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Vogais | Pedro Salgueiro (Universidade de Évora) (Orientador)
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Abstract

This dissertation explores the application of advanced language models for auto-
mated software testing, focusing on generating high quality, context aware test
scripts. It leverages the Codestral Mamba model using Low-Rank Adaptation tech-
nique to enhance test case generation. The model was fine-tuned on both the Test-
Case2Code dataset and CONCODE/CodeXGLUE to evaluate its capability to pro-
duce syntactically and semantically accurate automated code testing cases from
natural language descriptions. The findings highlight the model’s robustness, im-
proving test coverage, software quality, and developer productivity. This research
addresses key challenges in software testing and underscores the potential of inte-
grating advanced language models into modern testing workflows.

Keywords: Automated Software Testing, Large Language Models, Test Case Gen-
eration, Low-Rank Adaptation, Codestral Mamba Model.
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Sumário

Melhorando a Automação de Testes de Software através
de Modelo de Linguagem de Grande Escala

Esta dissertação explora a aplicação de Modelo de Linguagem de Grande Escala para
testes automatizados de software, focando na geração de scripts de teste de alta qual-
idade e sensíveis ao contexto. Utiliza o modelo Codestral Mamba, utilizando a técnica
Low-Rank Adaptation para melhorar a geração de casos de teste. O modelo foi ajus-
tado tanto no conjunto de dados TestCase2Code como no CONCODE/CodeXGLUE
para avaliar a sua capacidade de produzir casos de teste automatizados precisos do
ponto de vista sintático e semântico a partir de descrições em linguagem natural.
Os resultados destacam a robustez do modelo, melhorando a cobertura de testes, a
qualidade do software e a produtividade dos desenvolvedores. Esta pesquisa aborda
desafios cruciais nos testes de software e sublinha o potencial de integrar modelos
de linguagem avançados em fluxos de trabalho de testes modernos.

Palavras chave: Testes de Software Automatizados, Modelos de Linguagem de
Grande Escala, Geração de Casos de Teste, Adaptação de Baixa Ordem, Modelo
Codestral Mamba.
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Chapter 1

Introduction

Ensuring the dependability of software systems is a fundamental aspect of modern
development practices. As applications become increasingly intricate, verifying their
correctness and compliance with specifications is crucial. Software testing serves as
a key mechanism for identifying defects and validating expected behavior before
deployment.

Historically, verification processes relied heavily on manual execution, demanding
substantial human intervention and expertise. Nevertheless, this approach is often
inefficient, susceptible to oversight, and difficult to scale. The emergence of auto-
mated testing has addressed many of these challenges, offering a systematic way
to execute assessments with greater precision and repeatability [Demir and Aksoy,
2024a]. By leveraging predefined test scripts, automated solutions streamline val-
idation procedures and support comprehensive coverage across different software
environments [Umar and Chen, 2019].

A variety of automation frameworks facilitate test execution, addressing different
testing needs. While some are designed for low-level validation, such as unit testing,
others focus on higher-level system interactions, including those involving Graphical
User Interface (GUI) evaluation [Sewnet et al., 2023]. It is important to distinguish
between frameworks tailored for unit testing and those intended for interface testing,
as not all automation frameworks rely on GUI interaction. Additionally, automa-
tion tools often require technical proficiency and continuous maintenance to remain
effective as software evolves [Demir and Aksoy, 2024a].

1.1 Background and Motivation

The quality and reliability of software are essential elements for the success of any
development project. Software testing plays a crucial role in the software develop-
ment lifecycle by validating that an application functions correctly and meets its
specified requirements. Given the ever-growing complexity of modern software sys-

1



2 CHAPTER 1. INTRODUCTION

tems, testing has become a key step in ensuring the overall quality of an application
before its release. Traditionally, manual testing has been employed to ensure proper
functionality. However, manual testing is not only time consuming but also error
prone, requiring extensive human effort and domain expertise to properly execute
test cases across different scenarios.

In recent years, the demand for automation in software testing has increased con-
siderably, driven by the need to enhance efficiency and reliability in the testing
process [Demir and Aksoy, 2024a]. Automated testing has proven to be an effective
approach for reducing the manual effort required to execute repetitive tests while
ensuring consistency and repeatability across different environments and software
versions [Umar and Chen, 2019]. Central to this process are test scripts sets of
predefined instructions that specify the steps and expected outcomes of each test
case. Various test automation frameworks facilitate the execution of these scripts,
enabling developers and quality engineers to perform tests more efficiently [Eldran-
daly et al., 2019]. While some frameworks are designed for unit testing, focusing
on the verification of individual code components, others are tailored for interface
testing, often relying on GUI interactions [Sewnet et al., 2023]. However, many
automation frameworks require programming expertise and frequent maintenance
to accommodate changes in application features, posing challenges for long-term
scalability [Demir and Aksoy, 2024a].

With the advent of Artificial Intelligence (AI), particularly in areas such as Machine
Learning (ML) and Natural Language Processing (NLP), new possibilities for test
automation have arisen [Ramadan et al., 2024]. These AI-driven technologies offer
the potential to automate testing processes with greater efficiency, minimizing hu-
man intervention. In this context, these models are emerging as a powerful tool for
test script generation. Models, such as OpenAI’s GPT-4 [OpenAI, 2023] , Google’s
BERT [Devlin et al., 2019], and T5 [Raffel et al., 2020], are capable of processing
large amounts of textual data and generating human-like language output. This
has opened the door to automating test script creation, making it possible to gener-
ate scripts dynamically based on contextual understanding of software applications
[Khaliq et al., 2022].

Large Language Models (LLMs) are particularly promising for automated testing, as
they enable test case generation without requiring explicit programming expertise.
This accessibility lowers the barrier to entry, allowing a broader range of users to
leverage automation in software testing [Fang et al., 2024; Alagarsamy et al., 2024].
By leveraging these models, it is possible to generate test scripts based on user
inputs, specifications, or natural language descriptions of test cases [Demir and
Aksoy, 2024b]. This approach can reduce the time required to create and update
test scripts, even in highly dynamic environments where application features are
regularly updated. Furthermore, they can adapt to diverse systems and platforms,
making them versatile tools for generating test scripts that can handle the specific
behaviors and constraints of different operating systems or devices [Shtokal and
Smołka, 2021].
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The use of LLMs in test script generation also holds potential for cross-platform and
cross-application migration. For instance, test scripts generated for one application
could be adapted for use in a different software environment, thus further enhancing
efficiency and scalability in the software testing process [Yu et al., 2023]. By explor-
ing how these models perform in these diverse and evolving scenarios, this research
aims to assess their viability as a tool for automating the generation of test scripts,
improving the overall effectiveness and quality of the software testing process.

In summary, as software systems grow increasingly complex and critical to everyday
life, automating the test script generation process through language models can be
a game changer. This work will explore the application of LLMs in this domain.

1.2 Problem Statement

Software testing is a critical aspect of ensuring the quality and reliability of applica-
tions. However, manual test script generation presents several significant challenges
that impact both the efficiency and effectiveness of quality assurance processes. One
major issue is the large volume of data involved. Modern applications, especially
those in sectors like big data, healthcare, and e-commerce, handle vast amounts
of information. Testing these systems requires generating and managing extensive
datasets, simulating a wide range of user interactions, and validating performance
under heavy loads. This process is time-consuming and labor-intensive, demanding
advanced automation tools to manage the complexity and scale of the data.

Another pressing concern is test coverage. Ensuring that every part of the software,
from its core functionality to edge cases, is thoroughly tested is vital. Functional
test cases play a crucial role in this process, as they help validate whether the system
behaves as expected under various conditions. Incomplete coverage leaves the risk of
undetected bugs or system failures that could surface after deployment. Given the
time and resource constraints often faced by testing teams, achieving comprehensive
coverage is a constant challenge. While automated testing tools can mitigate this
to some extent, they still require detailed planning and precise execution to ensure
the system is thoroughly evaluated. Manual methods, in particular, can be ineffi-
cient and prone to human error, raising the likelihood that critical issues may be
overlooked.

Time and cost constraints further intensify the challenges of manual testing. By
its nature, manual testing is time-intensive and costly. It requires skilled personnel
to write, execute, and update test cases, alongside the infrastructure and oversight
necessary to ensure test accuracy and coverage. As software complexity increases
and project timelines compress, the workload on both manual testers and automa-
tion specialists intensifies considerably. While test automation offers long-term cost
savings, it requires significant upfront investment for initial setup and ongoing main-
tenance. Automation scripts must be frequently updated to align with changes in
the application, requiring continual involvement from developers and testers to keep
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everything in sync.

Moreover, dynamic application environments present a significant challenge to tradi-
tional testing processes. With the rise of Agile and DevOps methodologies, software
updates and releases are happening at an increasingly rapid pace. This requires fre-
quent adjustments to test scripts to reflect evolving code, new functionalities, and
configuration changes. In such a fast moving landscape, manual testing struggles
to keep up, as it lacks the scalability and flexibility needed to adapt to constant
changes. As software evolves continuously, testing processes must be adaptive and
capable of responding to these changes swiftly, something manual testing is unable
to achieve efficiently on a large scale.

A fundamental challenge in software testing is the predominant focus on unit test
automation in both research and industry, while higher-level tests, such as func-
tional or end-to-end tests, receive comparatively less attention. Although the test
pyramid, which will be discussed in detail in Subsection 1.3.2, emphasizes that tests
at these upper levels require greater effort, time, and maintenance, their automation
is essential. Automating functional tests not only enhances software quality but also
enables development teams to manage the fast-paced evolution of software more ef-
fectively, mitigating the limitations of manual testing, which is often labor-intensive
and prone to errors.

1.3 Literature Review on Software Testing

In the development of high-quality software, testing plays a critical role in ensuring
that applications meet both functional and non-functional requirements. Two key
approaches underpin this effort: manual testing and automated testing [Khant et al.,
2016]. Both methods contribute to the overall reliability and robustness of software
but differ significantly in their execution and focus [Banik and Dandyala, 2019].
Manual testing involves human testers actively interacting with the application to
identify potential issues. It is particularly useful in scenarios where subjective human
judgment is necessary, such as assessing user interfaces or evaluating the overall user
experience. However, manual testing can be time-consuming and prone to human
error, making it less scalable for large or repetitive testing scenarios [Kaur et al.,
2014].

On the other hand, automated testing leverages software tools to execute prescripted
tests repeatedly and accurately, without human intervention. Automated tests excel
in areas where large volumes of test cases need to be executed quickly and consis-
tently, such as regression testing or performance testing. By automating routine or
repetitive tasks, development teams can focus on more complex testing activities
and reduce the risk of oversight. Nonetheless, automated testing requires an upfront
investment in time and resources to develop the necessary scripts and infrastruc-
ture, making it more suitable for projects that require long-term testing stability
and scalability [Nidhra and Dondeti, 2012].
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A crucial dimension in both manual and automated testing is whether the tests are
conducted with knowledge of the internal workings of the system, which brings us to
the concepts of black-box testing and white-box testing. Black-box testing involves
evaluating the system solely based on its inputs and expected outputs, without con-
sidering how the internal logic of the software operates. In this approach, testers
focus on what the system is supposed to do rather than how it achieves that func-
tionality. This makes black-box testing an ideal candidate for both manual and
automated functional testing, as it aligns closely with user-oriented test scenarios,
where the emphasis is on ensuring the software behaves as required by its specifica-
tions [Maspupah, 2023].

In contrast, white-box testing involves a deep understanding of the internal logic and
structure of the software. This testing approach requires knowledge of the code and
algorithms that drive the application, allowing testers to verify the accuracy and
efficiency of the underlying implementation. White-box testing is typically auto-
mated, as it involves running specific tests on individual pieces of code (such as unit
tests) to ensure they behave correctly under various conditions. By examining the
internal workings of the software, white-box testing provides more granular insights
into potential issues that may not be visible from a purely external perspective, such
as hidden bugs or inefficiencies in the code [Kaur et al., 2014].

This balanced approach between manual and automated testing, as well as between
black-box and white-box testing, ensures that software is tested from multiple per-
spectives, both internally and externally. It provides comprehensive coverage, en-
abling the detection of both functional errors that impact the user and deeper tech-
nical issues that could affect performance or stability. This premise lays the ground-
work for exploring the different types of software tests in more detail, where certain
tests, such as unit or regression tests, are more likely to be automated due to their
repetitive nature, while others, like acceptance or exploratory tests, may require
manual intervention to assess the softwares usability and alignment with business
requirements. A visual representation of the classification of software testing ap-
proaches is provided in Figure 1.1, illustrating the relationship between manual and
automated testing as well as the categorization of black-box and white-box testing.

1.3.1 Integration of Automated Testing Techniques in Practice

Software quality teams must apply a variety of tests throughout the software life-
cycle to ensure a high standard of quality. In practice, these tests are often merged
when planning automated testing, depending on the stage of development, to achieve
the shared goal of delivering reliable software. This integration not only enhances
efficiency but also broadens test coverage, ensuring that the software is tested com-
prehensively from multiple perspectives.

For example, automated performance tests commonly include fuzz testing and sys-
tem test input generation, ensuring the system not only meets performance stan-
dards but is also resilient to unexpected inputs [Miller et al., 1990; Wang et al.,
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Software Testing

Manual Testing

Black-Box Testing White-Box Testing

Automated Testing

Black-Box Testing

Integration Testing Regression Testing

White-Box Testing

Unit Testing

Figure 1.1: Classification of Software Testing Approaches

2017]. This combination allows teams to test both efficiency and robustness under
varied conditions.

Similarly, functional, regression, and fuzz testing are frequently integrated. Func-
tional tests verify the software against its requirements, while regression tests ensure
new changes do not affect existing functionality. Incorporating fuzz testing enhances
these by exposing edge cases or vulnerabilities, resulting in a more resilient system.

By merging these techniques, teams can automate more efficiently, reduce manual
effort, and ensure thorough testing across various scenarios, increasing confidence in
the softwares reliability and quality throughout its lifecycle.

1.3.2 Testing Pyramid and Test Automation

The Testing Pyramid (Figure 1.2), introduced by Mike Cohn [Cohn, 2009], is a
framework that categorizes tests into three layers based on their scope and frequency:
unit tests (at the base), integration tests or service tests (in the middle), and end-
to-end or UI tests (at the top) [Contan et al., 2018; El-Morabea et al., 2021]. The
pyramid illustrates that unit tests should be the most numerous, as they are fast,
inexpensive, and require less effort. Moving up the pyramid, integration tests and
end-to-end tests become fewer due to their higher cost, longer execution time, and
increased complexity [Cohn, 2009].

While unit tests are heavily automated, there are fewer efforts to automate functional
tests or end-to-end tests, which simulate real-world scenarios and user behavior.
Automating these functional tests is critical for improving both software quality
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Figure 1.2: Testing Pyramid

and development speed. Automated functional tests help identify issues from the
user’s perspective, catching problems that unit or integration tests might miss, and
they reduce the manual effort required for regression testing, speeding up the release
process.

The importance of software testing has been widely acknowledged by both the aca-
demic and industrial sectors, solidifying its position as a cornerstone in software
engineering research. This field continues to thrive, as evidenced by the signif-
icant number of conferences, workshops, and symposiums where software testing
consistently ranks among the most submitted and published topics. Its prominence
underscores the critical role testing plays in ensuring software reliability and quality.

Despite its advancements, several persistent challenges in software testing remain
unresolved. One prominent issue is the automation of unit test case generation.
Techniques such as search-based [Harman and McMinn, 2010; Delgado-Pérez et al.,
2023], constraint-based [Xiao et al., 2013], and random-based approaches [Pacheco
et al., 2007] have been developed to address this need. However, these methods
often fail to deliver adequate test coverage or produce meaningful tests, as observed
in recent studies [Yuan et al., 2023; Tang et al., 2023].

Similarly, in mobile GUI testing, traditional methodsincluding rule-based [Android
Developers, 2012; Li et al., 2017], model-based [Su et al., 2017; Dong et al., 2020],
and learning-based techniques [Pan et al., 2020]struggle to interpret the semantic
information of GUI elements effectively, leading to incomplete test coverage and
missed defects [Liu et al., 2023; Su et al., 2021].

To address these limitations, researchers are exploring innovative approaches to
enhance the efficacy of testing. Among the most promising advancements are LLMs,
which offer the potential to automate complex testing tasks and improve coverage
by understanding both the code structure and user interaction semantics.

The integration of the language models into software testing has sparked significant
advancements, yet various challenges persist in realizing their full potential. A



8 CHAPTER 1. INTRODUCTION

comprehensive review by Zhang et al. (2024) highlights the diverse applications of
LLMs in software testing tasks such as test case generation and program repair,
but also emphasizes key challenges. One of the primary issues is the complexity of
prompt engineering and ensuring that the generated tests are representative, raising
concerns about the effectiveness of LLM-based approaches in diverse software testing
environments [Zhang et al., 2024].

Similarly, the deployment of machine learning in testing workflows, as demonstrated
by the ML Software Tester, brings the challenge of integrating accurate prediction
models into existing pipelines, especially for complex projects like Flask. While
machine learning offers improved test result predictions, its accuracy and seamless
integration into current workflows remain significant hurdles [Doe, 2018].

Moreover, the landscape of automated mobile GUI testing has seen promising ad-
vancements through systems like GPTDroid, which leverages LLMs for human-like
interactions in testing. However, it faces challenges such as low coverage and lim-
ited generalization capabilities due to training data constraints. Although it has
improved bug detection and activity coverage, there is still room to expand its ap-
plicability and ensure broader testing [Liu et al., 2024].

In the realm of deep learning library fuzzing, TITANFUZZ illustrates how LLMs
can be effectively applied to detect bugs in deep learning libraries like TensorFlow
and PyTorch. While traditional fuzzing techniques struggle with the syntax and
API constraints of deep learning systems, TITANFUZZ addresses these through
LLM-driven program generation. Nonetheless, automating and generalizing these
fuzzing techniques to other domains remains a challenge [Deng et al., 2023].

Another critical area where large language models are being explored is in cross-
platform test script generation. They show potential in automating test scripts
across various devices and platforms, but issues arise in ensuring compatibility and
capturing accurate test behaviors across diverse environments. This remains a major
challenge in realizing robust, cross-platform automation [Yu et al., 2023].

The literature on large language models in software testing highlights several chal-
lenges and innovative solutions to automate the generation of test cases, improve
the precision of the testing, and improve the coverage of the code. A common issue
across many of these studies is the difficulty in automating the generation of com-
prehensive and accurate test cases due to the complexity of natural language and
the inherent limitations of existing tools.

For instance, [Dantas, 2023] discusses how current tools rely on manual or ran-
domized user actions to build test cases, posing challenges in simulating real user
behavior. Language models, however, can learn patterns of user interactions, en-
abling automatic test case generation during the software development lifecycle, thus
offering a potential solution to this challenge. Similarly, [Watson et al., 2020] ex-
plore the generation of meaningful assert statements through the Atlas approach, a
Neural Machine Translation (NMT)-based model designed to enhance the quality
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of assertions in automated testing. Their study demonstrates that Atlas can effec-
tively predict assert statements that accurately assess the correctness of the focal
method. Their work shows that incorporating machine learning models can enhance
the generation of precise assertions, which are key to verifying the correctness of test
methods.

On the FinTech side, [Xue et al., 2024] offers a breakthrough by automating accep-
tance testing of software against business rules, reducing human intervention and
improving test coverage. It demonstrates the efficiency of fine-tuned large language
models in generating comprehensive scenarios, reducing the time for testing from
minutes to seconds, and outperforming state-of-the-art models like ChatGPT. This
addresses a significant problem in financial software testing, where timely deploy-
ment and regulatory adherence are critical.

A recurring issue is the inability of LLM-based systems to produce valid or compre-
hensive test inputs, as pointed out by [Karmarkar et al., 2024]. This approach
addresses two major problems in test data generation unsound and incomplete
data. By employing an iterative refinement process, TestRefineGen ensures that the
LLM-generated data is both valid and comprehensive, especially in confidentiality-
restricted environments. Meanwhile, [Xia et al., 2024] take this further in the fuzzing
domain with Fuzz4All, a universal fuzzer that targets multiple languages and system
types. By leveraging language models, Fuzz4All generates more diverse and realistic
inputs than traditional fuzzers, revealing previously unknown bugs across different
programming environments.

Transfer learning techniques also play a significant role in enhancing the effectiveness
of the language models in code-related tasks. Studies like T5 and GPT-3 [Mathur
et al., 2023] propose using these models to automate test case generation for complex
systems, reducing the reliance on manual input from developers. This aligns with
the work by Xia [Zhang et al., 2023] on LLM-based fuzz driver generation, which,
while promising, still faces challenges in filtering ineffective drivers and improving
correctness for complex APIs.

The literature review reveals a significant imbalance in research focus, with consid-
erably more attention devoted to automating unit tests compared to functional and
system testing. While unit tests are vital for verifying individual components, func-
tional tests are crucial for identifying issues from a user-centric perspective, often
uncovering problems that unit or integration tests cannot detect. These tests play
a pivotal role in ensuring that software behaves as intended in real-world scenarios.
Automating functional tests not only reduces manual effort in regression testing but
also accelerates development cycles and enhances overall software quality.

Despite their importance, functional and system tests remain underexplored due to
the unique challenges they present. Simulating complex user workflows requires a
deep understanding of dynamic interactions, which is far more intricate than gen-
erating unit tests. Ensuring comprehensive test coverage for functional scenarios is
another significant hurdle, as it involves identifying and addressing untested paths
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and interactions. Furthermore, the scarcity of large, diverse datasets representing
real-world functional testing scenarios limits the ability to train models effectively,
reducing their generalizability across different application domains. The computa-
tional costs associated with generating and executing functional tests, particularly
for dynamic user interfaces or large systems, further complicate their automation.
These challenges have contributed to the limited focus on functional and system test
automation in existing research, leaving a critical gap in the field.

Codestral Mamba 7B [Gu and Dao, 2023; Zuo et al., 2024] stands out as a supe-
rior choice over Llama and other smaller, free models. While Llama excels as a
general-purpose language model, its broader scope comes at the cost of task-specific
optimization, making it less effective for generating highly structured outputs like
code. Codestral Mamba 7B, in contrast, has demonstrated significant improvements
in contextual understanding and efficiency, thanks to architectural refinements and
a modular mixture-of-experts framework that allows it to adapt to specialized tasks
[Jiang et al., 2023; Thakkar and Manimaran, 2023]. Furthermore, Mistral outper-
forms Llama in key areas like reasoning, factuality, and computational efficiency,
making it a more suitable foundation for code generation [Nadeau et al., 2024].

Building on the advancements of models like Mistral, Mamba 7B incorporates in-
novative features, such as linear-time sequence modeling with selective state spaces,
which enhances its ability to handle structured, logical sequences like those found in
code [Gu and Dao, 2023]. Additionally, hybrid approaches like Jamba demonstrate
the potential of Mambas architecture to outperform traditional transformer-based
models in specific use cases by leveraging its unique attention-free mechanism for
faster and more accurate outputs [Lieber et al., 2024]. This makes Mamba 7B es-
pecially adept at translating textual prompts into precise, syntactically valid pytest
code.

Moreover, Mamba’s ability to efficiently utilize computational resources [Huang
et al., 2024] makes it a practical choice for research projects requiring frequent
experimentation without incurring high computational costs. Overall, Mamba 7B
combines the domain-specific adaptability of Mistral with its own architectural in-
novations, making it a superior model for generating code from text in this thesis
context.

