
Applying Problem Based Learning educational
method for improving Human-tech competencies
in Computer Engineering students: a research

proposal

PhD candidate: Nuno Valero Ribeiro1

Escola Superior de Tecnologia de Setúbal
Instituto Politécnico de Setúbal

2910-761 Setúbal, Portugal
nuno.ribeiro@estsetubal.ips.pt

Abstract. This paper resumes the background theory of the likewise
entitled research project. The project aims to give a contribution to
software programming quality improving “Human-tech” competencies
in Computer Engineering students as a means to prevent, or at least
avoid in a great extend, the rate of unsuccessful software implementation
projects. We are specially interested in researching what Human Factors
competencies must be profiled in Computing Curricula outcomes that
may contribute to better prepare students as “Human-tech” experts. We
will apply Problem Based Learning educational method for delivering
those competencies to students. We believe it is possible to do better
than what as been done, to have a better degree of adequacy between the
Human user and the software he uses for his/her activity. All background
theory that support the axiomatic principles of this research project is
explained in the first section. Then the project is outlined as well as its
plan and expected outcomes and contribution in the following sections.

1 Introduction and Background

1.1 Information Systems

Summary:

1. IS’s: general considerations and examples
2. Could prevention be a better strategy?

Current Status Implementation of Information Systems (IS’s) (computer sup-
ported) in organizations do not always correspond the set of initial expectations.
My experience as computer practitioner and as a computer engineer as led me
to frequently ear complains about IS’s. Each of these complains was analyzed,
in a quest for the origin of these bad matches, searching for possible causes that
would explain this lack of results. At first sight one gets the traditional explana-
tions: over estimated expectations, bad design plans, organizational resistance



to changes, poor implementation, deficient planning of resources, lack of quali-
fication, etc. But, digging more deeply, the following statements turn out to be
the common link valid in all these cases:

1. Information Systems (computer supported) are typically considered as
the “Holy Grail” that will solve all problems of an organization.

Instead, they become the problem itself. Time and money are consumed,
attempts to fix the problems are expensively made, workers despair trying to
use it, client complains tend to be excused blaming the computer, managers ask
for solutions and developers try their best.

2. End users are neglected (specially) in the planning and development
phases of Information Systems computer supported.

The lack of consideration and participation of end users during the planning
and development phases of the project typically leads to complains in the im-
plementation phase. If IS end users are not consulted, their particular needs (vs.
organizational) are not predicted or considered, and their jobs will not improve
with the implementation of the IS. Structural coupling between IS’s and its end
users should always be considered as a must have requirement. Information Sys-
tems are typically designed with the goal of improving organizational efficiency
in mind and neglect what can be the end user needs to operate properly with
its support. Naturally, deceptions may occur.

Examples Different aspects of the problems described above are illustrated in
the following examples taken from situations I’ve come across with:

1. The “CBC” case: CBC is an enterprize whose business is assuring quality
demands in several fields. CBC has experts whose main job is to visit dif-
ferent companies, geographically dispersed, and write a report as the result
of their visit. CBC experts began complaining when started to use the IS
for the task previously hand written. They complain having to spend more
time now, and effort, dealing with the CBC’s IS than practicing their ex-
pertise competencies. This was not what enterprize managers wanted when
implemented the IS, nor what experts aspire to. Statements like: “the IS is
inadequate to our job practices” or “the IS is a terrible headache” are gener-
ally heard coming from the expert. Similarly, this situation occurs in other
organizational environments, like, for example, in health care where nurses
or doctors spend more time operating the computer than with attending the
patient, as they should, since they were trained for it.

