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e-mail: marilia@uevora.pt

2: CEMAT - Instituto Superior Técnico
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Abstract. From a physical point of view, the molecular strain tensor can be represented
at continuous level in viscoelastic fluids by the conformation tensor. This symmetric ten-
sor should always be positive definite, however the positive-definiteness is sometimes lost
in numerical simulations of non-Newtonian viscoelastic fluids flows at larger values of
the Weissenberg number. This problem known as the High Weissenberg Number Problem
(HWNP) and is characterized by the breakdown of numerical solutions. In some cases
the HWNP can be avoided (or at least delayed) by adding a stress diffusion term to the
transport equations for viscoelastic tensors. In this work, numerical tests are presented,
demonstrating the HWNP problem and its possible cure based on stabilization method em-
ploying local addition of an artificial stress diffusion term to the transport equations, in the
regions of the computational domain where the positive-definiteness of the conformation
tensor can be violated.
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1 INTRODUCTION

The numerical simulation of non-Newtonian viscoelastic fluids flows is a challenging prob-
lem. One of the issues is the instability of numerical solutions resulting from the increase
in the value of the parameter that describes the effect of elasticity, called High Weissenberg
Number Problem. As a result, the positive-definiteness of the conformation tensor is lost.
There is a wide range of approaches described of literature trying to resolve this issue, as
for example, our previous works [7, 8].
One of the possible approaches is to add an (artificial) stress diffusion term into the trans-
port equations for viscoelastic stress tensor. As a consequence, the solution will be more
stable, however the added term will also modify the whole solution. In order to keep the
modified model consistent with the original problem, we propose a modified stabilization
method employing local addition of an artificial stress diffusion term just locally, in the
regions where positive-definiteness of the conformation tensor can be violated. This local-
ized artificial diffusion minimizes the spurious effects of the added term on the numerical
solution.

2 MATHEMATICAL MODEL

Over a finite time interval
[
0, Tf

]
(Tf > 0) and in a bounded domain Ω ⊂ Rd (d = 2, 3), the

governing system of dimensionless equations of the unsteady, incompressible, isothermal
viscoelastic flow of homogeneous Oldroyd-B fluid can be summarized as

Re

(
∂u

∂t
+ u · ∇u

)
+∇p = 2(1− ηp)∇ ·D+∇ · τττ + f

∇ · u = 0

τττ +We

(
∂τττ

∂t
+ u · ∇τττ −∇uT · τττ − τττ · ∇u

)
= 2ηpD

(1)

where the Reynolds and Weissenberg numbers are defined, respectively by Re =
UL

µ

and We =
λU

L
, being µ the dynamic viscosity, λ the relaxation time parameter, U the

characteristic velocity and L the characteristic length. Depending on the stress model
adopted, µs can either represents the viscosity of the solvent (for the polymer solution) or
part of the total (apparent) stress viscosity of the system. In this work, ηp ∈ [0, 1] is the
dimensionless polymer viscosity such that the total (dimensionless) kinematic viscosity
is 1 = ηs + ηp. The extra stress tensor is defined by T = 2ηsD + τττ is the sum of the
contributions given by the viscoelastic tensor τττ and the strain rate tensor (symmetric

part of velocity gradient) D =
1

2

(
∇u+∇uT

)
. The body force is denoted by f .

To complete the problem (1) the boundary conditions need to be prescribed along the
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boundary ∂Ω = Γin∪Γw∪Γout and initial conditions to be given in the domain Ω:
u = 0 on Γw

u = uin on Γin

τττ = τττ in on Γin

u|t=0 = u0

(2)

3 DISCRETE OLDRYD-B - LIKE SYSTEM

3.1 Semi-descritization

To discretize the momentum and constitutive equations with respect to time, the im-
plicit Euler scheme was associated with Characteristic Galerkin Method, to evaluate time
derivatives of (velocity) vector and (stress) tensor field in a Lagrangian frame. In this
method, the characteristic lines describe a material particle trajectories describing the
motion given by the corresponding advection velocity field, as described e.g. in [9].

Consider a set of points (time instants) tn = n∆t = n
Tf

N
, n = 0, . . . , N , defined over the

time interval [0, Tf ]. The vn denotes the approximation of velocity v at the time instant
tn, i.e., v

n ≈ v(tn, ·), tn, x ∈ Ω. Hence, the convective time derivative is approximated as:

Dv

Dt
=

∂v

∂t
+ u · ∇v ≈ vn − vn−1 ◦Xn−1

dt
,

where X is the convecting field defined by X(x) = xdt with the particle path xt in the
steady state velocity field u, being the solution of ẋt = u(xt), xt=0 = x and
v ◦ X(x) = v(x − v(x)dt) = vn−1(x⋆) ≡ vn−1

⋆ , with x⋆ the position at time at time
tn−1 of the particle located at x at time tn.