While these models hold significant promise in automating various aspects of soft-
ware testing, challenges remain in ensuring the completeness, correctness, and effi-
ciency of the test cases they generate. Existing solutions often fall short in achiev-
ing comprehensive test coverage and adapting to dynamic, real-world environments.
Many studies rely on controlled experimental settings, limiting their validation in
more complex scenarios. This underscores the pressing need for testing frameworks
that integrate real-world databases and dynamic environments to fully realize the
potential of such models. Our proposed work aims to fill this gap by developing
model-driven automated interface testing solutions that are practical, robust, and
scalable. By refining the capabilities of these models and employing adaptive algo-
rithmic techniques, we aspire to create testing solutions that are accurate, versatile,
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and applicable across diverse software domains.

1.4 Contributions

This dissertation makes significant contributions to the field of software testing, par-
ticularly in the automation of test case generation through the integration of LLMs.
By leveraging the Codestral Mamba model with Low-Rank Adaptation (LoRA)
fine-tuning, this research not only enhances the efficiency and reliability of software
testing processes but also demonstrates the practical applicability of these advance-
ments in real-world industrial settings. The following subsections detail both the
methodological advancements and the practical impact of this study.

1.4.1 Advancements in Automated Software Testing

This research advances the state of automated software testing by introducing an
innovative methodology for test case generation using LLMs. The key contributions
in this regard are:

• Improved Test Case Generation Efficiency: The integration of the Code-
stral Mamba model with LoRA fine-tuning enables the automated generation
of high-quality test cases, reducing reliance on manual scripting and enhancing
test consistency across different software projects.

• Enhanced Test Coverage and Defect Detection: The model’s ability to
generate diverse and extensive test scenarios ensures broader coverage of soft-
ware functionalities, facilitating the early detection of defects and contributing
to overall software quality improvements.

• Optimization of Software Quality Engineering Workflows: By au-
tomating test case creation, software testing teams can focus more on strategic
quality assurance activities, such as refining testing frameworks and analyzing
results, leading to increased productivity and more streamlined development
cycles.

• Scalability and Adaptability to Real-World Applications: The pro-
posed approach is designed to be adaptable to different programming lan-
guages, testing frameworks, and continuous integration/continuous deploy-
ment (CI/CD) environments, underscoring its practical applicability across
a wide range of software development contexts.

• Foundation for a Modular Fine-Tuning Repository: This research envi-
sions a structured repository where LoRA matrices are encapsulated on a per-
project basis. Such a repository would enable organizations to maintain fine-
tuned models tailored to specific project requirements, facilitating reusability,
efficient model updates, and sustained test relevance over time.
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1.4.2 Acknowledgments and Practical Contributions

Beyond its theoretical advancements, this dissertation has been developed with a
strong emphasis on practical validation and real-world applicability. The methodolo-
gies proposed were not only conceptualized in an academic setting but also tested
and refined in collaboration with the software company Decsis1, which provided
essential data for the creation of the TestCase2Code dataset.

The partnership with Decsis allowed for an empirical assessment of the proposed
automated testing approach in an industrial environment, ensuring that the findings
are aligned with real-world software engineering challenges. The data-driven vali-
dation process confirmed the feasibility of integrating LLM-based automated test
generation into existing testing workflows, demonstrating tangible benefits such as
increased efficiency, improved defect detection, and reduced manual effort.

Additionally, the insights gained from working with industry professionals helped
refine the fine-tuning strategy and model adaptation process, ensuring that the
approach remains practical, scalable, and adaptable to diverse software development
needs. The collaboration underscores the importance of bridging the gap between
academic research and industry practice, paving the way for future explorations into
the role of LLMs in software quality engineering.

This dissertation, therefore, stands as a contribution not only to the academic dis-
course on automated software testing but also as a practical framework that can
be leveraged by industry professionals seeking to enhance their testing processes
through the use of advanced AI-driven methodologies.

1.5 Proposed Solution and Approach

To address the challenges outlined in the problem statement, we propose the integra-
tion of advanced language models into the software testing process. These models
provide an innovative way to automate test script generation, reducing much of
the effort and challenges tied to both manual and traditional automated testing.
By leveraging their advanced natural language processing capabilities, such models
can analyze application requirements, user stories, and existing documentation to
generate comprehensive test cases, including functional test cases that validate core
system behaviors and edge cases. This automation not only reduces the time and
effort involved in creating test scripts but also enhances test coverage, minimizing
the risk of undetected issues.

A critical advantage of employing these models is the ability to fine-tune them to
meet the specific needs of an organization. By training a model on proprietary data,
companies can ensure that it is attuned to their unique software ecosystem, captur-
ing domain-specific knowledge and testing requirements. This tailored approach not

1https://www.decsis.eu/

https://www.decsis.eu/
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only enhances the relevance and accuracy of generated tests but also reinforces data
privacy. Organizations maintain ownership of the data used for training, which mit-
igates concerns surrounding sensitive information while aligning the models outputs
with internal standards and practices.

Furthermore, fine-tuning allows companies to exert control over their models and
their versions, fostering stability in quality and performance. By developing a so-
lution specifically designed to address the testing demands of their applications,
organizations can achieve a reliable and consistent testing framework. This control
is essential in dynamic environments, where rapid software updates require frequent
adjustments to testing strategies. With these models capable of adapting to code
changes and evolving requirements, organizations can significantly enhance their
agility and responsiveness to new features and configurations.

In addition to generating test cases, advanced language models can assist in the
ongoing maintenance of test scripts. As software applications undergo continuous
development, these models can analyze changes in code and automatically update
the associated tests. This capability not only reduces the manual workload on test-
ing teams but also ensures that tests remain relevant and effective in validating
software functionality. By incorporating such models into the testing pipeline, or-
ganizations can streamline their quality assurance processes, ultimately improving
software reliability while reducing reliance on labor-intensive manual methods.

By embracing advanced language models as a cornerstone of their testing strategy,
organizations can foster a more efficient, effective, and adaptive quality assurance
environment. This approach not only addresses the current challenges of manual
testing but also positions organizations to thrive in the rapidly evolving landscape of
software development, ensuring the delivery of high-quality applications in a timely
and cost-effective manner.

1.6 Structure of the dissertation

This work is structured to provide a comprehensive examination of automated soft-
ware testing through the application of LLMs. It begins with Chapter 1, the Intro-
duction, which sets the stage by presenting the background and motivation for the
research, highlighting the crucial role of effective software testing in contemporary
software development. This chapter also reviews comprehensive software testing
approaches and strategies, detailing various testing techniques and discussing the
integration of automated testing methods in practice, alongside an exploration of
the testing pyramid and its relationship with test automation. The problem state-
ment identifies key challenges in the field, while the proposed solution and approach
offer insights into the research’s innovative aspects. Finally, a literature review situ-
ates the study within existing research, identifying gaps that this dissertation aims
to address.
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Chapter 2, Theoretical Foundations, delves deeper into the core concepts of software
testing, starting with an analysis of test automation. This chapter also introduces
large language models, elaborating on their capabilities and relevance to automated
testing.

In Chapter 3, the Methodology section outlines the research design focused on test
automation through fine-tuning advanced language models. It describes the model
architecture and provides an overview of the pre-training process, followed by a
detailed explanation of the fine-tuning techniques employed to adapt these models
for generating test scripts.

Chapter 4 presents the Experimental Procedure and Results, detailing the steps
taken for data collection, model development, and the training process, including
hyperparameters used in the experiments. It further discusses the generation of
test scripts and evaluates the model’s performance, providing a clear picture of the
outcomes achieved.

Finally, Chapter 5 encompasses the Discussion and Conclusions. This chapter inter-
prets the results, discusses their practical implications, and reflects on the limitations
of the study. It concludes by summarizing key findings and proposing directions for
future research, reinforcing the significance of the work in advancing automated
software testing practices. Through this structured approach, the work aims to
contribute meaningfully to both academic and practical fields in software testing.



Chapter 2

Theoretical Foundations

Software testing is a critical and structured process that ensures the functionality,
reliability, and overall quality of software products. This chapter delves into the
theoretical foundations and definitions necessary for understanding various testing
levels and techniques, with a particular focus on generating automated test cases
using LLMs. By exploring these foundational concepts, this chapter aims to pro-
vide a comprehensive scope and context for the methods selected, emphasizing their
role in enhancing software quality assurance. The integration of LLMs in this pro-
cess represents a significant advancement, offering the potential to streamline test
case generation and improve the efficiency and adaptability of automated testing
strategies.

2.1 Software Testing

Software testing is a vital structured process that focuses on verifying and validating
software products to ensure their functionality, reliability, and overall quality [Par-
ihar and Bharti, 2019]. Beyond its foundational purpose, this dissertation focuses
on specific testing levels and techniques that will form the basis for generating auto-
mated test cases with the aid of LLMs. The theoretical foundations and definitions
necessary for understanding these approaches will be discussed in detail throughout
this chapter, providing the scope and context for the methods selected.

In practice, software testing involves a disciplined assessment of an applications
behavior and performance against specified requirements. This is achieved through
a combination of testing levels such as functional, integration, and system testing,
and techniques like regression and fuzz testing. These are often integrated to enhance
test coverage and efficiency, ensuring that the software is comprehensively validated
at every stage of development [Jamil et al., 2016].

The integration of automated testing techniques plays a central role in this discus-
sion. Drawing on practical experience, the selection of levels and methods focuses

15
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on strategies that improve test automation efficiency, broaden coverage, and address
real-world challenges in software quality assurance. Techniques such as functional
testing verify compliance with requirements, regression testing ensures that changes
do not impact existing functionality, and fuzz testing exposes vulnerabilities by test-
ing system resilience under unexpected inputs. By systematically combining these
methods, testing becomes not only more effective but also more adaptable to diverse
scenarios [AbuSalim et al., 2021].

This dissertation builds upon established principles of software testing to investigate
the potential of LLMs in automating test case generation, specifically targeting a
range of test types, including functional, fuzz, exploratory, smoke, system, regres-
sion, as well as black-box and gray-box testing. By grounding this exploration in
well-defined levels and techniques, it aims to demonstrate how advanced AI tools
can enhance software quality assurance while addressing the challenges posed by
increasingly complex software systems.

2.1.1 Definition and Role of Tests, Test Cases, and Test Suites

To fully understand the integration of automated testing techniques and the genera-
tion of test cases using large language models, it is essential to define and clarify the
roles of tests, test cases, and test suites in software testing. These components form
the foundation of a structured testing process and directly influence the quality and
coverage of the validation efforts.

Tests

A test is a fundamental activity within the software testing process aimed at evalu-
ating a specific aspect of a software application. Tests verify that the system behaves
as expected under predefined conditions, ensuring compliance with requirements and
specifications. They may focus on functionality, performance, security, or any other
key attribute of the software.

Test Cases

A test case is a detailed, specific set of instructions and conditions designed to verify
a particular functionality or feature of the software. It includes:

• Input: Data or actions provided to the system under test.

• Execution Conditions: The environmental setup or system state in which
the test is performed.

• Expected Results: The anticipated outcome or behavior of the system based
on the inputs provided.
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Test cases serve as the building blocks of software testing. They ensure repeatability
and consistency, making it possible to validate a system’s behavior systematically.
The effectiveness of test cases directly impacts the ability to detect defects and
ensure the system meets its objectives [Beizer, 1990a].

Test Suites

A test suite is a collection of related test cases grouped together to evaluate a specific
aspect of the software or to ensure comprehensive testing of a module, feature, or
system. Test suites often target a particular level of testing, such as functional,
integration, or system testing, and may be organized by features, components, or
scenarios.

In automated testing, test suites are critical for executing tests efficiently, as they
allow for the grouping and parallel execution of related test cases. This increases
coverage while minimizing redundancy [Myers, 2004].

Role in Automated Testing and LLM-Generated Test Cases

In the context of this dissertation, tests, test cases, and test suites play pivotal roles
in the automation process:

• Tests: Establish the objectives for validation, guiding the generation and
execution of automated scenarios [Jorgensen, 2013].

• Test Cases: Provide the granular detail necessary for language models to
generate meaningful and relevant automated scenarios, ensuring alignment
with the intended requirements [Beizer, 1990b].

• Test Suites: Enable the structured organization and execution of LLM-
generated test cases, facilitating integration with existing software develop-
ment workflows [Crispin and Gregory, 2009].

By leveraging LLMs, the process of defining and generating test cases can be signifi-
cantly streamlined, leading to enhanced test coverage and adaptability. The precise
definition and integration of these components form the backbone of the automated
testing strategies discussed in this dissertation.

2.1.2 Definition and Classification of Different Types of Software
Testing

In software engineering, ensuring that a software product is both technically sound
and meets end-user expectations is essential. To achieve this, structured testing pro-
cesses such as Verification and Validation (V&V), diverse Testing Levels, a range of
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Testing Techniques, and precise Test Case Design contribute to a robust framework
for software quality assurance. Each element plays a specific role in identifying and
resolving potential issues, ensuring the software is ready for production.

Verification and Validation (V&V)

Verification and Validation, commonly referred to as V&V, are complementary pro-
cesses designed to confirm that a software product meets its requirements and is
suitable for its intended purpose.

• Verification: Is an internal process focused on confirming that the software
development process and its products are built correctly, in accordance with
defined requirements and design specifications. Verification essentially answers
the question: Are we building the product correctly? This process includes
various checks at each stage of development to reduce discrepancies from initial
specifications and helps identify errors early on [Wallace and Fujii, 1989].

• Validation: Is concerned with ensuring that the final software product fulfills
user needs and intended use cases. This process addresses the question: Are
we building the right product? Validation often occurs toward the end of the
development cycle and includes user feedback and real-world testing to assess
whether the software aligns with end-user expectations. Together, Verification
and Validation serve as foundational pillars, ensuring the accuracy, relevance,
and value of the final software product [Wallace and Fujii, 1989].

Testing Levels

To ensure comprehensive coverage, software testing is divided into various levels,
each with a specific focus. These levels progressively assess the software, starting
from individual components and culminating in system-wide evaluations.

• Unit Testing: The most granular level of testing, unit testing involves testing
individual components or functions independently. Its purpose is to verify
that each part of the software performs as expected in isolation. Unit tests
are typically conducted early in the development cycle, enabling developers to
catch errors at their source and facilitating smoother integration of components
[Jorgensen, 2013].

• Integration Testing: This level of testing combines individual units and
tests their interactions to detect issues that may arise when modules are in-
tegrated. Integration testing aims to ensure that components work together
seamlessly and that any defects related to module interconnections are identi-
fied [Jorgensen, 2013].
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• System Testing: System testing evaluates the fully integrated software ap-
plication, checking its performance against both functional and non-functional
requirements. This level simulates real-world scenarios to assess the software’s
behavior as a complete system, ensuring that all components function as a
cohesive whole [Jorgensen, 2013].

• Acceptance Testing: The final level, acceptance testing, involves stakehold-
ers and end-users who verify that the software meets business requirements
and user expectations. Acceptance testing confirms that the software is ready
for deployment, ensuring that it is suitable for release [Jorgensen, 2013].

Testing Techniques

A range of Testing Techniques provides varied perspectives on software behavior,
addressing both functional and structural attributes. Three primary techniques
include:

• Black-Box Testing: This technique focuses on the softwares functionality
without reference to its internal code. By examining inputs and outputs, black-
box testing simulates end-user interactions and validates that the software
performs as expected across a range of scenarios [Myers et al., 2011].

• White-Box Testing: White-box testing analyzes the softwares internal struc-
ture, focusing on code paths, logic, and conditions. It is especially effective for
identifying hidden errors within the code and optimizing performance. White-
box testing ensures comprehensive code coverage by allowing testers to exam-
ine the softwares inner workings [Myers et al., 2011].

• Gray-Box Testing: Combining elements of black-box and white-box testing,
gray-box testing allows partial visibility of the internal code while maintaining
a user-centered perspective. This approach is particularly useful in integration
and system testing, as it provides insights into the softwares internal and
external behavior [Myers et al., 2011].

Functional and Non-Functional Testing

Comprehensive software testing includes both Functional and Non-Functional Test-
ing, which assess the softwares operation and its overall qualities.

• Functional Testing: Ensures that each feature operates as specified by user
requirements. It encompasses various forms, including:

– Smoke Testing: A preliminary check to ensure that the critical func-
tionalities of the software are working correctly.
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– Regression Testing: Ensures that updates or changes do not affect
existing features.

• Non-Functional Testing: Evaluates attributes that impact user experience
and system reliability. It includes:

– Performance Testing: Assesses how the software operates under load
conditions.

– Usability Testing: Examines the ease of use and user experience.

– Security Testing: Identifies potential vulnerabilities within the soft-
ware.

– Compatibility Testing: Ensures that the software functions across dif-
ferent devices and platforms.

– Reliability Testing: Verifies the stability of the software over extended
periods.

Specialized Testing Techniques

Beyond conventional methods, Specialized Testing Techniques such as fuzzing and
exploratory testing provide additional layers of validation for complex or unique
requirements.

• Fuzzing: Is a security-focused technique that subjects the software to ran-
dom or malformed inputs to identify vulnerabilities, particularly valuable for
exposing security flaws [Ognawala et al., 2017].

• Exploratory Testing: Is an unscripted, intuitive method allowing testers
to investigate the software freely, often uncovering bugs that scripted tests
might overlook. This technique is particularly useful for discovering complex,
context-dependent issues.

Test Case Design

Effective Test Case Design is crucial for a successful testing strategy. Several design
techniques maximize test coverage while minimizing redundancy:

• Equivalence Partitioning: This technique organizes input data into groups
expected to produce similar outcomes, allowing testers to represent multiple
scenarios efficiently and reduce the number of individual test cases.

• Boundary Value Analysis: This technique emphasizes testing edge cases
at the boundaries of input ranges, which are often sources of defects.
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• Decision Table Testing: Useful for software with complex decision-making,
this method organizes conditions and actions into a table to ensure all possible
input combinations are evaluated. Decision table testing is highly effective for
verifying complex business logic.

By integrating Verification and Validation, structured Testing Levels, a diverse range
of Testing Techniques, targeted Functional and Non-Functional Testing, and special-
ized approaches like fuzzing and exploratory testing, a comprehensive software test-
ing framework emerges. This layered approach to software quality assurance ensures
compliance with technical specifications, security, user satisfaction, and operational
reliability. This comprehensive framework supports the development of high-quality
software, aligning with both business objectives and user needs.

2.1.3 Importance and Role of Testing Throughout the Software
Development Process

Testing plays a vital role in the software development process, ensuring that the
final product is both technically sound and user-centered. Throughout each phase
of development, testing serves as a quality control measure, enabling teams to iden-
tify and address issues before they escalate into costly or complex problems. Early
in development, testing activities focus on Verification and Validation (V&V),
where verification ensures that each component aligns with design specifications,
and validation confirms that the product will meet user needs and expectations. By
detecting discrepancies at this stage, verification minimizes costly late-stage errors,
while validation verifies that the evolving software product remains relevant to end-
users. As the development progresses, Testing Levels like unit testing, integration
testing, system testing, and acceptance testing offer structured checkpoints, each
with a unique focus. Unit testing, for instance, verifies that individual functions or
components perform as expected, while integration testing assesses how well these
units work together, uncovering issues that may arise from interdependencies. Later,
system testing evaluates the entire application as a whole, ensuring that it meets all
functional and non-functional requirements, while acceptance testing allows stake-
holders to determine if the product is ready for deployment.

In addition to testing levels, a range of Testing Techniques provides various per-
spectives for evaluating software. Techniques such as black-box, white-box, and
gray-box testing cover different facets of software functionality. Black-box testing
evaluates the software’s outputs based on inputs, closely mimicking user interac-
tions to ensure correct functionality, while white-box testing provides an internal
view of the code, allowing for optimization and logical accuracy. Gray-box testing
combines these two approaches, enabling a balanced assessment that is both user-
centered and code-aware. Both Functional and Non-Functional Testing are
essential to create a comprehensive assessment of the software. Functional testing
verifies that each feature operates as required, while non-functional testing assesses
qualities like performance, security, and usability, which impact user experience and
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reliability. Specialized techniques such as fuzzing and exploratory testing also
enhance quality by addressing specific areas such as security and discovering com-
plex, context-dependent bugs that scripted testing might miss.

Test Case Design is crucial for ensuring that testing is both effective and efficient,
covering diverse scenarios with minimal redundancy. Techniques like Equivalence
Partitioning reduce the number of test cases by grouping inputs expected to yield
similar results, while Boundary Value Analysis focuses on edge cases where errors
are more likely. Decision Table Testing helps ensure that software with complex
decision-making logic behaves correctly under various conditions. Overall, the test-
ing process is indispensable for achieving a high-quality, reliable product that meets
both technical standards and user expectations. From early-stage verification to
final acceptance testing, comprehensive testing supports each layer of development,
reducing risks, improving quality, and fostering user satisfaction. By thoroughly
evaluating software at every stage, testing ensures that the final product is robust,
secure, and ready for deployment, building user trust and laying the foundation for
successful software release.

2.1.4 Test Automation

Test automation is an essential aspect of modern software development, as it reduces
testing time, effort, and costs while maintaining high standards of quality and reli-
ability. Notably, software testing can account for up to 50–70% of a project’s total
cost, making automation a crucial strategy for cost reduction [Sullca, 2023]. This
is particularly true in complex or critical systems, where exhaustive manual testing
is impractical. Automation streamlines the testing process and ensures thorough
testing across various system components.

Test automation relies on a few foundational concepts to guide effective testing and
improve the chances of finding defects.

Test Cases and Components

A test case is a core element in automated testing, consisting of:

• Initial conditions: Setup requirements to ensure a reproducible environment.

• Test data: Input values that drive test parameters.

• Operations and Oracles: Actions performed on the system under test System
Under Test (SUT) and an oracle, which verifies the results against expected
outcomes.

Test Data Generation Techniques

Effective test data generation is critical to ensure coverage and detect potential
defects. Common methods include:
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• Input space partitioning: Dividing input data into partitions based on expected
behaviors and selecting representative values.

• Boundary value analysis: Testing values at the boundaries of input partitions
where errors are more likely.

• Error guessing: Using intuition and experience to choose inputs that are likely
to reveal faults.

Various strategies are available to manage test data combinations:

• All combinations: Creating test cases for all possible input combinations.

• Pairwise testing: Ensuring that each pair of input values is tested at least
once, providing an efficient trade-off between coverage and test count [Go
et al., 2016].

• N-wise testing: Extending pairwise testing to cover combinations of n param-
eters, which increases coverage without exhaustive testing.

Coverage Criteria and Mutation Testing

To assess how well the SUT is tested, coverage criteria serve as essential metrics:

• Statement coverage: Ensures all code lines are executed.

• Decision coverage: Ensures all decision points (e.g., if-else statements) have
been evaluated in true and false scenarios.

• Condition coverage: Focuses on each condition within decision statements.

• Modified Condition/Decision Coverage (MC/DC) further enhances testing by
ensuring that each condition in a decision statement can independently affect
the decision outcome, which is particularly valuable in complex systems.

• Mutation Testing is another technique to evaluate the effectiveness of a test
suite by introducing small changes (mutations) into the code and checking if
the test cases detect these deliberate faults. A high mutation score implies
strong defect-detection capability, increasing confidence in software quality.

