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Programa de Doutoramento em Matemática
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Tese de Doutoramento

Lower and upper solutions method on higher order boundary
value problems including differential equations and coupled

systems

Infeliz Carvalho Coxe

Orientador(es) | Feliz Manuel Minhós
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Área de especialização | Matemática e Aplicações
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Método de sub e sobre-soluções para
problemas de ordem superior com valores na
fronteira incluindo equações diferenciais e

sistemas acoplados

Resumo

A escassez, na literatura, de problemas de valor fronteira envolvendo sis-
temas de equações não lineares acopladas, com todas as não linearidades
completas, quer em domínios limitados ou ilimitados, levou a elaboração do
presente trabalho. As principais técnicas fazem uso do método de sub e so-
bre soluções, para obter condições su�cientes para a existência de solução
em problemas que envolvem equações diferenciais de ordem superior e vários
tipos de condições de fronteira, de�nidas na semi �recta real, bem como sis-
temas de equações diferencias não lineares e não autónomos, com condições
de fronteira funcionais. Foi ainda estudado a localização das soluções dos sis-
temas em espaços de Banach, seguindo vários argumentos e abordagens tais
como o teorema de ponto �xo de Schauder, as funções de Green ou as suas
estimativas, truncaturas e perturbações convenientes, a condição de Nagumo
apresentada em váias versões, entre outros. Em todos os casos foram con-
siderados diversas aplicações quer a problemas teóricos quer a fenómenos da
vida real.
Palavras Chaves: Sistema de equações diferencias, Domínios não com-

pactos, Teoria de ponto �xo, Sub e sobre-soluções.
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Lower and upper solutions method on higher
order boundary value problems including
di¤erential equations and coupled systems

Abstract

The scarcity, in the literature, of boundary value problems involving sys-
tems of coupled nonlinear equations, with complete nonlinearities, whether in
bounded or unbounded, led to the elaboration of the present work. The main
techniques make use of the method of lower and upper solutions, to obtain
su¢ cient conditions for the existence of solutions for problems involving dif-
ferential equations of higher order and various types of boundary conditions,
eventually de�ned in the real semi-line, as well as systems of non-linear and
non-autonomous di¤erential equations, with functional boundary conditions.
The location of solutions in Banach spaces was also studied, following

various arguments and approaches such as Schauder�s �xed-point theorem,
Green�s functions, or his convenient estimates, truncations and perturba-
tions, Nagumo�s condition presented in several versions, among others. In
all cases, several applications were considered, both to theoretical problems
and to real-life phenomena.
Key words: Systems of di¤erential equations, non compact domains,

�xed point theory, lower and upper solutions.
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Introduction

This doctoral dissertation approaches interesting facts in the area of Or-
dinary Di¤erential Equations, having as title "Lower and upper solutions
method on higher order boundaryvalue problems including di¤erential equa-
tions and coupled systems", in which a sequence of applications illustrating
the use of Ordinary Di¤erential Equations (ODE) is presented, to describe
mathematically some natural forces and study them.
A system of di¤erential equations is a set of equations, in which each

one relates itself to the values of the function and its derivatives. When
there are interactions and dependency between variables in the system of
di¤erential equations, it is said to be a coupled system. The phenomena,
laws and systems that operate the universe are not independent nor isolated.
The interaction is a characteristic of everything that surrounds the universe.
The natural phenomena are generally non-linear and are shaped with non-

linear di¤erential equations systems of superior sequence. Moreover, these
systems are also used to study and explain several important problems of
science and Engineering, which can not be analyzed with non-linear systems.
Non-linear di¤erential equation systems, have had a growing interest in

last years, especially, due to its applications in diverse areas, as dynamic of
applications, mechanic, optimum control, and harvest.
The present work on non-linear di¤erential equations systems of superior

sequences with problems of borderline value, in which the considered systems
are linked.
The main percussive study of di¤erential equations, according to the his-

tory of mathematics, were Gottfried Leibniz (1646 -1716), Isaac Newton
(1643 �1727), Bernoulli brothers, that is, James Bernoulli (1654 �1705),
and John Bernoulli (1667 -1748). In 1675, Leibniz was the �rst to study
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di¤erential equations in considering and solve the trivial equationZ
ydy =

1

2
y2

providing tools as a signal of integral and tangents inverse problem. It was
Leibniz who discovered the technique to separate variables, studying the so-
lution of the equation f(x)dx = g(y)dy , developing the technique to solve

the homogeneous equation, dy = f
�
x
y

�
dy as well as innumerable contribu-

tions and applications. Parallel to Leibniz, Newton had a great impact as a
contributor in di¤erential equations theory. One of the most notable New-
ton�s signi�cative contributions in this area, were in study of �uxes and their
applications. In study of �uxes he established that f(x; y) = 0, with x and
y functions of t

@f

@x

dx

dt
+
@f

@y

dy

dt
= 0:

At the same time, the Bernoulli brothers created a number of methods
(used up today), to solve and motivate the development of di¤erential equa-
tions.
The determination of solutions for non-linear di¤erential equations sys-

tems of higher-order, with boundary values or initial value, is not easy to
generalize, and in most cases, it is impossible to solve.
In literature, the methods are generally illustrated by numerical methods

for a determination of approximated solutions. Even using numerical meth-
ods, nothing guarantees that all equations or systems of non-linear equations
present unchanging solutions. Thus, in this work, we present su¢ cient condi-
tions for existence of solutions, and in some cases its location , in di¤erential
equations with several fully equations, with boundary values on �nite or
in�nite intervals, with generalized impulses, multipoint conditions, with Phi-
laplacians, among others. By our arguments it will be able to con�rm the
existence of several solutions, especially in bounded or unbounded, homo-
clinics and heteroclinics, and several applications for theoretical problems as
well as for real-life phenomena.
The uniqueness or multiplicity of solutions and their structures depend

not on the involved linearity and on the type of boundary conditions. Thus,
the study of the solvability of non-linear di¤erential equations systems of
higher order considers these two arguments: regularity and properties of the
nonlinearities and several types of boundary conditions.
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In this dissertation we pretend to add to the literature some new meth-
ods and techniques, presenting results with complete nonlinearities de�ned
on bounded unbounded intervals, based on compact operators de�ned in
Banach spaces. In more detail, our arguments apply a system of integral
equations,with Green�s functions as the kernel component, and some auxil-
iaries compact operators, in which it is applied the �xed point theory. Lower
and upper coupled solutions, provide a tool of location to establish not only
the equivalence between the auxiliary problems and the initial ones, but also
give some qualitative properties of solution. Conditions of the Nagumo type,
unilateral or bilateral ones, play an important role in our arguments, to con-
trol higher order derivatives growth.
In particular, the third order di¤erential equations model many phenom-

ena in Physics, Engineering, and Physiology, among others. For example, we
made reference to �ne �ux �lm of viscous �uid on a surface, the de�ection
of a clamped beam with a constant transverse section or variable, the wave
solutions of Korteweg - de Vries� equations, and non-linear suspensions of
vehicles.
Di¤erential equations of the fourth order, may translate the �exion of an

elastic beam, and in this sense, we consider them as beam equations. They
have received a growing interest from several �elds of Science and of Engi-
neering. Equations de�ned on noncompact intervals, require more delicate
techniques to obtain su¢ cient conditions for the existence of a solution on
half-line boundary value problems. As examples, we refer the extension of
solutions on correspondent bounded intervals, via truncation and perturba-
tion techniques, together with the �xed point theory in some Banach spaces,
and the method of lower and upper solutions.
The generalization of some cases to non-linear di¤erential equations a

general higher order n; is presented: Applying an adequate auxiliary integral
problem, truncated and with bounded perturbations, we obtain existence
and location results.
The dissertation is organized in �ve chapters, each one dealing with a

particular boundary value problem and with example and applications to
real-life phenomena. More precisely:
Chapter 1 considers a third order coupled systems where the nonlinearities

include a second derivative dependence, via cone theory. In this case the
standard cone theory in the literature can not be applied because the second
derivative of the Green�s functions, associated to the linear form, changes
sign. Our method applies an integral system de�ned by the Green�s functions
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as the kernel component, and some auxiliary compact operators, in which an
adequate truncature plays a key role. Coupled lower and upper solutions
provide a localization tool which complements the existence result.
In Chapter 2, the previous third order coupled system is generalized such

that the nonlinearities include all the derivatives of both variables. The
technique used applies an integral system de�ned with the Green�s functions,
and some auxiliary compact integral operators with an adequate truncature.
Coupled lower and upper solutions are useful not only to give a location
tool and the equivalence between auxiliary and initial problems, but also to
obtain some qualitative properties of the solution. Last section contains an
example to show the applicability of the main theorem and the utility of the
localization tool to have some qualitative properties on the solution.
The Chapter 3 approaches solvability of generalized fourth order coupled

systems with two-point boundary conditions. We underline that the non-
linearities can depend on all derivatives of both unknown functions. This
dependence is due to an adequate auxiliary integral problem with a new
type of truncature based on lower and upper solutions and some bounded
perturbations. A Nagumo-type condition allows a priori estimations on the
third derivatives. The main theorem is an existence and localization result,
gives some qualitative data on the system solutions such as, sign, variation,
growth, bounds, and convexity or concavity. This fourth order equations can
be applies to beam theory, and the boundary conditions de�ne the beam
type, that its behavior on the endpoints. That is why these equations are
often called beam equations. Four the �rst time, as far as we know, these
fourth-order coupled system were used to model a coupled clamped beam
set.
Chapter 4 contains a generalization of previous techniques to coupled

higher order systems that, to the best of our knowledge, is new in the liter-
ature, and opens the possibility of new types of models. The main existence
tool remains lower and upper solutions, but, in this case, applied to a ho-
motopic problem together with Leray-Schauder topological degree theory.
Moreover, this chapter contains two applications for higher order coupled
systems´: the �rst one, for n = 2; to a family of Lorentz-Lagrangian sys-
tems, and the second one, for n = 3; to some stationary coupled system of
Korteweg-de Vries equations with damping and forced terms.
Finally, Chapter 5 deals with the solvability of nth order coupled systems

with full nonlinearities de�ned on an unbounded interval, with functional
boundary conditions. We combine all the above features, taking advantage
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of all of them and allowing their application to a wider range of real-life
problems and phenomena. To deal with the loss of compacity, an adequate
operator is de�ned in a weighted Banach space, with weighted norms, for
which it can be proved, an uniform bound, equicontinuity and the equicon-
vergence at in�nity. Su¢ cient conditions are given to have �xed points, via
Schauder�s �xed point theorem, solutions of the auxiliary problem. Apply-
ing lower and upper solutions method is proved that these �xed points are
solutions of the initial problem, too. Moreover, despite the localization
part, we stress that these solutions may be unbounded. Last sec-
tion contains an application for n = 4 : the study of the bending of in�nite
beams with di¤erent types of foundations. We point out that, the functional
boundary conditions allow us to consider new types of models, where, for
example, global data on the beam could be considered, which is new on the
literature.
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Chapter 1

On third order coupled systems
with full nonlinearities

This work gives su¢ cient conditions for the existence of solution, positive or
not, of the nonlinear third order coupled system composed by the di¤erential
equations �

�u000 (t) = f (t; v(t); v0(t); v00(t))
�v000 (t) = h (t; u(t); u0(t); u00(t)) ;

(1.1)

where f; h : [0; 1]�R3 ! R are L1-Carathéodory functions, and the two-point
boundary conditions �

u (0) = u0 (0) = u0 (1) = 0
v (0) = v0 (0) = v0 (1) = 0:

(1.2)

Moreover, as it is applied lower and upper solutions technique, the localiza-
tion part of the result allows us to have some qualitative data about solutions
sign, growth or variation, as suggested in [75].
Higher order nonlinear systems of di¤erential equations have had an in-

creasing interest in last years, mostly due to their applications in several �elds
such as populations dynamics, mechanics, optimal control, harvesting,..., as
it can be seen in [7, 24, 42, 43, 46, 47, 50, 56, 59, 63, 65, 67] and the references
therein.
In particular, third order equations model many phenomenons in physics,

engineering and physiology, among others. As examples, we mention the �ow
of a thin �lm of viscous �uid over a solid surface (see[11, 92]), the de�ection
of a curved beam having a constant or varying cross section, the solitary
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waves solution of the Korteweg�de Vries equation ([66]), the thyroid-pituitary
interaction ([25]) or vehicles nonlinear suspensions ([51]).
The methods used in the literature for third order coupled systems can

not deal with the second derivatives of the unknown functions. See, for
example, [82] where the author proves the existence of at least three positive
solutions for the boundary-value problem8>><>>:

u000 (t) + a(t) f(t; u(t); v(t)) = 0; 0 < t < 1;
v000 (t) + b(t) h(t; u(t); v(t)) = 0; 0 < t < 1;

u (0) = u0 (0) = 0; u0 (1) = �u0(�)
v (0) = v0 (0) = 0; v0 (1) = �v0(�);

where f; h : [0; 1] � [0;1)2 ! [0;1) are continuous and 0 < � < 1, 1 <
� < 1=�; a(t); b(t) 2 C([0; 1]; [0;1)) and are not identically zero on [�=�; �];
applying the Leggett-Williams �xed point theorem. And [52], where it is
studied the third order di¤erential equations

u000i (t) + fi (t; u1(t); :::; un(t); u
0
1(t); :::; u

0
n(t)) = 0; 0 < t < 1; i = 1; :::; n;

where fi : [0; 1]�Rn ! R are continuous functions, with multi-point integral
boundary conditions, via the Guo-Krasnosels�kii �xed point theorem in a
cone.
Motivated by the above papers and by those applications which include

a second derivative dependence, we consider problem (1.1), (1.2). Remark
that standard cone theory can not be applied to our problem because the
second derivative of the Green�s functions, associated to the linear form of
(1.1), changes sign.
Our arguments apply an integral system de�ned with the Green�s func-

tions as the kernel component, and some auxiliary compact operators, in
which an adequate truncature plays a key role. Coupled lower and upper
solutions provide a localization tool to establish not only the equivalence
between auxiliary and initial problems, but also to give some qualitative
properties of the solution. Moreover, a Nagumo-type condition allows an a
priori control on second derivatives, as in [40].
This chapter is organized as it follows: Section 2 contains the expression

of the Green�s functions, coupled lower and upper solutions de�nitions and a
priori estimations for the second derivatives. The main theorem, an existence
and localization result, is in Section 3. In last section is presented an example
to show the applicability of the main result.
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1.1 De�nitions and auxiliary results

Let E = C2[0; 1] be the Banach space equipped with the norm k�kC2, de�ned
by

kwkC2 := max fkwk; kw0k; kw00kg ;
where

kyk := max
t2[0; 1]

jy(t)j

and E2 = (C2[0; 1])2 with the norm

k(u; v)kE2 = max fkukC2 ; kvkC2g :

For the reader�s convenience we present the de�nition of L1-Carathéodory
function:

De�nition 1.1 A function g : [0; 1]�R3 ! R is a L1-Carathéodory function,
if it satis�es the following properties:

1. g(t;�;�;�) is continuous in R3 for a.e. t 2 [0; 1] .

2. g(�; x; y; z) is measurable in [0; 1] for all (x; y; z) 2 R3.

3. For every L > 0 there exists  L 2 L1 [0; 1] such that, for a.e. t 2 [0; 1]
and all (x; y; z) 2 R3 with k(x; y; z)k � L;

jg(t; x; y; z)j �  L(t)

Lemma 1.2 The pair of functions (u(t); v(t)) 2 (C2[0; 1]; R)2 is a solution
of problem (1.1)-(1.2) if and only if (u(t); v(t)) it is a solution of the following
system of integral equations8<:

u(t) =
R 1
0
G(t; s)f(s; v(s); v0(s); v00(s))ds

v(t) =
R 1
0
G(t; s)h(s; u(s); u0(s); u00(s))ds;

(1.3)

where G(t; s) is the Green�s function associated to problem (1.1)-(1.2), de�ned
by

G (t; s) =

8<:
� t2s

2
� s2

2
+ ts ; 0 � s � t � 1

� t2s
2
+ t2

2
, t � s � 1

(1.4)
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The proof follows standard arguments and it is omitted.

De�nition 1.3 The pair of functions (�1; �2) 2 (C3 [0; 1])2 is called coupled
lower solutions of (1.1)-(1.2) if�

��0001 (t) � f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t))

��000
2 (t) � h (t; �2 (t) ; �

0
2 (t) ; �

00
2 (t))

with
�1 (0) � 0; �01 (0) � 0; �01 (1) � 0 (1.5)

and
�2 (0) � 0; �02 (0) � 0; �02 (1) � 0:

The pair (�1; �2) 2 (C3 [0; 1])
2 is said to be coupled upper solutions of (1.1)-

(1.2) if they verify the reversed inequalities.

To control the growth of the second derivatives we need Nagumo-type
conditions:

De�nition 1.4 The L1-Carathéodory functions f; h : [0; 1]�R3 ! R satisfy
Nagumo-type conditions if there are positive continuos functions �1; �2 such
that

jf (t; v0; v1; v2) j � �1 (v2) (1.6)

and
jh (t; u0; u1; u2) j � �2 (u2) (1.7)

with
+1Z
0

s

�1 (s)
ds = +1 and

+1Z
0

s

�2 (s)
ds = +1: (1.8)

Next lemma gives a priori estimations for u00(t) and v00(t) :

Lemma 1.5 Let f; h : [0; 1] � R3 ! R be L1-Carathéodory functions satis-
fying (1.6), (1.7) and (1.8), in [0; 1] � R3. Then there exist R1;R2 > 0 (not
depending on (u; v) ) such that for every solution of (1.1) verifying

�
(i)
1 (t) � u(i) (t) � �

(i)
1 (t)

�
(i)
2 (t) � v(i) (t) � �

(i)
2 (t) ; for i = 0; 1; and t 2 [0; 1] ;

we have
jju00jj < R1 and jjv00jj < R2: (1.9)
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Proof. Let (u; v) be a solution of (1.1), such that

�1(t) � u(t) � �1(t); �
0
1(t) � u0(t) � �01(t); for t 2 [0; 1] ; (1.10)

and
�2(t) � v(t) � �2(t); �

0
2(t) � v0(t) � �02(t); for t 2 [0; 1] :

De�ne r > 0 such that

r := max f�01(0)� �01(1); �
0
1(1)� �01(0); �

0
2(0)� �02(1); �

0
2(1)� �02(0)g

(1.11)
and take R1;R2 > 0 such that

R1Z
r

s

�1 (s)
ds > max

t2[0;1]
�01 (t)� min

t2[0;1]
�01 (t) (1.12)

and
R2Z
r

s

�2 (s)
ds > max

t2[0;1]
�02 (t)� min

t2[0;1]
�02 (t) :

Let us prove the a priori estimation for u00(t); as for v00(t) the technique
is identically.
If, by contradiction, ju00 (t)j > r;8t 2 [0; 1] ; in the case u00(t) > r; for

t 2 [0; 1] ; by (1.10) and (1.11), we have the contradiction

�01(1)� �01(0) � u0(1)� u0(0) =

1Z
0

u00(t)dt >

1Z
0

r dt � �01(1)� �01(0):

In the case where u00(t) < �r; for t 2 [0; 1] ; we achieve a similar contra-
diction. Therefore there exists t 2 [0; 1] such that ju00 (t)j < r:
If ju00 (t)j < r; 8t 2 [0; 1], the proof would be �nished assuming R1 > r:
Consider that there is t0 2 [0; 1[ such that ju00 (t0)j > r: If u00 (t0) > r,

there is t� 2 [0; 1], with t� < t0; u
00 (t�) = r and u00 (t) > r; 8t 2]t�; t0]:
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By a change of variable,

u00(t0)Z
u00(t�)

s

�1 (s)
ds =

t0Z
t�

u00 (s)

�1 (u
00 (s))

u000 (s) ds

=

t0Z
t�

u
00
(s)

�1 (u
00 (s))

f (s; v (s) ; v0 (s) ; v00 (s)) ds

�
t0Z
t�

u00 (s) ds = u0 (t0)� u0 (t�)

� max
t2[0;1]

�01 (t)� min
t2[0;1]

�01 (t) <

R1Z
r

s

�1 (s)
ds:

As t0 is taken arbitrarily on the values where u00 (t0) > r; then u00 (t) <
R1;8t 2 [0; 1] :
If we assume u00 (t0) < �r; the method is analogous. Therefore, jju00jj <

R1:
Applying a similar technique and (2.8) it can be shown that kv00k < R2;

for some R2 > 0:
The existence tool will be the Schauder�s �xed point theorem:

Theorem 1.6 ([101]) Let Y be a nonempty, closed, bounded and convex
subset of a Banach space X, and suppose that P : Y ! Y is a compact
operator. Then P has at least one �xed point in Y .

1.2 Existence and localization theorem

The main theorem will provide the existence and the localization of a solution
for problem (1.1)-(1.2).

