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Abstract. In this paper we present sufficient conditions for the existence of
solutions to the periodic fourth order boundary value problem

u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x))

u(i)(a) = u(i)(b), i = 0, 1, 2, 3,

for x ∈ [a, b], and f : [a, b] × R4 → R a continuous function. To the best of
our knowledge it is the first time where this type of general nonlinearities is

considered in fourth order equations with periodic boundary conditions.
The difficulties in the odd derivatives are overcome due to the following

arguments: the control on the third derivative is done by a Nagumo-type
condition and the bounds on the first derivative are obtained by lower and

upper solutions, not necessarily ordered.
By this technique, not only it is proved the existence of a periodic solution,

but also, some qualitative properties of the solution can be obtained.

1. Introduction. In this paper we get sufficient conditions for the existence of
solutions of the periodic fourth order boundary value problem composed by the
fully equation

u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)) (1)

for x ∈ [a, b], and f : [a, b] × R4 → R a continuous function, and the boundary
conditions

u(i)(a) = u(i)(b), i = 0, 1, 2, 3. (2)

Higher order periodic boundary value problems have been studied by several
authors in last decades, using different types of arguments and techniques. How-
ever, as far as we know, these methods were not able to deal with fully nonlinear
differential equations, in particular with both odd derivatives. As examples, see
[7, 8, 16] for variational methods, [1, 2, 3, 5, 14, 15, 17, 18] for second and higher
order equations, and [12] for a linear nth order periodic problem.

The above difficulties are overcome applying lower and upper solutions technique
and topological degree, like it is suggested in [4, 6, 11]. In short, the method is based
in three key points:
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• A Nagumo-type condition ([13]) assumed on the nonlinearity, which is useful
to obtain an a priori estimation for the third derivative and to define an open
and bounded set where the topological degree is well defined.

• A new kind of definition of lower and upper solutions, required to deal with
the absence of a definite order for the first derivatives. In fact lower and
upper solutions, not necessarily ordered, are associated by translations with
some ordered functions, used to define the sets where the solutions and their
first derivatives are contained.

• An adequate auxiliary and perturbed problem, where the truncations and the
homotopy are extended to some boundary conditions of mixed type, allowing
an invertible linear operator and the evaluation of the Leray-Schauder degree.

Remark that, by [9], for periodic second order problems, the existence of lower
and upper solutions is not sufficient to obtain a solution in the absence of Nagumo
condition. At the moment this is an open issue for higher order boundary value
problems.

This method is particularly well adapted to boundary value problems (see [10])
because it provides not only the existence of a periodic solution, without mono-
tone assumptions on the nonlinearity, but also, some qualitative properties of this
solution and its derivatives.

The last section contains an example where the location part is used to prove
that the solution is nontrivial and to obtain some of its values.

2. Definitions and a priori bounds. In this section it is precise how to control
the odd derivatives. For the third derivative it is obtained an a priori estimate via
a Nagumo-type growth condition.

Definition 2.1. A continuous function f : [a, b] × R4 → R is said to satisfy the
Nagumo-type condition in

E =
{
(x, y0, y1, y2, y3) ∈ [a, b]× R4 : γi (x) ≤ yi ≤ Γi (x) , i = 0, 1, 2

}
, (3)

with γi(x) and Γi (x) continuous functions such that,

γi (x) ≤ Γi (x) , for i = 0, 1, 2 and every x ∈ [a, b], (4)

if there exists a real continuous function hE : [0,+∞[→]0,+∞[ such that

|f (x, y0, y1, y2, y3)| ≤ hE (|y3|) , ∀ (x, y0, y1, y2, y3) ∈ E, (5)

with ∫ +∞

0

s

hE (s)
ds = +∞. (6)

Lemma 2.2. ([11], Lemma 2) Suppose that f satisfies Nagumo-type condition as
in Definition 2.1. Then, there exists R > 0 (depending on γ2,Γ2 and hE) such that
every solution u (x) of (1) with

γi (x) ≤ u(i) (x) ≤ Γi (x) ,

for i = 0, 1, 2 and x ∈ [a, b] verifies ∥u′′′∥∞ < R.

Non ordered upper and lower solutions will be useful to define such set E and
the strips where solutions and the derivatives will be located.

In the periodic case, lower and upper solutions and their first derivatives are
translate to some auxiliary functions, which are well ordered:
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Definition 2.3. The function α ∈ C4 ([a, b]) is a lower solution of problem (1)–(2)
if:

(i) α(iv)(x) ≥ f(x, α0(x), α1(x), α
′′(x), α′′′(x))

with

α0(x) := α(x)− α(a)− ||α′||∞ (x− a), (7)

α1(x) := α′(x)− ||α′||∞; (8)

(ii) α′(a) ≥ α′(b), α′′(a) = α′′(b), α′′′(a) ≥ α′′′(b).