Testing Levels and the V-Model

The V-Model is a software development model that illustrates the relationship be-
tween each phase of development and its corresponding testing level. It is structured
in a V shape, where the left side represents stages of development, and the right side
represents corresponding stages of testing. Each testing phase verifies or validates
the outcome of its counterpart development phase, ensuring a systematic approach
to quality assurance [Pressman, 2005]. Figure 2.1 shows the V-Model, which includes
the most common testing levels.
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The V-Model is particularly relevant in this discussion due to its structured ap-
proach, which clearly defines the direct correlation between development and test-
ing phases. This characteristic is especially beneficial for projects requiring rigorous
verification and validation, such as those in the health and finance sectors, where
reliability, compliance, and risk mitigation are critical. While other models, such as
Agile or Spiral, offer flexibility and iterative refinement, they may not always pro-
vide the same level of traceability between development and testing stages. Agile
methodologies, for instance, prioritize continuous feedback and adaptability, which
can be advantageous for rapidly evolving requirements but may introduce challenges
in maintaining structured verification processes. Similarly, the Spiral model empha-
sizes iterative risk analysis, making it suitable for complex and high-risk projects
but potentially less efficient in cases where requirements are well-defined from the
outset. Given these considerations, the V-Model is chosen here for its clarity, sys-
tematic integration of testing activities, and suitability for projects where stability,
regulatory compliance, and risk management are paramount, as is often the case
in health and finance software development. In the context of test automation, the
V-Model supports applying automation at each testing level:

• Unit Testing: At the base of the V-Model, unit testing is conducted to
test individual components or modules in isolation. This phase focuses on
validating the smallest parts of the application, often directly after they are
implemented. Automated unit tests are typically written by developers to
verify that each unit functions as expected before integration [Beizer, 1990a].

• Integration Testing: Moving up the V-Model, integration testing verifies the
interactions between integrated components or units. Here, test automation
ensures that different parts of the system work together as intended. Au-
tomated integration tests can simulate real-world interactions between com-
ponents, identifying issues that may arise when units are combined [Beizer,
1990a].

• System Testing: Near the top of the V-Model, system testing evaluates the
complete and integrated system to verify that it meets both functional and
non-functional requirements. Automation at this stage focuses on end-to-end
testing of workflows and features to ensure that the entire system functions
correctly under realistic conditions [Beizer, 1990a].

• User Acceptance Testing (UAT): At the highest level of the V-Model,
UAT is conducted to ensure that the system meets the end-users expecta-
tions and business requirements. Automation in UAT can streamline testing
repetitive processes and validate usability and functionality from an end-user
perspective, though manual testing is often used here as well to capture sub-
jective insights [Pressman, 2005].

• Release Testing: This final phase, often considered an extension of UAT,
tests the system in a production-like environment to ensure it performs well
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Figure 2.1: The V model and testing techniques.

under real-world conditions. Automated release testing can focus on aspects
such as performance, security, and scalability, verifying that the system is
robust and ready for deployment [Beizer, 1990a].

The V-Model promotes a proactive approach to testing by aligning each develop-
ment stage with a specific testing activity, enabling early detection of defects and
continuous quality validation throughout the development process.

At higher levels, additional methods such as keyword-driven and exploratory testing
may be incorporated, especially for non-functional requirements like security and
performance.

2.1.5 Exploration of Existing Automation Tools and Techniques

The landscape of test automation tools is vast, offering a range of capabilities to
address different testing requirements across platforms and languages.

Script-Based: Tools like Selenium and Appium are popular for web and mobile UI
automation, enabling testers to create detailed scripts that provide comprehensive
coverage of application functionality. Selenium is widely adopted for web applica-
tions, while Appium supports mobile applications across various operating systems
[Axelrod, 2018].
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Data-Driven and Keyword-Driven Tools: These approaches allow separation
of test scripts from test data, enabling reuse of scripts with different datasets.
Keyword-driven tools simplify automation by replacing complex code with descrip-
tive keywords, making it easier for non-technical users to contribute to test case
development [Axelrod, 2018].

Behavior-Driven Development (BDD): Tools such as Cucumber and SpecFlow
align testing with business requirements by writing tests in plain language scenarios.
This approach improves collaboration between technical and non-technical stake-
holders, ensuring that tests remain relevant to business needs [Axelrod, 2018].

Model-Based Testing (MBT): This technique generates test cases based on mod-
els that define system behavior, which is valuable for testing complex systems where
manually designing test cases is impractical. MBT automates test generation and
provides coverage for intricate system interactions [Axelrod, 2018].

Continuous Testing in CI/CD Pipelines: Continuous integration and contin-
uous delivery (CI/CD) tools, like Jenkins and CircleCI, support automated test
execution on every code commit, reducing the feedback cycle and enabling rapid
identification of defects. This approach integrates testing directly into the develop-
ment workflow, promoting frequent, incremental testing [Axelrod, 2018].

Automation Methodologies: A structured approach, like the Test Manage-
ment Approach (TMAP), emphasizes test preparation, specification, and execution.
TMAP promotes risk-driven testing, ensuring that test automation targets high-
risk areas first, thereby optimizing resources and enhancing overall quality [Axelrod,
2018].

Test automation integrates well-defined test case design, rigorous coverage criteria,
and powerful tools and methodologies. The strategic application of these elements
significantly enhances testing efficiency, reduces manual effort, and improves the
robustness of software applications.

2.2 Large Language Models

Large language models are advanced artificial intelligence systems designed to under-
stand, generate, and engage with human language. Using powerful machine learning
techniques, particularly deep learning, LLMs perform a wide range of NLP tasks,
such as text generation, translation, question answering, and summarization. This
versatility enables them to be applied in diverse fields, from customer support to
scientific research [Jurafsky and Martin, 2025; Zhao et al., 2023].

These models undergo a multi-phase training process that enables them to learn lan-
guage patterns, grammar, and contextual relationships from vast amounts of text
data. The initial phase, known as pretraining, is typically based on self-supervised
learning, a form of unsupervised learning where the model predicts the next word
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or token in a sequence using large-scale textual corpora. Following this, a fine-
tuning phase is often applied, where the model is further trained on specific tasks
using supervised learning to refine its capabilities. Finally, reinforcement learning
with human feedback is employed to align the models responses with desired out-
puts, ensuring greater coherence, relevance, and ethical considerations. Through
these stages, the language model progressively captures complex linguistic struc-
tures, contextual dependencies, and semantic meanings [Jurafsky and Martin, 2025;
Zhao et al., 2023].

LLMs operate using deep learning, a subset of machine learning that enables models
to learn intricate relationships and patterns within data. Recent advancements in
deep learning have introduced new architectures that challenge the dominance of
the Transformer model. For instance, Meta’s Megalodon model extends the context
window to millions of tokens without requiring extensive memory, outperforming
Transformer models of similar size in processing large texts [Research, 2024]. Sim-
ilarly, the Mamba architecture incorporates a form of working memory, enhancing
speed and computational efficiency, particularly in non-language domains like audio
and genetics [Gu, 2024]. Additionally, Liquid Neural Networks, inspired by biological
systems, offer more efficient and transparent AI models, capable of ongoing learning
and improved visual data processing [Researchers, 2024]. One such architecture is
the Mamba 2 [Gu and Dao, 2023; Dao and Gu, 2024], a model from the Mistral
family, which builds upon the principles of State Space Models (SSMs), as described
in Section 2.3. Mamba 2 introduces significant advancements in sequence modeling
by employing linear-time complexity methods through selective state spaces. These
innovations optimize the efficiency and scalability of large-scale language models,
enabling them to process vast amounts of data more effectively.

As part of the Cosdetral framework, Mamba 2 demonstrates improved practicality
for real-world applications, such as natural language processing, scientific research,
and customer support systems. Its ability to handle complex language patterns and
long sequences efficiently makes it a valuable development in the evolution of modern
language models.

2.3 Discrete State Space Model

SSMs provide a unified framework for describing the evolution of a hidden state
that interacts with inputs and outputs over time. Depending on whether time is
treated continuously or discretely, the equations differ in form but share the same
conceptual structure.

In continuous time, the dynamics are captured by a system of differential equations,
but for practical implementation, these dynamics are reformulated in discrete time.
In the discrete setting, the structured SSM is expressed by recurrence relations that
efficiently compute hidden state updates and output mappings at each time step



28 CHAPTER 2. THEORETICAL FOUNDATIONS

For many practical machine learning and signal processing tasks, data is sampled
at fixed intervals, making the discrete-time formulation more suitable. The hidden
state ht evolves in discrete steps:

ht = Aht−1 +B xt, yt = C ht, (2.1)

where:

• ht ∈ RN is the hidden state at time step t,

• xt ∈ Rd is the discrete-time input,

• yt ∈ Rd is the discrete-time output,

• A, B, and C play analogous roles to those in the continuous-time formulation
but are interpreted at discrete intervals.

Instead of learning the transition matrices A and B directly, they are derived from
underlying continuous parameters Å and B̊, along with a parameterized step size
∆. This transformation follows fixed discretization rules:

A = fA(∆, Å), B = fB(∆, B̊) (2.2)

where the pair (fA, fB) defines the specific discretization method applied (see [Gu
and Dao, 2023]) for details).

Equation 2.1 is a special case where the system dynamics remain constant over time,
referred to as a Linear Time-Invariant (LTI) SSMs. In this scenario, the model be-
comes mathematically equivalent to convolutions. Unlike standard Convolutional
Neural Networks (CNNs), LTI SSMs implicitly parameterize convolution kernels
through (A,B,C), allowing them to capture global dependencies. Conversely, clas-
sical signal processing ensures that any well-behaved convolution can be represented
as an SSMs.

While the standard LTI formulation provides a powerful framework for modeling
sequential data, it imposes a fixed evolution of the hidden state over time. To
introduce greater flexibility, Selective State Space Models (SSSMs) extend this for-
mulation by allowing the parameters (A,B,C) to vary dynamically at each timestep
(see Equation 2.3). This selective mechanism enables the model to modulate its state
updates, selectively attending to or ignoring inputs based on contextual relevance,
as illustrated in Figure 2.2.

ht = At ht−1 +Bt xt, yt = Ct ht, (2.3)

The introduction of SSSMs has significantly improved performance on complex,
information dense tasks, such as language modeling, particularly when the state
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Figure 2.2: Selective State Space Model Architecture [Gu and Dao, 2023].

dimension N is increased. However, the recurrent nature of SSSMs presents compu-
tational challenges. Unlike convolutional architectures or attention-based models,
which can efficiently leverage modern accelerators like GPUs and TPUs through ma-
trix multiplications, selective SSMs require specialized, hardware-aware implemen-
tations. This constraint makes them less efficient than parallelizable architectures
such as CNNs and Transformers.

To address these limitations, [Dao and Gu, 2024] propose Mamba-2, a novel ap-
proach that builds on the strengths of selective SSMs while significantly improving
their computational efficiency. By drawing deeper connections between SSSMs and
attention mechanisms, Mamba-2 achieves faster training times and enables the use of
substantially larger state sizes N . This advancement bridges the gap between struc-
tured sequence models and modern deep learning paradigms, making state space
models more competitive with contemporary architectures in large-scale machine
learning applications. Details of the Mamba 2 structure will be introduced in the
section 3.3.

Application in Large Language Models

In the context of LLMs, SSMs can be used to map an input sequence xt to an output
sequence yt via a latent state sequence ht. The goal is to find a state representation
ht that allows the model to transition from an input sequence to an output sequence
effectively.

The state equation describes how the state changes based on the input and the
internal dynamics of the system. The output equation describes how the state is
translated into the output sequence. By solving these equations, the model aims to
uncover the statistical principles that govern the system’s behavior, allowing it to
make predictions based on observed data.

Step-by-Step Learning Process

To gain insight into how these matrices influence the learning process, please refer
to Figure 2.2. The following steps outline the key considerations:
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1. The input signal xt is multiplied by matrix Bt, which describes how the inputs
influence the system. This step incorporates new information into the model,
updating the state based on the current input.

2. The updated state ht is a latent space that contains the core knowledge of the
environment. This latent space encapsulates the system’s internal dynamics
and contextual information.

3. The state is then multiplied by matrix At, which describes how the internal
states are connected and represent the underlying dynamics of the system.
This step propagates the state forward in time, predicting future states based
on the current state.

4. Matrix Ct is used to describe how the state is translated into the output. This
step maps the internal state to the observable output, generating predictions
or responses based on the current state.

In conclusion, state-space models serve as a powerful framework for modeling dy-
namic systems, providing a systematic and structured approach to representing and
predicting system behavior. Within the domain of large language models (LLMs),
SSMs play a pivotal role in enabling effective capture of contextual information,
which is essential to generate coherent and contextually relevant predictions. This
capability underscores their significance as a valuable tool for tackling complex se-
quence modeling tasks.

2.3.1 Code Generation Using LLM

Language models have become essential tools in software development, significantly
enhancing the efficiency and accuracy of the coding process. With capabilities that
extend beyond automation, they streamline various stages of development by inter-
preting high-level instructions, completing code, and assisting in debugging. Devel-
opers benefit from the natural language processing capabilities, which allow these
models to understand and generate contextually relevant code.

Through contextual code completions and intelligent suggestions, these tools assist
developers in expanding and refining their code. When a developer writes an initial
portion of a function or script, the model can predict and suggest further code
that aligns with best practices, even filling in boilerplate code, optimizing loops, or
suggesting data structures that improve efficiency. This guidance helps developers
maintain high-quality code while focusing on more complex aspects of their projects.

Debugging is another area where these systems excel. By analyzing code context and
identifying errors, they can help developers resolve issues quickly, reducing the down-
time caused by debugging. For example, if a developer encounters a specific error or
a complex stack trace, the model can provide an interpretation of the issue, suggest
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possible fixes, and explain steps to troubleshoot. This assistance enhances produc-
tivity and allows developers to resolve issues without needing to search through
extensive documentation.

The most impactful role of LLMs in software development, however, lies in code
generation. By processing natural language instructions, these systems can gener-
ate complete functions, classes, or even larger script structures, tailored to meet
specific requirements. Developers can describe the functionality they need in simple
terms, and the model generates code that performs data handling, integrates APIs,
processes files, or even accomplishes machine learning tasks. This automated code
generation reduces manual effort and allows for rapid prototyping, especially useful
in fast-paced development environments.

When combined with the capabilities of automated testing, the code generation abil-
ities of these tools enable a highly efficient workflow, transforming the development
process from ideation to testing and deployment. This cohesive pipeline ultimately
ensures reliable and optimized code while accelerating project timelines [Lops et al.,
2024; Steenhoek et al., 2024; Schäfer et al., 2023].

2.3.2 Fine-Tuning Techniques

Fine-tuning is a critical process in the development and optimization of large lan-
guage models such as GPT, Mistral or BERT. By further training a pre-trained
model on specialized datasets, fine-tuning enhances the models ability to perform
domain-specific tasks or address particular user needs. The primary purposes of
fine-tuning are summarized below.

Fine-tuning serves several key purposes. It enables domain adaptation by customiz-
ing the model to understand the vocabulary, style, and content of a specific field,
such as medicine, law, or technology. For instance, fine-tuning a general model like
GPT on legal documents creates a system adept at answering legal queries. Ad-
ditionally, fine-tuning allows for task specialization, where the model is tailored to
perform tasks such as sentiment analysis, summarization, translation, or question
answering. For example, fine-tuning BERT on a dataset of product reviews can
develop a highly effective sentiment analysis tool.

Another major advantage of fine-tuning is efficiency in performance, as it eliminates
the need to train a model from scratch, saving computational resources and time.
It ensures that the model achieves higher accuracy and relevance for desired ap-
plications by adapting its pre-trained knowledge to the new context. Organizations
also use fine-tuning for customization, applying proprietary data to align the models
with internal terminology, branding, or user-specific requirements.

Fine-tuning techniques are diverse, each designed to optimize large language models
for specific needs while balancing resource efficiency and performance. These meth-
ods vary in complexity and scope, from fully updating the model’s parameters to
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fine-tuning only a small subset. By selecting the appropriate technique, developers
can tailor a model’s capabilities to specific tasks or domains without compromising
its general-purpose utility.

• Full Fine-Tuning: In full fine-tuning, all the weights of the pre-trained model
are updated during training on the new dataset. This method is suitable
when the target dataset is large and diverse, requiring significant adaptation.
While it offers maximum flexibility, it is computationally expensive and risks
overfitting on smaller datasets.

• Adapter Fine-Tuning: This technique involves adding small trainable neu-
ral layers (adapters) to the frozen pre-trained model, with only these layers
being updated during training. Adapter fine-tuning is computationally effi-
cient and modular, allowing reusability across tasks. However, it may deliver
slightly less performance improvement for highly complex tasks.

• Low-Rank Adaptation: LoRA introduces low-rank matrices to the model’s
existing weight matrices, reducing the number of parameters that need train-
ing. This method is ideal for constrained computational resources, balancing
performance and efficiency.

• Prompt Tuning: Prompt tuning learns a small set of continuous prompt
embeddings while keeping the entire model frozen. It is highly lightweight and
computationally inexpensive, though it is less flexible for adapting the deeper
layers of the model.

• Prefix Tuning: Prefix tuning prepends a learned prefix to the model’s input
representation, with only the prefix parameters being trained. This technique
is often applied in text generation tasks, preserving pre-trained knowledge
while allowing task-specific adaptation.

• Instruction Tuning: Instruction tuning involves fine-tuning the model on
datasets with instruction-response pairs, enhancing its ability to follow explicit
instructions. It improves usability and generalization to unseen instructions
but depends on high-quality datasets.

• Reinforcement Learning with Human Feedback: Combine fine-tuning
with reinforcement learning to align the model’s outputs with human pref-
erences. This technique is used in conversational agents like ChatGPT to
improve response alignment with user expectations. However, it is resource-
intensive and relies on curated human input.

Among the various fine-tuning techniques, LoRA emerges as a promising approach
due to its efficiency and scalability. By introducing low-rank updates, this method
significantly reduces the number of trainable parameters, enabling lightweight fine-
tuning of pre-trained models [Hu et al., 2021]. Such an approach is particularly
appealing for structured and syntax-heavy domains like programming languages,
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as it allows for targeted adaptation without demanding extensive computational
resources [Xu et al., 2023]. Its ability to optimize models with minimal overhead
makes it especially suitable for resource-constrained environments or scenarios where
computational efficiency is a priority. While not necessarily the optimal solution for
all tasks, this technique strikes a balance between performance and efficiency, making
it a strong candidate for adapting large language models to code generation.

2.3.3 Prompt Engineering

In the context of utilizing LLMs to enhance software testing automation, Prompt
Engineering emerges as a pivotal technique. It focuses on constructing precise and
context-aware inputs to maximize the effectiveness of pre-trained models, guiding
them to produce responses that align with specific software testing needs. This ap-
proach enables users to harness the full potential of language models without altering
their underlying architecture, making it especially practical for rapid deployment in
dynamic testing environments.

Prompt Engineering revolves around the strategic design of inputs, or prompts, that
instruct the model on how to approach a given task. For example, when automating
the generation of test cases in Python, a prompt can explicitly define the desired
functionality, constraints, and output format. This ensures the generated code is
both syntactically correct and contextually relevant, addressing specific testing sce-
narios with precision.

The role of Prompt Engineering is twofold: it acts as a bridge between the mod-
els general-purpose capabilities and the domain-specific requirements of software
testing, and it provides a cost-effective alternative to fine-tuning. By leveraging
well-crafted prompts, software testers can dynamically adapt the language models
to tasks such as test case generation, bug detection, and test data creation without
the need for extensive computational resources or additional training datasets.

Key principles of effective Prompt Engineering include:

• Clarity and Specificity: Prompts must be clear, unambiguous, and specific,
providing explicit instructions that leave little room for misinterpretation by
the model.

• Contextual Framing: Including relevant context, such as the system under
test or the specific type of test case required, helps ensure outputs align with
testing goals.

• Examples and Templates: Incorporating examples or templates into the
prompt can guide the model toward producing outputs consistent with desired
formats or patterns.

• Iterative Refinement: Testing and refining prompts iteratively can signif-
icantly improve output quality, particularly for complex or nuanced testing
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tasks.

• Domain-Specific Terminology: Including testing-related terminology in
the prompt enables the model to better understand and respond to the spe-
cialized requirements of software testing.

In the field of software testing automation, Prompt Engineering is particularly ad-
vantageous for tasks requiring adaptability, such as dynamic test case generation
and exploratory testing. By crafting tailored prompts, testers can effectively utilize
advanced language models to handle complex scenarios, reduce manual effort, and
accelerate the testing process. This makes Prompt Engineering a key component of
methodologies that integrate AI-driven solutions into software testing workflows.



Chapter 3

Methodology: Mamba LLM and
Fine-Tuning

This chapter delves into the methodology of fine-tuning Large Language Models
(LLMs) for test automation, focusing on the innovative Mamba architecture. The
advent of LLMs has revolutionized code generation, transforming the landscape of
software development and testing. This chapter explores the architecture and pre-
training of Mamba architecture, its advantages, and the integration of LoRA to
enhance its performance in automated testing frameworks like Pytest. By under-
standing these components, developers and researchers can leverage the full potential
of LLMs to streamline and improve the software testing process.

3.1 Applications and Impact of LLMs

Language models have transformed numerous industries by leveraging natural lan-
guage processing to understand, interpret, and generate human language. These
models excel in a wide array of natural language processing tasks, including text
classification, sentiment analysis, named entity recognition, summarization, and
more. Their powerful language comprehension capabilities make them invaluable
assets across fields like healthcare, finance, legal services, and customer support.
One of their most impactful contributions is the ability to process large volumes of
unstructured data, enabling organizations to automate workflows, enhance decision
making, and improve communication. subsubsectionApplications in Software De-
velopment In software development, these models are particularly transformative.
They streamline workflows by generating code, assisting with debugging, and au-
tomating documentation. For developers, they provide contextual code suggestions,
help complete functions, and even anticipate potential issues within code before they
manifest, which reduces time spent on debugging and facilitates a more efficient soft-
ware development lifecycle. Additionally, language models assist in creating com-
prehensive documentation and usage examples, making it easier to maintain high

35



36 CHAPTER 3. METHODOLOGY: MAMBA LLM AND FINE-TUNING

standards across teams and to onboard new developers quickly.

subsubsectionAdvancements in Software Testing In the specialized field of software
testing, advanced language models offer significant improvements in automation
and quality assurance. Traditionally, software testing has required substantial man-
ual effort to create test cases, execute tests, and identify defects. These models
streamline the process by automating various tasks, such as test case generation
and anomaly detection. By analyzing requirements or functional specifications ex-
pressed in natural language, they can produce relevant test cases that cover a wide
range of scenarios, reducing the time needed for test creation and ensuring more
thorough test coverage.

Furthermore, they contribute to automated anomaly detection by identifying poten-
tial issues or inconsistencies in test results. By comparing expected outputs with
actual outcomes, these models can detect discrepancies indicating bugs or perfor-
mance problems. This enables testers to address critical defects promptly, thus
improving software reliability. Their predictive capabilities also help prioritize test-
ing efforts by focusing on parts of the software that are most prone to failure or have
recently undergone changes. This prioritization optimizes testing resources, reduces
redundant testing, and increases the robustness of the final product.

