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Abstract 

Recent advances in remote sensing technologies and the increased availability of high spatial resolution satellite data 
allow the acquisition of detailed spatial information. These data have been used for monitoring the Earth's surface, 
namely monitoring land use land cover, quantifying biomass and carbon, and evaluating the protection and conservation 
of forest areas. O WorldView-3 is a high spatial resolution satellite (0.50m) with 8 multispectral bands (visible and 
infrared) which allows obtaining detailed data from the Earth's surface. 

This study aims to map the forest occupation by specie with two WoldView-3 images, and to evaluate the 
performance of machine learning classifiers (maximum likelihood, support vector machine and random forest) in two 
regions of Alentejo, south of Portugal. The main forest species are Quercus suber in one region and Quercus 
rotundifolia in another. The procedures performed were multiresolution image segmentation and object-oriented 
classification based on 4 bands (blue, green, red and near infrared). As auxiliary data, vegetation indices (NDVI and 
SAVI) and principal components were calculated. 

In the object-oriented classification process, the three classifiers were tested. The support vector machine classifier 
was the one that presented the best accuracy (kappa and overall accuracy), for both images, allowing to obtain good 
results in the identification of forest species. In the image dominated by Quercus suber, the values of kappa and overall 
accuracy were 90% and 95%, and for the image where Quercus rotundifolia predominated, 90% and 96% respectively. 
The methodology applied to the high spatial resolution satellite data showed very good results in the identification and 
mapping of main forest species. Higher precision values stand out for the image where the Quercus rotundifolia 
predominates, where there is less spectral variation, namely fewer land use classes, thus reducing errors between classes 
that may be spectrally similar. 
Keywords: maximum likelihood, support vector machine, random forest, multiresolution image segmentation, object-
oriented classification, vegetation indices 

Introduction 

Recent advances in remote sensing technologies and the increased availability of high-resolution satellite data for 
Earth’s surface enable the acquisition of detailed spatial information. High-resolution satellite images have been used 
for land surface monitoring, including land use/land cover monitoring, ecological processes analysis, biomass and 
carbon quantification, as well as assessment of forest protection and conservation efforts.  

High resolution satellite images (e.g., WorldView-3) have been used to monitor land use/land cover (Galidaki et al., 
2017), ecological processes (Ahmad et al., 2021; Galidaki et al., 2017), biomass (Gonçalves et al., 2019, 2017; Sousa et 
al., 2015; Galidaki et al., 2017) and carbon (Ahmad et al., 2021; Galidaki et al., 2017) quantification as well as their 
variability in space and time (Gonçalves et al., 2019, 2017). The classification of the satellite images and their accuracy 
are of the utmost importance (Meng & Xiao, 2011; Varin et al., 2020) several methods have been used in image 
classification ((Meng & Xiao, 2011; Varin et al., 2020; Vibhute et al., 2016) among which the multiresolution 
segmentation and object oriented classification ((Meng & Xiao, 2011). Moreover, several mathematical models have 
been used in object oriented classification, such as random forest (Varin et al., 2020), support vector machine (Varin et 
al., 2020) and maximum likelihood (Vibhute et al., 2016). The variability of the landscape in general, and of the forest 
areas in particular, make image classification a challenge. The diversity of the models reflects the need to accommodate 
the variability of the areas under analysis. 

Apart from the selection of the models to classify the images, the selection of the explanatory variables plays also a 
key role in the accuracy of the classification (Varin et al., 2020), bands are frequently used, yet they do not enable to 
identify and delimit with accuracy some land uses (Varin et al., 2020). Vegetation indices, combining two or more 
bands enable a better differentiation and delimitation of different land uses (Varin et al., 2020). Moreover, they enable 
the isolation of tree canopies from other land use types because the enhance their differences (Fonseca & Fernandes, 
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2004; Marcussi et al., 2010; Che et al., 2019). 
Two vegetation indices area frequently used Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted 