Theorem 1.7 Let f; h : [0; 1] � R3 ! R be L1-Carathéodory functions sat-
isfying the Nagumo type conditions (1.6), (1.7) and (1.8).
If there are coupled lower and upper solutions of (1.1)-(1.2), (�1; �2) and
(�1; �2) ; respectively, such that

(�01; �
0
2) � (�01; �02) ;
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that is,
�01(t) � �01(t) and �

0
2(t) � �02(t); 8t 2 [0; 1];

then there is at least a pair (u(t); v(t)) 2 (C3[0; 1]; R)2 solution of (1.1)-(1.2)
and, moreover, for i = 0; 1;

�
(i)
1 (t) � u(i)(t) � �

(i)
1 (t)

and
�
(i)
2 (t) � v(i)(t) � �

(i)
2 (t); 8t 2 [0; 1]:

Remark 1.8 If �01(t) � u0(t) � �01(t) for t 2 [0; 1]; then by integration in
[0; t]; and, by (1.5) and (1.2),

�1(t) � �1(t)� �1(0) � u (t) � �1 (t)� �1 (0) � �1(t); for t 2 [0; 1]:

Analogously if �02(t) � v0 (t) � �02(t); 8t 2 [0; 1]; then

�2(t) � v(t) � �2(t) for t 2 [0; 1]:

Proof. De�ne the operators T1 : E2 ! E , T2 : E2 ! E and

T (u; v) = (T1 (u; v) ; T2 (u; v)) (1.13)

with

(T1 (u; v)) (t) =

1Z
0

G (t; s) f (s; v (s) ; v0 (s) ; v00 (s)) ds

(T2 (u; v)) (t) =

1Z
0

G (t; s)h (s; u (s) ; u0 (s) ; u00 (s)) ds:

By Lemma 1.2, the �xed points of T are solutions of (1.1)-(1.2). In the
following we prove that T has a �xed point.
Consider the auxiliary operators T � : E2 ! E2; T � (u; v) = (T �1 (u; v) ; T

�
2 (u; v))

where T �1 : E
2 ! E is given by

T �1 (u (t) ; v(t)) =

1Z
0

G (t; s)F (s; u (s) ; v(s)) ds

18



with F (t; u(t); v(t)) := F de�ned as

F =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

f (t; �1(t); �
0
1(t); �

00
1(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

if u0(t) > �01(t);

v0(t) > �02(t)

f (t; u(t); u0(t); u00(t))� v0(t)��02(t)
1+jv0(t)��02(t)j

if �01(t) � u0(t) � �01(t);

v0(t) > �02(t)

f (t; �1(t); �
0
1(t); �

00
1(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

+ v0(t)��02(t)
1+jv0(t)��02(t)j

if u0(t) < �01(t);

v0(t) > �02(t)

f (t; �1(t); �
0
1(t); �

00
1(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

if u0(t) > �01(t);

�02(t) � v0(t) � �02(t)
f (t; v(t); v0(t); v00(t)) if �01(t) � u0(t) � �01(t); �

0
2(t) � v0(t) � �02(t)

f (t; �1(t); �
0
1(t); �

00
1(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

if u0(t) < �01(t); �
0
2(t) � v0(t) � �02(t)

f (t; �1(t); �
0
1(t); �

00
1(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

+
v0(t)��02(t)

1+jv0(t)��02(t)j
if u0(t) > �01(t);

v0(t) < �02(t)

f (t; u(t); u0(t); u00(t))� v0(t)��02(t)
1+jv0(t)��02(t)j

if �01(t) � u0(t) � �01(t); v
0(t) < �02(t)

f (t; �1(t); �
0
1(t); �

00
1(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

if u0(t) < �01(t);

v0(t) < �02(t);

and T �2 : E
2 ! E by

T �2 (u (t) ; v (t)) =

1Z
0

G (t; s)H (s; u (s) ; v(s)) ds
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with H(t; u(t); v(t)) := H given by

H =

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

h (t; �2(t); �
0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

if u0(t) > �01(t);

v0(t) > �02(t)

h (t; �2(t); �
0
2(t); �

00
2(t))�

v0(t)��02(t)
1+jv0(t)��02(t)j

if �01(t) � u0(t) � �01(t); v
0(t) > �02(t)

h (t; �2(t); �
0
2(t); �

00
2(t)) +

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

if u0(t) < �01(t);

v0(t) > �02(t)

h (t; v(t); v0(t); v00(t))� u0(t)��01(t)
1+ju0(t)��01(t)j

if u0(t) > �01(t); �
0
2(t) � v0(t) � �02(t)

h (t; u(t); u0(t); u00(t)) if �01(t) � u0(t) � �01(t); �
0
2(t) � v0(t) � �02(t)

h (t; v(t); v0(t); v00(t))� u0(t)��01(t)
1+ju0(t)��01(t)j

if u0(t) < �01(t); �
0
2(t) � v0(t) � �02(t)

h (t; �2(t); �
0
2(t); �

00
2(t)) +

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

if u0(t) > �01(t);

v0(t) < �02(t)

h (t; �2(t); �
0
2(t); �

00
2(t))�

v0(t)��02(t)
1+jv0(t)��02(t)j

if �01(t) � u0(t) � �01(t); v
0(t) < �02(t)

h (t; �2(t); �
0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

if u0(t) < �01(t);

v0(t) < �02(t):

As f and h are L1-Carathéodory functions, therefore F and H are L1-
Carathéodory functions, too. De�ne the compact subset of E2

K =
�
(u; v) 2 E2 : k(u; v)kE2 � L

	
;

with L > 0 given by

L > max
n
R1; R2;

�(j)i  ;�(j)i  ; i = 1; 2; j = 0; 1; 2o ; (1.14)

where R1; R2 are de�ned in (1.9). Therefore, by De�nition 1.1, for (u; v) 2 K;
there are positive functions  1L;  2L : [0; 1]! (0;+1) such that  1L;  2L 2
L1[0; 1] and, for (u; v) 2 K;

jF (t; u(t); v(t))j �  1L(t); for a.e. t 2 [0; 1] ; (1.15)

and
jH(t; u(t); v(t))j �  2L(t); for a.e. t 2 [0; 1] : (1.16)

The Green�s function G (t; s) is continuous in [0; 1]�[0; 1] and, by Remark
4.5, functions F (t; u(t); v(t)) and H(t; u(t); v(t)) are bounded. Then T �1 (u; v)
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and T �2 (u; v) are well de�ned and continuous in E
2; and so, the operator T �

is well de�ned and continuous in E2.

Step 1: T �1 and T
�
2 are completely continuous in (C

2 [0; 1])
2
:

The operator T �1 is continuous in (C
2 [0; 1])

2 as G (t; s) and @G(t;s)
@t

are con-

tinuous and f is a L1-Carathéodory function. Moreover, @
2G(t;s)
@t2

is bounded
and therefore

1Z
0

@2G (t; s)

@t2
F (s; u (s) ; v(s)) ds is continuous.

In the same way, T �2 is continuous in (C
2 [0; 1])

2
:

Claim 1.1. T �1 and T
�
2 are uniformly bounded in (C

2 [0; 1])
2
:

De�ne

M(s) := max

�
max
0�t�1

jG (t; s) j; max
0�t�1

����@G@t (t; s)
���� ; sup
0�t�1

����@2G@t2 (t; s)
�����

:
Then, by Lemma (3.5) and (1.15),

j(T �1 (u (t) ; v(t)) j �
1Z
0

jG (t; s) j jF (s; u (s) ; v(s))j ds �
1Z
0

M(s)  1L (s) ds < k0:

Analogously, it can be proved that

j (T �1 (u (t) ; v(t)))
0 j < k1andj (T �1 (u (t) ; v(t)))

00 j < k2;

for some k0; k1; k2 > 0:
As, for T �2 (u; v), by (2.8),

j(T �2 (u (t) ; v(t)) j �
1Z
0

jG (t; s) j jH (s; u (s) ; v(s))j ds �
1Z
0

M(s)  2L (s) ds < �0;

for �0 > 0: By similar arguments, we have

j (T �2 (u (t) ; v(t)))
0 j < �1 and j (T �2 (u (t) ; v(t)))

00 j < �2;
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for some �1; �2 > 0:
Therefore T � is uniformly bounded in (C2 [0; 1])2 :

Claim 1.2. T �1 and T
�
2 are equicontinuous in (C

2 [0; 1])
2
:

For the �rst operator T �1 ; consider t1; t2 2 [0; 1] and, without loss of
generality, suppose t1 � t2. So, by (1.15),

jT �1 (u; v) (t1)� T �1 (u; v) (t2)j �
1Z
0

jG (t1; s)�G (t2; s)j  1L (s) ds! 0 as t1 ! t2:

By similar arguments,

��(T �1 (u; v))0 (t1)� (T �1 (u; v))0 (t2)�� � 1Z
0

����@G (t1; s)@t
� @G (t2; s)

@t

����  1L (s) ds! 0

as t1 ! t2; and

��(T �1 (u; v))00 (t1)� (T �1 (u; v))00 (t2)�� �
1Z
0

����@2G (t1; s)@t2
� @2G (t2; s)

@t2

����  1L (s) ds
�

t2Z
t1

 1L (s) ds! 0 as t1 ! t2:

The proof that T �2 is equicontinuous in (C
2 [0; 1])

2 follows as above.

By the Arzèla-Ascoli theorem, the operator T � (u; v) is completely continuous.

Step 3: T � : E2 ! E2 has a �xed point :

In order to apply Theorem 1.6 for operator T � (u; v) it remains to prove
that T �D � D; for some closed, bounded and convex D � E2:
Consider D � E2 given by D := f(u; v) 2 E2 : k(u; v)kE2 � �g ; with

� > 0 such that
� > max fL; ki; �i; i = 0; 1; 2g ;

where R1; R2 are given by (1.9), L by (1.14), and ki; �i; i = 0; 1; 2, are as in
Claim 1.1.
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By Claim 1.1,
(T �1 (u; v)(i) � ki; i = 0; 1; 2; and

(T �2 (u; v)(i) � �i;
i = 0; 1; 2: Therefore k(T �1 (u; v)kE < � and k(T �2 (u; v)kE < �; that is,

kT � (u; v)kE2 < �:

So, T �D � D; and, by Theorem 1.6, T � has a �xed point (u; v) 2 D � E2:

Step 4: This �xed point (u; v) of T � is also a �xed point of T; given by
(1.13):

As (u; v) is a �xed point of T �(u; v) it means that (u; v) is a �xed point
of T �1 (u; v) and of T

�
2 (u; v):

By standard arguments it can be shown that

�u000(t) = F (t; u(t); v(t))

and
�v000(t) = H(t; u(t); v(t)):

So, to prove this step it will be enough to show that

�01(t) � u0 (t) � �01(t) and �
0
2(t) � v0 (t) � �02(t); 8t 2 [0; 1]: (1.17)

For the �rst inequality suppose, by contradiction, that there is t 2 [0; 1]
such that �01(t) > u0 (t) : De�ne

max
0�t<1

(�01(t)� u0 (t)) := �01(t0)� u0 (t0) > 0:

By (1.2) and (1.5), t0 6= 0 because �0(0)�u0 (0) = �0(0) � 0: Analogously
t0 6= 1: So t0 2 ]0; 1[ and

�001(t0) = u001 (t0) ; �
000
1 (t0)� u000 (t0) � 0:

As (�01(t)� u0 (t)) 2 C[0; 1]; there is I � [0; 1] such that t0 2 I and

�01(t)� u0 (t) > 0;

�0001 (t)� u000 (t) � 0; 8t 2 I:

For all possible values of v0 (t0) ; we obtain the following contradictions
by the truncature F and De�nition 3.3:
If v0 (t0) < �02(t0); and as v

0 (t)� �02(t) 2 C[0; 1]; then there is J0 � [0; 1]
such that t0 2 J0 and v0 (t)� �02(t) < 0; 8t 2 J0:
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As t0 2 I \ J0 then I \ J0 6= ? and

0 �
Z

I\J0

(�0001 (t)� u000 (t)) dt

=

Z
I\J0

�
�0001 (t) + f (t; �1 (t) ; �

0
1 (t) ; �

00
1 (t))�

u0 (t)� �01 (t)

1 + ju0 (t)� �01 (t)j

� v0 (t)� �02 (t)

1 + ju0 (t)� �02 (t)j

�
dt

>

Z
I\J0

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t))) dt � 0.

If �02(t0) � v0 (t0) � �02(t0); and as v
0; �02; �

0
2 2 C[0; 1] then there exists

J1 � [0; 1] such that t0 2 J1 and �02(t) � v0 (t) � �02(t); 8t 2 J1:
As I \ J1 6= ? then

0 �
Z

I\J1

(�0001 (t)� u000 (t)) dt

=

Z
I\J1

�
�0001 (t) + f (t; �1 (t) ; �

0
1 (t) ; �

00
1 (t))�

u0 (t)� �01 (t)

1 + ju0 (t)� �01 (t)j

�
dt

>

Z
I\J1

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t))) dt � 0.

If v0 (t0) > �02(t0); and as v
0 (t) � �02(t) 2 C[0; 1] then there is J2 � [0; 1]

such that t0 2 J2 and v0 (t)� �02(t) > 0; 8t 2 J2:
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As t0 2 I \ J2 then I \ J2 6= ? and

0 �
Z

I\J2

(�0001 (t)� u000 (t)) dt

=

Z
I\J2

�
�0001 (t)� f (t; �1 (t) ; �

0
1 (t) ; �

00
1 (t))�

u0 (t)� �01 (t)

1 + ju0 (t)� �01 (t)j

+
v0 (t)� �02 (t)

1 + jv0 (t)� �02 (t)j

�
dt

>

Z
I\J2

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t))) dt � 0.

Therefore, �01(t) � u0 (t) ;8t 2 [0; 1]: By similar arguments it can be
proved that u0 (t) � �01(t);8t 2 [0; 1] ; and so,

�01(t) � u0 (t) � �01(t); 8t 2 [0; 1]: (1.18)

Applying the same technique with the truncature H, it can be achieved
that

�02(t) � v0 (t) � �02(t); 8t 2 [0; 1]: (1.19)

So, the �xed point (u; v) of T � is also a �xed point of T; given by (1.13);
and by Lemma 3.2, (u(t); v(t)) is a solution of problem (1.1)-(1.2).

1.3 Example

Consider the system of nonlinear and nonautonomous di¤erential equations8><>:
�u000(t) = v3 (t) + ev

0(t) � 6 3

q
(v00 (t))2

�v000(t) = t
4
� arctan (u (t)) + (u0 (t))3 + 2 (u00 (t))2

(1.20)

with the boundary conditions (1.2).
In fact (1.20) is a particular case of (1.1) with

f (t; x; y; z) = x3 + ey � 6 3
p
z2
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and
h (t; x; y; z) =

t

4
� arctanx+ y3 + 2z2;

where f and h given above are L1-Carathéodory functions.
By easy computations, it can be seen that functions

�1(t) = �1; �1(t) = t2

�2(t) = �t2; �2(t) = 1

are coupled lower and upper solutions of (1.20), (1.1).
By Theorem 4.4 there is a solution (u; v) of (1.20), (1.2) such that

�1 � u(t) � t2; � t2 � v(t) � 1
0 � u0 (t) � 2t; � 2t � v0 (t) � 0; for t 2 [0; 1]:

From the localization part, u (t) is a nondecreasing function and v (t) is
a nonincreasing one, as it can be seen in next �gures.
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Chapter 2

Solvability of generalized third
order coupled systems with
two-point boundary conditions

In this chapter, it is proved the existence of solutions for the nonlinear third-
order coupled system with fully di¤erential equations�

�u000 (t) = f (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t))
�v000 (t) = h (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t)) ;

(2.1)

where f; h : [0; 1] � R3 ! R are L1-Carathéodory functions, together with
the two-point boundary conditions�

u (0) = u0 (0) = u0 (1) = 0
v (0) = v0 (0) = v0 (1) = 0:

(2.2)

Remark that the nonlinearities can depend on all derivatives of both
unknown functions, which, to the best of our knowledge, is new in the litera-
ture. This dependence is allowed by an adequate auxiliary integral problem
with a truncature by lower and upper solutions with bounded perturbations.
The main theorem is an existence and localization result, giving some ex-
tra qualitative data on the system solution, such as, sign, variation, growth,
bounds,..., as it is suggested in [75].
Higher order nonlinear di¤erential equations and systems have been de-

veloped in last years, mainly by their applications in many �elds such as
populations dynamics, mechanics, optimal control, ..., as it can be seen in
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[5, 8, 24, 42, 46, 47, 50, 56, 63, 65, 68] and the references therein. Third order
equations, in particular, can model a large number of phenomena in engineer-
ing, physics, physiology, and chemistry, among others. For instance, we refer
the �ow of a thin �lm of viscous �uid over a solid surface (see [11, 92]), soli-
tary waves of the Korteweg�de Vries equation ([66]), the thyroid-pituitary
homeostatic interaction ([25]), or vehicles suspensions ([51]).
The usual methods for nonlinear third order coupled systems can not con-

sider the second derivatives of the unknown functions, whenever the second
derivative of the associated Green�s function change sign. This is the case of
[82], where the author proves the existence of three positive solutions for the
system 8>><>>:

u000 (t) + a(t) f(t; u(t); v(t)) = 0; 0 < t < 1;
v000 (t) + b(t) h(t; u(t); v(t)) = 0; 0 < t < 1;

u (0) = u0 (0) = 0; u0 (1) = �u0(�)
v (0) = v0 (0) = 0; v0 (1) = �v0(�);

with f; h : [0; 1]� [0;1)2 ! [0;1) continuous functions, 0 < � < 1, 1 < � <
1=�; a(t); b(t) 2 C([0; 1]; [0;1)) are not identically zero on [�=�; �]; applying
the Leggett-Williams �xed point theorem. And of [52], where it is considered
n third order di¤erential equations of the type

u000i (t) + fi (t; u1(t); :::; un(t); u
0
1(t); :::; u

0
n(t)) = 0; 0 < t < 1; i = 1; :::; n;

where fi : [0; 1]�Rn ! R are continuous functions, and multi-point integral
boundary conditions, via the Guo-Krasnosels�kii �xed point theorem in cones.
These papers and the above applications with dependence on second

derivatives, motivated our problem (1.1), (1.2), where we apply an inte-
gral system de�ned with the Green�s functions, and some auxiliary compact
integral operators with an adequate truncature. Coupled lower and upper
solutions are a location tool to give not only the equivalence between auxil-
iary and initial problems, but also to obtain some qualitative properties of
the solution. Moreover, a Nagumo-type condition allows a priori estimations
on second derivatives, as suggested in [40].
The chapter is organized in this way: Section 2 contains the explicit

Green�s functions, the de�nitions of coupled lower and upper solutions and
a lemma with a priori bounds for the second derivatives. The main result,
an existence and localization theorem, is in Section 3. Last section contains
an example to show the applicability of the main theorem and the utility of
the localization tool.
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2.1 Preliminary results

Consider the Banach space E = C2[0; 1] equipped with the norm k � kC2,
given by

kwkC2 := max fkwk; kw0k; kw00kg ;
with

kyk := max
t2[0; 1]

jy(t)j;

and the product space E2 = (C2[0; 1])2 with the norm

k(u; v)kE2 = ku+ vkC2 :

Next lemma gives the integral system related to (1.1)-(1.2):

Lemma 2.1 The continuous functions (u(t); v(t)) 2 (C2[0; 1]; R)2 are a so-
lution of problem (2.1)-(2.2) if and only if (u(t); v(t)) is a solution of the
system of integral equations8<:

u(t) =
R 1
0
G(t; s)f(s; u(s); u0(s); u00(s); v(s); v0(s); v00(s))ds

v(t) =
R 1
0
G(t; s)h(s; u(s); u0(s); u00(s); v(s); v0(s); v00(s))ds;

(2.3)

where G(t; s) is the Green�s function associated to problem (2.1)-(2.2), de�ned
by

G (t; s) =

8<:
� t2s

2
� s2

2
+ ts ; 0 � s � t � 1

� t2s
2
+ t2

2
, t � s � 1

(2.4)

The proof applies standard calculus and it is omitted.