Language models further support software testing through intelligent documentation
generation. By summarizing test outcomes, creating detailed reports, and tracking
test coverage, they improve communication among teams and maintain clear doc-
umentation, which is essential for continuous integration and deployment (CI/CD)
workflows. This automation of documentation significantly reduces the time teams
spend on these tasks, freeing up resources for more strategic activities and enhancing
transparency and accountability in the testing process.

Language models have expanded the scope of natural language processing beyond
conventional text analysis, driving significant advancements in software testing.
By improving automation, streamlining test case generation, accelerating anomaly
detection, and simplifying documentation, they help software development teams
enhance the quality, speed, and scalability of their testing workflows. These AI-
powered tools support the delivery of higher quality software that meets stringent
standards while adapting to the fast pace of modern development cycles.

In the context of software testing, language models offer substantial improvements
in automation and quality assurance. Traditionally, testing required substantial
manual effort to design test cases, execute tests, and identify defects. However,
these models automate numerous aspects of the testing process, from generating
diverse and relevant test cases to detecting anomalies. By analyzing requirements
or functional specifications written in natural language, they create comprehensive
test scenarios efficiently, reducing manual effort, and ensuring broader test coverage.
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3.2 Low-Rank Adaptation

LoRA is a sophisticated fine-tuning technique that we will employ for automated
testing with Pytest. This method was initially proposed in the seminal paper by Hu
et al. (2021), titled "LoRA: Low-Rank Adaptation of Large Language Models" [Hu
et al., 2021].

3.2.1 Introduction to LoRA

Definition and Concept

LoRA is designed to adapt large-scale, pre-trained language models to multiple
downstream applications efficiently. Traditional fine-tuning methods update all pa-
rameters of the pre-trained model, leading to significant storage and computational
overhead. It mitigates this issue by adapting only a subset of parameters or learn-
ing external modules for new tasks. This approach retains the pre-trained weights
frozen while training smaller, task-specific matrices, significantly reducing compu-
tational and storage requirements. By leveraging this strategy, it enables efficient
task adaptation without compromising model quality.

Historical Context and Development

The development of LoRA addresses the limitations of existing fine-tuning tech-
niques, which often introduce inference latency or reduce the models usable sequence
length. These methods frequently fail to match the performance of full fine-tuning
baselines, creating a trade-off between efficiency and model quality. LoRA over-
comes these challenges by optimizing rank decomposition matrices of the dense lay-
ers changes during adaptation, while keeping the pre-trained weights frozen.

3.2.2 Mechanism of LoRA

Mathematical Formulation

LoRA’s mechanism involves training some dense layers in a neural network indi-
rectly by optimizing rank decomposition matrices of the dense layers changes during
adaptation. For a pre-trained weight matrix W0 ∈ Rd×k, the update is constrained
by representing it with a low-rank decomposition:

W0 +∆W = W0 +BA

where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k). During training, W0

is frozen and does not receive gradient updates, while A and B contain trainable
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parameters. The modified forward pass is given by:

h = W0x+∆Wx = W0x+ (BAx)α

the factor α is a scalar that controls the influence of the Low-Rank Adaptation
update on the weight matrix. Heres what each term represents:

• W0: The original weight matrix of the model.

• x: The input vector.

• ∆W : The LoRA-induced weight adjustment.

• ∆W = αBA: The LoRA decomposition, where:

– B and A are low-rank matrices (often with rank significantly lower than
the full weight matrix).

– α scales the contribution of these matrices.
– A is initialized with a random Gaussian distribution, and B is initialized

to zero, ensuring ∆W = BA is zero at the beginning of training.

• Interpretation of α

– Higher α values: Increase the contribution of the LoRA update, giving
more importance to the learned adaptation.

– Lower α values: Reduce the influence of the LoRA update, making the
model rely more on the original weights W0.

Effectively, α acts as a scaling factor to balance the trade-off between the pretrained
weights and the fine-tuned adaptation introduced by Low-Rank Adaptation. It can
be tuned to control how much the model deviates from its original parameters during
fine-tuning.

In practice, LoRA can be applied to any subset of weight matrices in a neural
network to reduce the number of trainable parameters. The pre-trained model can
be shared and used to build many small LoRA modules for different tasks. By
freezing the shared model and efficiently switching tasks by replacing the matrices
A and B, it significantly reduces storage requirements and task-switching overhead.
This implementation detail is illustrated in Figure 3.1.

3.2.3 Advantages of LoRA

Computational Efficiency

LoRA enhances training efficiency and lowers the hardware barrier to entry by up
to three times when using adaptive optimizers. This is achieved by optimizing only
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Figure 3.1: Mechanism of Low-Rank Adaptation (LoRA)

the injected, much smaller low-rank matrices, rather than calculating the gradients
or maintaining the optimizer states for most parameters.

Memory Utilization

By freezing the pre-trained weights and optimizing only the low-rank matrices, LoRA
significantly reduces memory utilization. This allows for the efficient deployment of
multiple task-specific models without the need for extensive storage resources.

Scalability

LoRA’s design allows for seamless integration with various prior methods, such as
prefix-tuning. Its simple linear design enables the merging of trainable matrices with
the frozen weights during deployment, introducing no inference latency compared to
a fully fine-tuned model. This scalability makes it a versatile tool for a wide range
of applications.

3.2.4 Applications of LoRA in LLMs

Task-Specific Adaptation

LoRA’s ability to adapt pre-trained models to specific tasks without requiring ex-
tensive computational resources makes it ideal for task-specific adaptation. By fine-
tuning only the low-rank matrices, it enables efficient and effective adaptation to
new tasks, enhancing the model’s performance on task-specific data.



40 CHAPTER 3. METHODOLOGY: MAMBA LLM AND FINE-TUNING

Domain-Specific Fine-Tuning

LoRA enables domain-specific adaptations of LLMs by allowing targeted fine-tuning
without modifying the core pre-trained model. This approach is particularly valu-
able in automated testing, where lightweight, specialized modules can be trained
to generate and validate test cases efficiently. For instance, in the context of test
automation with Pytest, LoRA facilitates the creation of AI-assisted testing frame-
works that enhance test generation and execution while preserving computational
efficiency.

Pytest is a widely used testing framework in Python, known for its simplicity, scala-
bility, and extensive plugin ecosystem. It supports test discovery, parameterization,
and rich reporting, making it suitable for both small-scale unit tests and large, com-
plex test suites. Moreover, Pytest can be seamlessly integrated with the Selenium
Library to automate regression testing for web applications. By installing and con-
figuring both libraries, testers can leverage Pytests flexibility to manage and execute
Selenium-based tests, benefiting from its structured test execution and powerful as-
sertion mechanisms [Axelrod, 2018].

By incorporating LoRA into Pytest-based testing pipelines, organizations can fur-
ther optimize test automation, enabling adaptive and intelligent test case generation
tailored to specific industry requirements. This combination enhances the reliability
of software validation while reducing manual effort and computational overhead.

3.3 Mamba Architecture and Pre-training Overview

This research focuses on the generation of code from textual descriptions using
Mamba. Crafting accurate code has traditionally been a laborious process, ne-
cessitating programming expertise and the ability to troubleshoot bugs effectively.
However, the advent of LLMs like ChatGPT has revolutionized this landscape. Now,
developers and automated software quality specialists can simply input their manual
test cases and receive swift, precise code for automated testing.

In May 2024, Mistral AI introduced a groundbreaking model, Codestral, specifically
tailored for code generation. This model quickly gained recognition for its superior
performance on benchmark evaluations. However, its size spanning 22 billion pa-
rameters posed practical challenges, particularly in terms of computational demands
and storage requirements, which rendered it less accessible for individual developers
and smaller teams.

To address these limitations, Mistral AI subsequently launched a more compact
variant, Codestral Mamba. Despite its reduced size of 7 billion parameters, Code-
stral Mamba delivers competitive performance, often surpassing the larger Codestral
model in certain coding benchmarks. This balance of efficiency and performance has
made Codestral Mamba an attractive choice for developers seeking a lightweight yet
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powerful solution for automated code generation. This capability is largely due to
its utilization of the SSM structure, which enhances contextual understanding, im-
proves memory retention for handling large codebases, and ensures high-quality code
generation with remarkable efficiency

3.3.1 Advantages of Codestral Mamba

The Codestral Mamba model offers a range of features that set it apart from general-
purpose LLMs and competing code-generation models such as ChatGPT and Gem-
ini. These features include:

Specialization in Code Generation Unlike general-purpose LLMs, Codestral
Mamba has been fine-tuned on an extensive dataset encompassing programming
languages, algorithms, and best practices in software development. This targeted
specialization enables the model to produce high-quality, context-aware code snip-
pets and deliver accurate solutions for complex coding problems. Whether debug-
ging, refactoring, or writing new code, Codestral Mamba consistently demonstrates
superior precision and adaptability.

Benchmark Performance As shown in the benchmark performance comparison
presented in Table 4.3 in Chapter 4, the Codestral Mamba model demonstrates
superior performance compared to other models. This performance is consistent
across different test scenarios, validating its effectiveness in test automation tasks.
Remarkably, it also rivals larger models like Codestral (22B) and CodeLlama (34B)
in specific benchmarks, showcasing its advanced coding capabilities within a compact
architecture.

Efficient Inference One of the defining attributes of Codestral Mamba is its
efficient inference mechanism. By employing linear-time inference and sequence
modeling techniques, the model can process extensive input sequences without sig-
nificant performance degradation. Linear-time inference ensures response times scale
predictably with input length, while the ability to handle sequences of effectively in-
finite length allows for detailed comprehension of large codebases. These features
significantly enhance productivity in code generation and debugging tasks.

In-Context Retrieval Capabilities With an in-context token capacity of up
to 256,000 tokens, Codestral Mamba excels in managing and retrieving relevant
information from large and complex inputs. This capability enables the model to
generate precise, contextually relevant outputs tailored to specific programming sce-
narios. For example, when debugging a function, the model can seamlessly integrate
contextual details such as variable names and logic structures to provide targeted
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solutions12.

Flexible Deployment Options Codestral Mamba supports multiple deployment
configurations, including the mistral-inference SDK and TensorRT-LLM for opti-
mized performance. Additionally, the model weights are available on HuggingFace,
with upcoming support for llama.cpp expected to further simplify local inference.
These deployment options, combined with licensing flexibility under Apache 2.0, en-
sure the model can be integrated seamlessly into diverse development environments.

Accessibility and Licensing For ease of testing, Codestral Mamba is available
on la Plateforme (codestral-mamba-2407) alongside its larger counterpart, Codestral
22B. While Codestral Mamba is offered under an open-source Apache 2.0 license,
the larger model is available for self-deployment under a commercial license or a
community license for evaluation purposes. This broad accessibility ensures that
developers can leverage the models capabilities in a manner that best suits their
project requirements.

In summary, the Codestral Mamba model combines state-of-the-art performance,
accessibility, and efficient inference to establish itself as a robust tool for automated
code generation. Its tailored architecture, contextual understanding, and deploy-
ment flexibility make it an invaluable asset for advancing the automation of software
testing and development workflows.

3.3.2 Architecture of Mamba

Mamba represents a novel neural network architecture specifically designed to ef-
ficiently model long sequences by leveraging selective state-space models. By inte-
grating the core principles of earlier SSM frameworks with the Multi-Layer Percep-
tron (MLP) block from Transformers, Mamba offers a unified and streamlined ar-
chitecture. This integration simplifies previous deep sequence modeling paradigms,
resulting in a computationally efficient and performance-driven model optimized for
real-world applications.

Core Components

The core of the Mamba architecture is built around a refined version of the selective
SSM, which is both faster and competitive with Transformers in language modeling
tasks. This refinement is achieved through the State Space Duality (SSD) frame-
work, leading to the development of Mamba-2, an advanced iteration of the original
Mamba model.

1Mistral AI, Codestral Mamba, available at: https://mistral.ai/en/news/codestral-mamba
2NVIDIA Developer Blog, Revolutionizing Code Completion with Codestral Mamba:

The Next-Gen Coding LLM, available at: https://developer.nvidia.com/blog/
revolutionizing-code-completion-with-codestral-mamba-the-next-gen-coding-llm/

https://mistral.ai/en/news/codestral-mamba
https://developer.nvidia.com/blog/revolutionizing-code-completion-with-codestral-mamba-the-next-gen-coding-llm/
https://developer.nvidia.com/blog/revolutionizing-code-completion-with-codestral-mamba-the-next-gen-coding-llm/


3.3. MAMBA ARCHITECTURE AND PRE-TRAINING OVERVIEW 43

Key Properties

The Mamba architecture incorporates several key properties that make it a robust
choice for sequence modeling tasks across various domains:

1. High Quality: The selectivity mechanism in Mamba ensures strong perfor-
mance across dense modalities such as language and genomics. This selectivity
allows the model to focus on relevant information, enhancing its predictive ca-
pabilities.

2. Efficient Training and Inference: Mamba’s design enables linear scaling
of computation and memory requirements with sequence length during train-
ing. Furthermore, during inference, the model employs autoregressive un-
rolling with constant time per step, eliminating the need for caching previous
elements and significantly enhancing efficiency.

3. Long-Context Capability: The architecture’s ability to handle extended
contexts, combined with its computational efficiency, ensures robust perfor-
mance on real-world data. This makes Mamba an ideal solution for tasks
requiring the processing of long sequences, such as document analysis and
genomic data modeling.

Architectural Design

The architecture of Mamba is intentionally simple and homogeneous, comprising
two primary components:

• Selective SSM Block: The central component of the Mamba architecture,
this block effectively models sequences by combining the strengths of Selective
SSMs and the selective scan algorithm. This integration facilitates dynamic
input handling while maintaining computational efficiency.

• MLP Block: Inspired by Transformer architectures, the MLP block enhances
the model’s capacity to capture complex patterns and relationships within
the data. When paired with the modified Selective SSM block, it creates
a comprehensive and flexible modeling framework. The combination of the
modified parallel Mamba block, together with using Structured SSD as the
inner state space models layer, results in the Mamba-2 architecture.

This modular design allows Mamba to achieve an optimal trade-off between simplic-
ity and effectiveness, making it a versatile tool for a wide range of sequence modeling
applications.
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Evolution of Architecture

The image depicted in Figure 3.2 illustrates the evolution of the Mamba architecture
from earlier models such as H3 and Gated MLP. This progression underscores the
integration of key components essential for efficient sequence modeling.

1. H3 Architecture:

• Employs a sequence transformation mechanism followed by a convolu-
tional (Conv) layer.

• Integrates a Selective State Space Model (SSM) block for state space
modeling.

• Utilizes linear projections and nonlinear activations to form the MLP
block.

2. Gated MLP:

• Simplifies the architecture by introducing gated mechanisms within the
MLP block.

• Retains essential components, including sequence transformation and lin-
ear projections.

3. Mamba Architecture:

• Combines the strengths of H3 and Gated MLP models.

• Features a refined Selective SSM block optimized for sequence modeling.

• Includes convolutional layers and linear projections to enhance represen-
tational capacity.

• Integrates nonlinearities within the MLP block for capturing intricate
patterns in data.

4. Mamba-2 Architecture:

• Incorporates insights from the paper [Dao and Gu, 2024] to make slight
modifications to the Mamba block.

• Introduces a Grouped-Value Attention (GVA) head structure and reposi-
tions all data-dependent projections to occur in parallel at the beginning
of the block.

• Allows for the implementation of tensor parallelism.

• Utilizes SSD as the inner SSM layer, resulting in the Mamba-2 architec-
ture.

This architectural evolution, as illustrated in Figure 3.2, highlights the thoughtful
design progression that underpins Mamba’s ability to achieve state-of-the-art per-
formance in sequence modeling tasks.
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Figure 3.2: Evolution of the Mamba Architecture from H3 and Gated MLP [Gu and
Dao, 2023].

This modular design allows Mamba to achieve an optimal trade-off between simplic-
ity and effectiveness, making it a versatile tool for a wide range of sequence modeling
applications.

Finally, building upon the results presented in [Dao and Gu, 2024] and leveraging
its implementation available on GitHub3, we present the Mamba-2 structure in Fig-
ure 3.3. This figure provides a detailed visualization of the primary components
and their interconnections, highlighting the geometric configuration and structural
innovations underpinning the design.

The mathematical formalism underlying the Mamba-2 structure Block, as depicted
in Figure 3.3, is captured by the equations detailed in the subsequent section. These
equations define the core computational pipeline, outlining the sequence of opera-
tions applied to the input data. For simplicity, we assume a batch size of 1, which
is not explicitly considered in the formulation. Additionally, Python-style opera-
tions, such as split and rearrange, are used throughout the equations to enhance
readability and understanding for those familiar with programming notations.

The process begins by transforming the input u (an input sequence of shape RL×d,
where L is the maximum sequence length and d is the model dimensionality) using
the weight matrices W (zxBC∆) (a projection matrix of shape Rd×dm, where dm =

2 ·e ·d+2 ·ngroups ·dstate+nheads), which generate the intermediate representations
xp:

xp = uW (zxBC∆) ∈ RL×d (3.1)

The block then employs a split mechanism to obtain z, SxBC ,∆, where SxBC is a
matrix formed from the variables x, B, and C. Here, z has shape RL×nheads×m

3https://github.com/state-spaces/mamba

https://github.com/state-spaces/mamba
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Figure 3.3: Mamba-2 SSM structure.

(with nheads = e·d
headdim , where headdim is the size of each attention head), SxBC

has shape RL×k, and ∆ has shape RL×nheads:

z, SxBC ,∆ = split(xp) (3.2)

Next, a 1D convolution is applied to SxBC , producing xc, where xc has shape RL×k:
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xc = conv1d(SxBC) (3.3)

Then, a split mechanism is applied to xc to obtain x,B,C, followed by a rearrange
operation on each. Here, x has shape RL×nheads×m, while B and C have shape
RL×ngroups×n, where ngroups is the number of groups used in the grouped projection
of components:

x,B,C = rearrange(split(xc)) (3.4)

At the core of the block lies a State Space Model (SSM) parameterized by A,B,C, z,

and ∆, which transforms x into y, where y has shape RL×nheads·m:

y = SSMA,B,C,z,∆(x) (3.5)

A gating mechanism, using an activation function ϕ (SiLU), modulates y with z,
producing yg (also of shape RL×nheads·m):

yg = y · ϕ(z) (with ϕ being SiLU) (3.6)

This is then normalized using group normalization (groupnorm), resulting in ygn:

ygn = groupnorm(yg) ∈ RL×nheads·m (3.7)

Finally, the output of the block is obtained by projecting ygn through the weight
matrix W (o), where W (o) has shape R(nheads·m)×d, resulting in the final output of
shape RL×d:

out = ygnW
o (3.8)

This structured design ensures both computational efficiency and scalability, making
the Mamba-2 block an excellent choice for high-performance applications.

3.4 Integrating LoRA into Mamba2 Architectures

According to the Mamba-2 architecture (see Fig. 3.3) described in Section. 3.3.2,
Low-Rank Adaptation (LoRA) is seamlessly integrated into key components of the
model, specifically the input projection matrices (W (xzBC∆) and the output
projection matrix (W (o)) (see Fig. 3.4). By replacing the standard weight matri-
ces in these layers, LoRA enables the model to adapt efficiently to specialized tasks
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without the need for extensive retraining of the entire model. This approach sig-
nificantly reduces computational requirements while maintaining flexibility for task-
specific fine-tuning. Consequently, the Mamba-2 architecture achieves enhanced
performance on targeted tasks, offering a balance between adaptability and compu-
tational efficiency.

Figure 3.4: Mamba-2 SSM structure with LoRA.

Input projection

As defined in Section 3.3.2, the input projection is given by the following expression.
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xp = uW (xzBC∆) ∈ RL×d, (3.9)

For simplicity, we replace W (xzBC∆) with W .

With LoRA, each weight matrix W is decomposed into a sum of the frozen pre-
trained weights (Wpretrained) and a low-rank adaptation term (∆W ):

W = Wpretrained +∆W, ∆W = BA (3.10)

where:

• A ∈ Rr×d,

• B ∈ RL×r,

• r is the rank of the low-rank decomposition, with r ≪ min(d, (h · dhead)).

Thus, for LoRA-enabled projections:

xp = Wpretrainedu+BAu (3.11)

The integration of LoRA into the output projection matrix W o follows the same
decomposition methodology as applied to the input projection matrices W (xzBC∆).

The decomposition ensures that the output adaptation is concentrated solely on
the low-rank components, thereby substantially reducing the number of trainable
parameters needed for fine-tuning. This methodology not only minimizes computa-
tional overhead but also optimizes hardware utilization and accelerates the training
process, making it an efficient solution for fine-tuning large-scale models.





Chapter 4

Experimental Procedure and
Results

This chapter delineates the experimental methodology and results of fine-tuning
the Codestral Mamba 7B Instruct model using the LoRA technique. The selection
of this model is motivated by its foundation in SSMs, which offer superior long-
range dependency handling, efficient parallelization, and low memory consumption
compared to traditional Transformer-based architectures [Gu et al., 2021]. These
characteristics make it particularly well-suited for software test case generation,
where preserving contextual coherence across multi-step instructions, adapting to
complex input variations, and efficiently handling lengthy test scenarios are critical.

To achieve this, the Codestral Mamba 7B model was obtained following the offi-
cial procedures outlined on Hugging Face1. The fine-tuning process was conducted
using the foundational codebase provided in the official repository2, which was sys-
tematically adapted to integrate LoRA, a novel addition that had not previously
been implemented within this framework. This modification enabled parameter-
efficient training, reducing computational overhead while maintaining high model
performance. Additionally, the inference phase leveraged the dedicated repository3,
ensuring a streamlined and reproducible deployment process.

By integrating LoRA into the fine-tuning pipeline, this study presents a novel ap-
proach to enhancing model adaptability and efficiency in software test automa-
tion. The combination of the Codestral Mamba 7B model with LoRA facilitates
improved generalization in automated test generation, particularly in frameworks
such as Pytest. These advancements contribute to the ongoing evolution of soft-
ware verification methodologies, highlighting the potential of LLMs to revolutionize
automated testing paradigms.

Beyond these advantages, Codestral Mamba excels in computational efficiency, as its

1https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1
2https://github.com/mistralai/mistral-finetune
3https://github.com/mistralai/mistral-inference
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linear scaling properties enable faster inference while maintaining high expressivity.
Unlike Transformers, which rely on quadratic self-attention mechanisms, SSMs allow
for constant-time retrieval of relevant context, making them more effective for test
automation tasks requiring precise logical dependencies [Gu et al., 2020]. Addition-
ally, the model’s inherent ability to generalize across structured and unstructured
prompts ensures flexibility in generating both formalized test scripts and conceptual
descriptions when needed.

The primary objective of this study is to assess the models efficacy in generating
high-quality, domain-adaptive, and execution-ready test scripts for diverse software
testing scenarios. The integration of LoRA fine-tuning enhances its capacity to
align with domain-specific requirements while maintaining computational efficiency,
ensuring a balance between performance optimization and adaptability in test case
generation.