To variational problem of (1-2), we associate the following semi-discretized problem:

u0 = u0∫
Ω

2(1− ηp)D
n :∇v +Re

∫
Ω

un − un−1
⋆

∆t
·v −

∫
Ω

pn∇ · v=
∫
Ω

(∇ · τττ)v, ∀v ∈ H1
0(Ω)∫

Ω

(∇ · un) q = 0, ∀q ∈ L2
0(Ω)∫

Ω

(
τττn +We

τττn − τττn−1
⋆

∆t

)
: S =

∫
Ω

[
2ηpD+We

(
∇uT · τττn + τττn · ∇u

)]
: S,∀S ∈ S

(3)

3.2 Finite element method

Over the Th, a family of triangulations, consider the following finite element spaces
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Xh=
{
vh∈C(Ω) ∩H1(Ω) : vh = 0 on Γh, w, vh = uin on Γh,in and vh|T ∈P2(T ), ∀T ∈Th

}
,

Mh=
{
qh∈C(Ω) ∩ L2

0(Ω) : qh|T ∈P1(T ), ∀T ∈Th

}
and

Sh =
{
Sh ∈ C(Ω) ∩ [L2(Ω)]2×2 : ST

h = Sh and Sh,ij |T ∈ P2(T ),∀T ∈ Th

}
.

The pair of spaces (Xh; Mh) corresponds to the so-called Hood-Taylor finite element
method, and if Th is non-degenerate and has no triangle with two edges on ∂Ω, it verifies
a compatibility condition known as the discrete LBB (or inf-sup) condition [1], which
reads as follows:

There exists γ⋆ > 0 (independent of h) such that

inf
qh∈Mh\{0}

sup
vh∈Xh\{0}

∣∣(qh,∇ · vh)
∣∣

∥vh∥Xh
∥qh∥Mh

≥ γ⋆

As the classical Oldroyd-B model is a coupled problem for the three (in 2D) unknowns
(extra stress tensor components) , discretized variational formulations are needed for both
the Stokes-like system and the transport equations. We begin by introducing an equivalent
(and more suitable) formulation for the continuous Stokes-like problem.
To variational problem of momentum equation and mass conservation law of (1) with the
appropriated boundary conditions (2), we associate the following approximate problem
For each t ∈ [0, Tf ], u0,h ∈ Xh find (uh, ph) ≡

(
uh(t, ·), ph(t, ·)

)
∈ Xh ×Mh such that



∫
Ω

2(1− ηp)D
n
h :∇vh +Re

∫
Ω

un
h − un−1

⋆,h

∆t
·vh −

∫
Ω

pnh∇·vh =

∫
Ω

(∇·τττh)vh, ∀vh ∈ Xh∫
Ω

(∇ · un
h) qh = 0, ∀qh ∈ Mh

(4)
The problem defined by (3) and (4) has a unique solution (uh, ph) ∈ Xh×Mh. Moreover,

lim
h→0

∥u− uh∥H1(Ω) + lim
h→0

∥p− ph∥L2(Ω) = 0

and
∥u− uh∥L2(Ω) ≤ C(t)h2, ∥p− ph∥L2(Ω) = C(t)h.

Further details about the properties of the above finite element method and the rigorous
convergence analysis of spatial discretization of the Navier-Stokes problem can be found
in [4].
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Discretisation of tensorial problem
For the constitutive equation of problem (1), the approximate finite element problem is
defined as:

For each t ∈ [0, Tf ], T0,h ∈ Sh find Th ≡ Th(t, ·) ∈ Sh such that∫
Ω

(
τττnh +We

τττnh − τττn−1
⋆,h

∆t

)
: Sh =

∫
Ω

[
2ηpDh +We

(
∇uT

h · τττnh + τττnh · ∇uh

)]
: Sh, ∀Sh ∈ Sh

(5)

3.3 Solution algorithm

The steady solution is obtained by a time-marching method when t → ∞ for the unsteady
system solved with a stationary boundary conditions. The steady state is obtained as the
converged limit solution in time. The problem formed by (3) and (4) is solved by the
decoupled iterative algorithm of Picard. The Crout scheme is used to solve the linear
system associated to discrete Stokes problem while the linear system associated with the
discrete equation for the elastic tensor is solved by a multi-frontal Gauss LU factorization
implemented in the FreeFem++ [5] package UMFPACK.

