
Constraint Modeling for Forest
Management

Eduardo Eloy, Vladimir Bushenkov, and Salvador Abreu

Abstract Forestmanagement is an activity of prime economic and ecological impor-
tance. Managed forest areas can span very large regions and their proper manage-
ment is paramount to an effective development, in terms both of economic and natural
resources planning. Amanaged activity consists of individual and mutually indepen-
dent policy choices which apply to distinct patches of land—named stands—which,
as a whole, make up the forest area. A forest management plan typically spans a
period of time on the order of a century and is normally geared towards the optimisa-
tion of economic or environmental metrics (e.g. total wood yield.) In this article we
present a method which uses a declarative programming approach to formalise and
solve a long-term forest management problem. We do so based on a freely available
state-of-the-art constraint programming system,whichwe extend to naturally express
concepts related to the core problem and efficiently compute solutions thereto.

Keywords Constraint programming · Forest management · Spatial restrictions ·
Adjacency constraints

1 Introduction

Forest management is a multi-faceted resource management and planning problem
domain, one in which aspects such as the interests of multiple stakeholders, a diver-
sity of underlying biological and physical models, economic performance and the

E. Eloy
University of Évora, Evora, Portugal
e-mail: m47215@alunos.uevora.pt

V. Bushenkov (B)
CIMA, University of Évora, Evora, Portugal
e-mail: bushen@uevora.pt

S. Abreu
NOVA-LINCS, University of Évora, Evora, Portugal
e-mail: spa@uevora.pt

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. V. Tchemisova et al. (eds.), Dynamic Control and Optimization,
Springer Proceedings in Mathematics & Statistics 407,
https://doi.org/10.1007/978-3-031-17558-9_10

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17558-9_10&domain=pdf
mailto:m47215@alunos.uevora.pt
mailto:bushen@uevora.pt
mailto:spa@uevora.pt
https://doi.org/10.1007/978-3-031-17558-9_10

186 E. Eloy et al.

impact of climate change in more than one sense, all combine to create complex
combinatorial optimisation situations.

Traditional Operations Research techniques, relying on Mixed Integer Linear
Programming (MILP), while effective at solving a problem once it has beenmodeled,
remain very difficult from a technical point of view. Constraint Programming [1, 2]
provides a paradigm whereby one may directly model a problem in terms of the
entities which are pertinent thereto, together with the relevant relations which they
must observe, in a fairly abstract and generic fashion. This specification is understood
to be executable, in that it is sufficient for a constraint solver to efficiently search
for a solution. Moreover, because constraint programming relinquishes the notion of
control, it stands as a natural candidate for the effective application to non-standard
computing architectures, such as massively parallel systems, embodied in GPUs and
hierarchical multiprocessors as found in HPC clusters with large-scale distributed
memory [3]. This characteristic makes Constraint Programming potentially suitable
for larger problem instances, as it not only facilitates the problem expression but
also benefits directly from the increase in available computational resources, which
is otherwise hard to exploit.

The remainder of this paper is structured as follows: the next section contains a
brief revision of existing techniques used to solve similar problems. Section3 recalls
the basics of Constraint Programming. In Sect. 4 we provide a description of the
model which was used to address the proposed problem. Section5 contains a concise
account of the prototype implementation, which is then experimentally evaluated in
Sect. 6. Finally we conclude in Sect. 7 with a self-assessment and possible directions
for further development.

2 Related Work

Theuse of forest resources is traditionallymultifaceted. To ensure that these resources
remain available for use by present and future generations, sustainable management
practices are essential to balance the diverse and often competing demands of forest
management. One way of planning management to minimise the impact of forestry
activities is to include spatial constraints (or adjacency constraints) in the analysis of
harvest schedules [4]. The objective function may be to maximise profit, net present
value or other alternatives.

The Forest management authorities often place restrictions on the size of harvest
openings. At present, the legal limits on clear-cut sizes in Portugal are set to 50 ha.
Such restrictions can dramatically complicate the forest planning.