The function β ∈ C4 ([a, b]) is an upper solution of problem (1)–(2) if:

(i) β(iv)(x) ≤ f(x, β0(x), β1(x), β
′′(x), β′′′(x))

with

β0(x) := β(x)− β(a) + ||β′||∞ (x− a), (9)

β1(x) := β′(x) + ||β′||∞; (10)

(ii) β′(a) ≤ β′(b), β′′(a) = β′′(b), β′′′(a) ≤ β′′′(b).

3. Existence of periodic solutions. Next theorem provides an existence and
location result for problem (1)–(2) in presence of non ordered lower and upper
solutions.

Theorem 3.1. Assume that α, β ∈ C4 ([a, b]) are lower and upper solutions of
(1)–(2), respectively, such that

α′′(x) ≤ β′′(x), ∀x ∈ [a, b]. (11)

Let f : [a, b]×R4 → R be a continuous function verifying a Nagumo-type condition
in

E∗ := {(x, y0, y1, y2, y3) : αj ≤ yj ≤ βj , j = 0, 1, α′′ ≤ y2 ≤ β′′}
and

f(x, α0, α1, y2, y3) ≥ f (x, y0, y1, y2, y3) ≥ f(x, β0, β1, y2, y3), (12)

for fixed (x, y2, y3) ∈ [a, b]× R2, αj ≤ yj ≤ βj , j = 0, 1.
Then problem (1)–(2) has at least a periodic solution u ∈ C4 ([a, b]) such that

αj(x) ≤ u(j)(x) ≤ βj(x), j = 0, 1, and α′′(x) ≤ u′′(x) ≤ β′′(x),

for x ∈ [a, b].

Remark 1. These associated functions, αj(x) ≤ 0 ≤ βj , j = 0, 1, are not unique.
In Definition 2.3 we consider the optimal cases in the sense that α0(a) = 0 = β0(a).
So, the solution found by Theorem 3.1 satisfies additionally u(a) = u(b) = 0.
However it is always possible to find ”well ordered” functions αj(x) and βj(x). The
”easiest way” is by translation α0(x) − k and β0(x) + k, for some k > 0 such that
α0(x) ≤ β0(x) and α1(x) ≤ β1(x). Another way, for example, is integrating (11) in
[x, b] to obtain

α0(x) := α(x)− α(b)− ||α′||∞ (b− x),

α1(x) := β′(x)− ||β′||∞,

β0(x) := β(x)− β(b) + ||β′||∞ (b− x),

β1(x) := α′(x) + ||α′||∞.

Note that, in this case, lower and upper solutions must be defined like a pair of
functions.
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Remark 2. The above remark shows that the order between lower and upper
solutions and their first derivatives is not important to guarantee the solvability of
the periodic problem (1)–(2).

Remark 3. The proof that the solution is nontrivial can be obtained by the location
part of the theorem. For example, if the lower solution is chosen such that α′′(x) > 0,
or the upper solution such that β′′(x) < 0, for some x ∈ [a, b], then the periodic
solution of (1)–(2) is nontrivial.
The last section contains an example where this issue is applied.

Proof. By Remark 1 we can consider, for λ ∈ [0, 1] , the homotopic and truncated
auxiliary equation

u(iv)(x) = λf(x, δ0(x, u(x)), δ1(x, u
′(x)), δ2(x, u

′′(x)), u′′′(x)) (13)

+u′′(x)− λδ2(x, u
′′(x),

where the continuous functions δj , δ2 : R2 → R (j = 0, 1) are given by

δj(x, yj) =

 βj(x) , yj > βj(x)
yj , αj(x) ≤ yj ≤ βj(x)

αj(x) , yj < αj(x)
, j = 0, 1,

with αj defined in (7) and (8), and βj in (9) and (10),

δ2(x, y2) =

 β′′(x) , y2 > β′′(x)
y2 , α′′(x) ≤ y2 ≤ β′′(x)

α′′(x) , y2 < α′′(x),

coupled with the boundary conditions

u(a) = λ η0 (u(b))

u′(a) = λ η1 (u
′(b)) (14)

u(i)(a) = u(i)(b), i = 2, 3,

where ηk : R → R (k = 0, 1) are defined by

ηk(u
(k)(b)) =


βk(a) , u(k)(b) > βk(a)
u(k)(b) , αk(a) ≤ u(k)(b) ≤ βk(a)
αk(a) , u(k)(b) < αk(a)