The fine-tuning process leverages two distinct data sources: the publicly available
CodeXGLUE datasets [Lu et al., 2021], which provide a broad spectrum of code-text
pairs, and a proprietary database developed by the author, named TestCase2Code45

The inclusion of CodeXGLUE ensures a diverse and generalizable training founda-
tion, while the proprietary TestCase2Code dataset introduces domain-specific knowl-
edge and practical constraints, thereby enhancing the models ability to generate re-
alistic, industry-relevant test scripts. By integrating these datasets, the fine-tuning
process balances generalization and specialization, equipping the model with both
broad adaptability and task-specific precision.

The Codestral Mamba model is a specialized language model designed to process
and generate code efficiently. Its pre-training on diverse programming languages,
algorithms, and software development practices positions it as a powerful tool for
addressing complex coding tasks. However, to tailor its capabilities to the specific
requirements of automated test script generation, LoRA was applied. This technique
enables the model to adapt its parameters effectively while maintaining computa-
tional efficiency. Additionally, prompt engineering was employed to align the models
output with the desired format, ensuring that its responses adhered to the structure
and context of the input data.

A key aspect of this study is the integration of both public and private data sources,
enabling a comprehensive evaluation of the model’s performance. By leveraging
the generalizability of the CodeXGLUE dataset and the domain-specific insights
provided by the private dataset, the experiments were designed to address a broad
spectrum of scenarios. Furthermore, the implementation of LoRA facilitated the de-
velopment of the Codestral Mamba_QA AI Chatbot, tailored to the specific needs of
the company. Codestral Mamba_QA AI enhances response accuracy by leveraging

4The TestCase2Code dataset was compiled from a project conducted at DECSIS, ensuring the
inclusion of real-world, domain-specific scenarios. Due to confidentiality agreements, this dataset
cannot be disclosed.

5Additional information about the developed project can be found at https://web.inductiva.
mx/.

https://web.inductiva.mx/
https://web.inductiva.mx/
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project-specific data, automates routine inquiries to optimize workload management,
and adapts to the company’s terminology and operational requirements. Addition-
ally, it ensures data security by maintaining internal confidentiality without reliance
on third-party solutions, supports continuous learning through user interactions, and
provides uninterrupted availability for real-time assistance.

The results presented in this chapter demonstrate the synergistic impact of LoRA
fine-tuning and prompt engineering in enhancing the model’s ability to tackle natu-
ral language code-answering tasks. These findings highlight the role of the Codestral
Mamba_QA AI in facilitating an adaptive and efficient workflow, ultimately advanc-
ing the state of automated test script generation.

4.1 Datasets

4.1.1 CodeXGLUE Dataset

In recent years, there has been a significant surge in the application of statistical
models, including neural networks, to code intelligent tasks. Inspired by the success
of large pre-trained models such as BERT and GPT in NLP, models like IntelliCode
and CodeBERT have demonstrated further improvements in code understanding
and generation. Despite this progress, the domain of code intelligence has lacked a
comprehensive benchmark suite covering diverse tasks.

To address this gap, researchers from Microsoft Research Asia, Developer Division,
and Bing introduced CodeXGLUE, a benchmark dataset and open challenge de-
signed specifically for code intelligence. CodeXGLUE, which stands for General
Language Understanding Evaluation Benchmark for Code, provides a collection of
14 datasets for 10 diversified code intelligence tasks, along with a platform for model
evaluation and comparison. The dataset spans various scenarios, categorized into
the following tasks 6:

• Code-Code: Clone detection, defect detection, cloze test, code completion,
code repair, and code-to-code translation.

• Text-Code: Natural language code search, text-to-code generation.

• Code-Text: Code summarization.

• Text-Text: Documentation translation.

CodeXGLUE provides a comprehensive suite of tasks, datasets, languages, sizes,
baseline systems, providers, and short definitions for each task. For our experiments,
we utilize the text-code task, specifically the CONCODE dataset [Iyer et al., 2018]
for text-to-code generation. The CONCODE dataset is a large collection of natural

6https://github.com/microsoft/CodeXGLUE/tree/main/

https://github.com/microsoft/CodeXGLUE/tree/main/
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language, code, and context tuples derived from online repositories, featuring code
from various domains. This dataset introduces new data and methods for learning
to generate source code from natural language within the context of a real-world
code base.

CONCODE Dataset Overview

The CONCODE dataset is meticulously organized into training, development, and
testing subsets, comprising 100K, 2K, and 2K samples respectively. The dataset is
stored in JSON lines format files, where each line encapsulates a JSON object. This
object includes a natural language description, contextual information, and the cor-
responding source code. For a concise summary of the dataset’s key characteristics,
please refer to Table 4.1.

Category Task Dataset Name Train/Dev/Test Size
Text-Code Text-to-Code Generation CONCODE 100K/2K/2K

Table 4.1: CONCODE dataset details.

Data Format

Each entry in the CONCODE dataset comprises two primary fields: the natural
language description (nl) and the corresponding source code (code). The nl field
integrates a textual description of the code’s functionality with its class environment,
demarcated by special tokens such as concode_elem_sep and concode_func_sep.
This structured format ensures that the dataset captures both contextual and func-
tional relationships, thereby facilitating robust learning for text-to-code generation
tasks.

The following table illustrates an example of the dataset’s JSON structure:

The incorporation of the CONCODE dataset in this study enables a rigorous evalu-
ation of the model’s capability to generate accurate and context-aware code snippets
based on natural language descriptions. Additionally, utilizing CONCODE facili-
tates benchmarking against other models, as it is a widely recognized and frequently
referenced dataset in the literature. This comparative approach not only validates
the performance of our model but also contextualizes its efficacy within the broader
landscape of code generation research. For a detailed representation of the dataset’s
structure, refer to Table 4.2.

4.1.2 TestCase2Code Dataset

The TestCase2Code dataset was created in response to a gap identified during the
research phase of this dissertation. While various datasets were explored, none con-
tained the specific type of Pytest code necessary for the objectives of this study.
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CONCODE Sample Data Representation

{
"nl": "natural_language_description concode_field_sep field1

concode_elem_sep field2 concode_elem_sep ...
concode_field_sep method1 concode_elem_sep method2
concode_elem_sep ...",

"code": "return_type function_name(parameter_type parameter_name)
{

// Function body
// Can include statements, calls to other functions,
// operations, etc.
return return_value;

}"
}

Table 4.2: Dataset’s JSON structure.

Pytest, as described in [Okken, 2022], is a Python testing framework originally de-
veloped for the PyPy project. Pytest supports a range of test types, including unit
tests, integration tests, end-to-end tests, and functional tests, with a rich feature
set that includes parameterized tests, fixtures, and assertion rewriting. Despite
its widespread adoption in industry and academia, there were no readily available
datasets that sufficiently combined manual test cases with their automated counter-
parts written in Pytest format, particularly in the context of real-world scenarios.
The absence of such a database posed a significant challenge.

Given the need for a specialized dataset, the TestCase2Code dataset was conceived
as a solution. The dataset’s primary objective is to provide a reliable and practical
resource for training machine learning models to generate automated functional test
cases from manually written ones. This aligns with the research goal of leveraging the
Cosdestral Mamba 7B model in combination with the LoRA fine-tuning technique
to improve the generation of Pytest code from natural language descriptions of
manual test cases. By focusing on manual-to-automated test case transformation,
TestCase2Code serves as a key asset in the studys exploration of automating software
testing processes, particularly in Python-based testing environments.

The importance of creating the TestCase2Code dataset lies in its tailored approach
to real-world, domain-specific testing scenarios. Unlike generic datasets, this dataset
was directly derived from a project conducted at the author’s workplace. This en-
sured that the dataset was not only grounded in practical use cases but also rich
in contextually relevant examples. The integration of TestCase2Code into the ex-
perimental procedures substantially enriches the analysis by providing practical,
domain-specific test cases. It bridges the gap between theory and practice by sup-
plying realistic test case data that mirrors the challenges faced by software developers
and testers in real-world scenarios.
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Dataset Composition and File Structure

The dataset is structured around 870 distinct elements, each comprising three spe-
cific files: one containing automated test code (denoted as a.txt), another contain-
ing source code information (denoted as c.txt), and the last containing a manually
written test case (denoted as m.txt). These three components together form a
comprehensive triplet that collectively defines the test case for a given software
functionality. In total, there are 2,610 elements within the dataset.

The overall structure of the dataset is outlined in Table 4.3. This structure ensures
that each element is thoroughly documented, facilitating a comprehensive evaluation
of the software functionality through automated and manual test cases.

Overall TestCase2Code Dataset Structure

dataset/
element_1/

1a.txt ...........Automated functional test case in Pytest code.
1c.txt .......Source code JavaScript for the tested functionality.
1m.txt ................... Manual test case in natural language.

element_2/
2a.txt ...........Automated functional test case in Pytest code.
2c.txt .......Source code JavaScript for the tested functionality.
2m.txt ................... Manual test case in natural language.

element_3/
3a.txt ...........Automated functional test case in Pytest code.
3c.txt .......Source code JavaScript for the tested functionality.
3m.txt ................... Manual test case in natural language.

element_4/
...

Additional elements follow the same structure.

Table 4.3: TestCase2Code dataset structure.

Each triplet of files contains the following components:

• a.txt: This file contains the automated test code written in Pytest. It includes
functional tests that are intended to be executed automatically by the Pytest
framework to validate the behavior of the software. For an example of the
automated test code, refer to Table 4.4.

• c.txt: This file contains source code information, specifically JavaScript code
written using JSX (JavaScript XML). JSX allows developers to write user
interface components in a declarative manner that resembles HTML. The in-
clusion of this file provides context for the portion of the code being tested.
For a detailed example of the source code in JavaScript, refer to Table 4.5.
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• m.txt: This file contains the manual test case, written in natural language,
which specifies the title, steps, and expected results for testing the functionality
of the software. These manual descriptions are critical for training machine
learning models to generate automated test cases based on textual descriptions.
For an example of a manual test case in natural language, refer to Table 4.6.

Automated Functional Test Case in Pytest Code: Example of Element 5a.txt

1 url = os.getenv("URL")
2 passw = os.getenv("PASSW")
3 @pytest.mark.order(5)
4 def test_logincredentials(self):
5 # locate password form by_name
6 username = self.driver.find_element(By.ID,"email")
7 password = self.driver.find_element(By.ID,"password")
8 # verify elements are present
9 attach(data=self.driver.get_screenshot_as_png())

10 self.assertTrue(self.driver.find_element(By.ID, "email"))
11 attach(data=self.driver.get_screenshot_as_png())
12 self.assertTrue(self.driver.find_element(By.ID, "password"))
13 attach(data=self.driver.get_screenshot_as_png())
14 self.assertTrue(self.driver.find_element(By.ID, "s2OU4WwTFzAvqv077oCG"))
15 # send_keys() to simulate key strokes
16 username.send_keys(user)
17 password.send_keys(passw) self.driver.find_element(By.ID,"

s2OU4WwTFzAvqv077oCG").send_keys(Keys.ENTER)
18 time.sleep(3)
19 attach(data=self.driver.get_screenshot_as_png())
20 # Verify access to company selection
21 self.assertEqual(self.driver.current_url, f"{url}select-company")

Table 4.4: Automated Functional Test Case.

Dataset Overview

The dataset consists of two fundamental corpora: manually written test cases in
natural language and their corresponding Pytest code, which represents their au-
tomated execution. In this section, an overview of these corpora will be provided,
highlighting their structure and key characteristics. This dual structure enables
the model to learn both the linguistic patterns of instructional test cases and their
executable representations, fostering a robust understanding of test case translation.

The manual test case corpus, comprising 86,803 words across 870 files, exhibits a
high degree of consistency and standardization critical for ensuring rigorous quality
control and uniformity in testing procedures. With a vocabulary size of 939 words, it
reflects a specialized and technical lexicon tailored to domain-specific requirements.
Structured across 9,486 sentences, the dataset presents a balanced composition that
supports both precision and comprehensiveness. The average sentence length of
13.54 words, ranging from a minimum of 4.48 words to a maximum of 186 words,
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JavaScript Code for the Tested Functionality: Sample of Element 5c.txt

Note: This is a sample of the JavaScript code. The complete code includes
additional functionality and error handling.

1 import { useDispatch } from "react-redux";
2 import { setLoading } from "@store/loading/Loading.slice";
3 import { fetchDefaultParameters, throwResponseErrors } from "@utils/helpers/

response.helper";
4 import styles from "./LoginPage.module.scss";
5 const REQUIRED_FIELDS = ["email", "password"];
6 function LoginPage() {
7 const navigate = useNavigate();
8 const dispatch = useDispatch();
9 const [form, setForm] = useState({ email: "", password: "" });

10 useEffect(() => {
11 dispatch(setLoading(true));
12 fetch(‘/user/session‘, { ...fetchDefaultParameters(), method: "GET" })
13

14 // More code follows...
15 }
16

17 export default LoginPage;

Table 4.5: Source code in JavaScript.

indicates a blend of concise and detailed instructions. This variability enhances
the models ability to interpret and generate diverse sentence structures effectively.
Furthermore, the lexical diversity score of 92.44 highlights the dataset’s richness,
ensuring a comprehensive representation of language that strengthens the models
ability to generalize across varied test scenarios.

The Pytest code corpus, consisting of 20,600 words, directly corresponds to the man-
ual test cases, providing a structured yet expressive syntax that makes it well-suited
for training models in automated test generation. While inherently repetitive due to
standardized coding practices, the corpus retains functional diversity, ensuring that
the model internalizes essential programming constructs while remaining adaptable
to different testing requirements.

With an average lexical diversity of 0.6611, the corpus strikes a balance between
repetitive core syntax and varied test logic, reinforcing the models ability to generate
robust and reusable test scripts. The dataset also demonstrates consistent sequence
lengths, with a mean of 51.90 words and a standard deviation of 11.21, further
ensuring that the model captures the structured flow of Pytest cases, from setup to
assertions.

Additionally, the low function count per file (1.15 on average) reflects a modular
approach to test design, allowing the model to learn well-defined, self-contained
test functions. This structured yet flexible nature makes the dataset an invaluable
resource, equipping the model with the ability to produce syntactically correct and
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Test Case in Natural Language: Sample of Element 5m.txt

Test Case: Validate Successful Login with Credentials
Step Action Expected Result

1 Locate the email input field on
the login page.

The email input field is
identified and present on the
page.

2 Locate the password input field
on the login page.

The password input field is
identified and present on the
page.

3 Locate the "Enter" button on
the login page.

The "Enter" button is identified
and present on the page.

4 Input a valid email address
into the email field.

The email address is entered
successfully without errors.

5 Input a valid password into the
password field.

The password is entered
successfully without errors.

6 Click the "Enter" button to
submit the login form.

The system processes the
credentials and initiates the
login action.

7 Verify the navigation to the
company selection page.

The URL of the page updates
to match the value stored in
the environment variable
appended with select-company,
confirming successful login.

Table 4.6: Manual Test Case.

functionally meaningful Pytest scripts that align with their corresponding manual
test cases in real-world testing scenarios.

Dataset Partitioning

To facilitate the training and evaluation of machine learning models, the dataset is
divided into a training set and a test set. The training set consists of 770 elements,
providing a robust foundation for model training. The test set comprises 100 ele-
ments, allowing for rigorous evaluation of the model’s performance on unseen data.
This division ensures that the models are trained on a diverse range of examples
while being tested on a separate subset to validate their generalization capabilities.
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4.2 Preparing the Dataset

To achieve effective fine-tuning of the Codestral Mamba 7B model, the training
data must comply with the stringent formatting requirements stipulated by the
mistral-finetune framework. However, certain modifications are necessary to
cater to the specific requirements of the Codestral Mamba model. All data must be
stored in the JSONL (JSON Lines) format, where each line constitutes a separate
data sample in valid JSON format.

In this study, our focus is exclusively on the Instruct data format, which is specif-
ically tailored for instruction-following tasks. The data is organized under the key
"messages", which contains a list of dictionaries. Each dictionary includes two pri-
mary fields: "content" and "role". The "role" field designates the participant
in the conversation, with possible values of "user", "assistant", or "system".
The model is trained (incurring loss) using only those entries where the "role" is
"assistant", as these represent the responses that the model is expected to gener-
ate.

Listing 4.1 illustrates a sample entry of the Instruct data format. In this format,
"user" entries represent the queries or inputs, while "assistant" entries correspond
to the desired model responses. This sequential arrangement ensures that the model
learns to generate appropriate responses based on the preceding user input, thereby
enhancing its capability to follow instructions and engage in meaningful dialogue.

Listing 4.1: Example of Instruct data format

{
"messages": [

{
"role": "user",
"content": "User interaction n. 1 contained in document n.1"

},
{

"role": "assistant",
"content": "Bot interaction n.1 contained in document n.1"

}
]

}

In this structure, the "user" entries represent the queries or inputs, while the
"assistant" entries correspond to the desired model responses. This sequential
arrangement ensures that the model learns to generate appropriate responses based
on the preceding user input, facilitating its ability to follow instructions and engage
in meaningful dialogue.
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4.3 Prompt Training

In this section, we introduce the prompt training approach used to fine-tune the
Codestral Mamba 7B model, following the specific structure designed for instruction-
following tasks. The training data is organized using the Instruct format (Listing
4.1), where each interaction is represented as a sequence of messages, with each
message assigned a specific role: "user" for the input queries and "assistant" for the
expected model responses. The core objective of this approach is to guide the model
in generating contextually appropriate and coherent responses based on the input
provided by the user.

The prompt training procedure is carefully structured to ensure the model learns
how to follow instructions effectively, aligning its output with the format and nature
of real-world task-specific queries. This methodology is designed to improve the
models performance on tasks such as question answering, where understanding user
queries and generating accurate responses is critical.

4.3.1 CodeXGLUE: Structuring Prompts

Figure 4.1 illustrates the sequence of steps involved in the training process, demon-
strating how interactions between the "user" and the "assistant" are structured, pro-
cessed, and utilized to fine-tune the model. As depicted in the figure, an example
prompt consists of two key components: the role "user," which identifies the origin
of the interaction, and the content, which specifies the task to be performed. In this
instance, the content directs the generation of a code snippet based on a natural
language description and a corresponding code context.

The example used in this figure is derived from the CodeXGLUE repository, specif-
ically from the text-to-code database described at CodeXGLUE repository, specif-
ically from the Text-Code/text-to-code section7. This database is characterized by
its structured pairing of natural language instructions with code snippets, providing
a robust foundation for training models in code generation tasks.

In the visualization, the interaction is represented by two color-coded elements:
the red section, which contains the "question" in the form of a natural language
instruction, and the green section, which contains the "answer" in the form of the
generated code. This structured format ensures clarity in the training process by
explicitly defining the input-output relationship, enabling the model to effectively
learn how to generate accurate and context-aware code from textual descriptions.

7https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/text-to-code

https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/text-to-code
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Figure 4.1: Prompt-Based Code Generation to CodeXGLUE/CONCODE.

4.3.2 TestCase2Code: Structuring Prompts

Figure 4.2 illustrates the sequence of steps involved in the training process, demon-
strating how interactions between the "user" and the "assistant" are structured, pro-
cessed, and utilized to fine-tune the model. As depicted in the figure, an example
prompt consists of two key components: the role "user",which identifies the origin
of the interaction, and the content, which specifies the task to be performed. In
this instance, the content directs the generation of a comprehensive test case using
the Pytest library, based on both a provided manual test case and a corresponding
.jsx file. This structured input format ensures clarity and consistency, enabling the
production of precise test cases aligned with Pytest best practices.

Furthermore, the inclusion of both manual test case instructions and source code
enhances the model’s capacity to generate high-quality, context-aware outputs, em-
phasizing the integration of detailed input data in the fine-tuning process. The
interaction is represented by the red and green squares, where the red square con-
tains the "question" and the green square represents the "answer." Specifically, the
green box contains the response from the assistant.

This visualization highlights the dynamic exchange between the "user" and the "as-
sistant", emphasizing the integration of well-defined prompts and responses. The
inclusion of both manual test case instructions and source code in this process en-
hances the model’s ability to generate high-quality, context-aware outputs. It un-
derscores the importance of detailed input and clear formatting in training robust,
reliable systems for complex tasks like automated test generation.

4.4 Training Configuration

This section details the hyper-parameters and configurations used to fine-tune the
Codestral Mamba 7B model on the CodeXGLUE and TestCase2Code dataset, en-
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Figure 4.2: Prompt-Based Test Case Generation to TestCase2Code.

suring efficient training and feasibility.

Throughout multiple training iterations, the core hyper-parameters of the base
model including the learning rate, batch size, optimizer configurations and loss func-
tion parameters remained fixed to preserve the integrity of the original architecture.
In contrast, specific experimental adjustments were made to the rank of the LoRA
matrices (testing values of 64 and 128) and the maximum sequence length (ranging
between 1024 and 4098 tokens). These modifications were systematically evalu-
ated, and the results indicated that such variations did not significantly influence
the model’s performance. Importantly, all experiments across both datasets were
executed using an identical set of hyper-parameters. This uniform approach not
only simplifies comparative analysis but also underscores the robustness and gen-
eralizability of the fine-tuning strategy across diverse data distributions and tasks,
highlighting a key advantage in maintaining a stable training framework.

Training Process Hyper-parameters

• Datasets:

– train.json file inside the database CONCODE in CodeXGLUE.

– tc_train.json file inside TestCase2Code.

• LoRA Rank: 128.

• Sequence Length: 1024 tokens per batch.
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• Batch Size: 1, the number of tokens per batch calculated as seq_len ×
batch_size.

• Learning Rate: 6× 10−5.

• Optimizer: AdamW, an adaptive moment estimation optimizer with weight
decay.

• Loss Function: Cross entropy with masking applied.

• Number of epochs: 200.

Model Parameters Codestral Mamba 7B

For detailed instructions on how to download the Codestral Mamba 7B model, please
refer to the official Hugging Face page8.

1. Dimensionality (dim): 4096 - Size of embedding vectors and hidden states.

2. Number of Layers (n_layers): 64 - Total layers in the neural network.

3. Vocabulary Size (vocab_size): 32768 - Number of unique tokens the model
can recognize and generate.

4. Number of Groups (n_groups): 8 - Groups used in operations to reduce
computational complexity.

5. RMS Normalization (rms_norm): True - Uses RMS normalization for
stabilizing the training process.

6. Residual in FP32 (residual_in_fp32): True - Residual connections com-
puted in 32-bit floating-point precision for numerical stability.

7. Fused Add Norm (fused_add_norm): True - Fused operations for addi-
tion and normalization to improve efficiency.

8. Pad Vocabulary Size Multiple (pad_vocab_size_multiple): 1 - Pads
vocabulary size for optimized memory alignment.

9. Tie Embeddings (tie_embeddings): False - Input and output embeddings
are not shared.

10. Model Type (model_type): "mamba" - Specifies the model type as "mamba".

8https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1

https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1
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Hardware Configuration

The training process was conducted on the Vision supercomputer at the University
of Évora, leveraging its advanced hardware configuration to optimize performance.
The system consists of two compute nodes, each equipped with dual AMD Rome
7742 processors, providing a total of 128 CPU cores, 1TB of system memory, and
8 NVIDIA A100 Tensor Core GPUs, each with 40GB of memory. This powerful
infrastructure, interconnected by 8 x 200Gb/s HDR InfiniBand links, allows for high-
speed data transfer and efficient parallel processing. Specifically, the training utilized
1 GPU with 40GB of memory, 32 CPU cores, and 122GB of RAM to handle the
computational demands of fine-tuning the Codestral Mamba 7B model with LoRA.
During training, 624.12 MiB of GPU memory was used for the LoRA matrices, while
the model featured 286 million trainable parameters and 7.3 billion non-trainable
parameters. This setup ensured optimal performance in processing complex tasks
and managing large-scale model adjustments. For more information about the Vision
cluster, visit the Vision cluster webpage9.