Many researchers used Integer Programming or Mixed-Integer Programming
models to model spatial forest planning problems (see for example [5–8]). The deci-
sion variables usually correspond to harvesting blocks at a particular period of time.
The Unit Restriction Model (URM) and Area Restriction Model (ARM) are the
two main approaches to deal with adjacency in harvest scheduling models [9]. In
the URM approach, the boundaries of each potential cutting block are predefined;

Constraint Modeling for Forest Management 187

simultaneous harvesting is prohibited in two adjacent units. However, the ARM
models allow simultaneous harvesting of adjacent units, provided their combined
area does not exceed the maximum allowable cut size [9]. In the latter approach,
the harvest block boundaries are not predefined; instead, they are defined through
models that determine all the potential harvesting blocks that satisfy a maximum
allowable cut [8, 10]. Formulating and solving ARM models is significantly more
difficult than formulating and solvingURMmodels [11]. UnlikeURMmodels, ARM
models are very flexible and generate more useful possibilities of better-performing
harvesting plans. The first ARM formulations encompass an exponential number of
variables or constraints. One integer programming ARM with a polynomial number
of variables and constraints—called Area Restriction with Stand-Clear-Cut variables
(ARMSC)—was proposed in [12].

These models are typically implemented as very large mixed integer linear pro-
gramming (MILP) problems that are difficult to solve. The branch and bound algo-
rithm (BBA) is a general method of obtaining exact solutions to MILP problems [5,
12, 13]. Until recently, however, only relatively small or medium problems could be
solved with this algorithm. Considerable effort has been therefore put into devel-
oping alternative methods of solving harvest scheduling models with adjacency
constraints, including heuristics, such as Monte Carlo integer programming [14],
simulated annealing [15], genetic algorithm [16], and dynamic programming [17].

In this article we will apply a propagation-based Constraint Programming tech-
nique to solve one ARM problem for the Vale de Sousa region in Portugal [18].

3 Constraint Programming

Constraint modeling is a declarative paradigm which is also executable, hence the
term Constraint Programming. This topic has been thoroughly covered in the lit-
erature over the last couple of decades and is the focus of a significant and active
research community. There are several introductory texts which cover Constraint
Programming, see for example [1].

An application may be formulated as a Constraint Satisfaction Problem (CSP)
P , which consists of a triple (V, D,C) where V is a set of variables, D is a set
of domains for the elements of V and C is a set of constraints, i.e. relations over
P(D)which must hold. The nature of the domains for the variables (Finite Domains,
Booleans, Sets, Real numbers, Graphs, etc.), together with the specific relations
(i.e. the Constraints) greatly influence the class of problems and application areas
for which Constraint Programming form a good match. The vocabulary of built-in
constraints combined with composition operators results in a very feature-rich and
expressive formalism, which is arguably closer to most application domains than
traditional O.R. formulations.

AConstraint Optimisation Problem (COP) is like a CSP but we are also interested
inminimizing (ormaximizing) an objective function. To achieve this, onemay equate
the objective function to the value of a particular variable. It is then possible to solve

188 E. Eloy et al.

a COP by iteratively solving interrelated CSPs, involving the addition of a constraint
which establishes an inequation between the analytical definition of the objective
function and the previously found value.

The model for an application problem may be declaratively formulated as a CSP,
which will form the specification for a constraint solver to find a solution thereto.
Many successful approaches have been followed to solve CSPs, namely systematic
search, in which variables see their domain progressively restricted and each such
step triggers the reduction of the domains of related variables, as dictated by the
consistency policy—these are in general designated as propagation-based constraint
solvers and there are several ones, some being presented as libraries for use within a
general-purpose programming language, such as Gecode [19] or Choco [20]. Others
offer a domain-specific language (DSL) which may be used to model a problem and
provide it as input to different solvers; such is the case for instance for MiniZinc [21]
or PyCSP3 [22].