Vegetation Index (SAVI). The NDVI is a widely used vegetation index for vegetation identification and discrimination 
between species. It is employed because vegetation exhibits high reflectance in the near-infrared region and, conversely, 
absorbs a significant amount of light in the red region (Rouse et al., 1973). SAVI is a vegetation index also very used 
for vegetation studies, it helps mitigate the effects of soil interference and accounts for areas with less dense vegetation 
(Huete, 1988). Both NDVI and SAVI play a crucial role in discerning and characterizing vegetation types, particularly 
in the context of forest species, enhancing the accuracy of classification outcomes. In image classification, there is 
redundant information due to the high correlation between bands. Principal Component Analysis (PCA) allows 
reduction of information eliminating the strong correlation between bands and generate new variables, known as 
principal components (Thenkabail, 2016).  

In object-based image classification, the image segmentation process, where the minimum unit is the object, aims to 
group pixels considering their spectral, spatial and dimension characteristics (Ma et al., 2017) that represent different 
objects on the surface. Three adjustment parameters were considered: spectral and spatial detail, and the minimum 
segment size. These parameters allow for the grouping of adjacent pixels and identification of segments based in each 
input dataset. Spectral detail allows for object segmentation based on color characteristics. A small spectral detail value 
results in fewer segments, each covering a larger area. Spatial detail enables object segmentation based on object 
proximity. Lower values allow for finer segmentation between closely grouped objects. The minimum segment size 
parameter specifies the minimum size, in pixels, for a group of contiguous pixels. All segments with a pixel count less 
than the specified minimum are merged with the nearest neighboring segment for a better fit. While there isn't a specific 
interval for this parameter, smaller values result in less homogeneous segments (Visalli et al., 2021). The adjustment of 
these parameters is tailored to the specific study area’s characteristics and the desired level of segmentation accuracy. 

The objective of this study is mapping the tree canopies for the dominant forest species using two WorldView-3 
images. Additionally, the study aims to evaluate the performance of machine learning classifiers such as Maximum 
Likelihood (MLH), Support Vector Machine (SVM), and Random Forest (RF) for cartographic production of forest 
species in two regions of Alentejo, southern Portugal. In the northern region of Alentejo (39° 5' 15.16"N; 8° 1' 
13.35"W), cork oak (Quercus suber) dominates, while in the southern region (38° 3' 5.71"N; 7°38' 43.54"W), holm oak 
(Quercus rotundifolia) is dominant. 

Material and Methods 

2.1. Study Area 
The study areas correspond to two satellite images of 25 km² each, located in the Alentejo region (Figure 1), 

southern Portugal. The region is characterized by a Mediterranean climate, where summers are hot and dry, and winters 
are cold and humid, with greater temperature ranges and intensity in land. The terrain is marked by plains, with an 
average elevation of approximately 200 m.  Image a) is predominantly composed of cork oak (Quercus suber) and 
image b) of holm oak (Quercus rotundifolia). 

 
Figure 19. Study area location (a) dominance of cork oak; b) dominance of holm oak. 

 

2.2. Remote sensing data 
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The two images from the WorldView-3 satellite used in this study were acquired in: a) September 21, 2020, and b) 
June 14, 2020. Both images have four bands corresponding to wavelengths in the electromagnetic spectrum's blue (B) 
(491.9 nm), green (G) (541.1 nm), red (R) (660.1 nm), and near-infrared (NIR) (824.0 nm) regions, and a spatial 
resolution of 0.50 m, which result from the fusion process with the panchromatic band.  

Multiresolution segmentation and object oriented classification were used to attain the forest cover maps. The 
explanatory variables were the four bands, two vegetation indices (NDVI and SAVI) and principal components of the 
for bands (Figure 2). Multiresolution segmentation was tested with four data sets of explanatory variables: i) near-
infrared band, NDVI e second principal component (NIR, NDVI, CP2); ii) near infrared band, first and second principal 
component (NIR, CP1, CP2); iii) NDVI, SAVI and second principal component (NDVI, SAVI, CP2); iv) red and NIR 
bands e and NDVI (R, NIR, NDVI). Three parameters were considered in multispectral segmentation spectral detail, 
spatial detail and minimum segment distance. 