2. The “STB” case: STB has an IS that supports the normal business processes
like, for instance, requesting a room reservation. Its quite simple: the user
just has to fulfill an IS data form about the event, hour, day, etc., clicks
on a button and waits for the answer. The answer appears as a warning in



the IS front end after a while. Nothing new. The problem occurred when
the IS user was at the room door, with the confirmed reservation ticket at
hand, which was produced via the IS, and soon realized that the room was
occupied by someone else for another event. He was totaly embarrassed, and
deeply ashamed. He had asked VIP’s to come, speakers, who had previously
confirmed their agendas and carefully prepared the conference presentations,
plus friends and colleagues he had invited to attend the conference. Worst of
all, there was no other room available. He asked for responsibilities since he
did every action correctly and the reservation was validated. It just happened
that the room was occupied by an event that was not registered in the IS.
Why? Because the occupying event was considered so “important” (and
needed so many rooms) that fulfilling IS forms was just a waste of time. The
work load of the administrative functionaries in the weeks before was so big
that instructions were given for not to worry about “infocratic” work and it
was assumed that everyone knew about the big event. Well, unfortunately,
not everyone knew.

3. The “SIT” case: SIT is an IS that supports the ordinary actions of sev-
eral participants in a distritbuted organizational process. The documents
involved in the process, and stored in the IS, are classified and have high se-
curity requisites like personal electronic identification cards for user authen-
tication. Thus, the IS has an uncommon authentication mechanism. One of
the key participants in a business process had a health problem, leading to a
health license and a big period of time absente in the process. A replacement
had to be done in the process. The problem was to deal with the security
constrains of the IS. How to replace the user that fulfils a function within a
process since it has already began? The IS administrator started by assign-
ing the new user to the process, but soon realized that a new user could not
access previously stored documents owned and registered by the replaced
user. He tried to override the previously assigned user for these documents
and assigned them to the new one. But, someone reminded him, he would
put in stake the true authorship of the those documents. Actually, he did
try, but the IS didn’t allow it. Well, after spending hours dealing with the
problem, phoning experts, etc., a decision was made. It was allowed for the
new user to access the IS with the authentication privileges of the former
user, handling him the former authentication “personal” card. This required
a personal trust relationship among both of them: the former user had to
lend the authentication card to the new one, and, the new one didn’t mind
“signing” his documents as another person. An odd situation considering the
security requisites of the present IS.

1.2 Preventing instead of Correcting

Technicians strive for designing and implementing IS’s capable of supporting
all organizational business processes. The major drive force is a political and
managerial desire to control and operate everything within the organization. This
is mainly due to the globalization and economical trends that lead organizations



to become off-shored and to have on the fly data for managerial purposes (see [12]
for complete explanation of the subject). Adequation of IS’s to this need is thus
imposed from the top management as a necessity and does not come from the
bottom work force of the organization typically. Users are generally forced to
adapt their usual procedures to become compatible with the planed procedures
implemented via the IS.

On the other hand, life is full of unexpected and uncontrolled events and
organizations are living cells. As technicians improve and add functionalities
to the IS, in order to support new business processes or to solve unexpected
problems, the IS starts to endlessly grow and soon becomes an impossible-to-
use-and-manage Babel.

This is due to the typically adopted approach to deal with the problem.
The solution is more focused on a detection and correction strategy. Thus, a
never ending story of maintenance and post-development efforts are generated.
Focusing the solution on a prevention strategy, or, at least, avoiding mismatches
at a greater extent, although initially more expensive, could be rewarding at the
end. We believe that situations like those exemplified above could be prevented
in the designing phase of technology if end users were more taken into account.

In order to explore solutions based on prevention or avoiding strategies one
must first break the sine qua non conditions of the unsuccessful implementations
of Information Systems. Development approaches in this engineering area still
ignore its human and social connections, and implications, as pointed out in [11].

1.3 Software Engineering particularities

Summary:

1. Software Engineering vs. other engineering disciplines
(a) The immaturity of Software Engineering field;
(b) Base Sciences that support Software Engineering;

2. Axiomatic set of principles for Software Engineering

When comparing Software Engineering with other traditional engineering
fields (like Mechanical Engineering, Electrical Engineering, etc.) we must agree
that: 1. Software Engineering is more recent and, therefore, still in an “adolescent
phase”, full of experimental practices; and 2. Software Engineering is intrinsically
different in the sense that traditional engineering base sciences do not apply to
the field (like cinematic physics or electromagnetic physics).