Another approach entails selecting an initial solution candidate and working a
path towards an actual solution by means of an iterative repair algorithm. The latter
forms the basis for several local search techniques, which may be generalised to
relatedmethods calledmetaheuristics. Solverswhich derive the strategy used to guide
the search from the specification of a CSP are called constraint-based local search
solvers [23] and combine the convenience of a declarative problem formulation with
the (relative) efficiency of an anytime algorithm.

Solvers exist for both propagation-based search and metaheuristic search, which
exhibit high performance and the capacity to make use of parallel hardware to attain
yet better performance, e.g. as discussed in [24, 25].

Constraint modeling allows one to express a problem by means of both simple
arithmetic and logic relations, but also resorting to global constraints. These are
instance-independent yet problem-class-specific relations, for which particular ded-
icated algorithms can be devised and encapsulated in a reusable specification com-
ponent. Intuitively, a global constraint expresses a useful and generic higher-level
concept, for which there is an efficient (possibly black-box) implementation. For
instance, the AllDifferent constraint applies to a set of variables and requires
them to take pairwise distinct values. It may be internally implemented in a naïve
way by saying that each distinct pair of variables in the list must be different, or
it may resort to a more specialized algorithm to achieve the same result more effi-
ciently. The application programmer will benefit from the performance gain with no
additional effort.

Global constraints have proved to be a fertile ground for effective research, over
the years. A limited common set of global constraints has been presented in the
XCSP3-core document [26], which lists 20 such frequently used and generally use-
ful constraints. This forms the basic vocabulary of XCSP3-core, an intermediate
representation for CSPs designed with the purpose of interfacing different high-level
modeling tools with distinct specific constraint solvers.

Constraint Modeling for Forest Management 189

4 Modeling Forest Management

A Forest Management problem over a geographical map consists of:

– A set of management units (we may sometimes use the acronym MU), or stands,
which represent contiguous pieces of land. A stand has fixed and time-dependent
attributes. In the former case we include surface area and adjacency information
(w.r.t. other stands.) The latter includes the species which is planted and the man-
agement action which is planned at a given time.

– A set of prescriptionswhich apply to the stands. These are actions to be carried out
in the context of each stand, in a given point in time, and they include harvesting
(removing all the trees), thinning (cutting off some wood but leaving the trees in
place) or just doing nothing.

The problem we are aiming to solve entails selecting a prescription for each stand in
the map, over the entire planning period. This goal is further qualified by a criterion
which is to be optimised for, for instance maximum total wood output.

We are given as input a set P of prescription definitionswhich describe a sequence
of time-indexed actions to be applied to eachmanagement unit (ui .) Each prescription
p is a tuple of the form: (uid, id, wt, wh, c, y, s) where:

uid is a management unit identifier: an integer value over the finite set of unit iden-
tifiers U ⊂ N.1

id is an integer which uniquely identifies the prescription. It ranges over the finite
set of prescription identifiers P ⊂ N.

wt is the wood reward for thinning.
wh is the wood reward for harvesting.
c is the cork reward.
y is the year this operation applies to (as an offset from the starting year for the
simulation).

s is the species of tree which is planted on this management unit, and therefore
available for the next period.

Prescriptions represent a strategy for each management unit, which will apply for
the duration of the simulation. There may be more than one possible prescription for
each management unit, with the understanding that they are mutually exclusive, i.e.
one must choose which prescription to apply to each management unit. In the data
we are working with, the simulation is carried out over a period of 90 years, so the
domain of the y variables is the range {1 . . . 90}.

Moreover, we have a set U of management units, each of which is a tuple of the
form u = (uid, s, a), where:

1 Note that both the management unit identifiers and the prescription identifiers are remapped from
the original external arbitrary string representation, which is more complicated than what we have
here.

190 E. Eloy et al.

– uid ∈ U is the management unit identifier, as above.
– s ∈ R

+ is a surface area (obtained from a geographical outline), expressed in
hectares.

– a is a set of adjacent management units, qualified with the length of the common
border, i.e. a set of pairs (uida, la)where uida is anothermanagement unit identifier
and la is the length (in meters) of the shared border between uid and uida .

