΔAGB (Mg ha−1) CCI change estimation

Mean −2.22 −2.25 6.47 −0.92 −2.28 −1.28 −2.53 −3.14
SD 8.57 13.62 27.10 15.40 18.16 15.76 20.90 27.41
CV −3.85 −6.06 4.19 −16.67 −7.95 −12.36 −8.26 −8.72

ΔAGB total (Mg ha−1 year −1) change estimation by year
Mean −0.28 −0.28 0.81 −0.12 −0.29 −0.16 −0.32 −0.39

n= number of pixels at 100 × 100 m resolution, SD: Standard desviation, and CV: coefficient of variations.

Figure 6. The bar graphs of the mean of ALS and CCI estimated AGB for each forest type in 2010, 2018 and their ΔAGB total 
(mg ha−1) change estimates. The standard deviation (SD) of the estimated AGB is showed by the error bars.

EUROPEAN JOURNAL OF REMOTE SENSING 11



Biomass v3 for the year 2010 and 2018 tended to 
overestimate AGB comparing with SNFI strata and 
ALS-AGB maps. Gains in AGB over the eight-year 
period between 2010 and 2018 could not be detectable 
in the region for all the formations, excepting for P. 
pinaster strata with positive values of 6.47 Mg ha−1.

Comparison of the AGB estimated from ALS and 
the 2010 and 2018 CCI Biomass v3 products indicated 
that the histograms of v3 products differ noticeably 
with the 2010 and 2018 v3 (Figure 7), which showed 
also ΔAGB cannot be explained by changes in AGB in 
8 years in Mediterranean forest with mean negative 
values for all the formations during the period, except 
for Mediterranean P.pinaster formation.

Overall, the distributions of the CCI products show 
discrepancy with the ALS -AGB map distribution of 
sparse old-growth oak forests (Quercus spp.): a) 
underestimation of AGB between 25 and 75 Mg ha−1. 
b) overestimation of the distribution at lower values 
than 25 Mg ha−1of AGB c) change in distribution from 
2010 to 2018 cannot be explained by changes in AGB 
in 8 years in this type of forest. On the other hand, the 
best fit with the ALS-AGB map distribution was for 
the Encinares formations (L102), Alcornocales (L108) 
and Mixed forest of Quercus ilex (104) but CCI 
showed a underestimation for areas (AGB <25 Mg 
ha−1) and peaks of the distribution at 50–100 Mg 
ha−1 interval. In general, this peaks also appeared in 
Pinus spp. formations (L103 and L109. Negative incre
ment ΔAGB total changes (Mg ha−1) using the differ
ences between CCI from 2010 to 2018 was found from 
young plantation from Encinares strata (L102) in areas 
with positive increment of ΔAGB-ALS (Mg ha−1 

year−1) during the period 2010–2018 (Figure 8). 
Figure 9 shows some examples of ΔAGB total (Mg 
ha−1) change estimates in Dehesas (L101), Pinaster 
(L103) and Eucalyptus (L107) formation using 
ΔAGB -CCI v3 and ΔAGB – ALS-based maps.

Discussion

This study showed the utility of multitemporal- 
countrywide ALS measurements in Spain for monitor
ing of large-scale AGB dynamics in Mediterranean 
forest. To our knowledge this is one of the first study 
that systematically analyses, over a wide range of 
Mediterranean forest, the possibilities and limitations 
of the AGB-ALS-model-based estimations maps, CCI 
biomass maps and SNFI-design based time series esti
mations at regional scale to achieve the objective of 
estimating forest AGB-sequestration capacity

Our results were promising at regional scale and for 
a specific period of time using bi-temporal ALS-based 
maps. The ALS estimates of ΔAGB indicates that, in 
general, most of the forest type showed an overall gain 
in biomass. In fact, and when considering all the forest 
types, it was observed a mean ΔAGB of 1.37 Mg/ha 