 

2.3. Methodology  

In the Figure 2 is presented a flowchart with the main steps of the methodology, from the original bands until the 
resulted LULC forest maps. 

 

 
Figure 20. Methodology flowchart 

 

For the spectral and spatial detail parameters (both of which can vary between 1 and 20), a higher value was 
considered for the former to allow for spectral differentiation of various land use/land cover classes. For the latter, a 
medium value was chosen to obtain objects of small dimensions, such as isolated canopies, or larger objects when 
contiguous canopies are present. In the segmentation process, the values that best suited the isolation of tree canopies, 
considering spectral and spatial detail, and the minimum segment size were determined as follows: for the cork oak-
dominated image, the values were 19, 10, and 100 respectively; for the holm oak-dominated image, the values were 18, 
15, and 100 respectively. In sparse forest areas, it was possible to obtain objects corresponding to individual tree 
crowns. Whereas in dense forest areas where the crowns of the individual trees touch each other, isolating individual 
crowns was not possible, instead segmentation resulted in clusters of crowns. 

With the segmented image, the next step was the object-based image classification process. Three machine learning 
algorithms were tested: Maximum Likelihood (MLH), Support Vector Machine (SVM), and Random Forest (RF).  
Initially, classes are assigned to the identified objects, acting as training data for the classifiers tested. In the cork oak-
dominated image, nine classes were considered (cork oak, holm oak, stone pine, eucalyptus, water, soil, urban area, 
agriculture, and shadow). In the holm oak-dominated image, seven classes were considered (holm oak, eucalyptus, 
water, soil, urban area, agriculture, and shadow). The data set for the classification included as explanatory variables the 
four original bands, two vegetation indices (NDVI and SAVI), the first and second principal components (PC1 and 
PC2) and the objects that resulted from the multiresolution segmentation. For RF were used 500 decision trees and 20 
knots, which according to several authors (Breiman, 2001; Ienco et al., 2019; Karasiak et al., 2017; Pageot et al., 2020) 
are suitable to reach good accuracies. For SVM, the maximum number of samples was used to define each class was 0, 
all samples are used in the training of the classifier. 

To assess the accuracy of the four land use/land cover maps resulting from the object-based image classification, a 
random sampling of 50 points was done for each class (8 LULC classes), for a total of 450 points for image a) and 350 
for image b). Each point was assigned a LULC class based on visual analysis with the help of true-color and false-color 
composite imagery and base map provided in ARCGIS and Google Earth. This information was compared with the 
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classification results from an accuracy assessment using a confusion matrix, Kappa coefficient (Eq. 1), and overall 
accuracy (Eq. 2). The confusion matrix (Congalton et al., 1983, p. 1673; Stehman, 1997, p.1221) displays the number of 
pixels correctly classified against the number of pixels predicted for each class during classification, thus assessing the 
degree of agreement with reality. The information in the rows represents user accuracy (omission errors), while the 
columns represent producer accuracy (commission errors). A commission error occurs when pixels are included in an 
incorrect class, while an omission error occurs when pixels are excluded from the class to which they belong (Fonseca 
& Fernandes, 2004). 

The confusion matrix enables the calculation of the Kappa coefficient (Kappa) and overall accuracy (OA). 
 

𝐾𝑎𝑝𝑝𝑎 =  ! !!!
!
!!! ! (!!!!!!)

!
!!!

!!! (!!!.!!!)!
!!!

×100      Eq. 1 

 

OA= !!!
!

 !
!!!           Eq. 2 

 

For the processes calculation of the vegetation indices, principal component analysis, multiresolution segmentation, 
and object-based image classification, Geographic Information System (GIS) tools were employed using the ARCGIS 
software version 10.8. 