Table 4.7 provides an overview of the architectural components of the Codestral
Mamba 7B model, detailing the key operations within its layers.

Layer Name Operation
model MambaLMHeadModel
(backbone) MixerModel
(embedding) Embedding(32768, 4096)
(layers) ModuleList(64x Block)
(mixer) Mamba2
(in_proj) LoRALinear(4096, 18560, r=128)
(conv1d) Conv1d(10240, 10240, kernel=4, stride=1)
(act) SiLU()
(norm) RMSNorm()
(out_proj) LoRALinear(8192, 4096, r=128)

Table 4.7: Layer configurations of the Codestral Mamba 7B model.

Table 4.8 provides a detailed overview of the dimensional specifications of the model’s
parameters, illustrating the structure and size of both its learnable and non-learnable
components. It is important to note that the table represents only the first block,
identified as "model.backbone.layers.0", while the complete model consists of a total
of 64 such blocks.

4.5 Evaluation

Evaluation is a fundamental aspect of assessing the effectiveness and reliability of lan-
guage models trained for text-to-code generation. This section provides an overview

9https://vision.uevora.pt/
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Layer Name Layer Size
Embedding Layer
model.backbone.embedding.weight [32768, 4096]
First Block(layers 0)
model.backbone.layers.0.norm.weight [4096]
model.backbone.layers.0.mixer.dt_bias [128]
model.backbone.layers.0.mixer.A_log [128]
model.backbone.layers.0.mixer.D [128]
model.backbone.layers.0.mixer.in_proj.lora_A.weight [128, 4096]
model.backbone.layers.0.mixer.in_proj.lora_B.weight [18560, 128]
model.backbone.layers.0.mixer.in_proj.frozen_W.weight [18560, 4096]
model.backbone.layers.0.mixer.conv1d.weight [10240, 1, 4]
model.backbone.layers.0.mixer.conv1d.bias [10240]
model.backbone.layers.0.mixer.norm.weight [8192]
model.backbone.layers.0.mixer.out_proj.lora_A.weight [128, 8192]
model.backbone.layers.0.mixer.out_proj.lora_B.weight [4096, 128]
model.backbone.layers.0.mixer.out_proj.frozen_W.weight [4096, 8192]
Subsequent Blocks
(model.backbone.layers.1 to model.backbone.layers.63)
. . . . . .
Final Normalization and Output Layer
model.backbone.norm_f.weight [4096]
model.lm_head.weight [32768, 4096]

Table 4.8: Parameter dimensions of the Codestral Mamba 7B model.

of the metrics and performance indicators used to measure the quality of the out-
puts. By employing standard metrics and domain-specific measures, the evaluation
process ensures an objective and comprehensive analysis of the model’s capabilities.

4.5.1 Metrics and Performance Indicators

To comprehensively evaluate the model’s performance, a variety of metrics and per-
formance indicators are utilized. These metrics provide quantitative measures that
help in understanding the model’s strengths and areas for improvement. The eval-
uation process employs both general-purpose and domain-specific metrics to assess
different aspects of the generated code’s quality. The following subsections delve
into the specific metrics used in this evaluation process.

The use of BLEU and CodeBLEU scores ensures a thorough assessment of the
model’s performance. These metrics provide insights into the syntactic and semantic
correctness of the generated code, helping to identify areas for improvement and
guiding future enhancements to the model. Additionally, we explicitly evaluate
Syntax Match (SM) and Data Flow Match (DM), which are integral components
of CodeBLEU, to obtain a more fine-grained understanding of the syntactic and
semantic correctness of the generated code.
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Throughout our experiments, we evaluate accuracies with respect to Exact Match
(EM), SM, DM, and CodeBLEU (CB). SM measures the proportion of matching
subtrees between the generated code and the reference codes Abstract Syntax Trees
(ASTs) relative to the total number of subtrees in the reference codes AST. DM
assesses the percentage of correctly matched, anonymized data flow edges (def-use
edges) in the generated code compared to those in the reference code. Since both
SM and DM are components of CodeBLEU, evaluating them separately allows for
a clearer understanding of the syntactic and semantic correctness of the generated
code.

BLEU Score

The BLEU (Bilingual Evaluation Understudy) score is a widely used metric for eval-
uating the quality of text generated by machine translation models. In the context
of code generation from natural language descriptions, the BLEU score measures
the similarity between the generated code and a reference code snippet. It achieves
this by comparing n-grams (contiguous sequences of n tokens) in the generated text
to those in the reference text, quantifying the level of overlap [Papineni et al., 2002].

The BLEU score ranges from 0 to 1, with higher scores indicating greater similarity
to the reference text. This metric is particularly useful for assessing the syntactic
correctness of the generated code, as it focuses on the precision of n-gram matches.
However, it may not fully capture the semantic correctness or the functional accuracy
of the code, making it necessary to complement it with additional evaluation metrics.

The BLEU score is calculated using the following formula:

BLEU = BP · exp
(

N∑
n=1

wn log pn

)
(4.1)

where BP is the brevity penalty, wn are the weights assigned to different n-gram
orders, and pn are the precision scores for those n-grams. The parameter N repre-
sents the maximum length of n-grams considered in the evaluation. Typically, N is
set to 4, meaning that BLEU accounts for unigram, bigram, trigram, and 4-gram
precision. This ensures a balanced assessment of both individual word accuracy and
short phrase coherence in the generated output.

The brevity penalty (BP) is introduced to prevent very short candidate translations
from receiving disproportionately high scores. It is defined as:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(4.2)

where c is the length of the candidate translation and r is the length of the reference
translation. The penalty discourages excessively short outputs by reducing the score
when the candidate text is significantly shorter than the reference.
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By incorporating multiple n-gram orders and the brevity penalty, BLEU provides
a robust measure of syntactic similarity, though it should be complemented with
semantic-aware metrics for a more comprehensive evaluation of code generation
quality.

The precision scores pn are calculated as the ratio of the number of matching n-
grams in the candidate translation to the total number of n-grams in the candidate
translation. The weights wn are typically set to give equal importance to all n-grams,
but they can be adjusted to emphasize certain n-gram lengths if desired.

The BLEU score is a crucial metric for evaluating the syntactic accuracy of code
generated from natural language text. Its application ensures that the generated
code closely matches the reference code in terms of structure and syntax. While it is a
valuable tool for evaluating the quality of generated code, it should be complemented
with other metrics that assess semantic and functional correctness to provide a
comprehensive evaluation.

CodeBLEU Score

The CodeBLEU score is a specialized metric designed specifically for evaluating the
quality of generated code. It extends the traditional BLEU score by incorporating
additional factors that are crucial for code quality, such as syntactic structure, data
flow, and semantic correctness. This holistic approach ensures a more thorough
assessment of the generated code’s overall quality and correctness [Ren et al., 2020].

CodeBLEU combines four key components:

1. n-gram match (n-gram): Similar to the BLEU score, this component mea-
sures the precision of n-gram matches between the generated and reference
code, capturing surface-level similarity.

2. Weighted n-gram match (w-ngram): This component assigns varying
weights to different n-grams based on their importance in code structure, em-
phasizing crucial code elements and improving the relevance of the similarity
measurement.

3. Syntax match (SM): This component evaluates the syntactic structure of
the generated code by comparing its Abstract Syntax Tree (AST) with that of
the reference code. The AST captures the hierarchical structure of the code,
ensuring that the generated code adheres to the correct syntactic rules.

4. Data Flow match (DM): This component assesses the data flow within the
generated code by verifying the correct usage of variables and function calls.
It ensures that the logical flow of data through the code is consistent with the
reference code, addressing aspects of semantic correctness.

The CodeBLEU score is calculated as a weighted sum of these components:
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CodeBLEU = α · n-gram match + β · weighted n-gram match
+ γ · syntax match + δ · data flow match (4.3)

where α, β, γ, and δ are weights assigned to each component. These weights can
be adjusted to emphasize different aspects of code quality based on the specific
requirements of the evaluation.

By incorporating these additional factors, the CodeBLEU score provides a more
comprehensive evaluation of the generated code, capturing both syntactic and se-
mantic aspects. This makes it a valuable metric for assessing the overall quality and
correctness of the code generated by the model. In the context of code generation
from natural language text, the CodeBLEU score ensures that the generated code
not only matches the reference code syntactically but also adheres to the correct
data flow and semantic structure.

Pass@k Metric

The pass@k metric evaluates functional correctness in code generation tasks by
determining whether at least one of the top k generated code samples successfully
passes a set of unit tests. Unlike match-based metrics, which compare generated code
to a reference solution and may overlook semantically equivalent implementations,
pass@k directly measures a model’s ability to produce functionally correct code.

To compute this metric, the model generates n candidate solutions for a given pro-
gramming task, where n represents the total number of generated samples. The
metric then examines whether at least one of the top k samplesi.e., the first k

solutions among the n generatedis correct, meaning it passes all unit tests. The
probability of this event is estimated using the following formula [Chen et al., 2021]:

pass@k = EProblems

[
1−

(
n−c
k

)(
n
k

) ] , (4.4)

where c denotes the number of correct solutions among the n generated. This for-
mulation accounts for the likelihood of selecting k samples from n without including
any correct ones, ensuring a statistically robust estimate of functional correctness.

Since direct computation of this formula can be numerically unstable, a stable nu-
merical implementation iterates over the product term-by-term to prevent compu-
tational overflows. The pass@k metric serves as a crucial indicator of a models
ability to generate practical and executable code, aligning evaluation more closely
with real-world software development requirements.
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4.5.2 Model Performance Across Datasets

Evaluating the performance of the model across diverse datasets is essential to un-
derstand its generalization capabilities and robustness in different contexts. Each
dataset presents unique challenges and characteristics, such as variations in natu-
ral language descriptions, code structures, and complexity levels. This subsection
provides a detailed analysis of the model’s performance on two distinct datasets:
the TestCase2Code dataset and the CONCODE/CodeXGLUE dataset. By exam-
ining the results across these datasets, we aim to highlight the model’s strengths,
identify areas for improvement, and assess its adaptability to varied code genera-
tion tasks. The following subsections delve into the specific evaluation results and
insights derived from these datasets.

To further contextualize the model’s performance, Figure 4.3 presents a comprehen-
sive comparative analysis of multiple models across a diverse range of code-related
tasks and benchmark datasets. This figure, sourced from Mistral AI, serves as a
state-of-the-art reference for evaluating model performance across various coding
domains. Specifically, it highlights the effectiveness of 7B parameter models and
larger architectures on tasks such as HumanEval, MBPP, Spider, and CruxE, as
well as their proficiency in multiple programming languages, including C++, Java,
JavaScript, and Bash. By providing a detailed comparison, the figure offers a broader
perspective on the capabilities of each model, situating their performance relative to
other leading models in the field and enabling a more nuanced assessment of their
strengths and limitations.

One notable entry in this comparison is Codestral Mamba, which leverages a novel
Mamba architecture rather than the conventional Transformer-based approach. Un-
like Transformers, Mamba models enable linear-time inference and have the theo-
retical ability to process sequences of infinite length. This efficiency makes them
particularly well-suited for code productivity tasks, where rapid response times and
the ability to handle extensive input contexts are crucial. Consequently, Codestral
Mamba has been trained with advanced code reasoning capabilities, allowing it to
perform competitively with state-of-the-art Transformer-based models.10

Model Performance Across the CONCODE/CodeXGLUE Dataset

The CONCODE/CodeXGLUE dataset serves as a critical benchmark for evaluating
text-to-code generation models. Table 4.9 presents a comparative analysis of several
prominent models, assessed using key metrics such as EM, BLEU Score, and Code-
BLEU Score. These metrics collectively provide a comprehensive evaluation of the
models’ syntactic and semantic accuracy in generating code from natural language
descriptions.

This study primarily investigates the effectiveness of integrating Low-Rank Adap-
10Figure and performance data sourced from Mistral AI: https://mistral.ai/news/

codestral-mamba.

https://mistral.ai/news/codestral-mamba
https://mistral.ai/news/codestral-mamba
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Figure 4.3: Benchmark performance comparison of various models.

tation (LoRA), a Parameter-Efficient Fine-Tuning technique, within the Codestral
Mamba model. This implementation marks the first application of LoRA to the
Codestral Mamba framework, necessitating a thorough evaluation of its performance
relative to established models. Specifically, a subset of parameters within the LoRA
matrices is allocated to learning from the CONCODE/CodeXGLUE dataset, en-
abling the model to adapt to the datasets nuances while preserving the broader
knowledge embedded in the pre-trained Codestral Mamba model.

A key distinction of our experiment is that, unlike models exclusively trained on
the CONCODE dataset, Codestral Mamba (LoRA) remains a general model that
retains its prior knowledge and inherent properties. The LoRA fine-tuning process
facilitates adaptation to the dataset without overwriting previously acquired capa-
bilities, thereby leveraging both general and dataset-specific knowledge to enhance
code generation performance.

Moreover, the fine-tuning process for Codestral Mamba (LoRA) demonstrated no-
table computational efficiency during training, completing 200 epochs in just 1.5
hours . This rapid training time highlights the optimized implementation and com-
putational effectiveness of the model, allowing for efficient fine-tuning while main-
taining high performance.

Table 4.9 presents the results of our comparative analysis. Performance metrics for
all models, except Codestral Mamba, are sourced from prior works [Lu et al., 2021;
Chakraborty et al., 2022], whereas the performance of Codestral Mamba (LoRA) is
derived from our experimental evaluation.

As previously noted, the primary objective of this experiment is to demonstrate
that incorporating LoRA matrices into the Mamba2 model enables it to effectively
learn from new data. To validate this objective, it was essential to employ a dataset
where the baseline Codestral Mamba model exhibits suboptimal performancethat
is, a dataset in which the nature of the contextual instructions or prompts does not
align well with the training data, resulting in inadequate code generation.

In this context, the CodeXGlue database was selected due to its unique structure
in pairing natural language text with corresponding code. The preparation of these
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Model Model Size EM % BLEU % CodeBLEU %
Seq2Seq 384 M 3.05 21.31 26.39
Seq2Action+MAML 355 M 10.05 24.40 29.46
GPT-2 1.5 B 17.35 25.37 29.69
CodeGPT 124 M 18.25 28.69 32.71
CodeGPT-adapted 124 M 20.10 32.79 35.98
PLBART 140 M 18.75 - 38.52
CodeT5-base 220 M 22.30 - 43.20
NatGen 220 M 22.25 - 43.73
Codestral Mamba 7 B 0.0 0.05 18.99
Codestral Mamba (LoRA) 286 M 22.00 40.00 41.00

Table 4.9: Performance comparison of text-to-code generation models on the CON-
CODE/CodeXGLUE dataset.

pairs challenges language models that have been conditioned to produce more elab-
orate responses, often leading to discrepancies when generating code. This misalign-
ment is quantifiably assessed using metrics such as BLEU, EM, and CodeBLEU. Ta-
ble 4.9 illustrates the performance of Codestral Mamba 7B on this dataset, thereby
corroborating its limited performance under these conditions.

In contrast, our findings indicate that the integration of LoRA matrices enables
the model to rapidly assimilate new contextual information, leading to significant
improvements in performance within just a few training epochs. This enhancement
is largely attributable to the strong general knowledge embedded within the base
model, which, when augmented with LoRA, demonstrates a marked capacity for
adapting to and accurately reproducing desired code outputs.

The results in Table 4.9 highlight a significant performance improvement when in-
corporating LoRA into the Codestral Mamba model. Notably, the Codestral Mamba
(LoRA) model achieves a BLEU score of 40.00 and an EM score of 22.00, demon-
strating a substantial increase compared to the base Codestral Mamba model, which
recorded near-zero values for these metrics. This improvement underscores the effi-
cacy of LoRA fine-tuning in enhancing the model’s ability to generate syntactically
and semantically accurate code.

Model Performance Across TestCase2Code Dataset

The TestCase2Code dataset is an invaluable resource for advancing research in auto-
mated test case generation. Developed using real project values at the Decsis com-
pany, this dataset addresses the critical need for Pytest-based functional test cases in
real-world scenarios. During the study, no existing database containing both manual
and automated functional test cases was found, highlighting the uniqueness and sig-
nificance of TestCase2Code. By integrating manual test cases with their automated
counterparts, it enables the exploration of techniques for generating functional, con-
textually relevant test cases that align with the complexities of real-world software
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development. This foundation not only facilitates further research in automated
software testing but also bridges the gap between manual and automated testing
methodologies.

Table 4.10 presents a comparative analysis of the performance metrics for the Code-
stral Mamba model, contrasting its baseline with the configuration enhanced through
LoRA fine-tuning. The metrics offer a thorough evaluation of the model’s baseline
capability to generate code that is both syntactically and semantically accurate.

The baseline model, evaluated on the TestCase2Code dataset, demonstrates a Pass@1
metric of 100%, indicating its proficiency in generating syntactically correct code.
However, other metrics, such as n-gram (4.82), w-ngram (11.8), SM (39.5), DM
(51.4), and CodeBLEU (26.9), reveal its limitations in practical application.

In contrast, the LoRA fine-tuned configuration of the Codestral Mamba model ex-
hibits significant improvements across all evaluated metrics. Specifically, the n-gram
score increases to 56.2, w-ngram to 67.3, SM to 91.0, DM to 84.3, and CodeBLEU to
74.7, while maintaining a Pass@1 metric of 100%. These enhancements underscore
the effectiveness of LoRA fine-tuning in generating code that is not only syntacti-
cally correct but also semantically accurate, thereby addressing the shortcomings of
the baseline model.

Furthermore, the training process was remarkably efficient, achieving 200 epochs in
just 20 minutes with the Mamba + LoRA configuration. Such efficiency allows for
rapid experimentation and fine-tuning, significantly reducing the time required to
achieve optimal model performance.

Model n-gram % w-ngram % SM % DM % CodeBLEU % Pass@1 %

Codestral Mamba 4.82 11.8 39.5 51.4 26.9 100

Codestral Mamba 56.2 67.3 91.0 84.3 74.7 100
(LoRA)

Table 4.10: Comparison of performance metrics for the Codestral Mamba model in
its baseline and LoRA fine-tuned configurations, evaluated on the TestCase2Code
dataset.

This accelerated training process not only facilitates faster iterations and fine-tuning
but also enables experiment with multiple configurations in a significantly reduced
time frame. Additionally, the efficiency of the training pipeline allows for seamless
adaptation to new datasets, enabling the model to be retrained on diverse data
sources with minimal computational overhead. This flexibility supports the devel-
opment of a Low-Rank Adaptation (LoRA) library, where fine-tuned versions of the
model can be stored and reused for various tasks. As a result, the approach en-
hances model performance, improves adaptability, and streamlines workflows, mak-
ing it highly suitable for real-world applications that demand quick deployment,
continuous optimization, and task-specific customization.
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4.6 Results Interpretation

A thorough evaluation of the model’s performance across different datasets is essen-
tial to understanding its effectiveness in code generation tasks. This section provides
a detailed analysis of the results obtained from the evaluation.

The analysis follows a structured approach by evaluating the performance of the
model on two benchmark datasets: CONCODE/CodeXGLUE and TestCase2Code.

Furthermore, to contextualize the observed performance trends, we compare the
model’s results against other state of the art models across multiple tasks. The
benchmark comparison presented in Figure 4.3 provides a broader perspective on
the model’s strengths and limitations relative to competing approaches. This com-
parative analysis highlights the relative positioning of the Codestral Mamba model
within the broader landscape of code generation research.

The following subsections present a detailed discussion of the results obtained for
each dataset. The first subsection analyzes the performance on the CONCODE/-
CodeXGLUE dataset. The subsequent subsection examines the TestCase2Code
dataset results, emphasizing the model’s ability to generate functionally accurate
and contextually relevant code from structured test case descriptions.

4.6.1 Analysis of CONCODE/CodeXGLUE Dataset Results

The results presented in Table 4.9 highlight the substantial impact of integrating
Low-Rank Adaptation (LoRA) into the Codestral Mamba model. Without fine-
tuning, the baseline Codestral Mamba model exhibits extremely low performance,
with an exact match (EM) score of 0.0 and a BLEU score of just 0.05. These values
indicate that the base model struggles to generate syntactically and semantically
relevant code when applied to the CONCODE/CodeXGLUE dataset. Furthermore,
its CodeBLEU score of 18.99 further underscores its limitations in producing func-
tionally meaningful code.

In contrast, when fine-tuned using LoRA, the Codestral Mamba model demonstrates
a dramatic improvement across all evaluation metrics. Specifically, the enhanced
model achieves an EM score of 22.00, a BLEU score of 40.00, and a CodeBLEU
score of 41.00. These results indicate that LoRA enables the model to generate
significantly more accurate and coherent code representations. The improvement
in BLEU and CodeBLEU scores confirms that the fine-tuned model is better at
preserving syntactic and semantic integrity, producing code outputs that align more
closely with reference solutions.

From a comparative perspective, the performance of Codestral Mamba (LoRA) is
highly competitive with state-of-the-art models. Its EM score of 22.00 closely aligns
with CodeT5-base (22.30) and NatGen (22.25), while its BLEU score of 40.00 sur-
passes most other models in the benchmark, including CodeGPT-adapted (32.79)
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and GPT-2 (25.37). Although its CodeBLEU score (41.00) falls slightly behind
CodeT5-base (43.20) and NatGen (43.73), it remains within a close margin, demon-
strating strong generalization capabilities.

These findings underscore the effectiveness of LoRA as a parameter-efficient fine-
tuning approach, enabling substantial performance gains without the need for full
model retraining. By leveraging LoRA, the model retains its broader pre-trained
knowledge while adapting efficiently to the CONCODE/CodeXGLUE dataset. This
balance between computational efficiency and performance makes Codestral Mamba
(LoRA) particularly well-suited for real-world applications such as automated test
case generation, where both accuracy and efficiency are critical.

4.6.2 Analysis of TestCase2Code Dataset Results

The evaluation of the Codestral Mamba model on the TestCase2Code dataset reveals
significant insights into its code generation capabilities, particularly when enhanced
with Low-Rank Adaptation fine-tuning. This section delves into the detailed analysis
and interpretation of the results, highlighting the model’s strengths and the impact
of the fine-tuning process on its performance.

Table 4.10 presents the performance metrics of the Codestral Mamba model model
with and without LoRA fine-tuning. The model demonstrates a strong ability to
generate syntactically correct code, achieving a perfect 100% Pass@1 score. This
indicates that every generated code snippet is free of syntax errors, establishing a
solid baseline for code generation.

Impact of Fine-Tuning with LoRA

Applying fine-tuning with LoRA, as shown in Table 4.10, leads to notable improve-
ments across all evaluation metrics. The n-gram and w-ngram scores rise signifi-
cantly, indicating better lexical and structural alignment with the reference code.
Additionally, both syntax match and dataflow match scores experience substantial
gains, reflecting enhanced syntactic and semantic coherence in the generated code.