1. The immaturity of Software Engineering field.
In traditional engineering fields those who plan and design the technolog-
ical artifact (for instance, a house, a bridge, an electronic motherboard or
electrical plant) become specialized in that area, i.e. planning and design.
Their concern is different from those who are concerned with building the
artifact. Moreover, those who check if the technological artifact is being built
accordingly to the initial planned design, or those who test it, may represent
another group of specialized engineers.



Software Engineering does not yet benefit from these separation of concerns
and specialization, at least, at the extent that traditional engineering areas
benefit. Software Engineering specialized offices for validating initial design
plans, or for testing software developed by third parties, are to much ex-
pensive and the procedure is not applied. At least, the procedure is not
practiced as it is in other traditional engineering fields. Most of times, in
software business, not even the owner knows what he really wants with the
implementation of an IS or software technology in his organization.
Traditional engineering fields have become specialized through time. Design
plans and methodologies for building their technological artifacts (like elec-
tronic maps, architectural plants, etc.) became consensually accepted and
normalized. Generally those include accurate calculus and drawings, or pro-
cedures. This is due not only because of its maturity but also because those
engineering areas are an application of exact sciences like physics.

2. Base Sciences that support Software Engineering;
Base sciences are those from which the application of leads to a particu-
lar engineering field. The materials “crafted” by software engineers are not
tangible. As the name implies they’re soft! They’re more related with infor-
mation, people and organization, then with physical phenomenons studied
in Electromagnetism, Electronics, Mechanics, etc. This fact makes Software
Engineering a different “kind” of engineering field. We must take into account
theories coming from human sciences like social, business, organizational sci-
ences.

As we said, Software Engineering deals with people, organization and infor-
mation: ways of storing, processing, changing, organizing, retrieving, reaching,
displaying, arranging information, and so on. And, Software Engineering doesn’t
have, at the moment, a commonly accepted conceptual way for planning or de-
signing IS’s or software. Thus, we may conclude that:

Software Engineering has, in its foundation, exact sciences as well as hu-
man sciences.

Nevertheless, human sciences theories have been experimented in method-
ological approaches for designing IS’s. For example, DEMO [3] methodology —
Design & Engineering Methodology for Organizations — adopts a basic pattern
of coordination as the building block for designing all business processes. This
pattern is based on Habermas’s Theory of Communicative Action [8] borrowed
from linguistics. Or the MEASUR Organizational Semiotics based methods cov-
ered in chapter 4 of [13].

This methodologies are focused on a basic principle of mapping the orga-
nization’s business processes in an as-is fashion for designing the IS at as a
starting point. They are necessary as a starting point. Afterwards, the organi-
zation evolves for itself, demanding changes to the IS.

Other patterns of conversation do exist in organizations, and therefore, not all
aspects of interaction among persons in an organization are supported via these



approaches (we do not say they should be, just stating the fact). For example,
a person may spontaneously interact with another person emitting a judgement
about some piece of work. This pattern is not captured, unless if making part of a
well-known business process. Although it is not part of the organization’s regular
business procedures, it might influence the organization evolution. It may even
begin an innovative process in the organization and thus a future correction and
development in the IS that supports it.

1.4 The User and the Organization

An organization is fundamentally a social environment as it is recognized by
Dietz’s in [4]. Since organizations are “living cells”, narrowing the design of IS’s
to a particular or momentary view of the organization could represent a limita-
tion to its own evolution. Structural coupling between the IS (that supports the
work being developed in the context of an organizational activity), and its users,
should be as extensively achieved as possible. In other words, as a driver may
adapt the car seat to his personal physical stature, the user of an Information
System should be given the possibility of adapting it to his functional roles and
usage within the organizational context.