We define the function adj : U → 2U , whichmaps amanagement unit identifier to
the set of its adjacent units. We also introduce an auxiliary collection of parameters,
Ai j which are defined as Ai j = true if j ∈ adj(i) and false otherwise.

We also introduce the function prescr : U → 2P , which associates a unit identifier
with the set of prescription identifiers which may apply to it. Conversely, we define
the function units : P → 2U which maps a prescription identifier to the set of unit
identifiers it may apply to.

We model the problem as a Constraint Satisfaction Problem (CSP) over Finite
Domains (FD).

Let Pi be the prescription assigned to management unit i ∈ U , Pi will range over
the set of identifiers for all prescriptionsP . We say S is a well-formed solution to the
planning problem if it is a complete assignment to Pi , ∀i ∈ U which also satisfies
the constraint:

∀i ∈ U , Pi ∈ prescr(i) (1)

Besides stating what constitutes a well-formed solution, we want to express further
restrictions on admissible solutions. A case in point is the total contiguous harvested
area limit constraint, which may be formulated as:

For all management units, whenever there is a time in which, under the selected prescription,
the management unit is to be totally harvested, then the sum of the areas of the adjacent
management units (and closure thereof) which are also bring totally harvested, must be less
than a preset limit ω.

To help in meeting this goal, we introduce a function which captures the concept,
which we call glade : U × N → 2U . This function is defined in terms of an auxiliary
function g:

glade(i, t) = g(i, t, ∅)

The auxiliary function g is of type g : U × N × 2U → 2U and is recursively defined
as follows:

g(i, t, I) =

⎧
⎪⎨

⎪⎩

I, if i ∈ I ∨ whi,Pi ,t = 0

⋃

j∈adj(i)
g(j, t, I ∪ {i}), otherwise

Intuitively, glade(u, t) is the set of management units which are being harvested,
contiguous with u.

With these definitions, we may specify the harvested area limit constraint:

Constraint Modeling for Forest Management 191

∀i ∈ U ,∀t ∈ times(i),

⎛

⎝
∑

j∈glade(i,t)
area(j)

⎞

⎠ < ω (2)

With constraints (1) and (2) we are guaranteed to produce only solutions which
respect the limit on contiguous area harvesting.

5 Implementation

Our initial implementationwas carried out using theChocoConstraint Solver frame-
work [20] and written in the Java programming language.

The process of implementing the problem entails firstly setting up 2 data struc-
tures, one is an array containing all the information of each MU obtained from the
input called Nodes, and the other is an array of possible values to represent the
possible prescriptions to apply to eachMU called MUS. Note that MUS is a constraint
variable array so the domain of possible values for each variable will be reduced
until a solution is found. Another constraint variable array is called WoodYields,
similar to MUS each index of the array represents something about the solution, in
this case they represent the wood yielded by harvesting/thinning that MU when the
corresponding prescription found in MUS is applied (this process involves using the
“Element” constraint from the Choco-Solver framework), this is done so that at the
end the contents of this array can be summed up to obtain the total amount of wood
yielded by the solution. Once the setup is done we iterate through the main loop, as
shown in Listing 1.1.

Listing 1.1 Main Loop

for (Var node in Nodes) {
i f (node. isValid ()) {

CreateConstraint (node, MUS) . post () ;
AddWoodToArray (node, MUS, WoodYields) . post () ;

}
}

This loop iterates through every MU in the input and imposes all valid constraints
pertaining to it and its possible prescriptions. These constraints are implemented as
a global constraint, via a custom propagator, as shown in Listing 1.2.

The propagator essentially iterates through the MU’s possible prescriptions and
checks if a prescription value can be applied by recursively checking its neighbouring
MUs and their possible prescriptions. If at any one point the total sum of contiguous
forest area cut down exceeds the given limit, the propagator fails and another value
will be chosen. The propagator calls a recursive function which verifies that a given
MU is valid, w.r.t. the maximum cut area requirement, as shown in Listing 1.3.