A particularly striking result is the dramatic increase in the CodeBLEU score, which
rises from 26.9 (baseline) to 74.7 following LoRA fine-tuning. Unlike traditional
metrics such as exact match or BLEU, which primarily assess surface-level similari-
ties, CodeBLEU provides a more comprehensive evaluation by integrating syntactic
and semantic correctness. This highlights the effectiveness of LoRA in refining the
models ability to generate high-quality test cases that align closely with real-world
software requirements.

The comparative analysis of the Codestral Mamba models performance before and
after fine-tuning underscores LoRA’s role in significantly enhancing code generation
capabilities. As shown in Table 4.10, the baseline model, trained without LoRA,
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achieves moderate performance across key metrics. However, incorporating LoRA
leads to considerable improvements, demonstrating its potential for scalable and
efficient adaptation in automated software testing and development workflows.

From Syntactic Validation to Functional Adaptation

The 100% Pass@1 score observed in both the baseline Mamba model and its fine-
tuned counterpart confirms their ability to generate syntactically valid code. How-
ever, Pass@1 exclusively evaluates structural correctness, without providing insights
into functional accuracy or domain relevance. While the baseline model ensures
correctness at a syntactic level, this does not inherently guarantee its suitability for
specific project requirements. In contrast, the notable improvement in CodeBLEU
scores following fine-tuning suggests that, beyond maintaining syntactic integrity,
the model achieves greater alignment with project-specific objectives. This enhance-
ment stems from its ability to learn from domain-specific data, refining its responses
to better fit the intended application context.

The results underscore the significant impact of LoRA-based fine-tuning on the
performance of the Codestral Mamba model. By reinforcing both syntactic cor-
rectness and functional accuracy, this approach enables a more tailored adaptation
to real-world software development needs. The observed improvements highlight
the necessity of employing complementary evaluation metrics such as CodeBLEU,
which, unlike Pass@1, offer a more comprehensive assessment of both structural and
semantic quality. These findings emphasize the potential of this fine-tuning strat-
egy as a key technique for enhancing the practical applicability of automated code
generation models.

4.7 Practical Implications

The findings from this study present significant practical applications and implica-
tions for the field of software development and automated testing. The integration of
advanced language models, such as the Codestral Mamba model enhanced with Low-
Rank Adaptation, offers tangible advancements in generating high-quality, context-
aware test scripts. This section explores the real-world applications, benefits, and
challenges of implementing these findings, highlighting how they can enhance soft-
ware quality, efficiency, and development workflows.

4.7.1 Enhanced Automated Testing

One of the most immediate practical applications of this research is the enhance-
ment of automated testing processes. Traditional manual testing methods are time-
consuming and prone to human error, often leading to incomplete test coverage and
delayed software releases. By employing the Codestral Mamba model with LoRA
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fine-tuning, developers can automate the generation of test cases, ensuring compre-
hensive coverage of software functionalities. This automation not only reduces the
manual effort required for test case creation but also accelerates the testing cycle,
allowing for more frequent and thorough testing.

A key contribution of this study is the creation of the TestCase2Code dataset, a pio-
neering resource addressing a critical gap in the field of software testing. To date, no
publicly available database of both manual and automated functional test cases has
been identified. This dataset was structured using real project data from Decsis, en-
suring its relevance and applicability to industry practices. By offering a well-defined
repository of test cases, TestCase2Code serves as a foundation for future advance-
ments in automated testing, facilitating improved model training, evaluation, and
benchmarking within real-world software development environments.

The model’s ability to generate syntactically and semantically accurate code, as
evidenced by high CodeBLEU scores, ensures that the test cases are both valid
and relevant to the software’s intended behavior. This leads to more reliable test
results and earlier detection of defects, ultimately improving the overall quality of
the software.

Furthermore, with this approach, we can envision a repository where the LoRA ma-
trices are encapsulated by project. This would allow for a modular and scalable
solution, enabling different projects to maintain their own fine-tuned matrices tai-
lored to their specific needs. Such a repository would facilitate better organization
and management of fine-tuned models, making it easier to adapt and reuse these
models across various projects within an organization. This encapsulation would also
streamline the process of updating and maintaining the models as software require-
ments evolve, ensuring that the generated test cases remain relevant and effective
over time.

4.7.2 Enhancing Software Quality Engineering Efficiency

The adoption of automated test case generation can significantly enhance the ef-
ficiency of software quality engineering teams. By reducing the effort required for
quality specialists to design automated test cases from scratch, the approach allows
them to focus on refining test strategies, analyzing results, and ensuring comprehen-
sive coverage.

Additionally, fine-tuning capabilities allow the model to adapt to specific project
requirements, generating test cases that align with the unique context of the soft-
ware under evaluation. While automation reduces the time spent designing scripts,
quality engineers still play a crucial role in validating, refining, and maintaining
these test cases to ensure their effectiveness. This balance between automation
and human oversight leads to more efficient testing workflows, ultimately improving
software reliability and accelerating the development lifecycle.
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Furthermore, this research leveraged LoRA fine-tuning to develop a customized chat-
bot, Codestral Mamba_QA AI Chatbot, specifically designed to meet the needs of
the company. This chatbot significantly enhances response accuracy by integrating
project-specific data, automates routine inquiries to optimize workload distribution,
and seamlessly adapts to the companys terminology and operational requirements. A
crucial advantage of this approach is its strong emphasis on data security, as the chat-
bot operates within an internal infrastructure, eliminating reliance on third-party
solutions and safeguarding sensitive information. Additionally, Codestral Mamba_-
QA AI Chatbot is designed for continuous learning, evolving through user interac-
tions to improve performance over time. Its ability to provide real-time assistance
ensures uninterrupted support for employees, thereby streamlining operations and
enhancing efficiency.

4.7.3 Cost and Time Efficiency

The implementation of automated test case generation using the Codestral Mamba
model can lead to substantial cost and time savings. Automated testing reduces the
need for extensive manual testing resources, lowering the overall cost of the testing
process. Additionally, the model’s efficiency in generating high-quality test cases
minimizes the time required for test case creation and maintenance, allowing for
faster development cycles.

The use of LoRA fine-tuning further enhances cost efficiency by enabling the model
to adapt to new tasks with minimal computational overhead. This adaptability
ensures that the model remains effective in generating relevant test cases as the
software evolves, without the need for extensive retraining or resource allocation.

4.7.4 Scalability and Adaptability

The Codestral Mamba model’s ability to generate test cases from natural language
descriptions makes it highly scalable and adaptable to various software development
environments. Whether used in small development teams or large-scale enterprises,
the model can be integrated into existing workflows to enhance testing processes. Its
adaptability to different programming languages and frameworks further expands its
applicability, making it a versatile tool for developers working in diverse technolog-
ical ecosystems.

4.7.5 Continuous Integration and Deployment

In the context of continuous integration and deployment (CI/CD) pipelines, the au-
tomated generation of test cases can significantly enhance the reliability and speed
of software releases. By integrating the Codestral Mamba model into CI/CD work-
flows, developers can ensure that comprehensive test suites are automatically gen-
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erated and executed with each code change. This continuous testing approach helps
identify and address issues early in the development cycle, reducing the risk of de-
fects in production and enabling more frequent and reliable software updates.

4.7.6 Benefits and Challenges

Benefits:

• Consistency and Reliability: Automated test case generation ensures consis-
tent and reliable testing, reducing the variability and errors associated with
manual testing.

• Early Defect Detection: By generating and executing tests early in the devel-
opment cycle, defects can be identified and addressed promptly, reducing the
cost and effort of fixing issues later.

• Comprehensive Coverage: The model’s ability to generate a wide range of test
cases ensures comprehensive coverage of software functionalities, reducing the
risk of undetected bugs.

• Enhanced Workflow Automation: The development of the Codestral Mamba_-
QA AI Chatbot demonstrates how AI-driven solutions can streamline opera-
tions, ensuring seamless adaptation to company-specific requirements.

Challenges:

• Initial Setup and Integration: Implementing automated testing requires an ini-
tial investment in setting up and integrating the model into existing workflows.
This may involve technical challenges and a learning curve for development
teams.

• Maintenance and Updates: As software evolves, the model must be contin-
ually fine-tuned and updated to generate relevant test cases. This ongoing
maintenance can be resource-intensive.

• Ensuring Data Security: While the chatbot solution provides enhanced secu-
rity by operating within an internal infrastructure, organizations must main-
tain rigorous data management practices to prevent potential vulnerabilities.

4.8 Limitations of the Study

While this study presents significant advancements in the field of automated test case
generation using advanced language models, it is essential to acknowledge several
limitations that may influence the interpretation and application of the findings.
Identifying these limitations provides a clearer understanding of the research’s scope
and offers opportunities for future improvements.
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4.8.1 Data Dependency and Generalization

The Codestral Mamba model was fine-tuned using the TestCase2Code dataset,
which, while comprehensive, may not fully encapsulate the diversity and complex-
ity of the software project. The dataset was constructed by selecting specific .jsx
files associated with each test case, providing relevant project information but not
necessarily capturing all critical details.

To address this limitation, future research could explore providing the model with
access to the entire project repository on platforms like GitLab. By giving the model
complete information about the project, including all relevant files and context, we
can facilitate better learning and training. This approach would enable the model
to understand the broader context of the software, potentially improving its ability
to generate more accurate and contextually relevant test cases.

Future studies should incorporate more comprehensive datasets that include com-
plete project repositories. This would help in evaluating the model’s robustness and
generalization capabilities across diverse software development environments. By
providing the model with a more holistic view of the project.

It is important to note that the Codestral Mamba model is a general code model
tested across several databases, not tailored to a specific datasets like CONCODE/-
CodeXGLUE or TestCase2Code. The use of the CONCODE/CodeXGLUE dataset
in this study serves to demonstrate the effectiveness of applying Parameter-Efficient
Fine-tuning techniques, specifically LoRA matrices, in adapting the model to spe-
cific tasks. This highlights the model’s versatility and potential for application in a
wide range of software testing scenarios.

4.8.2 Model Fine-Tuning and Computational Resources

The fine-tuning process using Low-Rank Adaptation requires careful configuration
and domain-specific data to achieve optimal performance. While LoRA reduces
computational overhead compared to full fine-tuning, it still demands significant
resources for training and inference, particularly for large models like Codestral
Mamba. Smaller development teams or organizations with limited computational
resources may find it challenging to implement and maintain such models.

Future research could investigate adaptive fine-tuning strategies that dynamically
adjust model complexity based on available computational resources.

4.8.3 Evaluation Metrics and Real-World Applicability

The evaluation metrics used in this study, such as CodeBLEU and Pass@1, provide
a comprehensive assessment of the model’s performance in generating syntactically
and semantically accurate code. However, these metrics may not fully capture the
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nuances of real-world software testing, where factors like code maintainability, read-
ability, and integration with existing systems are crucial. The focus on automated
metrics may overlook the practical challenges faced in integrating generated test
cases into workflows.

Future studies should consider incorporating additional evaluation metrics that as-
sess the practical usability and maintainability of the generated test cases. Conduct-
ing user studies with software developers and quality assurance to gather feedback
on the generated test cases real-world applicability could provide valuable insights
into the model’s practical effectiveness.

4.8.4 Adaptation to Evolving Software Requirements

Software development is a dynamic process, with requirements and codebases evolv-
ing rapidly. The model’s ability to adapt to these changes and generate relevant
test cases continuously is a critical aspect of its practical utility. While Low-Rank
Adaptation fine-tuning enables the model to adapt to new tasks with minimal over-
head, the need for ongoing maintenance and updates to keep the model aligned with
evolving software requirements poses a challenge.

Developing automated tools and frameworks that facilitate the continuous fine-
tuning and updating of the model could address this limitation. Research into
self-adapting models that can learn from evolving codebases and requirements with-
out extensive manual intervention could further enhance the model’s practical ap-
plicability.

4.8.5 Integration with Existing Development Workflows

Integrating the Codestral Mamba model into existing software development work-
flows, particularly in continuous integration and deployment (CI/CD) pipelines,
presents technical and organizational challenges. The model’s integration requires
compatibility with various development tools, frameworks, and practices, which may
vary across different organizations. Ensuring seamless integration and interoperabil-
ity is crucial for realizing the model’s full potential.

Future research should focus on developing standardized integration frameworks and
best practices for incorporating advanced language models into CI/CD pipelines.
Collaboration with industry partners to pilot these integrations in real-world devel-
opment environments could provide valuable insights and drive broader adoption.

In conclusion, while this study presents significant advancements in automated test
case generation, acknowledging and addressing these limitations is crucial for ad-
vancing the field further. By exploring potential solutions and recommendations,
future research can build upon these findings to enhance the practical applicability
and effectiveness of advanced language models in software development and testing.
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4.9 Experimental Evaluation and AI-Driven Test Au-
tomation

To evaluate the trained model, the Codestral Mamba_QA AI Chatbot, a chat-
bot web service (Virtual Assistant), was developed for testing. The assessment used
manual test cases from the TestCase2Code database, excluding those from training,
along with newly created cases and general instructions.

This section presents the experimental results, focusing on the models performance
across various configurations. The analysis examines its ability to generate struc-
tured test cases, respond to diverse prompts, and enhance test automation through
LoRA scaling.

A key outcome of this thesis is the development of the Codestral Mamba_QA
AI Chatbot, a fine-tuned intelligent assistant tailored to the companys specific
needs. By leveraging project-specific data, it improves response accuracy, seamlessly
integrates domain-specific terminology, and optimizes workload distribution. Its
deployment within an internal infrastructure enhances data security by eliminating
reliance on external solutions and protecting sensitive information.

Another notable advantage of this approach is the flexibility of hyperparameter ad-
justments. Each parameter can be modified dynamically without the need to reload
the model or allocate additional resources, allowing for efficient fine-tuning and adap-
tation to evolving project demands. Additionally, this framework enhances scalabil-
ity, enabling seamless integration into continuous testing pipelines while maintaining
high efficiency and cost-effectiveness.

To systematically evaluate the chatbots performance across different test case sce-
narios, a set of key parameters and hyperparameters was defined and adjusted dy-
namically throughout the experiments:

• System Prompt: A predefined instruction that directs the models behavior
when generating responses. If configured, it ensures that outputs align with
best practices in test case generation, Pytest conventions, and project require-
ments. If no prompt is set, the chatbot relies on default behaviors, potentially
generating broader or less structured responses.

• Temperature: A numerical value that controls the randomness of the mod-
els output. Lower values (e.g., 0.0) result in deterministic and structured
responses, whereas higher values increase diversity, allowing for more varied
test case formulations.

• Factor Scale LoRA: A scaling factor that determines the extent to which the
LoRA fine-tuning influences the models responses. Higher values increase the
integration of domain-specific adaptations, whereas lower values retain more
general language model characteristics.
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• System Input: The user-provided input that serves as the basis for generating
a response. This input may or may not correspond to a specific test case; it
could be a request for test case generation or any other question.

• System Response: The output produced by the chatbot, which varies de-
pending on the input and configurations. If the request pertains to test case
generation , the response typically includes structured Pytest code. However,
depending on the query and the configuration the chatbot provides the answer.
When applicable, the chatbot supplements its response with an explanation
of the generated test case, detailing the logic, assertions, and methodology
behind it. This feature enhances interpretability and ensures alignment with
expected testing standards.

These parameters and hyperparameters collectively define the experimental con-
ditions under which the Codestral Mamba_QA AI Chatbot was evaluated.
By analyzing their impact, this study provides valuable insights into optimizing
AI-driven test case generation and adapting automation frameworks to evolving
software validation requirements.

4.9.1 Evaluation of the Successful Login Query

This section presents an experimental scenario in which the Codestral Mamba model,
configured with a LoRA scale factor set to 0, processes a user query related to a
successful login. The systems behavior under these conditions is illustrated in Figure
4.4.

Unlike structured test cases stored in the TestCase2Code database, this instance
does not conform to a predefined format. Instead, the system processes the input as
a general query, interpreting it as a request for conceptual information rather than a
formal test case specification. Consequently, instead of generating executable Pytest
code, the model provides a detailed explanation of the login process, covering au-
thentication mechanisms, authorization protocols, user access control, and security
considerations.

This outcome underscores the models response mechanism when presented with an
unstructured prompt and default hyperparameter settings.This behavior is directly
influenced by the following experimental conditions:

• System Prompt: As no specific prompt was set, the model defaulted to an
explanatory response rather than producing a structured test case.

• Temperature: Set to 0.0, ensuring a deterministic response that consistently
prioritizes factual explanations over variation or alternative test case formats.

• Factor Scale LoRA: Configured to 0, meaning no fine-tuning adjustments
influenced the models output, leading it to rely solely on its base training
rather than aligning with domain-specific test case structures.
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• System Input: The entered phrase, "successful login," was interpreted as an
open-ended request rather than a directive to generate test code, affecting the
models response format.

• System Response: Given the absence of a structured input format and
prompt constraints, the output consisted of an explanatory breakdown of the
login process rather than an executable test case.

The experiment demonstrates the adaptability of the Codestral Mamba model in
processing diverse input formats. It also highlights the necessity of defining precise
system prompts and fine-tuning hyperparameters to achieve the desired outcome
whether generating structured test cases or providing explanatory content. These
findings contribute to a deeper understanding of AI-driven test automation and re-
inforce the importance of controlled parameter adjustments in optimizing system
performance. This outcome highlights the Codestral Mamba models default be-
havior when presented with an unstructured input, demonstrating its tendency to
provide conceptual explanations in the absence of a structured test case format.
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Figure 4.4: Successful login test case execution using Codestral Mamba without
LoRA.
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4.9.2 LoRA-Automated and Manual Test Case Generation

This section presents an experimental scenario in which the Codestral Mamba model,
configured with a LoRA scaling factor of 2, processes a user query related to a
successful login test case. The systems behavior under these conditions is illustrated
in Figure 4.5.

Unlike cases where the model defaulted to an explanatory response, the increased
LoRA scaling factor influences the models output significantly. Instead of solely
providing a conceptual breakdown, the model autonomously generates both a struc-
tured manual test case and an executable automated test script in pytest. The
structured test case includes explicit steps for human testers, while the generated
script incorporates valid identifiers, key validation steps, and assertions ensuring
redirection to the appropriate page after login.

This behavior is directly influenced by the following experimental conditions:

• System Prompt: As no specific prompt was set, the model relied on its
fine-tuned adaptation through LoRA to infer structured test cases.

• Temperature: Maintained at 0.0, ensuring deterministic responses that con-
sistently prioritize structured outputs over variation.

• Factor Scale LoRA: Set to 2, enabling the model to leverage fine-tuned
patterns from structured test case data, resulting in an output that bridges
both manual and automated testing methodologies.

• System Input: The phrase "successful login test case" was interpreted with
sufficient context, prompting the model to generate structured test cases rather
than a high-level explanation.

• System Response: Due to the combined effects of LoRA scaling and struc-
tured learning, the model produced a dual response: a well-defined manual
test case and an executable Pytest script.

This experiment highlights the impact of LoRA scaling on structured response gen-
eration. The model demonstrates the ability to infer test case structure, seamlessly
transitioning from an unstructured user query to a fully executable script. These
findings reinforce the value of controlled hyperparameter adjustments in AI-driven
test automation, ensuring adaptability to different testing needs while maintaining
efficiency.
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Figure 4.5: Automated test case generation by Codestral Mamba with LoRA scaling
factor set to 2.
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4.9.3 Effect of System Prompt on Test Case Generation

This evaluation examines the impact of introducing a system prompt while main-
taining a LoRA scaling factor of 0 and a temperature setting of 0. The
systems response under these conditions is illustrated in Figure 4.6.

The following hyperparameters and parameters define the experimental conditions:

• Temperature: Fixed at 0, ensuring deterministic outputs without introduc-
ing variation in response generation.

• Factor Scale LoRA: Set to 0, preventing the model from leveraging fine-
tuned enhancements and limiting its knowledge to its base capabilities.

• System Prompt: Explicitly instructs the model to generate a Pytest-based
test case, providing structured guidance rather than relying on inference.

• System Response: The model successfully constructs an automated test
case following best practices in pytest, despite the absence of contextual data
such as the referenced .jsx file.

The generated response demonstrates that, even without LoRA-enhanced learning,
the model retains its ability to generate structured test cases when provided with
an explicit system prompt. The test script systematically:

1. Defines a function test_successful_login.

2. Utilizes a client fixture to simulate user interaction.

3. Sends a POST request to the login endpoint.

4. Asserts expected responses, such as a status code of 200 and a success message.

5. Verifies redirection to the correct page.

These findings highlight the inherent capability of the Codestral Mamba model to
produce well-structured and functional test scripts when given clear instructions.
While it does not incorporate additional learned attributes such as specific ID values
or extended validation steps, it effectively adheres to best practices for Pytest-based
automation. This reinforces the value of explicit prompting in guiding AI-driven
test generation, ensuring structured and reliable outputs even in the absence of
fine-tuned adaptations.
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Figure 4.6: Test case generation with system prompt, LoRA scaling factor of 0, and
temperature set to 0.
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4.9.4 Influence of Temperature and LoRA Scaling on Test Case
Generation

This evaluation examines the impact of adjusting temperature and LoRA scaling on
the test case generation process using the Codestral Mamba model. The experiment
was conducted with a LoRA scaling factor of 3.0 and a temperature setting
of 0.50, without an explicit system prompt or structured input file. The system’s
response under these conditions is illustrated in Figures 4.7 and 4.8.

The following hyperparameters and parameters define the experimental conditions:

• Temperature: Set to 0.50, allowing for slight variations in response genera-
tion while maintaining coherence in test case structure.

• Factor Scale LoRA: Adjusted to 3.0, enabling the model to leverage fine-
tuned domain knowledge and produce structured, testable outputs.

• System Prompt: Left empty, requiring the model to infer intent based solely
on input keywords.

• System Response: The model autonomously generates a Pytest-based au-
tomated test case, incorporating business logic and element identifiers without
explicit contextual instructions.

The generated response demonstrates that higher LoRA scaling enhances the
models ability to infer structured patterns, as evidenced by the correct assignment
of element identifiers (ID attributes) and logical assertions verifying login success.
The increase in temperature introduces controlled variability, allowing the model to
explore different, yet functionally equivalent, implementations of test logic.

The test script systematically:

1. Locates input fields for email and password.

2. Asserts the presence of required elements.

3. Interacts with UI components, such as buttons and hyperlinks.

4. Captures screenshots for validation.

5. Confirms redirection to the expected home page.

These findings reinforce the adaptability of Codestral Mamba in automated test gen-
eration. The model successfully constructs meaningful test cases despite the absence
of explicit instructions, relying on LoRA-enhanced knowledge and temperature-
based diversification. This highlights its capability to streamline quality assurance
workflows while allowing for flexible test adaptations based on project-specific re-
quirements.
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Figure 4.7: First generated test case with temperature = 0.50 and LoRA scaling
factor = 3.
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Figure 4.8: Second generated test case with temperature = 0.50 and LoRA scaling
factor = 3.
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4.9.5 Evaluation of Test Case 785

This evaluation examines the performance of the Codestral Mamba model in gen-
erating automated test cases under specific experimental conditions. Test case 785,
selected from the validation set of the TestCase2Code database, was not previously
seen by the model, ensuring an unbiased assessment of its capabilities. The test
case pertains to verifying the presence of key fiscal tax-related texts in an annual
observation table, as depicted in Figure 4.11.