This does not typically happen nowadays: IS’s have the same generic front-
end and functionalities for all users, regardless of their particular functional needs
in the organization. The access to the IS functionalities is not designed taking
into account the user as an individual person, with particular needs and roles
within the organization. The design is centered on a generic mechanical point of
view of the organization, where the user is taken as a piece of the organization’s
complex mechanisms. The vision contained in the (prevention) strategy for a
solution is taken from Vicente in [15]:

Its necessary to tailor the design of technology to people, rather than,
pushing people to adapt and decipher technology.

As Robert Brigs explains in [1] a good theory is a model of cause-and-effect
to explain some phenomenon of interest. Every technology presumes a cause-
and-effect. Every technology is built to improve some outcome. Therefore, the
question is: what outcome do we which to improve? The outcome we which
to improve with Information Systems or software introduction in organizations
will set the phenomenon of interest for our research. The expected outcome to
improve with technology introduction in organizations must thus be clear.

1.5 What are computers for?

Since Information Systems are deployed with the support of computers nowa-
days, this leads to the question: what is the purpose of implementing an IS



supported by computers in a organization? That, in turn, leads to the funda-
mental question: What are computer for? 1

The answer to this question is not an obvious one although it may seem easy
to give an answer since computers are widely used by many people and in many
contexts nowadays. We have run the experience of asking the question to different
classes of Software Engineering students and the fact is that, among them, we
have collected a set of totally different answers to the question [see collection of
data *1]. Thus we may say that there is no (common) understanding about the
purpose of computers.

The user of technology should have a clear idea of the purpose that it has.
This applies not only to the final user, in strict sense, but, and even more seri-
ously, to software engineers, and computer programmers, and owners, since their
responsibility is bigger when building, developing and owning IS’s.

In the introductory chapter of the book Organized Activity and its Support
by Computer [9], Holt discusses and formulates that

Computers are for reducing the effort of carrying out organized activity.

assuming a broad sense of the terms “computers” — any computational
device either connected or not in networks — and “organized activity” — a
human universal that exists wherever and whenever people exist.

Furthermore, the author also points out:

The practical side of the question “What are computers for?” is the ques-
tion “How should computers be programmed?”.

Thus, the more clearly we understand “What are computers for?” the more
efficiently we obtain the expected outcome of using computers. Particularly, if
we are builders of Information Systems, or programmers, we should have the
necessary tools for facilitating this perception.

Still, many programming projects are developed by teams of programmers
who have to deal with, and understand, complex human and organizational
problems without the necessary tools, and owners who will never understand
the programs that are written and operated on their behalf.

Once computers are meant for helping people carrying out an Organized
Activity (OA for short), the effort we spend performing an OA, when supported
by computers, should decrease. Otherwise computers wouldn’t be fulfilling their
purpose. Since operating computers also requires human effort, there should be
a tradeoff, and an ideal point, between the effort spent when using computers to
support an OA vs. the benefits or outcomes achieved with the use of computers.
And thus, this may bring a conflict of interests between the organizational goal
when implementing an IS and what the end-user needs.

1 This issue was brought to me by Anatol Holt during is stay as invited professor in
Technology School of Setúbal, Portugal, with whom I had the opportunity to have
long and challenging discussions about computers, most of them based on his book
Organized Activity and its Support by Computer [9].



1.6 The Mechanistic view of the world

1. IS’s inflexibility to changes

Typically, software engineers have a mechanical view of situations. They are
trained in programming. This implies pre-defining possible routes of programm
execution. Their “natural” tendency is to build programmes that map the ana-
lyzed business processes, and its flow of execution, into the architecture of the IS
in an “As-Is” fashion (read [2] for example). Exceptions to the foreseen flow of
execution and generally prohibited. They do not think about how to cope with
future changes or exceptions to the plan.