De�nition 2.2 The functions (�1; �2) 2 (C3 [0; 1])2 are coupled lower so-
lutions of (2.1)-(2.2) if�

��0001 (t) � f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))

��000
2 (t) � h (t; �1 (t) ; �

0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))

with
�1 (0) � 0; �01 (0) � 0; �01 (1) � 0 (2.5)

and
�2 (0) � 0; �02 (0) � 0; �02 (1) � 0: (2.6)

Functions (�1; �2) 2 (C3 [0; 1])
2 are coupled upper solutions of (2.1)-(2.2) if

they verify the reversed inequalities.
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An order relation between pairs will be used forward with the following
sense

(x; y) � (z; w) () x � z ^ y � w; 8x; y; z; w 2 R:
An a priori estimation on the second derivatives of u and v is given by

Nagumo-type conditions:

De�nition 2.3 The continuous functions f; h : [0; 1] � R6 ! R satisfy
Nagumo-type conditions in the set

S =

�
(t; x0; x1; x2; y0; y1; y2) 2 [0; 1]� R6 :

�
(i)
1 (t) � xi � �

(i)
1 (t) ; �

(i)
2 (t) � yi � �

(i)
2 (t) ; for i = 0; 1

�
;

if there are positive and continuos functions �i : [0;+1[!]0;+1[; i = 0; 1;
such that

jf(t; u0; u1; u2; v0; v1; v2)j � �1 (ju2j) and jh(t; u0; u1; u2; v0; v1; v2)j � �2 (jv2j)
(2.7)

with
+1Z
0

s

�1 (s)
ds = +1 and

+1Z
0

s

�2 (s)
ds = +1 (2.8)

Lemma 2.4 Let f; h : [0; 1] � R6 ! R be continuous functions satisfying
(2.7) and (2.8), in S. Then there exist R1;R2 > 0 (not depending on (u; v) )
such that for every solution (u; v) of (2.1)-(2.2), in S; we have

ku00k < R1 and kv00k < R2: (2.9)

Proof. Let (u; v) be a solution of (2.1), such that

�1(t) � u(t) � �1(t); �
0
1(t) � u0(t) � �01(t); (2.10)

and
�2(t) � v(t) � �2(t); �

0
2(t) � v0(t) � �02(t); for t 2 [0; 1] :

For each r > 0, take R1; R2 > r such that

R1Z
r

s

�1 (s)
ds > max

t2[0;1]
�01 (t)� min

t2[0;1]
�01 (t) : (2.11)
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and
R2Z
r

s

�2 (s)
ds > max

t2[0;1]
�02 (t)� min

t2[0;1]
�02 (t) : (2.12)

Assume that ju00 (t)j � r;8t 2 [0; 1] : In the case where u00(t) � r; for
t 2 [0; 1] ; by (2.2), we have the contradiction

r > 0 =

1Z
0

(u00(t)) dt �
1Z
0

r dt = r:

In the case where u00(t) < �r; for t 2 [0; 1] ; we achieve a similar contra-
diction. Therefore there exists t 2 [0; 1] such that ju00 (t)j < r:
If ju00 (t)j < r; 8t 2 [0; 1], the proof would be �nished, assuming R1 > r:
Consider now that there is t0 2 [0; 1[ such that ju00 (t0)j > r: If u00 (t0) > r,

by the mean value theorem and (2.2), there is t 2]0; 1[ such that u00
�
t
�
= 0:

Therefore there is t� 2 [0; 1], with t� < t0; u
00 (t�) = r and u00 (t) > r; 8t 2

]t�; t0]:
By an adequate change of variable (2.7) and (2.11),

u00(t0)Z
u00(t�)

s

�1 (s)
ds =

t0Z
t�

u00 (s)

�1 (u
00 (s))

(u000 (s)) ds

�
t0Z
t�

u00 (s)

�1 (u
00 (s))

j�f (s; u (s) ; u0 (s) ; u00 (s) ; v (s) ; v0 (s) ; v00 (s))j ds

�
t0Z
t�

(u00 (s)) ds = u0 (t0)� u0 (t�) � �01 (t0)� �01 (t
�)

� max
t2[0;1]

�01 (t)� min
t2[0;1]

�01 (t) <

R1Z
r

s

�1 (s)
ds:

As t0 is taken arbitrarily on the values where u00 (t0) > r; then u00 (t) <
R1;8t 2 [0; 1] :
If u00 (t0) < �r; the method is analogous to obtain �u00 (t0) < R1 and

therefore, jju00jj < R1:
Applying similar arguments it can be proved that jjv00jj < R2:

31



Remark 2.5 The a priori estimation given by (2.9) does not depend on the
boundary conditions.

2.2 Existence of solution

The main theorem will provide the existence and the localization of a solution
for problem (2.1)-(2.2).

Theorem 2.6 Assume that f; h : [0; 1] � R6 ! R are continuous functions
satisfying the Nagumo type conditions (2.7) and (2.8).
If there are coupled lower and upper solutions of (2.1)-(2.2), (�1; �2) and
(�1; �2) ; respectively, such that

(�01; �
0
2) � (�01; �02)

and

f(t; �1(t); x1; x2; �2(t); y1; y2) � f(t; x0; x1; x2; y0; y1; y2) (2.13)

� f(t; �1(t); x1; x2; �2(t); y1; y2);

h(t; �1(t); x1; x2; �2(t); y1; y2) � h(t; x0; x1; x2; y0; y1; y2) (2.14)

� h(t; �1(t); x1; x2; �2(t); y1; y2);

for �1(t) � x0 � �1(t); �2(t) � y0 � �2(t) and (t; x1; x2; y1; y2) 2 [0; 1]� R4
�xed, then there is (u(t); v(t)) 2 (C3[0; 1]; R)2 solution of (2.1)-(2.2) such
that, for i = 0; 1;

�
(i)
1 (t) � u(i)(t) � �

(i)
1 (t)

and
�
(i)
2 (t) � v(i)(t) � �

(i)
2 (t); 8t 2 [0; 1]:

Remark 2.7 If �01(t) � u0(t) � �01(t) for t 2 [0; 1]; then the relation �1(t) �
u(t) � �1(t); for t 2 [0; 1]; can be easily obtained by integration in [0; t]; by
(2.5) and (2.2).
Analogously if �02(t) � v0 (t) � �02(t); 8t 2 [0; 1]; we achieve �2(t) � v(t) �
�2(t) for t 2 [0; 1]:

Proof. De�ne the operators T1 : E2 ! E , T2 : E2 ! E and T : E2 !
E2 given by

T (u; v) = (T1 (u; v) ; T2 (u; v)) (2.15)
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with

(T1 (u; v)) (t) =

1Z
0

G (t; s) f (s; u (s) ; u0 (s) ; u00 (s) ; v (s) ; v0 (s) ; v00 (s)) ds

and

(T2 (u; v)) (t) =

1Z
0

G (t; s)h (s; u (s) ; u0 (s) ; u00 (s) ; v (s) ; v0 (s) ; v00 (s)) ds:

The �xed points of T are, from Lemma 2.1, solutions of (2.1)-(2.2). For-
ward we shall prove that T has a �xed point.
Consider the auxiliary operator T � : E2 ! E2; T � (u; v) = (T �1 (u; v) ; T

�
2 (u; v))

where T �1 : E
2 ! E is given by

T �1 (u (t) ; v(t)) =

1Z
0

G (t; s)F (s; u(s); v(s))ds

with F (t; u(t); v(t)) de�ned as

� f (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if u0(t) > �01(t); v
0(t) > �02(t)

� f (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t))� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if �01(t) � u0(t) � �01(t); v
0(t) > �02(t)

� f (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

+ v0(t)��02(t)
1+jv0(t)��02(t)j

;

if u0(t) < �01(t); v
0(t) > �02(t)

� f (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

; if u0(t) > �01(t);

�02(t) � v0(t) � �02(t)

� f (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t)) ; if �01(t) � u0(t) � �01(t);
�02(t) � v0(t) � �02(t)

� f (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

; if u0(t) < �01(t);

�02(t) � v0(t) � �02(t)
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� f (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2 (t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

+
v0(t)��02(t)

1+jv0(t)��02(t)j
;

if u0(t) > �01(t); v
0(t) < �02(t)

� f (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t))� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if �01(t) � u0(t) � �01(t); v
0(t) < �02(t)

� f (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if u0(t) < �01(t); v
0(t) < �02(t);

and T �2 : E
2 ! E as

T �2 (u (t) ; v (t)) =

1Z
0

G (t; s)H(s; u(s); v(s))ds

with H(t; u(t); v(t)) given by

� h (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if u0(t) > �01(t); v
0(t) > �02(t)

� h (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

v0(t)��02(t)
1+jv0(t)��02(t)j

;

if �01(t) � u0(t) � �01(t); v
0(t) > �02(t)

� h (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t)) +

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if u0(t) < �01(t); v
0(t) > �02(t)

� h (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t))� u0(t)��01(t)
1+ju0(t)��01(t)j

; if u0(t) > �01(t);

�02(t) � v0(t) � �02(t)

� h (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t)) ; if �01(t) � u0(t) � �01(t);
�02(t) � v0(t) � �02(t)

� h (t; u(t); u0(t); u00(t); v(t); v0(t); v00(t))� u0(t)��01(t)
1+ju0(t)��01(t)j

; if u0(t) < �01(t);

�02(t) � v0(t) � �02(t)

� h (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t)) +

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if u0(t) > �01(t); v
0(t) < �02(t)
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� h (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

v0(t)��02(t)
1+jv0(t)��02(t)j

;

if �01(t) � u0(t) � �01(t); v
0(t) < �02(t)

� h (t; �1(t); �
0
1(t); �

00
1(t); �2(t); �

0
2(t); �

00
2(t))�

u0(t)��01(t)
1+ju0(t)��01(t)j

� v0(t)��02(t)
1+jv0(t)��02(t)j

;

if u0(t) < �01(t); v
0(t) < �02(t):

Consider the subset of E2

K =
�
(u; v) 2 E2 : k(u; v)kE2 � L

	
;

with L > 0 de�ned as

L > max
n
R1; R2;

�(j)i  ;�(j)i  ; i = 1; 2; j = 0; 1; 2o ; (2.16)

where R1 and R2 are given by (2.9).
By the continuity of f and h and Lemma 2.4, there exist positive functions

 1L;  2L : [0; 1]! (0;+1) such that  1L;  2L 2 L1[0; 1] and, for (u; v) 2 K;

jF (t; u(t); v(t))j �  1L(t); for a.e. t 2 [0; 1] ; (2.17)

and
jH(t; u(t); v(t))j �  2L(t); for a.e. t 2 [0; 1] : (2.18)

The Green function G (t; s) is continuous in [0; 1]� [0; 1] and, by Remark
2.7, the truncature functions F (t; u(t); v(t)) and H(t; u(t); v(t)) are bounded.
Then T �1 (u; v) ; T

�
2 (u; v) and T

� are well de�ned and continuous in E2:

Step 1: T � is completely continuous in E2:

The step will be proved if T �1 and T
�
2 are completely continuous in E

2:

As G (t; s) and @G(t;s)
@t

are continuous and f is a L1-Carathéodory function,
then the operator T �1 is continuous in E

2

Moreover, @
2G(t;s)
@t2

is bounded and therefore

1Z
0

@2G (t; s)

@t2
F (s; u (s) ; v(s)) ds is continuous.

By similar arguments, T �2 is continuous in E
2:

Claim 2.1. T � is uniformly bounded in E2:
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To prove that T �1 and T
�
2 are uniformly bounded in E

2; we de�ne

M(s) := max

�
max
0�t�1

jG (t; s) j; max
0�t�1

����@G@t (t; s)
���� ; sup
0�t�1

����@2G@t2 (t; s)
����� :

:
By Lemma 2.4 , (2.7) and (2.8),

j(T �1 (u (t) ; v(t)) j �
1Z
0

jG (t; s) j jF (s; u (s) ; v(s))j ds (2.19)

�
1Z
0

M(s)  1L (s) ds < k0:

and, analogously,

j (T �1 (u (t) ; v(t)))
0 j < k1 and j (T �1 (u (t) ; v(t)))

00 j < k2; (2.20)

for some k0;k1; k2 > 0:
For T �2 (u; v), by (2.7) and (2.18), it can be shown that

j(T �2 (u (t) ; v(t)) j �
1Z
0

jG (t; s) j jH (s; u (s) ; v(s))j ds (2.21)

�
1Z
0

M(s)  2L (s) ds < �0;

and

j (T �2 (u (t) ; v(t)))
0 j < �1 and j (T �2 (u (t) ; v(t)))

00 j < �2; (2.22)

for some �0; �1; �2 > 0: So,

kT � (u; v)kE2 = k(T �1 (u; v) ; T �2 (u; v))kE2

= max

�
kT �1 (u; v) + T �2 (u; v)k ;

(T �1 (u; v))0 + (T �2 (u; v))0 ;(T �1 (u; v))00 + (T �2 (u; v))00
�
:

For the �rst norm, by (2.19) and (2.21),

kT �1 (u; v) + T �2 (u; v)k = max
t2[0;1]

j(T �1 (u; v)) + T �2 (u; v)j

� max
t2[0;1]

jT �1 (u; v)j+ max
t2[0;1]

jT �2 (u; v)j � k0 + �0;
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that is, kT �1 (u; v) + T �2 (u; v)k � k0 + �0:
With similar arguments it can be proved, by (2.20) and (2.22), that(T �1 (u; v))0 + (T �2 (u; v))0 � k1+�1 and

(T �1 (u; v))00 + (T �2 (u; v))00 � k2+�2:

Therefore T � is uniformly bounded in E2:

Claim 2.2. T � is equicontinuous in E2:

Let us prove that T �1 and T
�
2 are equicontinuous in E

2:
For T �1 ; consider t1; t2 2 [0; 1] and, without loss of generality, assume that

t1 � t2. By (2.17),

jT �1 (u; v) (t1)� T �1 (u; v) (t2)j �
1Z
0

jG (t1; s)�G (t2; s)j F (s; u (s) ; v(s)) ds

�
1Z
0

jG (t1; s)�G (t2; s)j  1L (s) ds! 0;

as t1 ! t2;

��(T �1 (u; v))0 (t1)� (T �1 (u; v))0 (t2)�� � 1Z
0

����@G (t1; s)@t
� @G (t2; s)

@t

���� 1L (s) ds! 0;

as t1 ! t2; and

��(T �1 (u; v))00 (t1)� (T �1 (u; v))00 (t2)�� �
1Z
0

����@2G (t1; s)@t2
� @2G (t2; s)

@t2

����  1L (s) ds
�

t2Z
t1

 1L (s) ds! 0 as t1 ! t2:

The proof that T �2 is equicontinuous in E
2 follows as above.

So, T � is equicontinuous inE2 and, by the Arzèla-Ascoli theorem, T � (u; v)
is completely continuous in E2.

Step 3: T � : E2 ! E2 has a �xed point :
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By Theorem 1.6, it remains to show that, for some closed, bounded and
convex D � E2; T �D � D:
Assume that D � E2 is given by D := f(u; v) 2 E2 : k(u; v)kE2 � �g ;

with � > 0 such that

� > max fL; ki + �i; i = 0; 1; 2g ;

where L is given by (2.16), and ki; �i; i = 0; 1; 2, by Claim 1.1.
For (u; v) 2 D we have that

(T �1 (u; v)(i) � ki; for i = 0; 1; 2;
(T �2 (u; v)(i) �

�i; for i = 0; 1; 2; and
kT � (u; v)kE2 < �:

Therefore, T �D � D; and, by Theorem 1.6, T � has a �xed point (u; v) 2
D � E2:

Step 4: (u; v) is also a �xed point of T; given by (2.15):

As (u; v) is a �xed point of T �(u; v) then (u; v) is a �xed point of T �1 (u; v)
and T �2 (u; v):
By standard arguments we have

�u000(t) = F (t; u(t); v(t))

and
�v000(t) = H(t; u(t); v(t)):

So, to prove this step it will be enough to show the equivalence between the
operators T �(u; v) and T:(u; v); that is if

�01(t) � u0 (t) � �01(t) and �
0
2(t) � v0 (t) � �02(t); 8t 2 [0; 1]:

For �rst inequality assume, by contradiction, that there is t 2 [0; 1] where
�01(t) > u0 (t) ; and de�ne

max
0�t<1

(�01(t)� u0 (t) ; ) := �01(t0)� u0 (t0) > 0:

By the boundary conditions (2.2) and (2.5), t0 6= 0; as �0(0) � u0 (0) =
�0(0) � 0; and t0 6= 1: Therefore t0 2 ]0; 1[ and �0001 (t0)� u000 (t0) � 0:
As (�01(t)� u0 (t)) 2 C[0; 1]; there is J � [0; 1] such that t0 2 J and

�01(t)� u0 (t) > 0;

�0001 (t)� u000 (t) � 0; 8t 2 J:
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For all possible cases of the value of v0 (t0) ; we obtain contradictions by
the truncature F (t; u(t); v(t)) and De�nition 2.2:
If v0 (t0) < �02(t0); and as v

0 (t) � �02(t) 2 C[0; 1]; then there exists I0 �
[0; 1] such that t0 2 I0 and v0 (t)� �02(t) < 0; 8t 2 I0:
As t0 2 J \ I0 then J \ I0 6= ? and

0 �
Z

J\I0

(�0001 (t)� u000 (t)) dt

=

Z
J\I0

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))

� u0 (t)� �01 (t)

1 + ju0 (t)� �01 (t)j
� v0 (t)� �02 (t)

1 + ju0 (t)� �02 (t)j

�
dt

>

Z
J\I0

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))) dt � 0.

If �02(t0) � v0 (t0) � �02(t0); and as v
0; �02; �

0
2 2 C[0; 1] then there is I1 �

[0; 1] such that t0 2 I1 and �02(t) � v0 (t) � �02(t); 8t 2 I1:
As J \ I1 6= ? then

0 �
Z

J\I1

(�0001 (t)� u000 (t)) dt

=

Z
J\I1

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))

� u0 (t)� �01 (t)

1 + ju0 (t)� �01 (t)j

�
dt

>

Z
J\I1

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))) dt � 0.

If v0 (t0) > �02(t0); and as v
0 (t)��02(t) 2 C[0; 1] then there exists I2 � [0; 1]

such that t0 2 I2 and v0 (t)� �02(t) > 0; 8t 2 I2:
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As t0 2 J \ I2 then J \ I2 6= ? and

0 �
Z

J\I2

(�0001 (t)� u000 (t)) dt

=

Z
J\I2

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))

� u0 (t)� �01 (t)

1 + ju0 (t)� �01 (t)j
+

v0 (t)� �02 (t)

1 + jv0 (t)� �02 (t)j

�
dt

>

Z
J\I2

(�0001 (t) + f (t; �1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t))) dt � 0.

Therefore, �01(t) � u0 (t) ;8t 2 [0; 1]: By a similar technique it can be
shown that u0 (t) � �01(t);8t 2 [0; 1] ; and so,

�01(t) � u0 (t) � �01(t); 8t 2 [0; 1]: (2.23)

Applying the same method with the truncature H(t; u(t); v(t)), we can
obtain that

�02(t) � v0 (t) � �02(t); 8t 2 [0; 1]: (2.24)

So, the �xed point (u; v) of T � is a �xed point of T; given by (2.15); and,
from Lemma 2.1, (u(t); v(t)) is a solution of problem (2.1)-(2.2).