, k = 0, 1. (15)

Take r2 > 0 such that, for every x ∈ [a, b],

− r2 < α′′(x) ≤ β′′(x) < r2, (16)

f(x, α0(x), α1(x), α
′′(x), 0)− r2 − α′′(x) < 0

and

f(x, β0(x), β1(x), β
′′(x), 0) + r2 − β′′(x) > 0. (17)

Step 1: Every solution u of the problem (13)-(14) satisfies, in [a, b],

|u′′(x)| < r2, |u′(x)| < r1 and |u(x)| < r0,

independently of λ ∈ [0, 1], with r2 given above, r1 = ξ + r2(b− a), where

ξ := max {||α′||∞ − α′(a), β′(a) + ||β′||∞} , (18)

and r0 = ξ(b− a) + r2(b− a)2 .

Let u be a solution of problem (13)-(14).
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Assume, by contradiction, that there exists x ∈ [a, b] such that |u′′(x)| ≥ r2. In
the case u′′(x) ≥ r2 define

max
x∈[a,b]

u′′(x) = u′′(x0) (≥ r2 > 0).

If x0 ∈ ]a, b[ , then u′′′(x0) = 0 and u(iv)(x0) ≤ 0. By (12), (16) and (17), for
λ ∈ [0, 1], the following contradiction holds

0 ≥ u(iv)(x0)

= λf(x0, δ0(x0, u(x0)), δ1(x0, u(x0)), β
′′(x0), 0) + u′′(x0)− λβ′′(x0)

≥ λ [f(x0, β0(x0), β1(x0), β
′′(x0), 0) + r2 − β′′(x0)] + u′′(x0)− λr2 > 0.

If x0 = a then

max
x∈[a,b]

u′′(x) = u′′(a) (≥ r2 > 0).

By (14),

0 ≥ u′′′(a) = u′′′(b) ≥ 0, (19)

u′′′(a) = 0 and u(iv)(a) ≤ 0. From the computations above, with x0 replaced by a,
a similar contradiction is achieved.

The case x0 = b is analogous. Thus, u′′(x) < r2, for every x ∈ [a, b]. In a similar
way it can be proved that the inequality u′′(x) > −r2 holds for every x ∈ [a, b].
And so,

|u′′(x)| < r2, ∀x ∈ [a, b].

By integration, (14) and (15) the following relations are achieved:

u′(x) < u′(a) + r2(x− a) = λ η1 (u
′(b)) + r2(x− a)

≤ λβ1(a) + r2(b− a) ≤ β1(a) + r2(b− a)

≤ β′(a) + ||β′||∞ + r2(b− a) ≤ ξ + r2(b− a)

and

u′(x) > u′(a)− r2(x− a) ≥ λα1(a)− r2(b− a) ≥ α1(a)− r2(b− a)

≥ α′(a)− ||α′||∞ − r2(b− a) ≥ −ξ − r2(b− a).

Therefore, for ξ given by (18),

|u′(x)| < r1 with r1 := ξ + r2(b− a).

The same technique leads, by (7) and (9), to

|u(x)| < r0 where r0 := ξ(b− a) + r2(b− a)2.

Step 2: There exists R > 0 such that every solution u of the problem (13)-(14)
satisfies

|u′′′(x)| < R, ∀x ∈ [a, b],

independently of λ ∈ [0, 1] .

Consider, for r0, r1 and r2 defined above, the set

E1 :=
{
(x, y0, y1, y2, y3) ∈ [a, b]× R4 : −ri ≤ yi ≤ ri, i = 0, 1, 2

}
and the function Fλ : E1 → R given by

Fλ (x, y0, y1, y2, y3) = λf(x, δ0(x, y0), δ1(x, y1), δ2(x, y2), y3) (20)

+y2 − λδ2(x, y2).
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As f satisfies a Nagumo-type condition inE∗, consider the function φ ∈ C
(
R+

0 , [k,+∞[
)
,

for some k > 0, such that (5) and (6) hold with E replaced by E∗. Thus, for
(x, y0, y1, y2, y3) ∈ E1, we have, by (13) and (16),

Fλ (x, y0, y1, y2, y3) ≤ φ(|y3|) + 2 r2.

For φ(w) := φ(w) + 2r2 then

+∞∫
0

s

φ(s)
ds =

+∞∫
0

s

φ(s) + 2r2
ds ≥ 1

1 + 2r2
k

+∞∫
0

s

φ(s)
ds,

and so φ(w) verifies (6). Therefore, Fλ satisfies Nagumo condition in E1 with φ(w)
replaced by φ(w), independently of λ.