Attempts made in this direction become hard to maintain. For example, the
approach in which TOA (Theory of Organized Activity) [10] is based, to map the
organization, assumes that a user of an IS is a tuple [person+function]. Either
persons or functions are constantly changing in organizations. Plus, the external
environment also imposes changes to organizations (legislation, clients, natural
phenomenons, etc.). Changes become difficult to implement in an IS designed
in this fashion. Unexpected events are difficult to handle. We have adopted
TOA in the development of an IS [14]. Soon it became difficult to manage. It
constantly demanded updates to the functions that were fulfilled by the persons
of the organization. We realized that the only possible solution was to ask the
employees themselves to adapt their profile in the system. This implies a more
“As-the-user-needs” fashion, or approach, to design than the “As-is” fashion.
In the initial plan, a responsible settled the employees profile according to the
function(s) they were fulfilling in the organization at that moment. We were
thinking only about the user as someone performing a function and neglecting
the user as an individual person capable of deciding for himself. We were adopting
only a mechanical point of view of the organization and neglected the humanist
point of view.

Detecting and correcting the IS to cope with changes requires big post-
development efforts. The construction of an IS capable of coping with the pace
of constant changes in the organization is a challenge.

Since the major vehicle of change in organizations is the human being,
centering design decisions in the human person is mandatory to achieve
flexibility.

Software engineers must take into account that organizations are “living
cells” that evolve for themselves. Thus, IS’s should be flexible enough to allow
constant implementation of changes in their construct. This approach contrasts
with the “box” fashion of selling software or “package” approaches. IS’s should
be though and conceived considering a more (not completely planned) “Lego”
approach. The user should choose his front-end interface from a menu of imple-
mented functionalities.

Letting the user shape his front-end and set-up the IS’s functionalities that
he needs is likely to be the most suitable way of coping with the pace of changes



that occur constantly in organizations. IS support should be tailored and shaped
for that particular user but this may only be achieved if we give the possibility of
choice to the user. If this becomes a reality, the “structural coupling”, or degree
of fitness, between the outcome achieved through the support of the activity by
means of an IS and the user needs will increase. A person, although taken as a
user of an IS that is fulfilling a function in the organization, has interests, needs
and will of his one.

To achieve a greater degree of fitness, when designing an IS, we must take
into account the organizational goals as well as the user personal interests.

1.7 Tailoring Technology for People

In the book The Human Factor: revolutionizing the way we live with technol-
ogy [15], Kim Vicente points out that scientific knowledge has been divided into
two big groups: human sciences and technical sciences. Human scientists, when
they look at the world, they focus primarily on people. Technical scientists have
adopted a mechanistic view: they look primarily on the hardware or software. He
defends that design of technology must take into account the characteristics or
needs of people who will be using it because, people and technology interact and
exist, side-by-side, in the real world. We must resist adopting a partial vision of
the real world for orientation in the process of designing technology.

Human-tech Oriented Design Vicente suggest the compound word “Human-
tech” to remember us that people and technology are both important aspects of
the system. “Human” comes first to remind us that we should start by identifying
our human and societal needs, not by glorifying some fancy widget in isolation;
“tech” is a means, not an end in itself, so it comes second. He proposes five human
aspects that may guide the technology designer in his work. These are: physical;
psychological; team; social; organizational; political. In each one of them, human
sciences have a lot of possible contribution for helping design decisions. It is not
a rigid separation of concerns, may suffer adaptations. If we consider the human
characteristics that are relevant to the specific design problem we want to solve,
everything becomes much, much simpler.

Vicente states that adopting a context-specific, problem-driven approach nar-
rows down the amount and kind of knowledge that we need to consider to find
an effective design solution. The adopted solution must respect the physical,
psychological, etc., characteristics of the people that will be using it in order to
build an harmonious relationship between people and technology.

Human-tech oriented design may serve as a guide for the desired “struc-
tural coupling” between technology and its users.