2.3 Example

Consider the third order nonlinear and nonautonomous system8>><>>:
�u000(t) = t3 + (u (t))2 u0 (t)� 5

p
u00 (t) + 1 + (v (t))3 + e2v

0(t)

�4 sin
�
v00 (t) + �

4

�
�v000(t) = t u (t) v (t)� (u0 (t))3 v0 (t)� 3

p
u00 (t)� 5

p
v00 (t)

(2.25)

with boundary conditions (2.2).
Clearly (2.25) is a particular case of (2.1) with

f(t; x0; x1; x2; y0; y1;y2) = t3+x20 x1� 5
p
x2 (t) + 1+y

3
0+e

2y1�4 sin
�
y2 +

�

4

�
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and
h(t; x0; x1; x2; y0; y1;y2) = tx0y0 � (x1)3 y1 � 3

p
x2 � 5

p
y2:

These functions f and h verify the assumptions of Theorem 2.6, and, by
simple computations, we see that

�1(t) = 0; �1(t) = t2

�2(t) = �t2; �2(t) = 0

are coupled lower and upper solutions of (2.25), (2.2).
By Theorem 2.6,there is a solution (u; v) of (2.25), (2.2) such that

0 � u(t) � t2; � t2 � v(t) � 0
0 � u0 (t) � 2t; � 2t � v0 (t) � 0; for t 2 [0; 1]:

From the localization part, u (t) is a non negative and nondecreasing func-
tion and v (t) is a nonpositive and nonincreasing function, as it is illustrated
by the following �gures.
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Chapter 3

Systems of coupled clamped
beams equations with full
nonlinear terms: existence and
location results

In this chapter we consider the fourth order coupled system�
u(4) (t) = f (t; u(t); u0(t); u00(t); u000(t); v(t); v0(t); v00(t); v000(t))
v(4) (t) = h (t; u(t); u0(t); u00(t); u000(t); v(t); v0(t); v00(t); v000(t))

(3.1)

with f; h : [0; 1]�R8 ! R some L1- Carathéodory functions and the boundary
conditions �

u (0) = A0; u
0 (0) = A1; u

00 (0) = u00 (1) = A2
v (0) = B0; v

0 (0) = B1; v
00 (0) = v00 (1) = B2;

(3.2)

with Ai; Bi 2 R; for i = 0; 1; 2:

Fourth order di¤erential equations have been studied by many authors
with di¤erent types of boundary conditions, as it can be seen in [9, 15,
18, 28, 56, 63, 69, 83, 84, 98, 102, 104] and the references therein. The
applications can be found in several �elds, such as the de�ection of beams
resting on elastic foundations ([49]), to describe the motion of the road bed of
suspension bridges ([21]), nonlocal elasticity theory, more precisely the study
of nonlinear vibrations of an Euler-Bernoulli nanobeam ([90]), study of the
�ow of certain �uids over stretching or shrinking sheets ([36]), among others.
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Boundary value problems composed by systems of fourth order di¤eren-
tial equations are more scarce (see, for instance, [5, 46, 68, 105]). In [68]
the authors consider the existence of multiple positive solutions for coupled
singular system of second and fourth order ordinary di¤erential equations8>><>>:

u(4) = f(t; v); (t; v) 2 (0; 1)� R+;
�v00 = g(t; u); (t; u) 2 (0; 1)� R+;
u (0) = u (1) = u00 (0) = u00 (1) = 0
v (0) = v (1) = 0;

where f 2 C[(0; 1) � R+;R+] and g 2 C[(0; 1) � R+;R+]; applying a �xed
point theorem of cones expansion and compression.
In [105] it is studied the fourth-order nonlinear singular semipositone

system 8>><>>:
x(4)(t) = f(t; x(t); y(t); x00(t); y00(t));
y(4)(t) = g(t; x(t); y(t); x00(t); y00(t)); t 2 (0; 1);
x (0) = x (1) = x00 (0) = x00 (1) = 0
y (0) = y (1) = y00 (0) = y00 (1) = 0;

with f; g 2 C((0; 1)� [0;1)� [0;1)�(�1; 0]�(�1; 0];R); by approximat-
ing the fourth-order singular semipositone system to a second-order singular
system and using a �xed point index theorem on cones, to guarantee the
existence of positive solutions of the problems.
Motivated by the above papers we consider in this chapter the problem

(3.1), (3.2), where the nonlinearities can depend on all derivatives of both
unknown functions, which, to the best of our knowledge, is new in the litera-
ture. This dependence is due to an adequate auxiliary integral problem with
a truncature by lower and upper solutions with some bounded perturbations.
Moreover, we underline that the classical cone theory can not be applied to
our problem as the second derivative of the Green�s functions change sign.
Our method applies an integral system de�ned with the Green�s functions,

and some auxiliary compact integral operators with an adequate truncature.
Coupled lower and upper solutions are a location tool to give not only the
equivalence between auxiliary and initial problems, but also to obtain some
qualitative properties of the solution. A Nagumo-type condition allows a
priori estimations on the third derivatives, as suggested in [40].
The main theorem is an existence and localization result, gives some

qualitative data on the system solutions such as, sign, variation, growth,
bounds, convexity/concavity..., as it is suggested in [75].
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The chapter is organized in this way: Section 2 contains the explicit
Green�s functions, the de�nitions of coupled lower and upper solutions and
a lemma with a priori bounds for the second derivatives. The main result,
an existence and localization theorem, is in Section 3. Last section contains
an example to show the applicability of the main theorem and the utility of
the localization tool.

3.1 Preliminary results

Let E = C3[0; 1] be the Banach space equipped with the norm k�kC3, de�ned
by

kwkC3 := max fkwk; kw0k; kw00k; kw000kg ;
where

kyk := max
t2[0; 1]

jy(t)j

and E2 = (C3[0; 1])2 with the norm

k(u; v)kE2 = max fkukC3 ; kvkC3g :

For the reader�s convenience we present the de�nition of L1-Carathéodory
function:

De�nition 3.1 A function g : [0; 1]�R8 ! R is a L1-Carathéodory function,
if it satis�es the following properties:

1. g(t;�;�) is continuous in R8 for a.e. t 2 [0; 1] ;

2. g(�; x; y); with x = (x0; x1; x2; x3) and y = (y0; y1; y2; y3) ; is measurable
in [0; 1] for all (x; y) 2 R8;

3. for every L > 0 there exists  L 2 L1 [0; 1] such that, for a.e. t 2 [0; 1]
and all (x; y) 2 R8 with k (x; y) kE2 � L;

jg(t; x; y)j �  L(t):
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Lemma 3.2 The functions (u(t); v(t)) 2 (C3[0; 1]; R)2 are solution of prob-
lem (3.1), (3.2) if and only if (u(t); v(t)) is a solution of the following system
of integral equations8<:

u(t) =
R 1
0
G(t; s)f(s; u(s); u0(s); u00(s); u000(s); v(s); v0(s); v00(s); v000(s))ds

v(t) =
R 1
0
G(t; s)h(s; u(s); u0(s); u00(s); u000(s); v(s); v0(s); v00(s); v000(s))ds;

(3.3)
where G(t; s) is the Green�s function associated to problem (3.1), (3.2), de-
�ned by

G (t; s) =

8<:
� s3

6
+ s2t

2
� st2

2
+ st3

6
; 0 � s � t

st3

6
� t3

6
; t � s � 1:

(3.4)

The proof follows standard arguments and it is omitted.

De�nition 3.3 The pair of functions (�1; �2) 2 (C4 [0; 1])2 is called coupled
lower solutions of (3.1), (3.2) if(

�
(4)
1 (t) � f (t; �1 (t) ; �

0
1 (t) ; �

00
1 (t) ; �

000
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t) ; �

000
2 (t))

�
(4)
2 (t) � h (t; �1 (t) ; �

0
1 (t) ; �

00
1 (t) ; �

000
1 (t) ; �2 (t) ; �

0
2 (t) ; �

00
2 (t) ; �

000
2 (t))

with
�1 (0) � A0; �

0
1 (0) � A1; �

00
1 (0) � A2; �

00
1 (1) � A2 (3.5)

and
�2 (0) � B0; �

0
2 (0) � B1; �

00
2 (0) � B2; �

00
2 (1) � B2:

The pair (�1; �2) 2 (C4 [0; 1])
2 is said to be coupled upper solutions of (3.1),

(3.2) if they verify the reversed inequalities.

Throughout the chapter we apply an order relation between pairs de�ned
as

(x; y) � (z; w) () x � z ^ y � w; 8x; y; z; w 2 R:
To control the growth of the second derivatives we need Nagumo-type

conditions:
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De�nition 3.4 The L1-Carathéodory functions f; h : [0; 1] � R8 ! R sat-
isfy Nagumo-type conditions if there exist positive continuos functions �i :
[0;+1[!]0;+1[; i = 0; 1; such that

jf (t; u0; u1; u2; u3; v0; v1; v2; v3)j � �1 (ju3j) (3.6)

jh (t; u0; u1; u2; u3; v0; v1; v2; v3)j � �2 (jv3j) ;

for
�
(i)
1 (t) � ui (t) � �

(i)
1 (t)

�
(i)
2 (t) � vi (t) � �

(i)
2 (t) ; for i = 0; 1; 2 and t 2 [0; 1] ;

with
+1Z
0

s

�1 (s)
ds = +1 and

+1Z
0

s

�2 (s)
ds = +1 : (3.7)

Next lemma gives a priori estimations for u000(t) + v000(t) :

Lemma 3.5 Let f; h : [0; 1] � R8 ! R be L1-Carathéodory functions satis-
fying (3.6), (3.7), in [0; 1]�R8. Then there exist R1; R2 > 0 (not depending
on (u; v) ) such that for every solution verifying

�
(i)
1 (t) � u(i) (t) � �

(i)
1 (t)

�
(i)
2 (t) � v(i) (t) � �

(i)
2 (t) ; for i = 0; 1; 2; and t 2 [0; 1] ;

(3.8)

we have
jju000jj < R1 and jjv000jj < R2: (3.9)

Proof. Let (u; v) be a solution of (3.1), verifying (3.8).
For each r > 0, take R1; R2 > r such that

R1Z
r

s

�1 (s)
ds > max

t2[0;1]
�001 (t)� min

t2[0;1]
�001 (t) ; (3.10)

and
R2Z
r

s

�2 (s)
ds > max

t2[0;1]
�002 (t)� min

t2[0;1]
�002 (t) :
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If ju000 (t)j > r;8t 2 [0; 1] ; and in the case where u000 (t) > r for t 2 [0; 1] ;
by (3.8) and (3.2), we have the following contradiction,

r > 0 =

1Z
0

(u000(t)) dt >

1Z
0

r dt = r:

In the case where u000(t) < �r; for t 2 [0; 1] ; we achieve a similar contra-
diction. Therefore there exists t 2 [0; 1] such that ju000(t)j < r:
If ju000(t)j < r; 8t 2 [0; 1], the proof would be �nished with jju000jj < r < R1:
Consider that there is t0 2 [0; 1[ such that ju000(t0)j > r: If u000(t0) > r,

by the mean value theorem and the boundary conditions, there is t� 2 [0; 1]
where u000 (t�) = r:
If t� < t0; then u000 (t) > r; 8t 2]t�; t0]: By a convenient change of variable

and (3.10), de�ning, for short,

u (t) := (u(t); u0(t); u00(t); u000(t)) and v (t) := (v(t); v0(t); v00(t); v000(t)) ;
(3.11)

we have

u000(t0)Z
u000(t�)

s

�1 (s)
ds =

t0Z
t�

u000 (s)

�1 (u
00 (s))

�
u(4) (s)

�
ds

=

t0Z
t�

u000 (s)

�1 (u
000 (s))

jf (s; u (s) ; v (s))j ds

�
t0Z
t�

u000 (s) ds = u00 (t0)� u00 (t�)

� max
t2[0;1]

(�001 (t))� min
t2[0;1]

(�001 (t)) <

R1Z
r

s

�1 (s)
ds:

If t� > t0; then u000 (t) > r;8t 2 [t0; t�[; and the calculus follows as in the
previous case: As t0 is taken arbitrarily on the values where u000 (t) > r; then
u000 (t) < R1;8t 2 [0; 1] :
If we assume u000 (t0) < �r; the method is analogous. Therefore, jju000jj <

R1:
Applying similar arguments it can be proved that jjv000jj < R2:
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3.2 Main result

The main theorem will provide the existence and the localization of a solution
for problem (3.1), (3.2).

Theorem 3.6 Let f; h : [0; 1] � R8 ! R be L1-Carathéodory functions sat-
isfying the Nagumo type conditions (3.6) and (3.7).
If there are coupled lower and upper solutions of (3.1), (3.2), (�1; �2) and
(�1; �2) ; respectively, such that

(�001; �
00
2) � (�001; �002) ; (3.12)

then there is at least a pair (u(t); v(t)) 2 (C4[0; 1]; R)2 solution of (3.1),
(3.2) and, moreover, for i = 0; 1; 2;

�
(i)
1 (t) � u(i)(t) � �

(i)
1 (t)

and
�
(i)
2 (t) � v(i)(t) � �

(i)
2 (t); 8t 2 [0; 1]:

Remark 3.7 If �001(t) � u00(t) � �001(t) for t 2 [0; 1]; then by integration in
[0; t]; and, by (3.5) and (3.2),

�01(t) � u0(t) � �01(t) and �1(t) � u (t) � �1(t); for t 2 [0; 1]:

Analogously if �002(t) � v00 (t) � �002(t); 8t 2 [0; 1]; then

�02(t) � v0(t) � �02(t) and �2(t) � v(t) � �2(t) for t 2 [0; 1]:

Proof. De�ne the operators T1 : (C3[0; 1])
2 ! C3[0; 1], T2 : (C3[0; 1])

2 !
C3[0; 1] and

T (u; v) = (T1 (u; v) ; T2 (u; v)) (3.13)

with

(T1 (u; v)) (t) =

1Z
0

G (t; s) f(s; u(s); v(s))ds

(T2 (u; v)) (t) =

1Z
0

G (t; s)h(s; u(s); v(s))ds;
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where u(t) and v(t) are given by (3.11).
By Lemma 3.2, the �xed points of T are solutions of (3.1), (3.2). In the

following we prove that T has a �xed point.
Consider the auxiliary operators T � : (C3[0; 1])2 ! (C3[0; 1])

2
; T � (u; v) =

(T �1 (u; v) ; T
�
2 (u; v)) ;

T �1 (u (t) ; v(t)) =

1Z
0

G (t; s)F (s; u (s) ; v (s)) ds

with F (t; u(t); v(t)) := F (t) de�ned as

F (t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

f
�
t; �1(t); �2(t)

�
� u00(t)��001 (t)

1+ju00 (t)��001 (t)j
� v00(t)��002 (t)

1+jv00(t)��002 (t)j
if u00(t) > �001(t);

v00(t) > �002(t)

f (t; u(t); v(t))� v00(t)��002 (t)
1+jv00(t)��002 (t)j

if �001(t) � u00(t) � �001(t);

v00(t) > �002(t)

f (t; �1(t); �2(t))� u00(t)��001 (t)
1+ju00(t)��001 (t)j

+ v00(t)��002 (t)
1+jv00(t)��002 (t)j

if u00(t) < �001(t);

v00(t) > �002(t)

f
�
t; �1(t); �2(t)

�
� u00(t)��001 (t)

1+ju00(t)��001 (t)j
if u00(t) > �001(t);

�002(t) � v00(t) � �002(t)
f (t; u(t); v(t)) if �001(t) � u00(t) � �001(t); �

00
2(t) � v00(t) � �002(t)

f (t; �1(t); �2(t))� u00(t)��001 (t)
1+ju��(t)��001 (t)j

if u00(t) < �001(t);

�002(t) � v00(t) � �002(t)

f
�
t; �1(t); �2(t)

�
� u00(t)��001 (t)

1+ju00(t)��001 (t)j
+

v00(t)��002 (t)
1+jv00(t)��002 (t)j

if u00(t) > �001(t);

v00(t) < �002(t)

f (t; u(t); v(t))� v00(t)��002 (t)
1+jv00(t)��002 (t)j

if �001(t) � u00(t) � �001(t);

v00(t) < �
00
2(t)

f (t; �1(t); �2(t))� u00(t)��001 (t)
1+ju00(t)��001 (t)j

� v00(t)��002 (t)
1+jv00(t)��002 (t)j

if u00(t) < �001(t);

v00(t) < �002(t);

where
�1(t) := (�1 (t) ; �

0
1 (t) ; �

00
1 (t) ; �

000
1 (t)) ;

�2(t) := (�2 (t) ; �
0
2 (t) ; �

00
2 (t) ; �

000
2 (t)) ;

�1(t) := (�1 (t) ; �
0
1 (t) ; �

00
1 (t) ; �

000
1 (t)) ;

�2(t) := (�2 (t) ; �
0
2 (t) ; �

00
2 (t) ; �

000
2 (t)) :

(3.14)
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Similarly, we de�ne T �2 : E
3 ! E by

T �2 (u (t) ; v (t)) =

1Z
0

G (t; s)H(t; u(t); v(t)ds

with H(t; u(t); v(t)) := H(t) given by

H(t) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

h
�
t; �1(t); �2(t)

�
� u00(t)��001 (t)

1+ju00(t)��001 (t)j
� v00(t)��002 (t)

1+jv00(t)��002 (t)j
if u00(t) > �001(t);

v00(t) > �002(t)

h
�
t; �1(t); �2(t)

�
� v00(t)��002 (t)

1+jv00(t)��002 (t)j
if �001(t) � u00(t) � �001(t);

v00(t) > �002(t)

h
�
t; �1(t); �2(t)

�
+

u00(t)��001 (t)
1+ju00(t)��001 (t)j

� v00(t)��002 (t)
1+jv00(t)��002 (t)j

if u00(t) < �001(t);

v00(t) > �002(t)

h (t; u(t); v(t))� u00(t)��001 (t)
1+ju00(t)��001 (t)j

if u00(t) > �001(t); �
00
2(t) � v00(t) � �002(t)

h (t; u(t); v(t)) if �001(t) � u00(t) � �001(t); �
00
2(t) � v00(t) � �002(t)

h (t; u(t); v(t))� u00(t)��001 (t)
1+ju00(t)��001 (t)j

if u00(t) < �001(t); �
00
2(t) � v00(t) � �002(t)

h (t; �1; �2) +
u00(t)��001 (t)

1+ju00(t)��001 (t)j
� v00(t)��002 (t)

1+jv00(t)��002 (t)j
if u00(t) > �001(t);

v00(t) < �002(t)

h (t; �1; �2)� v00(t)��002 (t)
1+jv00(t)��002 (t)j

if �001(t) � u00(t) � �001(t);

v00(t) < �002(t)

h (t; �1; �2)� u00(t)��001 (t)
1+ju00(t)��001 (t)j

� v00(t)��002 (t)
1+jv00(t)��002 (t)j

if u00(t) < �001(t);

v00(t) < �002(t):

As f and h are L1-Carathéodory functions, therefore F and H are L1-
Carathéodory functions, too. De�ne the compact subset of (C3[0; 1])2

K =
n
(u; v) 2

�
C3[0; 1]

�2
: k(u; v)kE2 � L

o
;

with L > 0 given by

L > max
n
R;
�(j)i  ;�(j)i  ; i = 1; 2; j = 0; 1; 2; 3o ; (3.15)
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where R is de�ned in (3.9). Therefore, by De�nition 3.1, for (u; v) 2 K;
there are positive functions  1L;  2L : [0; 1]! (0;+1) such that  1L;  2L 2
L1[0; 1] and, for (u; v) 2 K;

jF (t; u(t); v(t))j �  1L(t); for a.e. t 2 [0; 1] ; (3.16)

and
jH(t; u(t); v(t))j �  2L(t); for a.e. t 2 [0; 1] : (3.17)

The Green�s function G (t; s) is continuous in [0; 1]�[0; 1] and, by Remark
4.5, functions F (t; u(t); v(t)) and H(t; u(t); v(t)) are bounded. Then T �1 (u; v)
and T �2 (u; v) are well de�ned and continuous in (C

3[0; 1])
2
; and so, the

operator T � is well de�ned and continuous in (C3[0; 1])2.

Step 1: T � is completely continuous in (C3 [0; 1])2 :

The operator T �1 is continuous in (C
3 [0; 1])

2 as G (t; s). @G(t;s)
@t

and @2G(t;s)
@t2

are continuous and f is a L1-Carathéodory function. Moreover, @3G(t;s)
@t3

is
bounded and therefore

1Z
0

@3G (t; s)

@t3
F (s; u (s) ; v(s)) ds is continuous.