4 NUMERICAL RESULTS

The conformation tensor

c = τ +
ηp
We

δ (6)

where δ is identity tensor, corresponds to a kind of elastic stretch tensor. Its eigenvalues
can be interpreted as a level of the stretch applied on material with the directions of
maximal stretch given by the respective eigenvectors. From the physical point of view, it
is reasonable to require that the corresponding eigenvalues are positive, i.e. the symmetric
conformation tensor is positive definite.
However, numerically, when the effect of elasticity increases, this property is often lost,
which would correspond to a some kind of material collapse. This issue is know as High
Weissenberg Number Problem (HWNP).
To guarantee the physicality of the numerical solution it is very important to verify that
the eigenvalues and consequently the determinant of the conformation tensor c will remain
positive. In order to achieve this objective it is possible to introduce an artificial diffusive
term of the type α∆τ in the constitutive equation, with a positive (as small as possible)
tuning coefficient α. Although this procedure helps to stabilize the algorithm, the added
artificial term affects the numerical solution for any value of α because the smoothing of
the solution is applied in the whole domain.
To stabilize the algorithm and minimize the adverse effects of the artificial diffusion intro-
duced, in this work we propose a local addition of an artificial stress diffusion term only
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in the regions where the positive definiteness of the conformation tensor can potentially
be violated. For this, we define a variable (in space) coefficient α whose values depend on
the determinant (in general invariants) of tensor c. This allows to introduce the artificial
diffusion just locally, in the nodes of the computational mesh, where at least one of the
eigenvalues of c is negative (or close to become negative).

4.1 Setup of the simulations

Boundary conditions
The simulations are performed for a corrugated tube which has a length of straight in-
let and outlet sufficiently long to obtain a fully developed Poiseuille flow upstream and
downstream which allows to consider on the respective boundaries the fully developed
flow. This way we impose on the inlet boundary the analytical Poiseuille solution for the
fully developed flow (for both the velocity and stress tensor). On the solid walls are is
applied the no-slip conditions for velocity.

Simulations parameters
We set the dimensionless polymeric viscosity ηp = 0.01, the time-step ∆t = 0.025, the
Reynolds number Re = 1000. The Weissenberg number is increased incrementally by
the continuation method, while takes the converged solution obtained for lower We as an
initial condition for the next, higher Weissenberg number simulation.
The simulations are done with three different values of the diffusive parameter α. We
take α ∈ {0, α0,∝ α0 arctg(εDet(c))}, being the α0 = 1.0e−4 the asymptotic value and ε
is an ad-hoc chosen parameter.
The non-uniform conforming mesh was generated by the FreeFem++ software.

4.2 Results

The figures below illustrate the behavior of the smallest eigenvalue of the tensor c with
and without diffusion, for the cases where the numerical instabilities of the Oldroyd-
B model (without diffusion) start to appear. The We = 0.48 is the higher value of
the Weissenberg number for which we are able obtain the converged solution before the
breakdown occurs. From the presented results it is clear that the artificial diffusion helps
to keep the conformation tensor positive definite for higher values of We (see Figures 1,
2 and 3,). It seems that the variable in space local artificial diffusion works well at least
till We = 0.4 (see Figure 4). However results also show that the definition of the local
diffusion parameter needs to be improved to remain efficient also for higher Weissenberg
numbers (where the constant diffusion still works well).
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We = 0.3

α = 0

α = 1.0e− 4

α ≡ α(Det(c))

Figure 1: Comparison of the smallest eigenvalue of the conformation tensor contour plots We = 0.3.

We = 0.4

α = 0

α = 1.0e− 4

α ≡ α(Det(c))

Figure 2: Comparison of the smallest eigenvalue of the conformation tensor contour plots We = 0.4.
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We = 0.48

α = 0

α = 1.0e− 4

α ≡ α(Det(c))

Figure 3: Comparison of the smallest eigenvalue of the conformation tensor contour plots We = 0.48.

We = 0.2 We = 0.3

We = 0.4 We = 0.48

Figure 4: Comparison of the profile of the elastic stress tension on the wall for different values of the
Weissenberg number.
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5 CONCLUSIONS

The original formulation of the numerical method (without stabilization) becomes unsta-
ble (for given computational test case) for Weissenberg number We > 0.2.
The numerical stability is improved using an artificial diffusive stress term in the consti-
tutive equation for extra stress.
The standard (constant) artificial stress diffusion term of the form α · α(Det(c)) visibly
affects the solution for any value of α.
The the local diffusion coefficient α ≡ α(Det(c)) still helps to stabilize the solution,
without over-smoothing it in the whole domain.
The main problem, and challenge for the future research, is to chose and tune properly
the function α(Det(c)). Moreover, the rigorous mathematical analysis of the underlying
model is significantly more complicated, and some additional assumptions and restrictions
will be needed to control the diffusion coefficient α(Det(c)).
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