1.8 Problem Based Learning

In order to train programmers for the design of software solutions based in
context-specific, problem-driven approaches, one must chose the most proba-
bly correct methodology and test if it is effective. Applying PBL (Problem
Based Learning) seems to be an adequate educational method for delivering
“Human-tech” competencies to programmers. Accordingly to the UCPBL Cen-
tre for Problem Based Learning located in Aalborg [6], this method is adequate
for changing challenges in educational engineering schools who want to develop
a more student centered solutions focused in the learning process and on the de-
velopment of new competencies such as “Human-tech” in computer engineering
students.

The pedagogical principles and historical background of PBL may be found
in a special edition about PBL and ICT (Information and Communication Tech-
nology) [5]. Like the approach brought by the introduction of this educational
method in the McMaster medical school of Canada [7] we believe that, simi-
larly, “Human-tech” should be learned in practice focusing on the Human user
of computers and on his/her requirements. By systematically analyzing the user
problems, students will formulate questions, search for information lacking to
problems, select their learning goals. The objective is to train the student to act
and think as a Human-tech expert. The experience obtained by the student is
expected to become meaningfully in his future as a professional.

The model integrates a number of pedagogical principles: problem-orientation,
inter-disciplinarian, participant control, exemplary project, teamwork, and ac-
tion learning. However, the model is practiced in various ways adapting it to
local conditions, subject matters, skills of students and supervisors, etc. Thus,
adaptation of the model to local conditions and “Human-tech” competencies to
be learned is required.

2 Research Project Description

2.1 The Problem

To many software applications nowadays have a bad “structural coupling” with
the persons who are using them. According to Vicente (previously cited), this is
essentially due to the lack of “Human-tech” competencies in those who design
and develop technology. As Vicente points out: “when the wizards of technology
design their gadgets many consideration of human aspects are neglected, or even,
not considered at all.”

Programming is not an easy task and programmers are heavily trained in
technical skills. Generally, computer engineering degrees do not have special
courses for qualifying their students in “human” competencies. Those compe-
tencies are typically said to be transversally taught and are typically neglected
comparing with technical specialized competencies. There is a necessity to im-
prove “Human-tech” competences/skils deliverance to Computer Engineering
students as a means to improve software production quality.



2.2 Research Question

What “Human-tech” competencies and skills are needed for Computer Engineer-
ing undergraduate students in order to improve “structural coupling” between
persons and computers. What results are obtained when applying PBL educa-
tional method for improving those “Human-tech” competencies in Computer
Engineering undergraduate students?

Sub-questions What is the “Human-tech” profile of competencies for a com-
puter engineering undergraduate student?

How to evaluate if a student have learned those competencies?

Does PBL proves to be an adequate method for delivering “Human-tech”
Competencies in Computer Engineering degrees?

What are the specific characteristics od the adopted model of PBL in the
tested scenarios?

2.3 Problem Significance

If we have better “Human-tech” programmers we should have better adequation
of software design and development to organizations and users. More efficient
employment of software programmers resources. More efficient return of invest-
ments in software development projects.

3 Research Plan

3.1 Research Work Plan

Start: OUT 2012 ... End: OUT 2015

tasks and outcomes

1. Literature study and field study

(a) Actual profile of Learning Outcomes in Computer Engineering Curricu-
lum

(b) Desired situation for Human-tech Oriented Design of software

(c) Formulate hypothesis comparing both

2. Field research for construction of learning outcomes evaluation

3. Proposal of a PBL based model for enhancing Human-tech learning outcomes

4. Case studies

(a) Apply and test the model in real situations

(b) Analysis of results

(c) Processing of the outcomes

5. Reporting



3.2 Research Outcome

The expected outcomes of the project will consist on the following:

1. a list of Human-tech Computer Engineering learning outcomes;
2. a PBL based model for learning Human-tech competencies;
3. a method for evaluating Human-tech learning outcomes;
4. an assessment of the model provided through its application on Computer

Engineering curricula;

Several reports will be produced, as indicated in the work plan, some of which
are expected to be published in international conferences and workshops.