In the same way, T �2 is continuous in (C
3 [0; 1])

2
:

Claim 1.1. T � is uniformly bounded in (C3 [0; 1])2 :

De�ne

M(s) := max

�
max
0�t�1

jG (t; s) j; max
0�t�1

����@G@t (t; s)
���� ; max0�t�1

����@2G@t2 (t; s)
���� ; sup
0�t�1

����@3G@t3 (t; s)
�����

Then, by Lemma 3.5 and (3.16),

j(T �1 (u (t) ; v(t)) j �
1Z
0

jG (t; s) j jF (s; u (s) ; v(s))j ds �
1Z
0

M(s)  1L (s) ds < k0:

Analogously, it can be proved that

j (T �1 (u (t) ; v(t)))
0 j < k1, j (T �1 (u (t) ; v(t)))

00 j < k2 and j (T �1 (u (t) ; v(t)))
000 j < k3;
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for some k0;k1; k2; k3 > 0:
As, for T �2 (u; v), by (3.17),

j(T �2 (u (t) ; v(t)) j �
1Z
0

jG (t; s) j jH (s; u (s) ; v(s))j ds �
1Z
0

M(s)  2L (s) ds < �0;

for �0 > 0: By similar arguments, we have

j (T �2 (u (t) ; v(t)))
0 j < �1 , j (T �2 (u (t) ; v(t)))

00 j < �2 and j (T �1 (u (t) ; v(t)))
000 j < �3

for some �1; �2; �3 > 0:
Moreover,

kT � (u; v)kE2 = k(T �1 (u; v) ; T �2 (u; v))kE2
= max

n(T �1 (u; v))(i) ;(T �2 (u; v))(i) ; i = 0; 1; 2; 3o
� max fki; �i; i = 0; 1; 2; 3g :

Therefore T � is uniformly bounded in (C3 [0; 1])2 :

Claim 1.2. T � is equicontinuous in (C3 [0; 1])2 :

Consider t1; t2 2 [0; 1] and, without loss of generality, assume that t1 �
t2. By (3.16)

jT �1 (u; v) (t1)� T �1 (u; v) (t2)j �
1Z
0

jG (t1; s)�G (t2; s)j  1L (s) ds! 0; as t1 ! t2:

By similar arguments,

��(T �1 (u; v))0 (t1)� (T �1 (u; v))0 (t2)�� �
1Z
0

����@G (t1; s)@t
� @G (t2; s)

@t

����  1L (s) ds! 0;

��(T �1 (u; v))00 (t1)� (T �1 (u; v))00 (t2)�� �
1Z
0

����@2G (t1; s)@t2
� @2G (t2; s)

@t2

����  1L (s) ds! 0,
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as t1 ! t2; and

��(T �1 (u; v))000 (t1)� (T �1 (u; v))000 (t2)�� �
1Z
0

����@3G (t1; s)@t3
� @3G (t2; s)

@t3

����  1L (s) ds
�

t2Z
t1

 1L (s) ds! 0 as t1 ! t2:

By the same technique it can be proved that T �2 is equicontinuous in
(C3 [0; 1])

2
:

Therefore, T � is equicontinuous in (C3 [0; 1])2 and, by the Arzèla-Ascoli
theorem, T � (u; v) is completely continuous in (C3 [0; 1])2 :

Step 3: T � : (C3 [0; 1])2 ! (C3 [0; 1])
2 has a �xed point :

In order to apply the well known Schauder�s �xed point theorem for oper-
ator T � (u; v) ; it remains to prove that T �D � D; for some closed, bounded
and convex D � (C3 [0; 1])2 :
Consider

D :=
n
(u; v) 2

�
C3 [0; 1]

�2
: k(u; v)kE2 � �

o
;

with � > 0 such that

� > max fM;ki; �i; i = 0; 1; 2; 3g ;

where L is given by (3.15) and ki; �i; i = 0; 1; 2; 3, are de�ned in Claim 1.1.
By Claim 1.1,

(T �1 (u; v)(i) + (T �2 (u; v)(i) � ki + �i; i = 0; 1; 2; 3 and,
therefore,

kT � (u; v)kE2 < �:

So, T �D � D; and, by Schauder�s �xed point theorem, T � has a �xed
point (u; v) 2 D � (C3 [0; 1])2 :
Step 4: If (u; v) is a �xed point of T � then (u; v) is a �xed point of T;

given by (3.13):

Let (u; v) be a �xed point of T �(u; v): Therefore (u; v) is a �xed point of
the operators T �1 (u; v) and T

�
2 (u; v):

By standard calculus it can be proved that u(4)(t) = F (t; u(t); v(t)) and
v(4)(t) = H(t; u(t); v(t)):
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To �nish the proof it is enough to see that

�
(i)
1 (t) � u(i) (t) � �

(i)
1 (t) and �

(i)
2 (t) � v(i) (t) � �

(i)
2 (t); 8t 2 [0; 1]; i = 0; 1; 2:

(3.18)
Suppose, by contradiction, that the �rst inequality does not hold for i = 2:

Then there is t 2 [0; 1] such that �001(t) > u00 (t) : De�ne

max
0�t<1

(�001(t)� u00 (t) ; ) := �001(t0)� u00 (t0) > 0:

By (3.2) and (3.5), t0 6= 0 because �00(0)�u00 (0) � 0: Analogously t0 6= 1:
So t0 2 ]0; 1[ and

�
(4)
1 (t0)� u(4) (t0) � 0:

As (�001(t)� u00 (t)) 2 C[0; 1]; there is I � [0; 1] such that t0 2 I and

�001(t)� u00 (t) > 0;

�(4)(t)� u(4) (t) � 0; 8t 2 I:

For all possible values of v00 (t0) ; we obtain the following contradictions
by the truncature F and De�nition 3.3:
If v00 (t0) < �002(t0); and as v

00 (t)��002(t) 2 C[0; 1]; then there is J0 � [0; 1]
such that t0 2 J0 and v00 (t)� �002(t) < 0; 8t 2 J0:
As t0 2 I \ J0 then I \ J0 6= ? and

0 �
Z

I\J0

�
�
(4)
1 (t)� u(4) (t)

�
dt

=

Z
I\J0

�
�
(4)
1 (t) + f (t; �1(t); �2(t))�

u00(t)� �001(t)

1 + ju00(t)� �001(t)j
� v00(t)� �002(t)

1 + jv00(t)� �002(t)j

�
dt

>

Z
I\J0

�
�
(4)
1 (t) + f (t; �1(t); �2(t))

�
dt � 0,

with �1(t) and �2(t) given by (3.14).
If �002(t0) � v00 (t0) � �002(t0); and as v

00; �002; �
00
2 2 C[0; 1] then there exists

J1 � [0; 1] such that t0 2 J1 and �002(t) � v00 (t) � �002(t); 8t 2 J1:
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As I \ J1 6= ? then

0 �
Z

I\J1

�
�
(4)
1 (t)� u(4) (t)

�
dt

=

Z
I\J1

�
�
(4)
1 (t) + f (t; �1(t); �2(t))�

u00(t)� �001(t)

1 + ju00(t)� �001(t)j

�
dt

>

Z
I\J1

�
�
(4)
1 (t) + f (t; �1(t); �2(t))

�
dt � 0.

If v00 (t0) > �002(t0); and as v
00 (t)� �002(t) 2 C[0; 1] then there is J2 � [0; 1]

such that t0 2 J2 and v00 (t)� �002(t) > 0; 8t 2 J2:
As t0 2 I \ J2 then I \ J2 6= ? and

0 �
Z

I\J2

�
�
(4)
1 (t)� u(4) (t)

�
dt

=

Z
I\J2

�
f (t; �1(t); �2(t))�

u00(t)� �001(t)

1 + ju00(t)� �001(t)j

+
v00(t)� �002(t)

1 + jv00(t)� �002(t)j

�
dt

>

Z
I\J2

�
�
(4)
1 (t) + f (t; �1(t); �2(t))

�
dt � 0.

Therefore, �001(t) � u00 (t) ;8t 2 [0; 1]: By similar arguments it can be
proved that u00 (t) � �001(t);8t 2 [0; 1] ; and so,

�001(t) � u00 (t) � �001(t); 8t 2 [0; 1]: (3.19)

Applying a similar technique with the truncature H, we can achieve that

�002(t) � v00 (t) � �
00

2(t); 8t 2 [0; 1]: (3.20)

The other inequalities of (3.18) are obtained by integration in [0; t] ; with
t 2 [0; 1], and by Remark 3.7.
So, the �xed point (u; v) of T � is also a �xed point of T; given by (3.13):
By Lemma 3.2, (u(t); v(t)) is a solution of problem (3.1), (3.2).
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Corollary 3.8 Assume the hypothesis of Theorem 3.6 hold.

(i) If, for i = 0; 1; 2;

0 � �
(i)
1 (t) � �

(i)
1 (t) and �

(i)
2 (t) � �

(i)
2 (t) � 0; 8t 2 [0; 1];

then there is at least a pair (u(t); v(t)) 2 (C4[0; 1]; R)2 solution of
(3.1), (3.2) such that

0 � �
(i)
1 (t) � u(i)(t) � �

(i)
1 (t) and �

(i)
2 (t) � v(i)(t) � �

(i)
2 (t) � 0; 8t 2 [0; 1]:

(ii) If, for i = 0; 1; 2;

�
(i)
1 (t) � �

(i)
1 (t) � 0; and 0 � �

(i)
2 (t) � �

(i)
2 (t); 8t 2 [0; 1];

then there is at least a pair (u(t); v(t)) 2 (C4[0; 1]; R)2 solution of
(3.1), (3.2) such that

�
(i)
1 (t) � u(i)(t) � �

(i)
1 (t) � 0; and 0 � �

(i)
2 (t) � v(i)(t) � �

(i)
2 (t); 8t 2 [0; 1]:

3.3 Example

Consider the third order nonlinear and nonautonomous system8<:
u(4)(t) = u (t) v (t) + (u0 (t))3 v0 (t) + 3

p
u00 (t) + 1 + v00 (t) + u000 (t) + 3

p
v000 (t)

v(4)(t) = (u (t))2 v (t) + u0 (t) (v0 (t))2 + eu
00(t) sin (v00 (t)) + 4 5

p
u000 (t) + v000 (t)

(3.21)
with the boundary conditions

u (0) = 1 u0 (0) = u00 (0) = u00 (1) = 0;
v (0) = �1; v0 (0) = v00 (0) = v00 (1) = 0:

(3.22)

The null functions are not a pair of solutions of system (3.21), (3.22),
which is a particular case of (3.1), (3.2) with

f(t; x; y) = x0y0 + (x1)
3 y1 +

3
p
x2 + 1 + y2 + x3 + 3

p
y3;

h (t; x; y) = (x0)
2 y0 + x1 (y1)

2 + ex2 sin (y2) + 4 5
p
x3 + y3;
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where x = (x0; x1; x2; x3) and y = (y0; y1; y2; y3) ; and A0 = 1; A1 = A2 = 0;
B0 = �1; B1 = B2 = 0:
These L1-Carathéodory functions f and h verify the Nagumo conditions

in the set

E =

�
(x; y) 2 R8 : 1 � x0 � 2; 0 � x1 � 3; 0 � x2 � 6;

�2 � y0 � �1; � 3 � y1 � 0; � 6 � y2 � 0

�
;

with
� (ju3 + v3j) := K + jx3j+ 3

p
jy3j+ 4 5

p
jx3j+ jy3j ;

for some K > 0:
As the functions

�1(t) = 1; �1(t) = t3 + 1

�2(t) = �t3 � 1; �2(t) = �1

are coupled lower and upper solutions of (3.21), (3.22), then, by Theorem
3.6 there is a solution (u; v) of (3.21), (3.22), such that

1 � u(t) � t3 + 1; � t3 � 1 � v(t) � �1;
0 � u0 (t) � 3t2; � 3t2 � v0 (t) � 0;
0 � u00 (t) � 6t; � 6t � v00 (t) � 0; for t 2 [0; 1]:

From the localization part, u (t) is a strictly positive, nondecreasing and
convex function, and v (t) is a strictly negative, nonincreasing and concave
function.

3.4 Coupled clamped beams

Assuming that a beam has a uniform cross-section and no axial load is ap-
plied, the equation for a moderately large de�ection u(x) of Bernoulli-Euler-v.
Karman beam is expressed (see [49]) as

EIu(4) (x)� 3
2
EA (u0(x))

2
u00(x) = q(x);

where E is the Young�s modulus, I the mass moment of inertia, A the cross-
sectional area, and q(x) the distributed net load.
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If we consider that the nonlinear Bernoulli-Euler-v. Karman beam is
resting on a linear elastic foundation, the net loading q(x) consists of the
shear force u000(x) downward and the spring force ku(x) upward, in which k
is the spring constant, that is

q(x) = u000(x)� ku(x):

For simplicity, we neglect the weight of the beam.
Based on this model, we analyze the bending of two coupled beams of

length L; as in next �gure,

Coupled beams, clamped on left
endpoint and free on the other endpoint

modelled by the following system8>>>>><>>>>>:

u(4) (x) = 3
2
A1
I1

�
(u0 (x))2 u00 (x) + (v0 (x))2 v00 (x)

�
� 1
E1I1

(k1u (x) + k2v (x)) + u
000 (x) + v000 (x)

v(4) (x) = 3
2
A3
I2

�
(u0 (x))2 u00 (x) + (v0 (x))2 v00 (x)

�
� 1
E2I2

(k1u (x) + k2v (x)) + u
000 (x) + v000 (x)

(3.23)

where E1; I1 and A1; are, respectively, the Young�s modulus, the mass mo-
ment of inertia, the cross-sectional area related to the beam u, and E2; I2
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and A2 the equivalent data related to beam v: The terms k1u (x) and k2v (x) ;
(k1 � 0; k2 � 0); are the spring forces related to the elastic foundations of u
and v, respectively.
The beams are clamped of the left endpoint and free on the right endpoint,

so, the corresponding boundary conditions are�
u (0) = 0; u

0 (0) = 0; u00 (0) = 0; u00 (L) = 0
v (0) = 0; v0 (0) = 0; v00 (0) = 0; v00 (L) = 0:

(3.24)

As we are dealing with the interval [0; L], the Green�s function depends
on L, and Lemma 3.2 is replaced by the following result:

Lemma 3.9 The functions (u(t); v(t)) 2 (C4[0; L]; R)2 are solution of prob-
lem (3.23)-(3.24) if and only if (u(t); v(t)) is a solution of the following sys-
tem of integral equations8>>>>>>>><>>>>>>>>:

u(x) =
R L
0

h
GL(x; s)

�
3
2
A1
I1

�
(u0 (s))2 u00 (s) + (v0 (s))2 v00 (s)

�
� 1
E1I1

(k1u (s) + k2v (s)) + u
000 (s) + v000 (s)

�i
ds

v(x) =
R L
0

h
GL(x; s)

�
3
2
A3
I2

�
(u0 (x))2 u00 (x) + (v0 (x))2 v00 (x)

�
� 1
E2I2

(k1u (x) + k2v (x)) + u
000 (x) + v000 (x)

�i
ds;

(3.25)

where GL(x; s) is the Green�s function associated to problem (3.23)-(3.24),
de�ned by

GL (x; s) =

8<:
s x3

6L
(�s+ L)� s3

6
+ s2x

2
� sx2

2
+ x3

6
; 0 � s � x

x3

6L
(s� L) ; x � s � L:

(3.26)

This problem (3.23), (3.24) is a particular case of (3.1), (3.2) with

f(x; u; v) =
3

2

A1
I1

�
(u1)

2 u2 + (v1)
2 v2
�
� 1

E1I1
(k1u0 + k2v0) + u3 + v3;

(3.27)

h (x; u; v) =
3

2

A2
I2

�
(u1)

2 u2 + (v1)
2 v2
�
+

1

E2I2
(k1u0 + k2v0) + u3 + v3;

with u = (u0; u1; u2; u3) and v = (v0; v1; v2; v3) :
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The functions

�1(x) = 0; �2(x) = �x3

�1(x) = x3; �2(x) = 0

are coupled lower and upper solutions of (3.23)-(3.24), respectively, for

k1; k2 � min f6E1I1; 6E2I2g ;

verifying (3.12).
The functions f and h given by (3.27) are L1-Carathéodory with

jf(x; u; v)j �  1M(t) � 162L3
A1
I1
+

L3

E1I1
(k1 + k2) + 6;

jh(x; u; v)j �  2M(t) � 162L3
A2
I2
+

L3

E2I2
(k1 + k2) + 6;

for
k(u; v)kE2 �M := max

�
L3; 3L2; 6L; 6

	
;

and verify the Nagumo condition with

� (ju3 + v3j) := 324L3
A1
I1
+
2L3

E1I1
(k1 + k2) + ju3 + v3j ;

for

0 � u0 � L3; 0 � u1 � 3L2; 0 � u2 � 6L;
�L3 � v0 � 0; � 3L2 � v1 � 0; � 6L � v2 � 0:

Then, by Corollary 3.8, there is a solution (u(x); v(x)) of (3.23)-(3.24),
such that

0 � u(x) � x3; � x3 � v(x) � 0;
0 � u0 (x) � 3x2; � 3x2 � v0 (x) � 0;
0 � u00 (x) � 6x; � 6x � v00 (x) � 0; for x 2 [0; L]:

From the localization part, the displacement u (x) is nonnegative, with
a nonnegative slope and a convex bending moment sti¤ness. On the other
hand, the displacement v (x) is nonpositive, with a nonpositive slope and a
concave bending moment sti¤ness, as it is illustrated by the following �gures:
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x

u

The displacement of the
beam u is non-negative

x

u'

The slope of beam u is
non-negative

x

u''

The bending moment
sti¤nessof the beam u is

non-negative

x

v

The displacement of the
beam v is non-positive

x

v'

The slope of beam v is
non-positive

x
v''

The bending moment
sti¤nessof the beam v is

non-positive
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Chapter 4

Solvability for nth order
coupled systems with full
nonlinearities

In this chapter we consider the nth order coupled system composed of the
fully coupled di¤erential equations�

u(n) (t) = f
�
t; u(t); :::; u(n�1)(t); v(t); :::; v(n�1)(t)

�
v(n) (t) = g

�
t; u(t); :::; u(n�1)(t); v(t); :::; v(n�1)(t)

� (4.1)

with f; h : [0; 1] � R2n ! R some continuous functions and the boundary
conditions �

u(i) (0) = Ai; u
(n�2) (1) = B;

v(i) (0) = Ci; v
(n�2) (1) = D; i = 0; 1; :::; n� 2; (4.2)

for Ai; B; Ci; D 2 R:
Coupled systems of nonlinear boundary value problems of second and

higher order with ordinary di¤erential equations have received, in these last
years, a great deal of attention in the literature, by means of di¤erent methods
and several types of arguments. For recent trends in this �eld, we recommend
interested readers to [3, 45, 68, 77, 85, 93, 96, 99, 100, 102], and the references
therein. 8>><>>:

�u000(t) = f(t; v(t); v0(t))
�v000(t) = h(t; u(t); u0(t))

u(0) = u0(0) = 0; u0(1) = �u0(�)
v(0) = v0(0) = 0; v0(1) = �v0(�);
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with non-negative continuous functions f; h 2 C ([0; 1]� [0; +1)2; [0; +1))
verifying adequate superlinear and sublinear conditions near 0 and +1;
0 < � < 1 and the parameter � such that 1 < � < 1

�
: Applying the

Guo�Krasnosel�ski¼¬ theorem on expansion-compression cones, and de�ning
an adequate cone, to overcome the dependence on the �rst derivatives, it is
proved the existence of a positive and increasing solution of the system.
In [86], it is studied the existence of solutions for a system of bending

elastic beam equations8>><>>:
u0000(t) = f(t; u(t); v(t); u0(t); v0(t)); t 2 (0; 1) ;
v0000(t) = g(t; u(t); v(t); u0(t); v0(t)); t 2 (0; 1) ;

u(0) = u(1) = u00(0) = u00(1) = 0;
v(0) = v(1) = v00(0) = v00(1) = 0;

via the �xed point index theory, assuming su¢ cient conditions, some of them
of the lipschitzian type.
In [79, 78], the authors present the system�

u(4) (t) = f (t; u(t); u0(t); u00(t); u000(t); v(t); v0(t); v00(t); v000(t))
v(4) (t) = h (t; u(t); u0(t); u00(t); u000(t); v(t); v0(t); v00(t); v000(t))

with f; h : [0; 1] � R8 ! R some L1- Carathéodory functions, together with
the boundary conditions�

u (0) = u0 (0) = u00 (0) = u00 (1) = 0
v (0) = v0 (0) = v00 (0) = v00 (1) = 0;

and prove its solvability applying Green�s functions, with integral operators
theory and Schauder�s �xed point.
In [94], it is considered the nth-order nonlinear boundary value problem8>><>>:

u(n) (t) + f (t; u(t); v(t)) = 0; 0 < t < 1;
v(n) (t) + g (t; u(t); v(t)) = 0; 0 < t < 1;
u(i) (0) = u (1) = 0; i = 0; 1; :::; n� 2;
v(i) (0) = v (1) = 0; i = 0; 1; :::; n� 2;

where n � 2 and f; g 2 C([0; 1]�R+�R+, R+); (R+ := [0;1)): Based on a
priori estimates, achieved by Jensen�s integral inequality, �xed point index
theory and assumptions on the nonlinearities, formulated in terms of spectral
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radii of associated linear integral operators, it is proved the existence of, at
least, one positive solution.
This type of coupled systems cover some classical systems of di¤eren-

tial equations, as, for instance, Lorenz-Lagrangian systems, [12, 91], and
Korteweg-de Vries (KdV) coupled equations, [31, 35, 34, 44, 54, 73, 74, 97],
and have a huge variety of applications, such as, in solitary waves theory,
[23, 32, 58], the study of the bending of elastic beams, [5, 56, 72, 87], among
others.Motivated by the above works, we present a technique for coupled
higher order systems that, to the best of our knowledge, is new in the litera-
ture, and opens the possibility of new types of models. Our method applies
a new Nagumo-type condition for coupled equations, with adequate growth
conditions on the nonlinearities, to obtain not only the existence of a solu-
tion but also some data about the location of the unknown functions and
their derivatives, given by lower and upper solutions method. The existence
tool will be given by a homotopic problem and Leray-Schauder topological
degree theory. Moreover, this section contains two applications for higher
order coupled systems. The �rst one, for n even, n = 2; to a family of
Lorentz-Lagrangian systems, and the second one, for n = 3; to some station-
ary coupled system of Korteweg-de Vries equations with damping and forced
terms.
The chapter is organized in this way: Section 2 contains the functional

framework, de�nitions, and some a priori estimations given by Nagumo-type
conditions. The main result in Section 3 is based on some growth assumptions
on the nonlinearities. Last two sections contain the applications: Section 4,
deals with some Lorentz-Lagrangian systems, and Section 5 with a coupled
system of KdV equations.