192 E. Eloy et al.

Listing 1.2 Custom Propagator

void propagate () {
i f (node. isValid () & node.hasCut()) {

for (int year in node.yearsWithCuts) {
try {
gladePropagate(node, year , 0)

} catch (Exception limitSurpassed) { fai ls () }
}

}
}

Listing 1.3 Propagator Helper

int gladePropagate (node, year , sum) {
i f (node.hasCut()) {
sum += node. area ;
i f (sum > MAXLIMIT) { throw Exception }
for (neighbourNode in node. neighbours ()) {

i f (neighbourNode. isValid ()) {
sum = gladePropagate (neighbourNode, year , sum);

}
}

}
return sum;

}

After leaving the main loop, the model has been fully setup. The Choco Solver
framework is then told to set the objective of the solving to be one ofMaximisation,
and the target to be maximised is a constraint variable with the aforementioned sum
of the contents in the WoodYields array.

Ultimately, the solver is activated and, if a solution is found then the resulting
MU/prescription pairs are written to an output file.

6 Experimental Evaluation

The data for computational experiments is the same as in article [18] for the region
of Vale de Sousa in the north of Portugal. The testing was done on a laptop running
Ubuntu 20.04.3 LTS, with 4GB of available ram available and 4 cores. The code was
compiled using java 8.

It should be noted that no solution for the full problem could be found in a
reasonable time frame: the complete problem includes 1373 management units and
the program ran for an entire day and a solution was not found. Consequently we
opted for an approximation to the problem.

Constraint Modeling for Forest Management 193

6.1 Limiting by Distance to Initial MU

By limiting the input and therefore the problem size it is possible to more closely
observe the growth of the execution time.

To this end we decided to limit the number of MUs taken into account by initially
choosing an “initial MU” and then only working with MUs within a maximum
distance to that MU. So in the implementation the third argument is the Id of the
“initialMU” and the fourth specifies amaximum distance, meaning onlyMUswithin
that distance to the “initial MU” are taken as valid input, the rest are ignored.

With this setup, while choosing the MU with Id 0 (which should be located near
the Penafiel-PaivaNorte border) as the “initial MU” and gradually increasing the
maximumdistance by 1km at a time, solutions are found until the 5km distancemark,
where the program finishes in around 4min but does not find a solution (meaning
that it is not possible to satisfy the constraints.) Increasing the distance to 6km results
in the same outcome and by the 7km distance mark the program takes about 1.30–2h
to finish execution and Fig.1 shows the valid MUs in this context.

Once the 8kmmark is reachedwe are dealingwith 810MUs, however this problem
proves to be too complex and a solution is not found within a reasonable time frame.
The median of 3 tests is shown in Table1.

Fig. 1 MUs within a 7km distance from the “initial MU”

194 E. Eloy et al.

Table 1 Number of MUs, Runtime and Wood Yield for each step

Distance (km) Number of MUs Time (min) Wood yield (kg)

1 21 0.162 58540

2 47 0.188 187724

3 103 0.253 557720

4 178 0.310 1042205

5 319 4.220 Solution not found

6 478 13.490 Solution not found

7 642 100.650 Solution not found

8 810 – Solution not found

6.2 Restricting to a Sub-Region

Another way to limit the size of the problem is by selecting which of the 4 indepen-
dent regions in Vale de Sousa should be managed, these are “Paredes”, “Penafiel”,
“PaivaSul” and “PaivaNorte” and are shown in Fig.2.

Fig. 2 Sub-Regions in Vale De Sousa

Constraint Modeling for Forest Management 195

Fig. 3 Wood yield of a possible solution when applied to the Paredes region

Fig. 4 Wood yield of a possible solution when applied to the PaivaNorte region

Paredes (Blue) The Paredes region of Vale De Sousa has 159 MUs, of which 18
have an area of over 40 ha, one of those being 49 ha. There is a total of 1998 possible
prescriptions with 222 pertaining to the aforementioned 18 largest MUs. With the
maximum limit set to 50 ha a solution is found in under a minute, this solution yield
1356 tonnes of wood (Figs. 3 and 4).