revealing a positive balance in terms of biomass pro
duction at regional scale. The currently available ALS 
and SNFI data indicated that carbon sequestration 
continues in old sparse Quercus-spp forest that are 
centuries old. These results contradict the carbon neu
trality theory of old-growth forest but confirmed the 
low carbon sequestration capacity in most sparse old- 
growth oak woodlands of Quercus species (e.g. 
Spanish Dehesas and Portuguese Montados) (Jiang 
et al., 2020; Luyssaert et al., 2008) during this period 
using ALS-based estimates. In this respect, the over 
pasture, the lack of natural regeneration, the holm oak 
decline (caused by root rot oomycetes, mainly 
Phytophthora cinnamomi Rands.) and the negative 
effects of climate change (Gea-Izquierdo et al., 2013), 
causes important losses in stand biomass stock due to 
the death of large and senescent trees, which repre
sents a huge carbon pools (Büntgen et al., 2019), 
independently of the degree of naturalness (Molina- 
Valero et al., 2021). In contrast, the presence of mid
dle-age oak forest and young stands of Quercus spp is 
more representative in Encinares strata (L102). They 
were noticeable carbon sink due to the creation of new 
reforestations and natural regeneration presented for 
Encinares (Quercus ilex) and Alcornocales (Quercus 
suber) strata. Approximately 70,000 ha of new refor
estations of Quercus ilex, Quercus suber and mixed of 
Quercus ilex and suber have been implemented in the 
Region since 1999 in the framework of the EU forest 
strategy (Sequeda, 2017). The obtained results con
firmed higher biomass stocks can be reached at earlier 
stages (Schall et al., 2018). On the other hand, the 
magnitude in the differences of AGB stocks suggested 
a revision of protocols to estimate AGB-carbon stocks 
and changes, especially in sparse tree-based oak wood
lands of Quercus species. Our result demonstrated the 
magnitude and spatial distribution of AGB and carbon 
stocks could be improved using individual tree-based 
approach (ITC) in these sparse tree-based systems 
where multitemporal countrywide ALS data is avail
able (Hyyppä et al., 2008). Promising results have been 
already obtained using ITC delineation algorithms in 
the Region using ALS point clouds (1–2 points m−2) as 
an alternative to area based approach (ABA) in this 
strata (Guerra-Hernandez & Jurado-Varela, 2022).

Regarding the comparative analysis using increment 
of design-based estimations of ΔAGB total and net 
changes at strata level using SNFI3 and SNFI4 plots 
and ΔAGB total changes estimated from ALS, we 
found similar increments in Pinus spp (L103 and 
L109) and mixed forest formations (L115) from both 
methods. However, we noted some discrepancies spe
cially in Eucalyptus spp and Dehesas formations. 
Although SNFI design-based and ALS model-based 
estimates and estimators for their variances are based 
on different theoretical principles and assumptions 
and, as consequence, they are not directly comparable 
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Figure 7. Frequency distributions of AGB derived over Extremadura region from ALS for 2010, 2018 and their changes ΔAGB (pink). 
GlobBiomass estimated AGB, 2010 CCI AGB v3, 2018 CCI AGB v3 and their changes by forest type (blue).
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(McRoberts et al., 2022), this kind of comparisons were 
done in previous studies (Guerra-Hernández, 
Botequim, et al., 2022; McRoberts, 2006). One of the 
reasons to compare design-based and model-based 
estimates is that, if probability sample for design- 
based approach is adequately selected and model for 
model-based approach is correctly formulated, then 
both estimates should be relatively close (McRoberts,  

2006). In the case of Eucalyptus plantation, design- 
based estimations from SNFI permanent plot were 
not efficient to the amount of fellings since more than 
30,000 ha of Eucalyptus spp plantations have been 
removed in the region using Spanish Forest Map 
(SFM) associated and both inventories SNFI-3-4 in 
Extremadura. It is uncertain whether it will be possible 
to obtain unbiased estimates from temporary instead of 

Figure 8. The spatial prediction of ΔAGB changes (between 2010 (left) and 2018 (right) represented by historical orthomosaics 
from PNOA project). Some highlighted locations of ΔAGB total (Mg ha−1) change estimates in Quercus ilex young plantation from 
Encinares strata (L102) using ΔAGB -CCI v3 (left) and ΔAGB –ALS-based maps (right).
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permanent plots but the efficiencies of SNFI could be 
increased producing AGB-ALS model based maps that 
can be used for purposes such as calculating changes in 
AGB for more intensive forest management for this 
forest type. Existing NFI sample designs might be 
inadequate for estimating changes in intensive forest 
types such as the case of Eucalyptus spp, which thus 
increases uncertainties in estimating AGB changes for 
specific activities (Espejo et al., 2020). Recent studies 

already demonstrated that AGB-ALS based models 
currently enhances SNFIs in the region increasing the 
precision of large area inventory estimates providing 
inventory estimates with acceptable bias and less error 
for small areas for which sufficient field data are not 
available (Guerra-Hernández, Botequim, et al., 2022). 
In addition, maps based on both ALS and field data 
could be used to simulate NFI sampling designs in 
order to compare their efficiencies (Lister et al., 2020; 