4.1 De�nitions and preliminaries

Let E := Cn�1[0; 1] be the Banach space equipped with the norm k � kCn�1,
de�ned by

kwkCn�1 := max
�
kwk; :::; kw(n�1)k

	
;

where
kyk := max

t2[0; 1]
jy(t)j

and E2 := (Cn�1[0; 1])2 with the norm

k(u; v)kE2 = max fkukCn�1 ; kvkCn�1g :
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Throughout the chapter we apply the following relation:

(x0; :::; xn�1; y0; :::; yn�1) � (z0; :::; zn�1; w0; :::; wn�1)
() xi � zi ^ yi � wi; 8xi; yi; zi; wi 2 R; i = 0; 1; :::; n� 1:

For some functions ij; �
i
j 2 C[0; 1]; for j = 1; 2; and i = 0; 1; :::; n � 2;

such that
ij(t) � �ij(t);8t 2 [0; 1];

de�ne the set

S := Sij ; �ij =

�
(t; u0; :::; un�1; v0; :::; vn�1) 2 [0; 1]� R2n : i1(t) � ui � �i1(t);

i2(t) � vi � �i2(t); i = 0; 1; :::; n� 2

�
:

(4.3)

Throughout the chapter we apply an the following order relation between
pairs de�ned as

(x0; :::; xn�1; y0; :::; yn�1) � (z0; :::; zn�1; w0; :::; wn�1)
() xi � zi ^ yi � wi; 8xi; yi; zi; wi 2 R; i = 0; 1; :::; n� 1:

To control the growth of the (n � 1) derivatives we need some Nagumo-
type conditions:

De�nition 4.1 The continuous functions f; g : [0; 1] � R2n ! R satisfy
Nagumo-type conditions relative to the set S, if there are positive continuos
functions �i : [0;+1[!]0;+1[; i = 1; 2, such that

jf (t; u0; :::; un�1; v0; :::; vn�1)j � �1 (jun�1j) (4.4)

and
jg (t; u0; :::; un�1; v0; :::; vn�1)j � �2 (jvn�1j) (4.5)

for (t; u0; :::; un�1; v0; :::; vn�1) 2 S; with

+1Z
0

s

�i (s)
ds = +1, i = 1; 2: (4.6)
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Lemma 4.2 Let f; g : [0; 1]� R2n ! R be continuous functions satisfying a
Nagumo type condition relative to the set S:
Then there are N1; N2 > 0 such that, for every solution (u; v) of (4.1)-
(4.2) with

�
t; u(t); :::; u(n�1)(t); v(t); :::; v(n�1)(t)

�
2 S;u(n�1) < N1 and

v(n�1) < N2 : (4.7)

Proof. Let (u; v) be a solution of (4.1) such that�
t; u(t); :::; u(n�1)(t); v(t); :::; v(n�1)(t)

�
2 S:

For r > B � An�2; consider N1; N2 > r such that

N1Z
r

s

�1 (s)
ds > max

t2[0;1]
�n�21 (t)� min

t2[0;1]
n�21 (t) ; (4.8)

and
N2Z
r

s

�2 (s)
ds > max

t2[0;1]
�n�22 (t)� min

t2[0;1]
n�22 (t) : (4.9)

If
��u(n�1)�� � r;8t 2 [0; 1] ; then this part of the proof is �nished, asu(n�1) � r < N1:

On the other hand if
��u(n�1) (t)�� � r;8t 2 [0; 1] ; we obtain the following

contradiction for the case where u(n�1) (t) > r;

r > B � An�2 =

1Z
0

u(n�1) (t) dt �
1Z
0

rdt = r:

If u(n�1) (t) < �r the contradiction is analogous.
By (4.2) and the Mean Value Theorem, there is t0 2]0; 1[ such that

u(n�1) (t0) > r; t2 2]0; 1[, t2 < t0; with u(n�1) (t2) = r and u(n�1) (t) > r;
8t 2]t2; t0].
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Then, by (4.1), (4.5) and (4.9),

u(n�1)(t0)Z
u(n�1)(t2)

s

�1 (s)
ds =

t0Z
t2

u(n�1) (s)

�1 (u
(n�1) (s))

u(n) (s) ds

�
t0Z
t2

u(n�1) (s)

�1 (u
(n�1) (s))

����f � s; u (s) ; :::; u(n�1) (s) ;
v (s) ; :::; v(n�1) (s)

����� ds
�

t0Z
t2

u(n�1) (s) ds = u(n�2) (t0)� u(n�2) (t2)

� max
t2[0;1]

�n�21 (t)� min
t2[0;1]

n�21 (t) <

N1Z
r

s

�1 (s)
ds:

By the arbitrariness of t0 related to the values where u(n�1) (t0) > r; we
have

u(n�1) (t) < N1;8t 2 [0; 1] :
For t2 > t0 with u(n�1) (t2) = r and u(n�1) (t) > r; 8t 2 [t0; t2[; the argu-

ments are similar.
In the case where u(n�1) (t) < �r the technique is analogous and, there-

fore,
u(n�1) � N1:
Applying the same method as above, it can be proved, by (4.5) and (4.9),

that
v(n�1) � N2:
Lower and upper functions will be de�ned as a pair, as follows:

De�nition 4.3 A pair of functions (�1; �2) 2 E2 is a coupled lower solution
of (4.1), (4.2) if

�
(n)
1 (t) � f

�
t; �1 (t) ; :::; �

(n�1)
1 (t) ; �2 (t) ; :::; �

(n�2)
2 (t) ; vn�1

�
;

for t 2 [0; 1] and vn�1 2 R; (4.10)

�
(n)
2 (t) � g

�
t; �1 (t) ; :::; �

(n�2)
1 (t) ; un�1; �2 (t) ; :::; �

(n�1)
2 (t) ;

�
;

for t 2 [0; 1] and un�1;2 R;

with
�
(i)
1 (0) � Ai; �

(n�2)
1 (1) � B;

�
(i)
2 (0) � Ci; �

(n�2)
2 (1) � D:

(4.11)

67



The pair (�1; �2) 2 E2 is said to be a coupled upper solution of (4.1),
(4.2) if they verify the reversed inequalities.

4.2 Main result

The main theorem is an existence and localization result, meaning that, it
provides not only the existence, but also some data about the localization of
the unknown functions and their derivatives:

Theorem 4.4 Let f; g : [0; 1]� R2n ! R be continuous functions. Suppose
that there are coupled lower and upper solutions of (4.1), (4.2), (�1; �2)
and (�1; �2) ; respectively, such that�

�
(n�2)
1 (t); �

(n�2)
2 (t)

�
�
�
�
(n�2)
1 (t); �

(n�2)
2 (t)

�
;8t 2 [0; 1] :

Assume that f and g verify the Nagumo conditions relative to the set
S�(i);�(i) ; i = 0; 1; :::n� 2; and the growth conditions

f
�
t; �1 (t) ; :::; �

(n�3)
1 (t) ; un�2; un�1; �2 (t) ; :::; �

(n�2)
2 (t) ; vn�1

�
� f (t; u0; :::; un�1; v0; :::; vn�1)

� f
�
t; �1 (t) ; :::; �

(n�3)
1 (t) ; un�2; un�1; �2 (t) ; :::; �

(n�2)
2 (t) ; vn�1

� (4.12)

for �(i)1 (t) � ui � �
(i)
1 (t) ; i = 0; 1; :::; n � 3; �(j)2 (t) � vj � �

(j)
2 (t) ; j =

0; 1; :::; n� 2; and (t; un�2; un�1; vn�1) 2 [0; 1]� R3, and

g
�
t; �1 (t) ; :::; �

(n�2)
1 (t) ; un�1; �2 (t) ; :::; �

(n�3)
2 (t) ; vn�2; vn�1

�
� g (t; u0; :::; un�1; v0; :::; vn�1)

� g
�
t; �1 (t) ; :::; �

(n�2)
1 (t) ; un�1; �2 (t) ; :::; �

(n�3)
2 (t) ; vn�2; vn�1

�
;

(4.13)

for �(j)1 (t) � uj � �
(j)
1 (t) ; j = 0; 1; :::; n � 2; �(i)2 (t) � vi � �

(i)
2 (t) ; i =

0; 1; :::; n� 3; and (t; un�1; vn�2; vn�1) 2 [0; 1]� R3.
Then problem (4.1), (4.2) has, at least, a solution (u; v) 2 E2; such that,

�
(i)
1 (t) � u(i) (t) � �

(i)
1 (t) ; 8t 2 [0; 1] ;

�
(i)
2 (t) � v(i) (t) � �

(i)
2 (t) ; for i = 0; 1; :::; n� 2;

68



and u(n�1) < N1;
v(n�1) < N2,

where N1and N2 are given by (4.7).

Remark 4.5 If �(n�2)1 (t) � �
(n�2)
1 (t) for t 2 [0; 1]; then by integration in

[0; t]; (4.2) and (4.11),

�
(i)
1 (t) � �

(i)
1 (t); for i = 0; 1; :::; n� 3; and t 2 [0; 1]:

Analogously from �
(n�2)
2 (t) � �

(n�2)
2 (t);8t 2 [0; 1] ; by integration in [0; t];

then
�
(i)
2 (t) � �

(i)
2 (t); for i = 0; 1; :::; n� 3; and t 2 [0; 1]:

Proof. De�ne the continuous functions, for i = 0; 1; :::; n� 2; j = 1; 2;

�j;i (t; wi) =

8><>:
�
(i)
j if wi > �

(i)
j

wi if �(i)j � wi � �
(i)
j ;

�
(i)
j if wi < �

(i)
j :

For � 2 [0; 1] ; consider the homotopic problem composed by the equations8>>>>>>>>>>>><>>>>>>>>>>>>:

u(n) (t) = �f

�
t; �1;0 (t; u (t)) ; :::; �1;n�2

�
t; u(n�2) (t)

�
; u(n�1) (t) ;

�2;0 (t; v (t)) ; :::; �2;n�2
�
t; v(n�2) (t)

�
; �N2

�
t; v(n�1) (t)

� �
+u(n�2) (t)� ��1;n�2

�
t; u(n�2) (t)

�
v(n) (t) = �g

�
t; �1;0 (t; u (t)) ; :::; �1;n�2

�
t; u(n�2) (t)

�
; �N1

�
t; u(n�1) (t)

�
;

�2;0 (t; v (t)) ; :::; �2;n�2
�
t; v(n�2) (t)

�
; v(n�1) (t)

�
+v(n�2) (t)� ��2;n�2

�
t; v(n�2) (t)

�
;

(4.14)
for t 2 [0; 1]; together with boundary conditions together with boundary
conditions�

u(i) (0) = �Ai; u
(n�2) (1) = �B; i = 0; 1; :::; n� 2;

v(i) (0) = �Ci; v
(n�2) (1) = �D:

(4.15)

Take r1; r2 > 0 such that, for u(n�1)(t); v(n�1)(t);2 R;

�rj < �
(n�2)
j (t) � �

(n�2)
j (t) � rj; j = 1; 2; for t 2 [0; 1] ; (4.16)
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jAn�2j < r1; jBj < r1; jCn�2j < r2; jDj < r2; (4.17)

f
�
t; �1 (t) ; :::; �

(n�2)
1 (t) ; 0; �2 (t) ; :::; �

(n�2)
2 (t) ; v(n�1)(t)

�
�r1��(n�2)1 (t) < 0;

(4.18)

f
�
t; �1 (t) ; :::; �

(n�2)
1 (t) ; 0; �2 (t) ; :::; �

(n�2)
2 (t) ; v(n�1)(t)

�
+r1��(n�2)1 (t) > 0;

(4.19)

g
�
t; �1 (t) ; :::; �

(n�2)
1 (t) ; u(n�1)(t); �2 (t) ; :::; �

(n�2)
2 (t) ; 0

�
�r2��(n�2)2 (t) < 0;

(4.20)

g
�
t; �1 (t) ; :::; �

(n�2)
1 (t) ; u(n�1)(t); �2 (t) ; :::; �

(n�2)
2 (t) ; 0

�
+r2��(n�2)2 (t) > 0:

(4.21)
For clearness the proof will follow several steps :

Step 1: Every solution (u; v) of (4.14), (4.15) veri�es,��u(n�2) (t)�� < r1,
��v(n�2) (t)�� < r2;��u(i) (t)�� < r1 +
n�3X
k=i

jAkj := ri1,

��v(i) (t)�� < r2 +
n�3X
k=i

jCkj := ri2;

for i = 0; 1; :::; n� 3; independently of � 2 [0; 1] :
Suppose, by contradiction, that the �rst inequality is not veri�ed for

i = n � 2. Then there is a solution u (t) of (4.14), (4.2) and t 2 [0; 1] such
that

��u(n�2) (t)�� � r1; that is,

u(n�2) (t) � r1 or u(n�2) (t) � �r1:

In the �rst case de�ne

max
t2[0;1]

u(n�2) (t) := u(n�2) (t0) � r1:

As, by (4.17), t0 6= 0 and t0 6= 1; then t0 2 ]0; 1[ ; u(n�1) (t0) = 0 and
u(n) (t0) � 0:
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Therefore, for � 2 ]0; 1] ; it is obtained, by (4.14), (4.16) and (4.19), the
following contradiction,

0 � u(n) (t0)

= �f

�
t0; �1;0 (t0; u (t0)) ; :::; �1;n�2

�
t0; u

(n�2) (t0)
�
; 0;

�2;0 (t0; v (t0)) ; :::; �2;n�2
�
t0; v

(n�2) (t0)
�
; v(n�1) (t0)

�
+u(n�2) (t0)� ��

(n�2)
1 (t0)

� �

"
f(t0; �1 (t0) ; :::; �

(n�2)
1 (t0) ; 0; �2 (t0) ; :::; �

(n�2)
2 (t0) ; v

(n�1) (t0))

+r1 � �
(n�2)
1 (t0)

#
> 0

For � = 0 the contradiction is given by

0 � u(n) (t0) = u(n�2) (t0) � r1 > 0:

Following similar arguments, it can be proved that

u(n�2) (t) � �r1;8t 2 [0; 1] ;

and, therefore, ��u(n�2) (t)�� � r1;8 2 [0; 1] :
As

tZ
0

u(n�2) (s) ds = u(n�3) (t)� �An�3

and

�r1 �
tZ
0

u(n�2) (s) ds � r1;

therefore ��u(n�3) (t)�� < r1 + jAn�3j ;8t 2 [0; 1] :
By iteration of this type of arguments we have

��u(i) (t)�� < r1 +

n�3X
k=i

jAkj ;8t 2 [0; 1] ;
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for i = 0; 1; :::; n� 3; independently of � 2 [0; 1] :
By the technique above it can be obtained that

��v(n�2) (t)�� < r2; and

��v(i) (t)�� < r2 +
n�3X
k=i

jCkj ;8t 2 [0; 1] ;

for i = 0; 1; :::; n� 3; independently of � 2 [0; 1] :

Step 2: Every solution (u; v) of (4.14), (4.15) satis�es
u(n�1) < N1;

and
v(n�1) < N2; independently of � 2 [0; 1]:
For � 2 [0; 1] de�ne the functions

F� (t; u0; :::; un�1; v0; :::; vn�1) :=

�f

�
t; �1;0 (t; u0) ; :::; �1;n�2 (t; un�2) ; un�1; �2;0 (t; v0) ;

:::; �2;n�2 (t; vn�2) ; vn�1

�
(4.22)

+un�2 � ��1;n�2 (t; un�2)

and

G� (t; u0; :::; un�1; v0; :::; vn�1) :=

�g

�
t; �1;0 (t; u0) ; :::; �1;n�2 (t; un�2) ; un�1; �2;0 (t; v0) ;

:::; �2;n�2 (t; vn�2) ; vn�1

�
(4.23)

+vn�2 � ��2;n�2 (t; vn�2) :

The functions F� and G� verify the Nagumo conditions (2.7), (4.5) and (4.8),
as

jF�j �
����f � t; �1;0 (t; u0) ; :::; �1;n�2 (t; un�2) ; un�1;

�2;0 (t; v0) ; :::; �2;n�2 (t; vn�2) ; vn�1

�����
+ jun�2j+ j�1;n�2 (t; un�2)j

� �1 (jun�1j) + 2r1;

jG�j �
����g� t; �1;0 (t; u0) ; :::; �1;n�2 (t; un�2) ; un�1;

�2;0 (t; v0) ; :::; �2;n�2 (t; vn�2) ; vn�1

�����
+ jvn�2j+ j�2;n�2 (t; vn�2)j

� �2 (jvn�1j) + 2r2;

72



and
+1Z
0

s

�1 (s) + 2r1
ds = +1,

+1Z
0

s

�2 (s) + 2r2
ds = +1:

By Step 1, and applying Lemma 4.2, with, for j = 1; 2;

n�2j (t) � �rj; �n�2j (t) � rj;

ij(t) � �rij; �ij(t) � rij;

for i = 0; 1; :::; n� 3; there are N1; N2 > 0 such thatu(n�1) < N1 and
v(n�1) < N2:

Step 3: Problem (4.14), (4.15) has, at least, a solution for � = 1:

De�ne the operators

L : (Cn ([0; 1]))2 � E2 ! (C ([0; 1]))2 � R2n

given by

L (u; v) =
�
u(n) (t) ; v(n) (t) ; u (0) ; :::; u(n�2) (0) ; u(n�2) (1) ;

v (0) ; :::; v(n�2) (0) ; v(n�2) (1)

�
;

and N� : (C
n�1 ([0; 1]))

2 ! (C ([0; 1]))2 � R2n, given by

N� (u; v) =

0@ F�
�
t; u(t); :::; u(n�1)(t); v(t); :::; v(n�1)(t)

�
;

G�
�
t; u(t); :::; u(n�1)(t); v(t); :::; v(n�1)(t)

�
;

�A1; :::; �An�2; �B; �C1; :::; �Cn�2; �D

1A ;

where F� and G� are de�ned in (4.22) and (4.23), respectively.
As L�1 is compact then it can be de�ned the completely continuous op-

erator T� :
�
(Cn�1 ([0; 1]))

2
;R
�
!
�
(Cn�1 ([0; 1]))

2
;R
�
given by

T� (u; v) = L�1N� (u; v) :

Consider

� = max
�
N1; N2; r

i
j; for j = 1; 2; i = 0; 1; :::; n� 3;

	
;

73



where rij; N1; N2; are given in Steps 1 and 2, respectively, and de�ne the set


 =
�
(u; v) 2 E2 : k(u; v)kE2 < �+ 1

	
:

Therefore the degree d (I � T�;
; (0; 0)) is well de�ned for every � 2
[0; 1] ; and by the invariance under homotopy,

d (I � T0;
; (0; 0)) = d (I � T1;
; (0; 0)) :

The equation T0 (u; v) = (u; v) is equivalent to the homogeneous problem8>><>>:
u(n) (t)� u(n�2) (t) = 0
v(n) (t)� v(n�2) (t) = 0
u(i) (0) = u(n�2) (1) = 0;

v(i) (0) = v(n�2) (1) = 0; i = 0; 1; :::; n� 2;

which admits only the trivial solution.
Then, by degree theory, d (I � T0;
 (0; 0)) = �1; and so the equation

(u; v) = T1 (u; v)

has at least one solution. That is, by Step 1, the problem composed by the
equation (4.14), and the boundary conditions (4.15) has at least a solution
(u1 (t) ; v1 (t)) in 
:

Step 4: This solution (u1 (t) ; v1 (t)) is a solution of (4.1), (4.2).
To prove this assertion it will be enough, by Steps 1 and 2, to show that

�
(i)
1 (t) � u

(i)
1 (t) � �

(i)
1 (t) ;

and
�
(i)
2 (t) � v

(i)
1 (t) � �

(i)
2 (t) ;8t 2 [0; 1] ; i = 0; 1; :::; n� 2:

Suppose, by contradiction, that there exists t 2 [0; 1] such that

u
(n�2)
1 (t) > �

(n�2)
1 (t) ;

and de�ne

max
t2[0;1]

h
u
(n�2)
1 (t)� �

(n�2)
1 (t)

i
:= u

(n�2)
1 (t1)� �

(n�2)
1 (t1) > 0: (4.24)
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As, by (4.2) and De�nition 4.3, t1 6= 0 and t1 6= 1; then t1 2 ]0; 1[,
u
(n�1)
1 (t1) = �

(n�1)
1 (t1) and

u
(n)
1 (t1) � �

(n)
1 (t1) : (4.25)

So, by (4.12), (4.24), De�nition 4.3, Steps 1 and 2, we obtained the fol-
lowing contradiction

0 � u
(n)
1 (t1)� �

(n)
1 (t1) =

f

0@ t1; �1;0 (t1; u1 (t1)) ; :::; �1;n�2

�
t1; u

(n�2)
1 (t1)

�
; u
(n�1)
1 (t1) ;

�2;0 (t1; v1 (t1)) ; :::; �2;n�2

�
t1; v

(n�2)
1 (t1)

�
; v
(n�1)
1 (t1)

1A
+u

(n�2)
1 (t1)� �1;n�2

�
t1; u

(n�2)
1 (t1)

�
� �

(n)
1 (t1)

� f(t1; �1 (t1) ; :::; �
(n�1)
1 (t1) ; �2 (t1) ; :::; �

(n�2)
2 (t1) ; v

(n�1)(t))

+u
(n�2)
1 (t1)� �

(n�2)
1 (t1)� �

(n)
1 (t1)