In the previous tests where the limit is based on maximum distance to the starting
MUwith internal Id 0, it’s observable that the Paredes region doesn’t factor in before
the problem becomes unsolvable so it’s possible to conclude that this region by itself
is not problematic nor too complex for the implementation to handle.

PaivaNorte (Pink) This region has 351 MUs with only 8 of them being over 40
ha and a total of 7362 possible prescriptions. Predictably, if the assumption that the
number of large MUs is a meaningful factor, a solution within the 50 ha limit is
found in a reasonable time frame, yielding 2021 tonnes of wood. A large section
of this region is always within the distance limits to the MU with Id 0 since that

196 E. Eloy et al.

Fig. 5 Example of a solution provided by the implementation

MU is in PaivaNorte. Figure5 provides an example of a solution outputted by the
implementation, in this case the actions to take in PaivaNorte during period 25.

PaivaSul (Light Red) This region has 350MUs, of which 30 have an area of over 40
ha and there are 17 instances where these large MUs are adjacent to each other, there
is a total of 6998 possible prescriptions. The MU with internal Id 1133 belonging
to this region is adjacent to 3 other large MUs, which would force the solver to find
solutions where these MUs are never harvested in the same year.

If the limit is set to 50 ha a solution is not found in a reasonable time frame, by
increasing this limit gradually the value with which the solver finds a solution in a
similar time frame as the previous tests is 81 ha, which yields 3811 tonnes of wood.

The upper section of the PaivaSul region is within the 7km distance limit to the
MU with Id 0, however when that distance limit is increased, some of the lower
section of the region where more large MUs are located becomes valid input which
adds to the complexity of the problem (Fig. 6).

Testing Penafiel and Paredes+PaivaNorte+PaivaSul separately By searching for
solutions to the problem for the Penafiel region and the rest of Vale de Sousa sepa-
rately some interesting results are obtained. The prototype was first run without the
455 MUs located in Penafiel, so only searching the 860 remaining MUs, and with
the area limit set 50 ha. An optimal solution was found in 789min (around 13h),

Constraint Modeling for Forest Management 197

Fig. 6 Wood yield of a possible solution when applied to the PaivaSul region

obviously a large amount of time but when running the implementation with all the
regions (including Penafiel) and the limit set to 50 ha a solution is not found within
this time frame. This gives us a solution that maximises wood yield to the original
problem but only for the Paredes, PaivaNorte and PaivaSul regions. Of note is that,
since the Paredes region is separated from both Paivas, the optimal solution found
is the same as the one obtained when searching only in the Paredes region, however
the solution for the Paiva regions differs from the one found when searching them
separately.

The next step was finding a solution only for the Penafiel region.

Penafiel(Green) This region has 455 MUs, of which 26 have an area of over 40 ha,
4 of which have 49 ha, and a total of 8593 possible prescriptions.

There are 13 instances of these large MUs being adjacent to each other, with
adjacencies that seem to imply a clustering of around 9 of these large MUs. These
factors add up to this region being the most problematic and possibly responsible for
the dramatic increase in complexity when attempting to find a solution for the whole
forest.

The limit had to be raised to 96 ha in order to find a solution in a reasonable time
frame, which yields 3626 tonnes of wood (FIg. 7).

Increasing the limit of the area constraint Another useful test to analyze this
implementation is to check for variations in total wood yield in the solutions found,
when the maximum limit for contiguous forest area harvested in a year is increased.
The regions picked for this test were the Paredes and PaivaNorte regions because
they both have solutions when the area limit constraint is set to 50 ha.

Predictably, as shown in Tables2 and 3, the wood yield tends to increase when the
area limit constraint is increased because the solver attempts to find solutions that
maximize that output but at some point the amount of wood yielded tends to plateau.