3.3 Validation Process

The validation of the outcomes of this project are not possible in laboratory
due to the essential nature of a learning environment that cannot be artificially
reproduced. Thus, a possible validation may be through applying the model
in a set of case studies, i.e. Computer Engineering curricula, and making an
assessment, confronting the results obtained with reality reported.

3.4 Organizational Context

Name Role Organization

Prof. Carlos Pampulim Caldeira Supervisor Universidade de Évora
Prof. Joaquim Filipe Co-Supervisor Instituto Politécnico de Setúbal

3.5 Research Value

Are those outcomes worth the effort? Whose work might be more effective?
Whose life might improve?

To many times although, the “invisible” costs of a unsuccessful software
piece, or IS implementation, are neglected, specially for the human user side of
the coin. We which to give a contribution to the improvement of the rate of
successful software implementation, focusing specially in its adequation to the
(Human) user and organization. We think its be possible to prevent, or, at least
minimize or avoid, the rate software implementation mistakes that, sometimes,
jeopardize the success of technology innovation in organizations. We believe it
is possible to do better than what as been done, to have a better degree of
adequacy, to avoid unsuccessful implementation of software.

References

1. Briggs, R.O.: On theory-driven design and deployment of collaboration systems.
International Journal of Human-Computer Studies 64(7), pp. 573–582 (July 2006)



2. Castela, N., Tribolet, J.: AS-IS Continuous Representation in Organizational En-
gineering. In: ICEIS 2008: Proceedings of the Tenth International Conference On
Enterprise Information Systems. vol. I, pp. 371–374. INSTICC (2008)

3. Dietz, J.L.: Enterprise Ontology: Theory and Methodology. Springer-Verlag Berlin
(2006)

4. Dietz, J.L.: The Deep Structure of Business Processes. Communications of the
ACM 49(5), pp. 59–64 (October 2006)

5. Dirckinck-Holmfeld, L.: Innovation of Problem Based Learning through ICT: Link-
ing Local and Global Experiences. International Journal of Education and Devel-
opment using Information and Communication Technology 5(1), pp. 3–12 (2006)

6. Enemark, S., Kolmos, A., Moesby, E.: Global network on engineering education re-
search and expertise in PBL. Samlignsnummer för enstaka enskilt utgivna arbeteb
(2006)

7. de Graaff, E., Kolmos, A., et al.: Problem Based Learning. final report of the
Special Interest Group (SIG) B5, TREE (Teaching and Research in Engineering in
Europe) Thematic Network of SOCRATES/Erasmus programme of the European
Commission (August 2007), uRL, http://www.unifi.it/tree/dl/oc/b5.pdf, accessed
October 2011

8. Habermas, J.: The Theory of Communiative Action: Reason and Rationalization
of Society. Polity Press, Cambridge (1984)

9. Holt, A.W.: Organized Activity and Its Support by Computer. Kluwer Academic
Publishers (1997)

10. Holt, A.W.: The “Organized Activity” Foundation for Business Processes
and Their Management. In: Business Process Management, Models, Tech-
niques, and Empirical Studies. pp. 66–82. Springer-Verlag, London, UK (2000),
http://portal.acm.org/citation.cfm?id=647778.757179

11. José Cordeiro and Joaquim Filipe and Kecheng Liu: NOMIS - A Human Centred
Modelling Approach of Information Systems. In: Proceedings of the 4th Interna-
tional Workshop on Enterprise Systems and Technology. Athens, Greece (2010)

12. Levy, F., Murnane, R.J.: The New Division of Labor: How Computers are Creating
the Next Job Market. Princeton University Press (2004)

13. Liu, K.: Semiotics In Information Systems Engineering. Cambridge University
Press (2000)

14. Ribeiro, N.V., Delgado, J., Rolo, J., Lourenço, R.: Application of Theory of Orga-
nized Activity to a Real Case Study. In: Cases and Projects in Business Informatics.
pp. 167–181. Logos Verlag Berlin, Berlin, DE (2006)

15. Vicente, K.: The Human Factor: revolutionizing the way we live with technology.
Vintage Canada (2003)