Results and Discussion 

In the multiresolution segmentation, the input data set that yielded the best result was the one of red and near-
infrared bands, and NDVI, with a Kappa coefficient of 67% and an overall accuracy of 79%. According to Landis & 
Koch (1977), Kappa coefficients ranging between 41-60% correspond to good classifications and from 61-80% very 
good. In this study variable combinations including NIR, CP1, CP2, and NIR, NDVI, CP2 are good, while those 
including NDVI, SAVI, CP2, and R, NIR, NDVI are very good (Table 1). The accuracy improved with the inclusion of 
vegetation indices (NDVI and SAVI). However, the most significant contribution to accuracy came from the original 
red and near-infrared bands in combination with NDVI. It was also observed that the principal components did not 
contribute significantly to increase accuracy  
               

                       Table 9. Multiresolution segmentation accuracy. 

 
 
 

 

 

 

 

The multiresolution segmentation was used to object-based image classification, with SVM attaining the best 
accuracy when compared with RF and MLH in both images. The accuracy was higher for image b) composed mainly of 
holm oak then for image a) with predominance of cork oak, due to the its smaller variability in land cover.  

A similar study by Sousa et al. (2010) using high-resolution imagery from the Quickbird satellite, with three LULC 
classes had high accuracy (91%). This discrepancy can be attributed to the greater complexity of our study area, 
characterized by high spectral variation due to the presence of multiple LULC classes and spatial variation due to object 
size. As in this study, errors along the tree canopy edges were observed, possible due to the irregular characteristics of 
each forest species' canopies, stemming from their shapes, textures, and lighting conditions. 

These results are in agreement with those found by Volke & Abarca-Del-Rio (2020), which demonstrated that the 
Support Vector Machine algorithm is efficient for this classification method, even when using LANDSAT and ASTER 
satellite imagery, achieving an accuracy of 97% for LULC mapping. The segmented images, with defined objects 
corresponding to isolated or aggregated tree canopies, can be observed in the figures 3, illustrating the two forest 
species areas in question in this study. 
 

 

 Segmentation Classification 

N Variables Spectral 
detail 

Spatial 
detail 

Segment 
size Kappa Overall 

accuracy 
1 NIR, CP1, CP2 

19 10 100 

54% 69% 
2 NIR, NDVI, CP2 58% 73% 
3 NDVI, SAVI, CP2 64% 77% 
4 R, NIR, NDVI 67% 79% 
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Table 10. Kappa coefficient and overall accuracy for both images and for the three machine learning 

algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 

  
a)                                                                                                   b) 

 
Figure 3.  Forest classification, a) quercus suber dominance and b) quercus rotundifolia dominance. 

 

Conclusions 

In this study, it was identified and delineated the tree crowns of forest species present in the image through 
segmentation and object-based image classification tools in the ARCGIS v10.8 software. The segmentation process, of 
high-resolution images, allows for detailed adjustments to surface objects. 

Object-based image classification using WorldView-3 satellite imagery produced good results in identifying forest 
species crowns. The Support Vector Machine classifier, with the original bands and vegetation indices, in particular 
NDVI, led to land use/land cover maps with an overall accuracy of 95% and 96% and Kappa coefficients of 90%. The 
reflectance values for each class obtained by selecting objects to train the classifier discriminated very well between 
most of the classes identified. The image's acquisition date, corresponding to the dry season, enhanced a greater contrast 
between forest species and other land use classes, reducing the confusion with shrub vegetation and soil. However, 
some errors still occurred due to spectral similarity between certain forest species (e.g., cork oak vs. holm oak), crown 
characteristics, and shadow presence near canopies. 
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 Segmentation 
Classifiers 

Classification 

Image Variables Spectra
l detail 

Spatial 
detail 

Segment 
size kappa Overall 

accuracy 

a) 

R, NIR, NDVI 

     19                10           100    
MLH 84% 92% 
SVM 90% 95% 
RF 89% 94% 

b)     18                15            100    
MLH 66% 85% 
SVM 90% 96% 
RF 90% 95% 
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