Defining

γi(x) := −ri, Γi(x) := ri, i = 0, 1, 2,

the assumptions of Lemma 2.2 are satisfied with E replaced by E1. So there exists
R > 0, depending only on ri, i = 0, 1, 2, and φ, such that |u′′′(x)| < R, for every
x ∈ [a, b]. Therefore, the a priori bound |u′′′(x)| < R is independent of λ.

Step 3: For λ = 1 problem (13)-(14) has a solution u1(x).

Define the operators

L : C4 ([a, b]) ⊂ C3 ([a, b]) 7−→ C ([a, b])× R4

and, for λ ∈ [0, 1] ,

Nλ : C3 ([a, b]) 7−→ C ([a, b])× R4

by

Lu = (u(iv), u(a), u′(a), u′′(a), u′′′(a))

and

Nλ u =

(
λf(x, δ0(x, u(x)), δ1(x, u

′(x)), δ2(x, u
′′(x)), u′′′(x)) + u′′(x)− λδ2(x, u

′′(x),
λ η0 (u(b)) , λ η1 (u

′(b)) , u′′(b), u′′′(b)

)
.

As L has a compact inverse then it can be considered the completely continuous
operator

Tλ :
(
C3 ([a, b]) ,R

)
7−→

(
C3 ([a, b]) ,R

)
defined by

Tλ(u) = L−1Nλ(u).

For R given by Step 2, consider the set

Ω =
{
y ∈ C3 ([a, b]) :

∥∥∥y(i)∥∥∥
∞

< ri, i = 0, 1, 2, ∥y′′′∥∞ < R
}
.

By Steps 1 and 2, for every u solution of (13)-(14), u /∈ ∂Ω and so the degree
d(I−Tλ,Ω, 0) is well defined for every λ ∈ [0, 1] . By the invariance under homotopy

d(I − T0,Ω, 0) = d(I − T1,Ω, 0).
Since the equation T0(x) = x, equivalent to the problem

u(iv)(x)− u′′(x) = 0
u(a) = 0
u′(a) = 0

u′′(a) = u′′(b)
u′′′(a) = u′′′(b)

,
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has only the null solution then, by degree theory,

d(I − T0,Ω, 0) = ±1.

So, the equation T1(x) = x has at least a solution, that is the corresponding problem
u(iv)(x) = f(x, δ0(x, u(x)), δ1(x, u

′(x)), δ2(x, u
′′(x)), u′′′(x)) + u′′(x)− δ2(x, u

′′(x),
u(a) = η0 (u(b))
u′(a) = η1 (u

′(b))
u′′(a) = u′′(b)
u′′′(a) = u′′′(b)

has at least a solution u1(x) in Ω.

Step 4: u1(x) is a solution of (1)–(2)

This solution u1(x) will be also a solution of problem (1)–(2) since it verifies

α0(x) ≤ u1(x) ≤ β0(x),
α1(x) ≤ u′

1(x) ≤ β1(x),
α′′(x) ≤ u′′

1(x) ≤ β′′(x), ∀x ∈ [a, b].

Suppose, by contradiction, that there is x ∈ [a, b] such that

α′′(x) > u′′
1(x)

and define

min
x∈[a,b]

[u′′
1(x)− α′′(x)] := u′′

1(x1)− α′′(x1) < 0.

If x1 ∈ ]a, b[ then u′′′
1 (x1) = α′′′(x1) and u

(iv)
1 (x1) ≥ α(iv)(x1). Therefore, by (12)

and Definition 2.3, we have the contradiction

0 ≤ u
(iv)
1 (x1)− α(iv)(x1)

≤ f(x1, δ0(x1, u1(x1)), δ1(x1, u
′
1(x1)), α

′′(x1), α
′′′(x1)) (21)

+u′′
1(x1)− α′′(x1)− f(x1, α0(x1), α1(x1), α

′′(x1), α
′′′(x1))

≤ u′′
1(x1)− α′′(x1) < 0.

If x1 = a then

min
x∈[a,b]

[u′′
1(x)− α′′(x)] := u′′

1(a)− α′′(a) < 0.

By Definition 2.3 (ii),

0 ≤ u′′′
1 (a)− α′′′(a) ≤ u′′′

1 (b)− α′′′(b) ≤ 0

and, therefore,

u′′′
1 (a) = α′′′(a), u

(iv)
1 (a) ≥ α(iv)(a).