198 E. Eloy et al.

Fig. 7 Wood yield of a possible solution (not respecting the 50 ha limit) when applied to the
Penafiel region

Table 2 Area limit and Wood Yield for each step, Paredes region

Limit (ha) Wood yield (kg)

50 1356534

55 1363613

60 1366454

65 1377433

70 1393014

75 1412062

80 1411094

85 1415788

90 1418554

95 1417703

Table 3 Area limit and Wood Yield for each step, PaivaNorte region

Limitb (ha) Wood yield (kg)

50 2021722

55 2035704

60 2042593

65 2044444

70 2049264

75 2049392

80 2073522

85 2083581

90 2082840

95 2086786

Constraint Modeling for Forest Management 199

7 Conclusions and Future Work

In this project we proved that the Forest Management problem can be conveniently
described as a Constraint Optimisation Problem, where all the selection criteria
and optimisation objectives may be integrated without need for further changes or
additions to the base model.

We contributed a new global constraint, which ensures a “flood filled” area sur-
rounding a given point observes specific conditions, e.g. being under a general limit.

The implementation, although functional, is currently limited in its reach when
applied to the full-scale problem, but it compares well to our previous design of a
MILP solver. This is particularly striking because the problemwe are solving is more
general than that previously tackled in the literature: we allow for the cuts to happen
independently and possibly more than once over the entire simulation period.

We are currently working onmetaheuristic solvers, including local search, aiming
to tap the inherent performance benefits of these methods when doing combinatorial
optimisation. The solvers we are planning to use are designed to exploit parallel and
distributed computing resources,whichwe expect to be a key factor in attaining better
performance, with the potential to scale into the thousands of cores as witness [27].
An interesting aspect of these solvers is that they include constraint-based local
search solvers, for which the problem specification is just a Constraint Optimisation
Problem, as we currently have.

Acknowledgements This work was partly funded by Fundação para a Ciência e Tecnolo-
gia (FCT) under grants LISBOA-01-0145-FEDER-030391, PTDC/ASP-SIL/30391/2017 (BIO-
ECOSYS), PCIF/MOS/0217/2017 (MODFIRE), strategic projects UIDB/04674/ 2020 (CIMA)
and UIDB/04516/2020 (NOVA LINCS). Some of the experimental work was carried out on the
khromeleque cluster of the University of Évora, which was partly funded by grants ALENT-07-
0262-FEDER-001872 and ALENT-07-0262-FEDER-001876.

References

1. Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, volume 2 of
Foundations of Artificial Intelligence. Elsevier (2006)

2. Krzysztof, R.: Apt. Principles of Constraint Programming. Cambridge University Press (2003)
3. Machado, R., Abreu, S., Diaz, D.: Parallel performance of declarative programming using a

PGAS model. In: Sagonas, K (ed.) Practical Aspects of Declarative Languages - 15th Interna-
tional Symposium, PADL 2013. Rome, Italy. Proceedings, volume 7752 of Lecture Notes in
Computer Science, pp. 244–260. Springer, Berlin (2013)

4. Bettinger, P., Boston, K., Siry, J., Grebner, D.; Spatial restrictions and considerations in forest
planning. In: Forest Management and Planning, pp. 249–267. Academic (2017)

5. Gharbi, C., Ronnqvist, M., Beaudoin, D., Carle, M.-A.: A new mixed-integer programming
model for spatial forest planning. Can. J. For. Res. 49, 1493–1503 (2019)

6. Gunn, E., Richards, E.: Solving the adjacency problem with stand-centered constraints. Can.
J. For. Res. 35, 832–842 (2005)

7. Hof, J., Joyce, L.: amixed integer linear programming approach for spatially optimizingwildlife
and timber in managed forest ecosystems. Forest Sci. 39, 816–834 (1993)

200 E. Eloy et al.

8. McDill,M.E., Rebain, S., Braze,M.E.,McDill, J., Braze, J.:Harvest schedulingwith area-based
adjacency constraints. Forest Sci. 48(4), 631–642 (2002)