� u
(n�2)
1 (t1)� �

(n�2)
1 (t1) > 0:

Therefore,
u
(n�2)
1 (t) � �

(n�2)
1 (t) ; 8t 2 [0; 1] :

Applying the same argument, it can be justi�ed that �(n�2)1 (t) � u
(n�2)
1 (t) ;

for t 2 [0; 1].
Integrating in [0; t] the inequalities

�
(n�2)
1 (t) � u

(n�2)
1 (t) � �

(n�2)
1 (t) ;

we have, for the �rst one,

�
(n�3)
1 (t)� An�3 � �

(n�3)
1 (t)� �

(n�3)
1 (0) =

tZ
0

�
(n�2)
1 (s) ds �

tZ
0

u
(n�2)
1 (s) ds

= u
(n�3)
1 (t)� u

(n�3)
1 (0) = u

(n�3)
1 (t)� An�3;8t 2 [0; 1] ;

and therefore
�
(n�3)
1 (t) � u

(n�3)
1 (t) ;8t 2 [0; 1] :
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By similar technique, we get

�
(i)
1 (t) � u

(i)
1 (t) ;8t 2 [0; 1] ; i = 0; 1; :::; n� 2:

In an analogous way, we can prove that

u
(i)
1 (t) � �

(i)
1 (t) ; for i = 0; 1; :::; n� 2;

and
�
(i)
2 (t) � v

(i)
1 (t) � �

(i)
2 (t) ;8t 2 [0; 1] ; i = 0; 1; :::; n� 2:

4.3 Lorentz- Lagrangian system model

This model was presented by Voigt in 1887, and adopted later by Lorentz
in 1904, and by Poincaré in 1906. Lorentz-Lagrangian systems have many
analogies with classical Lagrangian systems q00 + V (q) = 0, for which the
results of existence of periodic and homoclinic solutions were established
through a variety of methods.
In [12], the author presents, as example, a system of the Lorentz-Lagrangian

type, modelling the motion of a particle in a rotating potential in a frame,
that moves with the potential.
Based on the ideas of [12], we consider the Lorentz- Lagrangian system:(

u00(t) + k (v(t)� u(t))� 2 (k � 1)2 u(t)

(1+u2(t))2
= 0;

v00(t)� v(t)� k (v0(t)� u(t)) = 0;
(4.26)

with k > 1 a parameter, together with the boundary conditions

u (0) = 0; u (1) = 1
v (0) = 0; v (1) = 1:

(4.27)

The system above is a particular case of problem (4.1), (4.2), with n = 2;

f (t; u0; u1; v0; v1) = �k (v0 � u0) + 2 (k � 1)2
u0

(1 + u20)
2

and
g (t; u0; u1; v0; v1) = v0 + k (v1 � u0) :
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Moreover the functions

�1 (t) = �t; �1 (t) = t

�2 (t) = �t �2 (t) = t

are lower and upper solutions of problem (4.26), (4.27), respectively, for
k > 1; and the nonlinearities f and g satisfy the growth conditions (4.12)
and (4.13).
These functions verify the Nagumo conditions (4.4) and (4.5) with

�1 (u1) � 2k +
4

5
(k � 1)2

and
�2 (v1) � 1 + 2k (jv1j+ 1) ;

with
�t � u0 � t; � t � v0 � t; for t 2 [0; 1] :

Therefore, by Theorem 4.4, there is a solution (u; v) of problem (4.26),
(4.27) for k > 1 such that

�t � u (t) � t

�t � v (t) � t; 8t 2 [0; 1] :

4.4 Application to a coupled system of two
Korteweg-de Vries (KdV) equations

The Korteweg-de Vries equation

ut + uux + uxxx = 0;

models in the unidirectional propagation of water waves with small amplitude
lying a channel, ([74]), and was �rst introduced by Boussinesq and then
reformulated by Diederik Korteweg and Gustav de Vries.
In [97], it is studied the coupled KdV equations8<:
ut � 1

2
(7� 3�)uxxx � uxu� uvx � 1

2
(1� �) vux +

1
2
(1 + �) vux = 0

vt + vxxx + uxv + uvx + vux +
1
2
(1 + �)uvx � 1

2
(1� �) uux = 0,

(4.28)
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with �2 = 5; which are a new model for describing two-layer �uids with
di¤erent dispersion relations.
It can be observed in [73] that, for the case of constant boundary and ini-

tial conditions, various types of steady and transient solutions were derived.
Based on the above model (4.28), we consider a particular case of a sta-

tionary coupled system of the KdV equations with damping and forced terms:�
u000(t) = m (t)� 0:01 (u (t) + v (t)) ju0 (t)j � u (t)
v000 (t) = n (t)� 0:01 (u (t) + v (t)) jv0 (t)j � v (t)

(4.29)

with m;n : R ! R continuous functions and ; � positive parameters, to-
gether with the boundary conditions

u (0) = u0 (0) = u0 (1) = 0 (4.30)

v (0) = v0 (0) = v0 (1) = 0:

The functions

�1 (t) = �2 (t) = t3 � 5t2;
�1 (t) = �2 (t) = �t3 + 5t2 + t

are lower and upper solutions of problem (4.29), (4.30), if the forcing terms
verify

m(t) � 6; n(t) � 6; 8t 2 [0; 1] (4.31)

It can be easily seen that (4.29), (4.30) is a particular case of problem
(4.1), (4.2), with n = 3;

f (t; u0; u1; u2; v0; v1; v2) = m (t)� 0:01 (u0 + v0) ju1j � u0

and
g (t; u0; u1; u2; v0; v1; v2) = n (t)� 0:01 (u0 + v0) jv1j � v0:

These functions verify trivially the Nagumo conditions (4.4) and (4.5),
as they have no dependence on the second derivatives. Moreover they satisfy
the growth conditions (4.12) and (4.13), by Theorem 4.4, there is a solution
(u; v) of problem (4.29), (4.30), for functions m and n verifying (4.31); and

t3 � 5t2 � u (t) � �t3 + 5t2 + t;

t3 � 5t2 � v (t) � �t3 + 5t2 + t; 8t 2 [0; 1] :
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Chapter 5

Higher order functional
discontinuous boundary value
problems on the half-line

5.1 Introduction

This chapter is concerned with the study of a fully nonlinear higher order
discontinuous equation on the half line

u(n)(t) = f(t; u(t); u0(t); :::; u(n�1)(t)); t 2 [0;+1[; (5.1)

where f : [0;+1[�Rn ! R is a L1� Carathéodory function, with the func-
tional boundary conditions,�

Li
�
u(i); u (0) ; u0 (0) ; :::; u(n�2) (0)

�
= 0; i = 0; :::; n� 2;

Ln�1
�
u; u(n�1) (+1)

�
= 0;

(5.2)

with u(n�1)(+1) := lim
t!+1

u(n�1) (t), Li : C ([0;+1[) � Rn�1 ! R; i =
0; 1; :::; n� 2; and Ln�1 : C ([0;+1[)� R! R continuous functions.
These types of higher-order boundary value problems have been consid-

ered by many authors, not only with a general higher-order derivative n; but
also for particular cases of n: Most of all, are studied for continuous nonlin-
earities, and in bounded intervals, with classical boundary conditions, such
as, [55, 64], for linear problems, [4, 38], for two-point separated and Sturm-
Liouville boundary conditions, [10, 27, 40], for multipoint problems, [89], for
periodic solutions, among others.
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The functional boundary conditions in higher-order problems can include
global data on the unknown variable and its derivatives, and, in this way, they
generalize the usual boundary assumptions, considering local, nonlocal or
integro-di¤erential conditions, with deviating arguments, delays or advances,
maxima or minima of some variables. For works dealing with these features
see [15, 13, 16, 26, 30, 37, 41, 53, 57, 61] and the references therein.
On unbounded intervals there is a lack of compacity on the operator,

that can be overcome by applying some adequate techniques to guarantee
the solvability. As examples, we mention the extension by continuity of some
adequate bounded intervals by a diagonalization method, the de�nition of
suitable Banach spaces and norms to obtain su¢ cient conditions for the
existence of �xed points, and lower and upper solutions technique. The
interested readers can see these methods in, for example, [1, 2, 10, 20, 60,
76, 95] and in their references.
In more detail, we refer [62], where the authors study the problem com-

posed by the nth-order di¤erential equation on the half-line

�u(n)(t) = q(t)f(t; u(t); :::; u(n�1)(t)); t 2 (0;+1);

where q : (0;+1)! (0;+1), f : [0;+1)�Rn ! R are continuous, together
with the boundary conditions8<:

u(i)(0) = Ai; i = 0; 1; :::; n� 3;
u(n�2)(0)� au(n�1)(0) = B;

u(n�1)(+1) = C;

with a > 0; Ai; B; C 2 R; i = 0; 1; :::; n � 3: Applying lower and upper
solutions method and the Schäuder �xed point theorem, the authors prove
the existence of a solution, and from topological degree theory, of triple
solutions.
In [39], it is considered the problem with the ��Laplacian type di¤erential

equation

�
�
�(u(n�1)(t))

�0
= f

�
t; u(t); u0(t); : : : ; u(n�1)(t)

�
;

de�ned on the bounded interval (0; 1); where n � 2, � is an increasing home-

omorphism and f : (0; 1) � Rn ! R is a Carathéodory function, and the
functional boundary conditions�

gi
�
u; u0; : : : ; u(n�1); u(i)(0)

�
= 0; i = 0; : : : ; n� 2;

gn�1
�
u; u0; : : : ; u(n�1); u(n�2)(1)

�
= 0;
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with gi : (C[0; 1])n�R! R, i = 0; : : : ; n�1, continuous functions. Applying
lower and upper solutions method, together with a Nagumo-type condition,
it is proved that, for n � 3; the order between the lower and upper solutions
and their derivatives is not relevant. The type of order depends on whether
n is even or odd and on the existent relationship between the (n � 2) �
nd derivatives of the lower and upper solutions. Moreover, the monotonic
behavior of the nonlinearities is related to the parity of n.
In our problem we combine for the �rst time, as far as we know, all these

features, taking advantage of all of them and allowing their application to
a wider range of real-life problems and phenomena. In short, the method is
based on the de�nition of an auxiliary problem, composed by a truncated and
perturbed equation, with initial values and the asymptotic behavior of the
higher derivative given by truncated functions, which include the functional
data. An adequate operator is de�ned in a weighted Banach space, and the
lack of compactness is overcome by considering weighted norms. Su¢ cient
conditions are given to have �xed points, via Schauder�s �xed point theorem.
Lower and upper solutions method is used to prove that these �xed points,
solutions of the auxiliary problem, are solutions to the initial problem, too.
Moreover, despite the localization part, we stress that these solutions may
be unbounded.
A possible application for higher-order problems de�ned on unbounded

intervals is, for n = 4; the study of the bending of in�nite beams with dif-
ferent types of foundations, as it can be seen for example, in [21, 48, 49, 70].
We point out that, the functional boundary conditions as (5.2), allow us to
consider new types of models, where, for example, global data on the beam
could be considered, which is new on the literature.
The chapter is organized as follows: Section 2 contains the de�nitions

of the weighted Banach space and norms, some a priori bounds and other
auxiliary results. In section 3 it is presented the main result: an existence
and localization theorem for the functional problem. The last section is
concerned with a numerical example related to the estimate of the de�ection
of an in�nite beam, subject to global conditions.
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5.2 De�nitions and auxiliary results

In this work, it will be considered the space

X =

�
x 2 Cn�1[0;+1[: lim

t!+1

x(i)(t)

1 + tn�1�i
exists in R; i = 0; 1; :::; n� 1

�
with the norm kxkX := max

�x(i)
i

	
, i = 0; 1; :::; n� 1, where!(i)

i
= sup

0�t<+1

���� !(i)(t)

1 + tn�1�i

���� ; i = 0; 1; :::; n� 1:
It can be proved that (X; k:kX) is a Banach space.
The following de�nition establishes the regularity of the nonlinear part:

De�nition 5.1 A function f : [0;+1[�Rn ! R is called a L1� Carathéodory
function if it veri�es:

i) for each (y0; :::; yn�1) 2 Rn, t 7! f(t; y0; :::; yn�1) is measurable on [0;+1[;

ii) for almost every t 2 [0;+1[; (y0; :::; yn�1) 7! f(t; y0; :::; yn�1) is continu-
ous in Rn;

iii) for each � > 0, there exists a positive function '� 2 L1[0;+1[, j =
0; 1; :::; n�1; such that whenever (t; y0; :::; yn�1) 2 [0;+1[�Rn satis�es
jyij < � (1 + tn�1�i), i = 0; 1; :::; n� 1, one has

jf(t; y0; :::; yn�1)j � '�(t); a:e: t 2 [0;+1[:

Solutions of the linear problem associated to (5.1)-(5.2) are de�ned with
kernels given by the Green�s function, which can be obtained by standard
calculus, as in [62], Lemma 2.1:

Lemma 5.2 Let h 2 L1[0;+1[: Then the linear boundary value problem
composed by 8<:

u(n)(t) = h (t) , a:e: t 2 [0;+1[;
u(i) (0) = Ai, i = 0; 1; :::; n� 2;

u(n�1) (+1) = B;
(5.3)

with Ai; B 2 R, i = 0; 1; :::; n� 2; has a unique solution given by

u(t) =

n�2X
i=0

Ai
i!
ti +

B

(n� 1)!t
n�1 +

+1Z
0

G(t; s)h (s) ds; (5.4)
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where

G(t; s) =

8>><>>:
n�2X
j=0

�
(�1)j

(n�2�j)!(j+1)!s
j+1tn�2�j

�
; 0 � s � t < +1

1
(n�1)!t

n�1; 0 � t � s < +1:

(5.5)

Remark 5.3 The Green function given by (5.5) satis�es

lim
t!+1

Gi (t; s)

1 + tn�1�i
2 R, for i = 0; 1; :::; n� 1;

with

Gi (t; s) :=
�iG

�ti
(t; s) =

n�2�iX
j=0

 
(�1)j+i

(n� 2� j � i)! (j + 1)!
sj+1tn�2�j�i

!
:

(5.6)

In order to apply a �xed point theorem it is important to have an a
priori estimation for u(n�1)(t): In the literature this bound is obtained from
a Nagumo-type growth.
Let ;� 2 X and de�ne the set

E =

�
(t; y0; :::; yn�1) 2 [0;+1[�Rn : (i)(t) � yi � �(i)(t);
i = 0; 1; :::; n� 2; (n�1) (+1) � yn�1 � �(n�1) (+1)

�
: (5.7)

De�nition 5.4 A L1� Carathéodory function f : E ! R is said to satisfy
a Nagumo-type growth condition in E if it veri�es

jf(t; y0; :::; yn�1)j �  (t)�(jyn�1j);8(t; y0; :::; yn�1) 2 E; (5.8)

for some positive continuous functions  ;�; and some � > 1; such that

sup
0�t<+1

 (t)(1 + t)� < +1;

Z +1

0

s

�(s)
ds = +1: (5.9)

Next lemma provides an a priori bound:
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Lemma 5.5 Let f : [0;+1[�Rn ! R be a L1� Carathéodory function
satisfying (5.8) and (5.9) in E. Then for every r > 0 there exists R > 0 (not
depending on u) such that every u solution of (5.1), satisfying

(i)(t) � u(i)(t) � �(i)(t); i = 0; 1; :::; n� 2; (5.10)

(n�1)(+1) � u(n�1)(+1) � �(n�1)(+1);

for t 2 [0;+1[; veri�es u(n�1)
n�1 < R: (5.11)

Proof. Let u be a solution of (5.1) such that (5.10) holds. Consider r > 0
such that

r > max
���(n�1)(+1)�� , ���(n�1)(+1)��	 : (5.12)

By the previous inequality and (5.7), we cannot have
��u(n�1)(t)�� > r; 8t 2

[0;+1[:
If
��u(n�1)(t)�� � r;8t 2 [0;+1), taking R > r=2 the proof is complete as

u(n�1)
n�1 = sup

0�t<+1

����u(n�1)(t)2

���� � r

2
< R:

If there exists t0 2 [0;+1) such that
��u(n�1)(t0)�� > r, then, in the case

that u(n�1)(t0) > r; by (5.9), we can take R > r such that

Z R

r

s

�(s)
ds > M max

8><>:
M1 + sup0�t<+1

�(n�2)(t)
1+t

�
��1 ;

M1 � inf0�t<+1 (n�2)(t)
1+t

�
��1

9>=>;
with

M := sup
0�t<+1

 (t)(1 + t)� and M1 := sup
0�t<+1

�(n�2)(t)

(1 + t)�
� inf
0�t<+1

(n�2)(t)

(1 + t)�
:

By (5.12), choose t1 2 (0;+1) such that t1 > t0 and

u(n�1)(t1) = r; u(n�1)(t) > r; 8t 2 [t0; t1[:
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ThenZ u(n�1)(t0)

u(n�1)(t1)

s

�(s)
ds =

Z t0

t1

u(n�1)(s)

�ju(n�1)(s)ju
(n)(s)ds

�
Z t1

t0

��f(s; u(s); :::; u(n�1)(s))��
�(u(n�1)(s))

u(n�1)(s)ds

�
Z t1

t0

 (s) u(n�1)(s) ds �M

Z t1

t0

u(n�1)(s)

(1 + s)�
ds

= M

Z t1

t0

�
u(n�2)(s)

(1 + s)�

�0
+
�u(n�2)(s)

(1 + s)1+�
ds

= M

�
u(n�2)(t1)

(1 + t+)�
� u(n�2)(t0)

(1 + t�)�
+

Z t1

t0

�u(n�2)(s)

(1 + s)1+�
ds

�
� M

�
M1 + sup

0�t<+1

�(n�2)(t)

1 + t

Z +1

0

�

(1 + s)�
ds

�
<

Z R

r

s

�(s)
ds:

So u(n�1)(t0) < R and as t1; t0 are arbitrary in [0;+1), for the values
where u(n�1)(t) > r; we have that u(n�1)(t) < R;8t 2 [0;+1[.
By the same technique, considering t� and t� such that u(n�1)(t�) < �r;

u(n�1)(t�) = �r; u(n�1)(t) < �r;8t 2 [t�; t�], it can be proved that u(n�1)(t) >
�R;8t 2 [0;+1[; and, therefore,

u(n�1)
n�1 <

R
2
< R;8t 2 [0;+1):

Next result will play a key role to apply a �xed-point theorem.

Lemma 5.6 ([1]) A set M � X is relatively compact if the following condi-
tions hold:

1. all functions from M are uniformly bounded;

2. all functions from M are equicontinuous on any compact interval of
[0;+1[;

3. all functions from M are equiconvergent at in�nity, that is, for any
given � > 0, there exists a t� > 0 such that, for i = 0; 1; :::; n� 1;���� u(i)(t)

1 + tn�1�i
� lim

t!+1

u(i)(t)

1 + tn�1�i

���� < �; for all t > t�, x 2M:
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The functions considered as lower and upper solutions for the initial prob-
lem are de�ned as it follows:

De�nition 5.7 A function � 2 Cn[0;+1[\X is said to be a lower solution
of problem (5.1), (5.2) if8<:

�(n)(t) � f(t; �(t); �0(t); :::; �(n�1)(t)); t 2 [0;+1[;
Li(�

(i); � (0) ; :::; �(n�2) (0) � 0; i = 0; 1; :::; n� 2;
Ln�1

�
�; �(n�1) (+1)

�
> 0

A function � is an upper solution of problem (5.1), (5.2) if the reversed
inequalities hold.

Forward, the boundary functions Lj; for j = 0; 1; :::; n � 1; must verify
the following assumptions:

(H1) For i = 0; 1; :::; n � 2; Li (w; y0; y1; :::; yn�2) is nondecreasing in all the
arguments except in the (i+ 2)� nd variable;

(H2) lim
t!1

Ln�1 (w; z) 2 R for � � w � � and �(n�1) (+1) � z � �(n�1) (+1) ;

(H3) Ln�1 (w; z) is nondecreasing on w for z �xed:

5.3 Main Result

This section contains an existence and localization result, that is, not only
the existence of at least a solution for problem (5.1), (5.2) is proved, but also
it provides some localization data for this solution and its derivatives.