Arguing as in (21) a similar contradiction is achieved. Analogously for x1 = b. Then

α′′(x) ≤ u′′
1(x), ∀x ∈ [a, b].

Applying the same arguments, it can be proved that u′′
1(x) ≤ β′′(x), for every

x ∈ [a, b], and so

α′′(x) ≤ u′′
1(x) ≤ β′′(x), ∀x ∈ [a, b]. (22)
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Integrating (22) in [a, x], for the first inequality it is obtained, by (15) and (8),

u′
1(x) ≥ u′

1(a) + α′(x)− α′(a)

≥ α1(a) + α′(x)− α′(a)

= α′(x)− ||α′||∞
= α1(x).

For the second inequality in (22), we have by (15) and (10),

u′
1(x) ≤ u′

1(a) + β′(x)− β′(a)

≤ β1(a) + β′(x)− β′(a)

= β′(x) + ||β′||∞
= β1(x).

Therefore,

α1(x) ≤ u′
1(x) ≤ β1(x), ∀x ∈ [a, b]. (23)

By integration of (23) in [a, x], by (15) and (7) one has

u1(x) ≥ u1(a) + α(x)− α(a)− ||α′||∞(x− a)

≥ α0(a) + α(x)− α(a)− ||α′||∞(x− a)

= α(x)− α(a)− ||α′||∞(x− a)

= α0(x).

With the same technique,

u1(x) ≤ u1(a) + β(x)− β(a) + ||β′||∞(x− a),

≤ β1(a) + β(x)− β(a) + ||β′||∞(x− a)

= β(x)− β(a) + ||β′||∞(x− a)

= β0(x)

and, therefore,

α0(x) ≤ u1(x) ≤ β0(x), ∀x ∈ [a, b].

4. Example. Consider the fourth order differential equation

u(4)(x) = −u(x)3 − u′(x)5 + 150 u′′(x) + 3
√
u′′′(x) + 1− 130, (24)

for x ∈]0, 1[, with the periodic boundary conditions

u(i)(0) = u(i)(1), i = 0, 1, 2, 3.

The continuous functions α, β : R → R given by

α(x) = −x4

4
+

x3

2
− x2

4
− x− 1,

β(x) =
x4

12
− x3

6
+ x2 − x

42
+ 1
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are lower and upper solutions, respectively, of problem (24)–(2) verifying (11) with

α0(x) = −x4

4
+

x3

2
− x2

4
− 2.048 x,

α1(x) = −x3 +
3

2
x2 − 1

2
x− 2.048,

β0(x) =
x4

12
− x3

6
+ x2 +

x

12
,

β1(x) =
x3

3
− x2

2
+ 2x+

1

12
.

The function

f (x, y0, y1, y2, y3) = −y30 − y51 + 150 y2 +
3
√
y3 + 1− 130

is continuous, verifies Nagumo-type conditions (5) and (6) in

E =

{
(x, y0, y1, y2, y3) ∈ [0, 1]× R4 :

αj ≤ yj ≤ βj , j = 0, 1, α′′ ≤ y2 ≤ β′′

}
and satisfies (12).

By Theorem 3.1 there is a solution u(x) of problem (24)–(2), such that

−x4

4 + x3

2 − x2

4 − 2.048 x ≤ u(x) ≤ x4

12 − x3

6 + x2 + x
12 ,

−x3 + 3
2x

2 − 1
2x− 2.048 ≤ u′(x) ≤ x3

3 − x2

2 + 2x+ 1
12 ,

and
− 3x2 + 3x− 0.5 ≤ u′′(x) ≤ x2 − x+ 2, (25)

for x ∈ [0, 1].
The proof that this solution is a nontrivial periodic solution can be done applying

the location part of Theorem 3.1 in two ways:
The only constant solution allowed by the equation (24) would be 3

√
129, but this

value is not in the set

[α0, β0] := {y(x) : α0(x) ≤ y(x) ≤ β0(x), x ∈ [0, 1]}.
Another possible argument is to remark that the solution u(x) can not be a

constant because, by (25),

0 <
1

4
≤ u′′

(
1

2

)
.
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[15] I. Rachunková, Periodic boundary value problems for third order differential equations, Math.

Slovaca, 41/3 (1991) 241-248.
[16] S. Tersian and J. Chaparova, Periodic and homoclinic solutions of some semilinear sixth-

order differential equations, JJ. Math. Anal. Appl., 272 (2002) 223-239
[17] M. X. Wang, A. Cabada and J. J. Nieto, Monotone method for nonlinear second order

periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993),
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