9. Murray, A.: Spatial restrictions in harvest scheduling. Forest Sci. 45(1), 45–52 (1999)
10. Goycoolea, M., Murray, A., Vielma, J.P., Weintraub, A.: Evaluating approaches for solving the

area restriction model in harvest scheduling. Forest Sci. 55(2), 149–165 (2009)
11. Baskent, E.Z., Keles, S.: Spatial forest planning: a review. Ecol. Model. 188, 145–173 (2005)
12. Constantino,M.,Martins, I., Borges, J.G.:Anewmixed-integer programmingmodel for harvest

scheduling subject to maximum area restrictions. Oper. Res. 56(3), 542–551 (2008)
13. McDill, M.E., Braze, J.: Using the branch and bound algorithm to solve forest planning prob-

lems with adjacency constraints. Forest Sci. 47(3), 403–418 (2001)
14. Boston,K., Bettinger, P.: An analysis ofmonte carlo integer programming, simulated annealing,

and tabu search heuristics for solving spatial harvest scheduling problems. Forest Sci. 45(2),
292–301 (1999)

15. Borges, P., Eid, T., Bergseng, E.: Applying simulated annealing using different methods for the
neighborhood search in forest planning problems. Eur. J. Oper. Res. 233(3), 700–710 (2014)

16. Boston, K., Bettinger, P.: Combining tabu search and genetic algorithm heuristic techniques to
solve spatial harvest scheduling problems. Forest Sci. 48(1), 35–46 (2002)

17. Borges, J.G., Hoganson, H.M., Rose, D.W.: Combining a decomposition strategywith dynamic
programming to solve the spatially constrained forest management scheduling problem. Forest
Sci. 45(1), 201–212 (1999)

18. Marques, S., Bushenkov, V., Lotov, A., Borges, J.G.: Building pareto frontiers for ecosystem
services tradeoff analysis in forest management planning integer programs. Forests 12, 1244
(2021)

19. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling. In: Schulte, C., Tack, G., Lagerkvist, M.Z.
(eds.) Modeling and Programming with Gecode (2009). Corresponds to Gecode 6.2.0

20. Prud’homme,C., Fages, J.-G., Lorca, X.: Choco SolverDocumentation. TASC, INRIARennes,
LINA CNRS UMR 6241, COSLING S.A.S. (2016)

21. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc: Towards a
standard CP modelling language. In: Bessiere, C. (ed.) 13th International Conference on Prin-
ciples and Practice of Constraint Programming—CP 2007, Providence, RI, USA, Proceedings,
volume 4741 of Lecture Notes in Computer Science, pp. 529–543. Springer, Berlin (2007)

22. Lecoutre,C., Szczepanski,N.: Pycsp3:Modeling combinatorial constrainedproblems in python
(2020). arXiv:2009.00326

23. Michel, L., Van Hentenryck, P.: Constraint-based local search. In: Martí, R., Pardalos, P.M.,
Resende, M.G.C. (eds.) Handbook of Heuristics, pp. 223–260. Springer, Berlin (2018)

24. Codognet, P., Munera, D., Diaz, D., Abreu, S.: Parallel local search. In: Hamadi, Y., Sais, L.
(eds.) Handbook of Parallel Constraint Reasoning, pp. 381–417. Springer, Berlin (2018)

25. Régin, J.-C., Malapert, A.: Parallel constraint programming. In: Hamadi, Y., Sais, L. (eds.)
Handbook of Parallel Constraint Reasoning, pp. 337–379. Springer, Berlin (2018)

26. Boussemart, F., Lecoutre, C., Audemard, G., Piette, C.: Xcsp3-core: a format for representing
constraint satisfaction/optimization problems (2020). arXiv:2009.00514

27. Machado, R., Pedro, V., Abreu, S.: On the scalability of constraint programming on hierarchical
multiprocessor systems. In: 42nd International Conference on Parallel Processing, ICPP 2013,
pp. 530–535. IEEE Computer Society,Lyon, France (2013)

http://arxiv.org/abs/2009.00326
http://arxiv.org/abs/2009.00514