Figure 9. The spatial prediction of the changes of AGB across the research site (between 2010 (left) and 2018 (right) represented 
by historical orthomosaics from PNOA project). Some highlighted locations of ΔAGB total (Mg ha−1) change estimates in Dehesas 
(L101), Pinaster (L103) and Eucalyptus (L107) formation using ΔAGB -CCI v3 (left) and ΔAGB –ALS-based maps (right).
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McRoberts & Tomppo, 2007). The lack of enough 
SNFI plots from design-based could explain the differ
ence in Eucalyptus spp between both methods. On the 
other hand, the ΔAGB total changes by year derived 
from ALS underestimated the growth rate from design- 
based SNFI in L101 formation, probably due to the 
presence of more old sparse mature stands of Quercus- 
spp forest in Dehesas strata (L101), which presents 
a slow rate in terms of AGB increase. The criteria to 
classify these strata from SNFI could explain this dif
ference since is based only in the canopy cover and the 
presence or not of agrosilvopastoral activity without 
considering the stand age which defined each forma
tion. Increased sample sizes, changes in the criteria to 
classify the strata and/or integration of individual tree 
crown (ITC) approach using remotely sensed data may 
be required to estimate stock-difference correctly. The 
results confirmed that model-assisted method integrat
ing field and remote sensing data could be also an 
alternative to compare changes estimates in above
ground carbon dynamics in this forest type. On the 
other hand, the impact of uncertainties in field refer
ence data must be included in the future required 
international reporting (Persson et al., 2022).

The comparative analysis using CCI Global AGB 
maps v3 revealed that the AGB mean values from 2010 
and 2018 were quite far from AGB estimation by unit of 
area using SNFI design-based inference and model-based 
ALS-AGB maps, especially in Dehesas and Encinares 
formations. AGB CCI- (AGB) retrievals values for 2010 
and 2018 are highly underestimated in most of the forests 
and slightly overestimated for P.pinaster (L103) and 
Mixed forest of Quercus ilex strata (L104). Our results 
reflected the difficulty in estimating ΔAGB in circum
stances where the growth rate of ΔAGB is small which 
needs very accurate estimations to enable for estimating 
the change with enough confidence. CCI Global AGB 
maps v3 2010 and 2018 and their ΔAGB increment could 
not estimate the ΔAGB accurately in Mediterranean 
environments. In our study, the small estimated ΔAGB- 
magnitude could be due to slow growth rate of old sparse 
Quercus-spp forest and an active forest management for 
timber production in the case of Pinus spp species in the 
region. According to the objectives of regional forest 
planning strategies to eliminate the Eucalyptus spp. spe
cie, the result confirmed the continuous removals of 
these stands during the period of 2010–2018 in the 
Region. The results confirmed that absolute difference 
in maps of CCI AGB 2018 and 2010 has several limita
tions, probably reflecting the lack of sufficient field data 
and LiDAR data needed to generate the CCI AGB maps 
(Santoro & Cartus, 2021). The comparison of the histo
grams of AGB of the Extremadura region from the CCI 
Biomass products and ALS product (Figures 8 and 9) 
highlights differences with bimodal distribution in the 
AGB associated with woodlands from CCI and unimodal 
distribution from ALS. AGB change histograms from 

CCI product also revealed some peaks in the distribution. 
Different datasets and data density (number of EO data) 
were used to generate the AGB maps of 2010 and 2018 
could explain the limitations of global AGB maps and 
usability for verifying AGB dynamics at Regional scale in 
this type of forest. Our study highlighted the need to 
further refine AGB Global products to estimate changes 
in biomass carbon stocks. Future versions of CCI pro
duct could be enhanced by the upcoming NASA-ISRO 
Synthetic Aperture Radar (NISAR) satellite mission in 
2024 that will provide denser L-band time series data at 
a higher spatial (10 m) and temporal resolution (12 days) 
(Khati et al., 2021), and the increasing amount of space
borne-LiDAR data from GEDI and ICESat-2 mission in 
the next years. The increasing availability and update of 
NFIs create new chances for synergizing with space- 
based data at the national level (Karimon et al., 2022; 
Labrière et al., 2022). NFI projects and ALS-based AGB 
available at national level might be used to further refine
ment and specific AGB model calibration for the CCI 
product.

Conclusions

The results of our study demonstrate that multi
temporal ALS-based maps are expected to be sui
table for estimating AGB change in Mediterranean 
forest. Bi-temporal ALS data coupled with field 
reference data deal a great method for calculating 
pools and changes in aboveground carbon 
dynamics in Mediterranean areas. On the contrary, 
this study revealed that CCI-AGB based change 
could not be explained using Global-AGB for 
2010 and 2018, given the low growth rates in the 
region for most of the Quercus spp. formations, 
and specially for open old-oak woodlands of 
Quercus species. The CCI-AGB based change was 
not capable of supporting quantification of biomass 
change. For future studies, it seems more suitable 
to use ITC approach in sparse tree-based forest 
ecosystems and the need to harmonize both ALS 
countrywide and NFI field-AGB data to enhance 
their usage at country level.
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