The experiment was conducted with the following hyperparameter configurations:

• Temperature: Set to 0.00, ensuring deterministic outputs with minimal vari-
ability.

• Factor Scale LoRA: Adjusted to 2.0, enhancing the models ability to gen-
eralize from fine-tuned domain knowledge.

• System Prompt: Explicitly provided in one configuration and omitted in
another to assess its influence on response generation.

Figure 4.9 illustrates the response generated when the system prompt was included,
while Figure 4.10 shows the output when the prompt was absent. Notably, the
model produced identical responses in both cases, demonstrating a high degree of
robustness and an intrinsic understanding of test case generation, independent of
prompt guidance.

The correctness of the generated test case is affirmed by its structured alignment
with the expected Pytest format. The script effectively:

1. Verifies the presence of predefined texts related to fiscal reporting.

2. Uses parameterized assertions to ensure comprehensive coverage.

3. Captures screenshots for validation, reinforcing test reliability.

These results highlight the effectiveness of Codestral Mamba, augmented with LoRA
scaling, in producing consistent, high-quality test cases without requiring extensive
guidance. The ability to generate structured test cases autonomously, even under
constrained configurations, underscores the model’s potential to streamline auto-
mated testing workflows and reduce manual effort in quality assurance processes.
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Figure 4.9: Test case 785 with system prompt, temperature = 0, and LoRA scale
factor = 2.
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Figure 4.10: Test case 785 without system prompt, temperature = 0, and LoRA
scale factor = 2.
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Figure 4.11: Context of test case 785, reviewing annual observation table texts
related to fiscal taxes.
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4.9.6 Evaluation of Test Case 794

This evaluation examines test case 794, which is part of the validation set extracted
from the TestCase2Code database. As one of the 100 test cases allocated for val-
idation, this test case had not been encountered by the model during fine-tuning.
The objective of this evaluation is to assess the model’s ability to correctly generate
an automated test case under specific experimental conditions, as illustrated in the
accompanying figures.

The test was conducted using the following parameters:

• Temperature: Set to 0.00, ensuring a deterministic response by minimizing
output variability.

• LoRA Scale Factor: Configured to 2.0, leveraging fine-tuned domain-specific
knowledge to enhance structured test generation.

• System Prompt: Explicitly provided, instructing the model to generate a
Pytest-based automated test case while ensuring compliance with best prac-
tices.

• System Response: The model autonomously generated a structured test
case that verifies numerical values in a table and confirms the correct rendering
of a bar chart.

As shown in Figure 4.12, the structured input format remained consistent with the
database representation, ensuring that the model received contextually rich infor-
mation. The generated test case accurately verifies:

1. The presence and correctness of numeric values in a fiscal tax-related table.

2. The correct display of a bar chart representing the tax data.

3. The functional link between tabular and graphical data, ensuring consistency
in representation.

These validations are crucial in quality assurance workflows, where the correctness
of both tabular and graphical representations impacts data integrity and user ex-
perience. Figure 4.13 illustrates the relevant fiscal section containing the bar graph
under analysis.

The accuracy of the generated test case, even for previously unseen validation data,
underscores the robustness and adaptability of the Codestral Mamba model. The
experiment demonstrates that:

• The LoRA enhanced model effectively recognizes structured patterns and de-
pendencies in test case design.
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• The temperature setting of 0.00 guarantees deterministic behavior, making the
model suitable for predictable, repeatable test generation.

• The system prompt had no significant impact on output accuracy, reaffirming
the models intrinsic ability to infer test logic from structured inputs.

These findings reinforce the practical applicability of the Codestral Mamba model in
automated software testing, particularly in scenarios requiring structured, domain-
specific test case generation.
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Figure 4.12: Test case 794 with system prompt, temperature = 0, and LoRA scale
factor = 2.
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Figure 4.13: Context of test case 794, identifying the bar graph of fiscal section taxes
paid.
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4.9.7 Enhancing Test Coverage with LoRA

This evaluation investigates the impact of increasing the LoRA scale factor on the
performance and output of the Codestral Mamba model, specifically focusing on test
case generation for improving test coverage. The analysis is based on the document
provided in Figure 4.9.7, which was generated with a temperature of 0 and a LoRA
scale factor of 3.

By increasing the LoRA scale factor to 3, the model is expected to produce responses
that are more focused on the specific information and context of the project. This
adjustment aims to enhance the model’s ability to generate detailed and relevant
test cases, thereby improving overall test coverage.

The following parameters and hyperparameters define the experimental setup:

• Temperature: Set to 0.00 to ensure deterministic outputs, reducing random-
ness and enhancing consistency in test case generation.

• Factor Scale LoRA: Adjusted to 3.0, allowing the model to leverage fine-
tuned domain knowledge and generate structured, testable outputs.

• System Input: The model was instructed to generate new test cases to
enhance test coverage for the project.

• System Response: The model autonomously produced a Pytest-based au-
tomated test script, incorporating validation logic and key elements relevant
to the testing.

The generated test cases verify multiple critical elements of the project, including the
presence of expected table headers (e.g., "Empresarial", "Ventas", "Clientes"),
the correct number of rows and columns, the existence of graphical elements such as
bar charts, pie charts, and line charts, and data validation in sections like "Último
Mes" and "Mejores Clientes".

Notably, the test cases test_texts_table_ultimo_mes and test_texts_table_-
mejores_clientes exhibit syntactic correctness and illustrate the models intelli-
gence in generating relevant tests for business-specific scenarios. The consistency in
generating structured test cases indicates that the model effectively learns patterns
and adapts to project-specific requirements with increased LoRA scaling.

The inclusion of these test cases significantly strengthens the test suite, ensuring
comprehensive validation across different system components. The ability to gen-
erate detailed, domain-specific test cases highlights the effectiveness of Codestral
Mamba with LoRA scaling in automating quality assurance processes. By system-
atically analyzing how LoRA influences test generation, this study demonstrates the
potential of AI-driven automation in enhancing software reliability and robustness.
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4.9.8 Evaluation of Cross-Project Test Generation Using LoRA

The evaluation investigates the Codestral Mamba model’s ability to generate auto-
mated test cases for projects outside the TestCase2Code database. Specifically, we
examine its performance in generating test cases for the ALICE4u 11 project, which
was not part of the original training data for the LoRA matrices.

The configuration used in this experiment is detailed in Figure 4.14. The model was
set with the following parameters:

• Temperature: 0.00 This setting ensures deterministic output, eliminating
randomness in test case generation. By maintaining a temperature of zero,
the model consistently generates structured and reproducible test cases.

• LoRA Scale Factor: 1.0 This factor determines the extent to which the
LoRA matrices influence the model’s output. A scale factor of 1.0 balances
fine-tuned adaptation with the base models pre-trained knowledge, allowing
the model to leverage prior learning while incorporating project-specific details.

• System Prompt: The model was provided with a natural language prompt
instructing it to generate a Pytest-based test case using the provided test case
manual and ‘.jsx‘ file.

Given this configuration, the model successfully generated a test case for the AL-
ICE4u project, focusing on verifying the login functionality for a Technical Director
with valid credentials.

• System Input: The model received a .jsx file and a textual system prompt
instructing it to generate a comprehensive Pytest-based test case.

• System Response: The model produced a structured test case that adhered
to best practices in Pytest, including:

1. Navigating to the login page and filling in the required fields.

2. Using Selenium-based methods for element selection and interaction.

3. Simulating key presses to enter the username and password.

4. Validating navigation to the expected post-login page.

The successful test case generation demonstrates that the model can adapt to un-
seen projects while maintaining the structural integrity of automated test scripts.
Notably:

11More information about the ALICE4u is available at https://www.alice.healthcare/.

https://www.alice.healthcare/
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• Cross-Project Adaptability: The model correctly inferred the test struc-
ture despite ALICE4u not being in the original training dataset.

• Automated Test Coverage Expansion: By dynamically generating test
cases, the model helps improve test coverage for new projects, reducing manual
effort in test design.

• Best Practice Compliance: The generated test follows established Pytest
conventions, ensuring its applicability in real-world testing workflows.

The ability to generate reliable and structured test cases for projects outside the
original training set highlights the value of LoRA-enhanced AI models in software
quality assurance. This experiment underscores key benefits:

• Scalability: The model can be applied across multiple projects without re-
quiring extensive re-training, making it a scalable solution for automated test
case generation.

• Improved Efficiency: By automating test case creation, development teams
can reduce time spent on manual test writing while maintaining high test
coverage.

• Robust Software Validation: The generated test cases ensure that critical
system functionalities, such as authentication, are thoroughly validated.

This experiment confirms that the Codestral Mamba model, when fine-tuned with
LoRA at a scale factor of 1.0, is capable of cross-project test case generation. By
leveraging structured prompts and context-aware adaptation, the model enhances
software testing efficiency and facilitates broader test coverage in diverse develop-
ment environments.
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Figure 4.14: Generation of a test case for the ALICE4u project with temperature =
0 and LoRA scale factor = 1.
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4.9.9 Bug Prevention via Automated Testing

This evaluation examines the capability of the Codestral Mamba model to generate
automated test cases aimed at preventing software defects. Specifically, the exper-
iment assesses how effectively the model can infer the requirements of a test case
without an explicit system prompt and generate structured Pytest scripts to validate
field constraints. The configuration used for this experiment is illustrated in Figure
4.15, where the temperature is set to 0.00 and the LoRA scale factor is set to 2.00.
These settings ensure deterministic and contextually relevant outputs, minimizing
variability while enhancing the specificity of the generated responses.

To analyze the models adaptability and precision in automated test case generation,
the following parameters and hyperparameters were configured:

• Temperature: Set to 0.00, enforcing a deterministic response to ensure the
generated test cases remain stable and reproducible.

• LoRA Scale Factor: Configured to 2.00, enhancing the models ability to in-
corporate domain-specific knowledge and generate structured, test-ready out-
puts.

• System Prompt: Left empty, requiring the model to infer intent based solely
on input keywords, thereby testing its ability to interpret testing requirements
without explicit guidance.

• System Input: The model was provided with a description of a bug related
to input validation in a phone number field. The description included the
expected validation behavior and a brief sequence of user actions required to
reproduce the issue.

• System Response: The model autonomously generated a structured test
case using Pytest, incorporating user interface interactions, input validation,
and assertion mechanisms.

The bug addressed in this experiment originates from a real-world issue identified by
the quality assurance team during routine testing. The defect, which allowed special
characters to be erroneously accepted in the phone number field, posed a risk to data
integrity and system reliability. By leveraging the chatbot, we were able to trans-
late this documented issue into an automated test case efficiently, demonstrating
the practical application of AI-driven test generation in real software development
environments.

The objective of the generated test case is to validate the correct behavior of the
"Teléfono" field by ensuring that special characters are not accepted. Using the
Pytest framework, the test case follows a structured validation flow, performing key
actions such as navigating to the "Administrar/Empresa" section, locating and clear-
ing the phone number input field, inputting special characters (!@$%&̂*()), clicking
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the "Guardar" (Save) button, and verifying that a validation message is displayed
to confirm that incorrect input is correctly rejected.

This experiment highlights the transformative impact of leveraging AI-powered mod-
els like Codestral Mamba in automated test case generation. Despite the absence of
an explicit system prompt, the model successfully inferred the requirements, struc-
tured a logical sequence of validation steps, and produced a Pytest script tailored
to enforce input constraints.

The significance of this finding is twofold:

• Efficiency in Bug Prevention: The model-generated test case automates
validation, reducing reliance on manual testing and improving the reliability
of quality assurance workflows.

• Scalability and Adaptability: By adjusting LoRA scaling, the model effec-
tively aligns test case generation with domain-specific testing needs, ensuring
adaptable and reusable test scripts across various scenarios.

This experiment underscores the tangible benefits of integrating AI-driven automa-
tion into software testing workflows. Not only does the Codestral Mamba_QA AI
chatbot enabled approach streamline test case generation, but it also bridges the
gap between real-world quality assurance findings and actionable, reproducible test
scripts. By leveraging Codestral Mambas capacity to interpret structured input and
generate robust validation procedures, development teams can enhance test cover-
age, mitigate defects earlier in the software lifecycle, and reinforce overall system
resilience.
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Figure 4.15: Generation of an automated test case to prevent a bug with temperature
= 0 and LoRA scale factor = 2.



Chapter 5

Discussion and Conclusions

This research provides a comprehensive examination of the application of advanced
language models in automated software testing, with a specific focus on generating
high-quality, context-aware test scripts. By leveraging the Codestral Mamba model,
augmented with Low-Rank Adaptation (LoRA), the study demonstrates significant
advancements in automating test case generation, effectively addressing key chal-
lenges in software development and quality assurance. Additionally, it introduces
novel datasets, methodologies, and tools that contribute to the broader field of soft-
ware verification and validation, offering new avenues for enhancing the reliability
and efficiency of software testing processes.

5.1 Summary of Key Findings

The findings of this research highlight the significant advancements achieved through
the integration of large language models into software testing processes. The Code-
stral Mamba model, fine-tuned using LoRA, demonstrates a notable capability in
generating test cases that are both syntactically and semantically precise. This
proficiency is reflected in the evaluation metrics, with substantial improvements in
CodeBLEU and Pass@1 scores, indicating the model’s effectiveness in producing
high-quality test scripts from natural language descriptions.

A pivotal contribution of this study is the introduction of the TestCase2Code dataset,
an innovative benchmark designed to bridge the existing gap in software testing
research. Currently, no publicly available dataset provides both manual and auto-
mated functional test cases, underscoring the uniqueness of TestCase2Code. Struc-
tured using real-world project data from extitDecsis, this dataset ensures direct ap-
plicability to industry use cases. By offering a structured repository of test cases, it
lays the groundwork for advancing model training, evaluation, and benchmarking in
software development environments, facilitating further improvements in automated
test generation.

111
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The model’s performance was evaluated using two distinct datasetsCONCODE/-
CodeXGLUE and TestCase2Codeeach serving a specific purpose in assessing adapt-
ability and robustness. The CONCODE/CodeXGLUE dataset was chosen to deter-
mine whether the LoRA fine-tuning approach effectively learned dataset-specific pat-
terns while preserving the models broader generalization capabilities. Experimental
results indicate that the Codestral Mamba (LoRA) model achieved competitive re-
sults compared to state-of-the-art baselines, demonstrating a significant increase in
BLEU and CodeBLEU scores compared to the untuned model, as evidenced in Ta-
ble 4.9. Unlike prior approaches that focus exclusively on the CONCODE dataset,
our fine-tuned model retains general-purpose knowledge while adapting efficiently to
task-specific constraints, reinforcing the advantage of parameter-efficient fine-tuning
methodologies. Additionally, training efficiency was a key outcome, with the model
completing 200 training epochs in just 1.5 hours, underscoring the computational
advantages of LoRA.

The evaluation on the TestCase2Code dataset further validated the models abil-
ity to generate functionally relevant and executable test cases. Unlike conventional
text-to-code benchmarks, this dataset required the model to generate functionally
coherent test scripts aligned with real-world software testing requirements. The
results, summarized in Table 4.10, demonstrate significant enhancements across
key evaluation metrics. The baseline Codestral Mamba model, while achieving a
100% Pass@1 score, exhibited limited performance in metrics such as n-gram over-
lap (4.82), weighted n-gram (11.8), and semantic matching (39.5). However, after
fine-tuning with LoRA, the model showed dramatic improvements, with n-gram
increasing to 56.2, weighted n-gram to 67.3, semantic matching to 91.0, and Code-
BLEU rising from 26.9 to 74.7. These results highlight the effectiveness of LoRA in
enhancing both syntactic accuracy and functional correctness, ensuring the genera-
tion of high-fidelity test cases that align with real-world validation criteria.

The efficiency of the fine-tuning process also proved instrumental in enabling rapid
experimentation and adaptation. The LoRA fine-tuned model completed 200 train-
ing epochs in only 20 minutes, demonstrating a highly optimized training pipeline
that facilitates iterative refinements with minimal computational overhead. This ef-
ficiency paves the way for a broader application of LoRA-based fine-tuning, support-
ing the development of reusable fine-tuned models for various software engineering
tasks. By maintaining both computational efficiency and model adaptability, the
approach strengthens the feasibility of deploying fine-tuned large language models
in dynamic software development environments, where rapid testing, optimization,
and customization are crucial.

Overall, these findings reinforce the viability of leveraging large language models in
automated test case generation while underscoring the effectiveness of LoRA fine-
tuning in enhancing model performance. The study provides empirical evidence
supporting the adoption of parameter-efficient fine-tuning techniques, contributing
to the advancement of AI-driven solutions in software quality assurance and code
generation research.
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5.2 Contributions to the Field of Software Testing

This research makes several notable contributions to the field of software testing:

1. Advancement in Automated Test Case Generation: The integration of
the Codestral Mamba model with LoRA fine-tuning represents a significant
step forward in automated test case generation. By reducing the reliance on
manual test case creation, this approach enhances efficiency and consistency
in the testing process.

2. Improved Test Coverage and Quality: The model’s ability to generate a
wide range of test cases ensures comprehensive coverage of software function-
alities. This leads to earlier detection of defects and improved overall software
quality, addressing a critical challenge in software development.

3. Enhancing Software Quality Engineering Efficiency: By automating
the generation of test cases, software quality engineering teams can focus on
refining test strategies, analyzing results, and ensuring comprehensive cover-
age. This shift in focus enhances productivity and allows for more rapid and
reliable software releases.

4. Creation of the TestCase2Code Dataset: This dataset introduces an es-
sential benchmark for automated test case generation, addressing a gap in pub-
licly available resources. Structured from real-world project data, it enhances
model evaluation and benchmarking while directly contributing to industry
practices.

5. Development of a Customized AI Chatbot: Utilizing LoRA fine-tuning,
this study develops the Codestral Mamba_QA AI Chatbot, an intelligent as-
sistant tailored to the companys needs. This chatbot improves response ac-
curacy by leveraging project-specific data, streamlines workload distribution,
and integrates seamlessly with domain-specific terminology and workflows. A
key advantage is its robust security framework, operating entirely within an
internal infrastructure, ensuring data privacy and eliminating dependence on
external solutions.

6. Impact of LoRA Fine-Tuning and Prompt Engineering: The study
highlights the synergy between LoRA fine-tuning and prompt engineering in
refining model performance for natural language code-answering tasks. This
combined approach significantly enhances automation in test script genera-
tion, demonstrating AI-driven solutions’ potential to create more efficient and
adaptive workflows.

7. A Structured Repository for LoRA Matrices: A structured approach
to managing fine-tuned models is proposed, envisioning a repository where
LoRA adaptation matrices are systematically stored on a per-project basis.
This repository functions as a centralized management system, ensuring that
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each project benefits from a customized, optimized model tailored to its spe-
cific requirements. By adopting this modular approach, organizations can
efficiently manage, update, and reuse these fine-tuned models across different
projects, ensuring long-term effectiveness and applicability of generated test
cases.

8. Practical Applicability in Real-World Scenarios: The model’s adapt-
ability to different programming languages and frameworks, along with its
seamless integration into continuous integration and deployment (CI/CD) pipelines,
underscores its practical utility. Notably, the model maintains its general in-
telligence, allowing it to handle diverse tasks without sacrificing performance.
Additionally, its hyperparameters can be adjusted dynamically without re-
quiring additional resources or reloading, enhancing flexibility in various de-
velopment environments. This research lays a strong foundation for further
exploration and the implementation of advanced language models in real-world
software development workflows.

By introducing a novel dataset and a domain-specific AI assistant, this study sig-
nificantly advances the automation of software testing. These contributions set the
stage for more intelligent, efficient, and secure testing methodologies, ultimately
transforming how software quality assurance is conducted in real-world environ-
ments. Furthermore, the structured repository of LoRA matrices ensures better
model management, scalability, and maintainability, reinforcing the long-term via-
bility of AI-driven test automation solutions.

5.3 Future Work

The findings of this study open several avenues for future research and potential
advancements in the field of automated software testing. By leveraging the capabil-
ities of advanced language models, such as the Codestral Mamba model enhanced
with Low-Rank Adaptation, there are numerous opportunities to further enhance
the efficiency, accuracy, and practical applicability of automated test case genera-
tion. This section outlines suggestions for future research and recommendations for
expanding the current work.

5.3.1 Expanding Dataset Diversity

The effectiveness of automated test case generation using language models is heavily
influenced by the diversity and completeness of the training datasets. While this
study utilized the CONCODE/CodeXGLUE and TestCase2Code datasets, these
datasets, though valuable, may not fully capture the complexity and variability of
real-world software projects. The TestCase2Code dataset, in particular, was created
by selecting .jsx files related to specific test cases, which contain project-specific
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information but lack a holistic representation of the entire codebase. This selective
approach may limit the model’s ability to generalize across different domains and
software architectures.

Future research should explore integrating datasets that provide a more compre-
hensive view of software projects, including full repositories hosted on platforms
like GitLab. By incorporating entire project repositories encompassing source code,
documentation, dependencies, and configuration files models could be trained with
richer contextual understanding, enhancing their ability to generate more accurate
and relevant test cases.

Additionally, exploring methods for dynamically incorporating evolving repositories
into the training pipeline could enhance the models ability to adapt to changes in
software development practices.

5.3.2 Enhancing Evaluation Metrics

While the current study utilized metrics such as CodeBLEU and Pass@1 to eval-
uate the model’s performance, future research should consider incorporating addi-
tional evaluation metrics that assess the practical usability and maintainability of
the generated test cases. Conducting user studies with software developers to gather
feedback on the generated test cases’ real world applicability could provide valuable
insights into the model’s practical effectiveness.

Future research could develop comprehensive evaluation frameworks that include
metrics for code readability, maintainability, and integration with existing systems.
These frameworks should be designed in collaboration with industry experts to en-
sure their relevance and applicability to real world software development scenarios.

5.3.3 Continuous Learning and Adaptation

Software development is a dynamic process, with requirements and codebases evolv-
ing rapidly. Future research should focus on developing models that can adapt to
these changes continuously, generating relevant test cases as the software evolves.
Exploring self-adapting models that can learn from evolving codebases and require-
ments without extensive manual intervention could enhance the model’s practical
applicability.

Developing automated tools and frameworks to support the continuous fine-tuning
and updating of the model is essential for maintaining its relevance in dynamic
software environments. By enabling the model to adapt to evolving codebases and
changing requirements, these advancements would enhance its ability to generate
accurate and contextually appropriate test cases over time. Further exploration
of self-adapting models capable of learning from real-time project updates with-
out extensive manual intervention could significantly improve the models long-term
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effectiveness and applicability.

5.3.4 Integration with Development Workflows

Integrating advanced language models into existing software development workflows,
particularly in continuous integration and deployment (CI/CD) pipelines, presents
technical and organizational challenges. Future research should focus on develop-
ing standardized integration frameworks and best practices for incorporating these
models into CI/CD pipelines. Conduct case studies to evaluate the impact of these
integrations on software development processes and outcomes.

The future work outlined above builds upon the findings of this study and pro-
vides a strategic direction for advancing automated software testing. Expanding
dataset diversity, optimizing fine-tuning techniques, enhancing evaluation metrics,
and exploring continuous learning and adaptation can further improve the practical
applicability and effectiveness of advanced language models in software develop-
ment and testing. These advancements will contribute to more robust, efficient, and
adaptable automated testing solutions, addressing real-world challenges in software
quality assurance.
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