Theorem 5.8 Let f : [0;+1[�Rn ! R be a L1� Carathéodory function,
and �; � lower and upper solutions of (5.1),(5.2) respectively, such that

�(n�2)(t) � �(n�2)(t);8t 2 [0;+1[: (5.13)

�(i)(0) � �(i)(0); i = 0; 1; :::; n� 3; (5.14)

and
�(n�1)(+1) � �(n�1)(+1): (5.15)
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Assume that f veri�es the Nagumo conditions (5.8) and 5.9) in the set

E� =

�
(t; y0; :::; yn�1) 2 [0;+1[�Rn; �(i)(t) � yi � �(i)(t); i = 0; 1; :::; n� 2;

�(n�1) (+1) � yn�1 � �(n�1) (+1)

�
;

and

f
�
t; �(t); �0 (t) ; :::; �(n�3)(t); yn�2; yn�1

�
� f(t; y0; :::; yn�1) (5.16)

� f
�
t; �(t); �0 (t) ; :::; �(n�3)(t); yn�2; yn�1

�
and the assumptions (H1) ; (H2) and (H3) hold.
If there is � > 0 such that,

max

8>>>>><>>>>>:

k�kX ; k�kX ; R;

max
i=0;1;:::;n�2

(
n�2P
j=i

Mj

(j�i)! +
M1

(n�1�i)! +
+1R
0

Mi (s)
�
'� (s) +

1
1+s2n

�
ds

)
;

M1
2
+ 1

2

+1R
0

�
'� (s) +

1
1+s2n

�
ds

9>>>>>=>>>>>;
< �

(5.17)
where

Mj := max
n���(j) (0)�� ; ����(j) (0)���o ;

M1 := max
n���(n�1) (+1)�� ; ����(n�1) (+1)���o ;

Mi (s) := sup
0�t<+1

jGi (t; s)j
1 + tn�1�i

; i = 0; 1; :::; n� 1; (5.18)

and Gi (t; s) are given by (5.6), then, for R given by (5.11), there is u 2 X;
solution of problem (5.1),(5.2), such that

�(i)(t) � u(i)(t) � �(i)(t); i = 0; 1; :::; n� 2;
�R < u(n�1)(t) < R; for t 2 [0;+1[;

�(n�1) (+1) � u(n�1) (+1) � �(n�1) (+1) :

Proof. By integration of (5.13) and (5.14), �(j)(t) � �(j)(t); j = 0; 1; :::; n�
3; for t 2 [0;+1[: Therefore we can consider the modi�ed and perturbed
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equation

u(n)(t) = f
�
t; �0(t; u (t)); �1(t; u

0 (t)); :::; �n�2(t; u
(n�2) (t)); u(n�1) (t))

�
(5.19)

+
1

1 + t2n
u(n�2)(t)� �n�2(t; u

(n�2) (t))

1 + ju(n�2)(t)� �n�2(t; u(n�2) (t))j
; t 2 [0;+1[;

where the functions �j : [0;+1[�R! R; i = 0; 1; :::; n� 2; are given by

�i(t; yi) =

8><>:
�(i)(t) ; yi > �(i)(t)

yi ; �(i)(t) � yi � �(i)(t)

�(i)(t) ; yi < �(i)(t)

; i = 0; 1; 2; :::; n� 3; (5.20)

together with the truncated boundary conditions and8<:
u(i) (0) = �i

�
0; u(i) (0) + Li

�
u(i); u (0) ; u0 (0) ; :::; u(n�1) (0)

��
;

for i = 0; 1; :::; n� 2;
u(n�1) (+1) = �1

�
u(n�1) (+1) + Ln�1

�
u; �1

�
u(n�1) (+1)

��� (5.21)

where

�1(t; y) =

8<:
�(n�1) (+1) ; y > �(n�1) (+1)

y ; �(n�1) (+1) � y � �(n�1) (+1)
�(n�1) (+1) ; y < �(n�1) (+1) :

(5.22)

Let us de�ne the operator T : X ! X

Tu(t) =
n�2X
j=0

Aj
j!
tj +

B

(n� 1)!t
n�1 +

+1Z
0

G (t; s)Fu (s) ds

with

Aj := �j
�
0; u(j) (0) + Lj

�
u(j); u (0) ; u0 (0) ; :::; u(n�2) (0)

��
;

B := �1
�
u(n�1) (+1) + Ln�1(u; �1

�
u(n�1) (+1)

�
)
�
;

Fu (s) : = f
�
s; �0 (s; u (s))); :::; �n�2

�
s; u(n�2) (s)

�
; u(n�1) (s)

�
+

1

1 + s2n
u(n�2) (s)� �n�2(s; u

(n�2) (s))

1 + ju(n�2) (s)� �n�2(s; u(n�2) (s))j
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and G (t; s) given by (5.5).
For clearness, the proof will follow several steps:

STEP 1: T is compact

(i) T : X ! X is well de�ned.

Let u 2 X. As f is a L1�Carathéodory function by, Tu 2 Cn�1 ([0;+1[)
and by De�nition 5.1, for u 2 X such that kukX < �0; with

�0 > max fk�kX ; k�kX ; Rg ; (5.23)

there is a positive function '�0 2 L
1 [0;+1[ ; such that

+1Z
0

jFu (s)j ds �
+1Z
0

�
'�0 (s) +

1

1 + s2n

�
ds < +1:

Therefore, Fu is also a L1� Carathéodory function.
Moreover, for i = 0; 1; :::; n� 1; and Gi (t; s) given by (5.6), we have

lim
t!+1

(Tu)i (t)

1 + tn�1�i
=

lim
t!+1

1

1 + tn�1�i

24n�2X
j=i

Aj
tj�i

(j � i)!
+B

tn�1�i

(n� 1� i)!
+

+1Z
0

Gi (t; s)Fu (s) ds

35 < +1;

that is, Tu 2 X:
(ii) T is continuous.

For any convergent sequence un ! u in X, there exists � > 0 such that
supn kunkX < �, and

kTun � TukX = max
�(Tun)(i) � (Tu)(i)i ; i = 0; 1; :::; n� 1	

= max
i=0;1;:::;n�1

(
sup

0�t<+1

��(Tun)(i) (t)� (Tun)(i) (t)��
1 + tn�1�i

)

�
+1

max
i=0;1;:::;n�1

Z
0

jGi (t; s)j
1 + tn�1�i

jFun (s)� Fu (s)j ds

� max
i=0;1;:::;n�1

+1Z
0

Mi (s) jFun (s)� Fu (s)j ds �! 0 ; n! +1;
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with Mi (s) given by (5.18).

(iii) T is compact.

Let B � X be a bounded subset. Therefore there is r > 0 such that
kukX < r; 8u 2 B.
By (i) and (ii) it is clear that

kTukX = max
�(Tu)(i)

i
; i = 0; 1; :::; n� 1

	
= max

i=0;1;:::;n�1

(
sup

0�t<+1

��(Tu)(i)��
1 + tn�1�i

)
< +1

and so TB is uniformly bounded.
In order to prove that TB is equicontinuous, consider L > 0 and t1; t2 2

[0; L]: Suppose, without loss of generality, that t1 < t2. Then����(Tu)(i) (t1)1 + tn�1�i1

� (Tu)
(i) (t2)

1 + tn�1�i2

���� �����������
1

1+tn�1�i1

"
n�2X
j=i

Aj
tj�i1

(j�i)! +B
tn�1�i1

(n�1�i)!

#

� 1

1+tn�1�i2

"
n�2X
j=i

Aj
tj�i2

(j�i)! +B
tn�1�i2

(n�1�i)!

#
����������

+

+1Z
0

���� Gi (t; s)1 + tn�1�i1

� Gi (t; s)

1 + tn�1�i2

���� jFu (s)j ds! 0; as t1 ! t2:

For i = n� 1; the function Gn�1 is not continuous for s = t; and

����(Tu)(n�1) (t1)2
� (Tu)

(n�1) (t2)

2

���� �
+1Z
0

����Gn�1 (t1; s)�Gn�1 (t2; s)

2

���� jFu (s)j ds
� 1

2

t2Z
t1

jFu (s)j ds! 0; as t1 ! t2:
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Moreover TB is equiconvergent at in�nity because, by the Lebesgue�s
Dominated Convergence Theorem, we obtain, for i = 0; 1; :::; n� 2;����� (Tu)(i) (t)1 + tn�1�i

� lim
t!+1

(Tu)(i) (t)

1 + tn�1�i

����� =���������
1

1+tn�1�i

 
n�2X
j=i

Aj
tj�i

(j�i)! +B tn�1�i

(n�1�i)!

!
+
+1R
0

Gi (t; s)Fu (s) ds� B
(n�1�i)!

���������! 0;

as t! +1; and, for i = n� 1;�����(Tu)(n�1) (t)2
� lim

t!+1

(Tu)(n�1) (t)

2

����� = 1

2

+1Z
t

jFu (s)j ds! 0

as t! +1
Therefore by Lemma 5.6, TB is relatively compact, and so, T is compact.

STEP 2. The problem (5.19), (5.21) has at least a solution.

By Lemma 5.2, the �xed points of T are solutions of problem (5.19),
(5.21). So it is enough to prove that T has a �xed point.
To apply Schauder�s Fixed Point Theorem, we consider the non empty,

closed, bounded and convex set D � X; de�ned by

D := fu 2 X : kukX � �1g

with �1 > 0 given by

max
i=0;1;:::;n�2

8>>>>>><>>>>>>:

n�2P
j=i

jAj j
(j�i)! +

jBj
(n�1�i)! +

+1Z
0

Mi (s)
�
'�1 +

1
1+s2n

�
ds;

jBj
2
+ 1

2

+1Z
0

�
'�1 +

1
1+s2n

�
ds

9>>>>>>=>>>>>>;
< �1:

Let us prove that TD � D:
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For i = 0; 1; :::; n� 2; and u 2 D;(Tu)(i)
X

= max
i

(Tu)(i)
i
= max

i

(
sup

0�t<+1

����� (Tu)(i) (t)1 + tn�1�i

�����
)

� max
i

266664 sup
0�t<+1

0BBBB@
n�2P
j=i

jAjj tj�i

(1+tn�1�i)(j�i)! + jBj
tn�1�i

(1+tn�1�i)(n�1�i)!

+

+1Z
0

jGi(t; s)j jFu (s)j ds

1CCCCA
377775

� max
i

8<:
n�2X
j=i

jAjj
(j � i)!

+
jBj

(n� 1� i)!
+

+1Z
0

Mi (s) jFu (s)j ds

9=;
� max

i

8<:
n�2X
j=i

jAjj
(j � i)!

+
jBj

(n� 1� i)!
+

+1Z
0

Mi (s)

�
'�1 +

1

1 + s2n

�
ds

9=;
< �1:

For i = n� 1;(Tu)(n�1)
n�1

= sup
0�t<+1

�����(Tu)(n�1) (t)2

����� = 1

2

������B +
+1Z
0

Fu (s) ds

������
� jBj

2
+
1

2

+1Z
0

�
'�1 +

1

1 + s2n

�
ds < �1:

Therefore TD � D; and by Schauder�s Fixed Point Theorem, the operator
T has a �xed point u� which is a solution of problem (5.19), (5.21).

STEP 3. Every solution of problem (5.19), (5.21) veri�es

�(i)(t) � u(i)(t) � �(i)(t); i = 0; 1; :::; n� 2; (5.24)

�R < u(n�1)(t) < R; for t 2 [0;+1[; (5.25)

�(n�1) (+1) � u(n�1) (+1) � �(n�1) (+1) : (5.26)

Let u be a solution of the modi�ed problem (5.19), (5.21) and sup-
pose that, by contradiction, there exists t 2 [0;+1) such that �(n�2)(t) >
u(n�2)(t). Therefore

inf
0�t<+1

(u(n�2)(t)� �(n�2)(t)) < 0:
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By (5.14), this in�mum can not be attained neither on 0 as, by (5.20)
and (5.21),

(u(n�2)(0)� �(n�2)(0)) = �n�2
�
0; u(n�2) (0) + Ln�2

�
u(n�2); u (0) ; :::; u(n�2) (0)

��
��(n�2) (0) � 0;

nor at +1; as, by (5.22),

(u(n�1)(+1)� �(n�1)(+1)) =
�1
�
u(n�1) (1) + Ln�1

�
u; �1u

(n�1) (+1)
��
� �(n�1) (+1) � 0:

Then there is an interior point t� 2 (0;+1) such that

min
0�t<+1

(u(n�2)(t)� �(n�2)(t)) := u(n�2)(t�)� �(n�2)(t�) < 0;

with u(n�1)(t�) = �(n�1)(t�) and u(n)(t�) � �(n)(t�) � 0. Therefore by (5.16)
and De�nition 5.7, we get the contradiction

0 � u(n)(t�)� �(n)(t�)

= f(t�; �0(t�; u(t�)); :::; �n�2(t�; u
(n�2)(t�)); u

n�1(t�))

+
1

1 + t2n�

u(n�2)(t�)� �n�2(t�; u
(n�2)(t�))

1 + jun�2(t�)� �n�2(t�; un�2(t�))j
� �(n)(t�)

= f(t�; �0(t�; u(t�)); :::; �n�3(t�; u
(n�3)(t�)); �

(n�2)(t�); �
(n�1)(t�))

+
1

1 + t2n�

u(n�2)(t�)� �(n�2)(t�)

1 + ju(n�2)(t�)� �(n�2)(t�)j
� �(n)(t�)

� f
�
t�; � (t�) ; �

0 (t�) ; :::; �
(n�1) (t�)

�
+

1

1 + t2n�

u(n�2)(t�)� �(n�2)(t�)

1 + ju(n�2)(t�)� �(n�2)(t�)j
� �(n)(t�)

� 1

1 + t2n�

u(n�2)(t�)� �(n�2)(t�)

1 + ju(n�2)(t�)� �(n�2)(t�)j
< 0:

So u(n�2)(t) � �(n�2)(t); 8t 2 [0;+1[.
Analogously it can be shown that u(n�2)(t) � �(n�2)(t);8t 2 [0;+1[.
By (5.14), integrating on [0;+1[; we have

�(n�3) (t) � u(n�3) (t)� �n�3
�
0; u(n�3) (0) + Ln�3

�
u(n�3); u (0) ; :::; u(n�2) (0)

��
+�(n�3) (0) � u(n�3) (t) ;
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and by similar arguments

�(i)(t) � u(i)(t); for t 2 [0:+1[; and i = 0; 1; :::; n� 3:

With the same technique it can be proved that

u(i)(t) � �(i)(t); for t 2 [0 +1[; and i = 0; 1; :::; n� 2;

and, therefore,

�(i)(t) � u(i)(t) � �(i)(t);8t 2 [0;+1[; i = 0; 1; :::; n� 2:

So, this solution of problem (5.19), (5.21) belongs to E� and condition
(5.25) is a direct consequence of Lemma 5.5.
Moreover, (5.26) is trivially veri�ed, by (5.22).

STEP 4. Let u� be a solution of problem (5.19), (5.21). Then u� is a
solution of problem (5.1), (5.2).

According to Step 3, to prove this claim it is enough to show that

�(i) (0) � u(i)� (0) + Li
�
u(i)� ; u� (0) ; :::; u

(n�2)
� (0)

�
� �(i) (0) ; (5.27)

for i = 0; 1; :::; n� 2; and

�(n�1) (+1) � u(n�1)� (+1) + Ln�1
�
�1
�
u(n�1)� (+1)

��
� �(n�1) (+1) :

Suppose that the �rst inequality of (5.27) does not hold for i = n � 2:
That is,

�(n�2) (0) > u(n�2)� (0) + Ln�2
�
u(n�2)� ; u� (0) ; :::; u

(n�2)
� (0)

�
: (5.28)

Therefore, by (5.20) and (5.21) we have

u(n�2)� (0) = �(n�2) (0) :

By De�nition 5.7 and (H1) the following contradiction with (5.28) holds:

u(n�2)� (0) + Ln�2
�
u(n�2)� ; u� (0) ; :::; u

(n�3)
� (0) ; u(n�2)� (0)

�
= �(n�2) (0) + Ln�2

�
u(n�2)� ; u� (0) ; :::; u

(n�3)
� (0) ; �(n�2) (0)

�
� �(n�2) (0) + Ln�2

�
�(n�2); � (0) ; :::; �(n�3) (0) ; �(n�2) (0)

�
� �(n�2) (0)
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A similar contradiction can be obtained in the remaining inequalities.
So, (5.27) holds.
Assume now that

u(n�1)� (+1) + Ln�1
�
u�; �1

�
u(n�1)� (+1)

�
< �(n�1) (+1)

�
: (5.29)

Therefore, by (5.21),

u(n�1)� (+1) = �(n�1) (+1)

which, by (H3) and De�nition 5.7, leads to a contradiction with (5.29):

u(n�1)� (+1) + Ln�1
�
u�; �1

�
u(n�1)� (+1)

��
= �(n�1) (+1) + Ln�1

�
u�; �

(n�1) (+1)
�

� �(n�1) (+1) + Ln�1
�
�; �(n�1) (+1)

�
> �(n�1) (+1)

Therefore

u(n�1)� (+1) + Ln�1
�
u�; �1

�
u(n�1)� (+1)

�
� �(n�1) (+1)

�
Applying the same technique it can be proved that

u(n�1)� (+1) + Ln�1

�
u�; �1

�
u(n�1)� (+1)

�
� �(n�1) (+1)

�
:

Therefore u� is a solution of problem (5.1), (5.2).

5.4 In�nite nonlinear beam resting on nonuni-
form elastic foundations

In [49], the author studies the bending of an in�nite beam modelled by the
nonlinear Bernoulli-Euler-v.Karman di¤erential equation

EIu(4)(t) + ku(t) =
3

2
EA(u0(t))2u00(t) + !(t); t 2 R; (5.30)

together with asymptotic boundary conditions.
This problem analyses moderately de�ections of in�nite nonlinear beams

resting on nonuniform elastic foundations, subject to localized shear forces.
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For the readers convenience we recall that E is the Young�s modulus, I the
mass moment of inertia, k u(t) is the spring force upward, with k a spring
constant, (neglecting the beam�s weight, for simplicity), A the cross-sectional
area of the beam and !(t) the applied load downward.

In�nite nonlinear beam resting on nonuniform elastic foundations.

Motivated by the above problem, we consider a numerical example com-
posed by the nonlinear fourth order di¤erential equation

u(4)(t) =
1

10

1

1 + t4

�
ju00(t)j
1 + t

e�u
0(t) � k arctan(u(t)) + 2u000(t)

�
; (5.31)

for t 2 [0;+1[; and k > 0:
Assume that u 2 X; the sum

P+1
i=1

u00(i2)
i4

; and the integral
R +1
0

ju(t)j
1+t6

dt are
�nite. Then, de�ne the functional boundary conditions8>>>>><>>>>>:

u(0) = min
t2[0;+1[

u(t)

u0(0) = 1
4
ku0k1 ;

u00(0) = 1
7

+1P
i=1

u00(i2)
i4

u000(+1) =
R +1
0

ju(t)j
1+t6

dt:

(5.32)

Indeed, the problem (5.31), (5.32) is a particular case of the initial prob-
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lem (5.1), (5.2) with n = 4;

f(t; y0; y1; y2; y3) =
1

10

1

1 + t4

�
jy2j
1 + t

e�y1 � k arctan y0 + 2y3

�
;

L0 (w;w0; w1; w2) = min
t2[0;+1[

w(t)� w0;

L1 (w
0; w0; w1; w2) =

1

4
kw0k1 � w1;

L2 (w
00; w0; w1; w2) =

1

7

+1X
i=1

w00(i2)

i4
� w2;

L3 (w;w3) =

Z +1

0

jw(t)j
1 + t6

dt� w3:

The functions �; � 2 X; de�ned by � = 1
2
and � = t3 + t2 + t + 1

are, respectively, lower and upper solution solutions of (5.31), (5.32), for
0 < k � 7, verifying (5.13), (5.14), and (5.15).
The assumptions (H1) ; (H2) and (H3) are ful�lled and the Nagumo con-

dition is veri�ed in the set

E� =
n
(t; y0; y1; y2; y3) 2 [0;+1[�R4; �(i)(t) � yi � �(i)(t); i = 0; 1; 2

o
;

with
 (t) =

1

10

1

1 + t4
, �(jy3j) = 6 +

7�

2
+ 2 jy3j ; and � = 4:

As the Green�s function for the homogeneous problem8>>>><>>>>:
u(4)(t) = 0
u(0) = 0
u0(0) = 0
u00(0) = 0

u000(+1) = 0

is given by

G(t; s) =

8<:
s3

6
� ts2

2
+ t2s

2
; 0 � s � t

t3

6
; t � s <1;
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then the constants, in (5.17), are

k�kX =
1

2
; k�kX = 6; R = 3;

M0 = 1;M1 = 1;M2 = 2;M3 = 6;M1 = 6;

M0 (s) =
1

6
;M1 (s) =

1

2
;M2 (s) = 1;M3 (s) =

1

2
;

and

'� (t) =
1

10

1

1 + t4

�
�

1 + t
+
7�

2
+ 2�

�
:

It can be easily seen, from the corresponding calculus, that condition
(5.17) holds for � > 14; 52:
Therefore, by Theorem 5.8, there is a solution u of problem (5.31), (5.32),

for 0 < k � 7, such that, for t 2 [0;+1[;

1

2
� u(t) � t3 + t2 + t+ 1;

0 � u0(t) � 3t2 + 2t+ 1;
0 � u00(t) � 6t+ 2;

�6 < u000(t) < 6;

and
0 � u000 (+1) � 6:
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