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Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação
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ABSTRACT

We can describe the size evolution of a harvested population in a randomly varying

environment using stochastic differential equations. Previously, we have compared

the profit performance of four harvesting policies: i) optimal variable effort policy,

based on variable effort; ii) optimal penalized variable effort policies, penalized ver-

sions based on including an artificial running energy cost on the effort; iii) stepwise

policies, staircase versions where the harvesting effort is determined at the begin-

ning of each year (or of each biennium) and kept constant throughout that year

(or biennium); iv) constant harvesting effort sustainable policy, based on constant

effort. They have different properties, so it is also worth looking at combinations

of such policies and studying the single and cross-effects of the amount of penal-

ization, the absence or presence and type of steps, and the restraints on minimum

and maximum allowed efforts. Using data based on a real harvested population and

considering a logistic growth model, we perform such a comparison study of pure

and mixed policies in terms of profit, applicability, and other relevant properties.

We end up answering the question: is the optimal enemy of the good?
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1. Introduction

Let X(t) be the size, at time t, of a harvested population under the influence of

environmental random fluctuations. The population growth dynamics can be described

by the stochastic differential equation (SDE)

dX(t) = f(X(t))X(t)dt− qE(t)X(t)dt+ σX(t)dW (t), X(0) = x, (1)

where f(X) is the per capita natural growth rate, q > 0 is the catchability coefficient,

E(t) ≥ 0 is the harvesting effort, H(t) = qE(t)X(t) represents the yield from harvest-

ing, σ > 0 measures the strength of environmental fluctuations, W (t) is a standard

Wiener process and X(0) = x > 0 is the population size at time 0, which we assume to

be known. A particular case of SDE (1), the one most commonly used in the literature

and that we will consider here for illustrative purposes, is the logistic model

dX(t) = rX(t)

(
1− X(t)

K

)
dt− qE(t)X(t)dt+ σX(t)dW (t), X(0) = x.

The parameter r > 0 represents the intrinsic growth rate and K > 0 is the environ-

ment’s carrying capacity. In previous work, we discussed the use of a variable effort

optimal policy versus a constant effort optimal sustainable policy, considering the lo-

gistic model (see [4–6]) and the Gompertz model (see [2,3,6]), to derive harvesting

policies based on profit optimization. We have shown that the optimal policy with

variable effort, based on the stochastic optimal control theory, has several shortcom-

ings, namely: i) the effort depends on the randomly varying population size, implying

the estimation of the population size at each time instant, which is a costly, time con-

suming and inaccurate task; ii) this policy is inapplicable from the practical point of

view due to its frequently and intensely varying effort, and also has frequent periods

of no harvesting or harvesting at the maximum possible rate; (iii) this policy poses
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social problems during the periods of low or no harvesting.

Social problems occur when there is a sizeable or total reduction in harvesting

activity, resulting in a partial or total reduction in the number of working hours or the

number of vessels, with accompanying effective unemployment of workers. These social

problems, besides the personal costs, are often accompanied by extra financial costs like

subsidies (unemployment compensations, subsidies to compensate employers’ losses),

which are usually costs not imputed to the fishing activity but rather to the public

sector, possibly covered by taxation revenues. Whether these costs are quantifiable

and possibly internalized (and included in the profit function) or not, they should

be taken into consideration when designing fishing policies for specific stocks. That

is the reason we call attention to them, although they could not in this paper be

explicitly quantified and included in the profit function for the fish stock Hippoglossus

hippoglossus due to data unavailability.

Contrary to the optimal policy, the optimal sustainable policy, based on constant

effort and obtained through the theory of stochastic differential equations, has strong

advantages: i) leads to sustainable and very easily applicable harvesting policies; ii)

the population is driven to a stationary regimen when t → +∞; iii) does not require

knowledge of population size; (iv) poses no social problems. The only disadvantage of

this policy is the reduction in profit, which we show to be slight for the models and

data considered.

One way to eliminate the social problems posed by the optimal variable effort policy

is to incorporate in the model a term that represents an artificial running energy cost

designed to reduce the abrupt changes in effort. This was done in [3] considering

the Gompertz growth model and by taking several cases with different penalization

magnitudes. Unfortunately, the major problem of applicability is maintained since the

effort frequently varies across time, although not so intensely. In addition, it is still

necessary to keep estimating the population size at each time instant, which is a strong

disadvantage.

Also, one can find, for the logistic model ([2]) and the Gompertz model ([4]), a sub-

optimal policy, named stepwise policy, where the harvesting effort under the optimal

variable effort policy is determined at the beginning of each year period (or at the
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beginning of a larger period, for instance, two years) and kept constant during that

period. The authors showed that this policy is not optimal and still poses some social

problems. Still, it has the advantage of being applicable since the changes in the effort

are less frequent and compatible with the fishing activity. Furthermore, although it is

necessary to keep estimating the fish stock size, it is not necessary to do it so often.

Replacing the optimal variable effort policy with a stepwise policy has the advantage

of applicability but, at best, considerably reduces the already small profit advantage

of the optimal variable effort policy over the optimal constant effort policy. In some

cases, the optimal sustainable policy even outperforms this stepwise policy in terms

of profit.

This paper is organized as follows. In Section 2 we present these four types of har-

vesting policies: i) the optimal variable effort policy; ii) the optimal penalized variable

effort policies (penalized versions of i)); iii) the stepwise policies (stared sub-optimal

versions of i)); iv) the constant harvesting effort sustainable policy. Using data based

on a real harvested population and the stochastic logistic growth model, Section 3

refers to the comparisons among these policies and their combinations, together with

different combinations of the minimum and maximum efforts allowed. Single and cross

effects of the different intervening parameters in these combinations will be studied in

terms of profit and in terms of advantages and shortcomings. Finally, some concluding

remarks are given in Section 4.

2. Harvesting policies

2.1. Optimal policy with variable effort

To obtain an optimal policy with variable effort based on profit optimization, we follow

the stochastic optimal control problem (SOCP) formulated in [1,5,6]. The profit per

unit time is defined as Π(t) = R(t) − C(t), where R(t) = (p1 − p2H(t))H(t) are the

sales revenues per unit time (p1 > 0, p2 ≥ 0) and C(t) = (c1 + c2E(t))E(t) represent

the fishing costs per unit time (c1 > 0, c2 > 0). So, Π(t) = (p1qX(t) − c1)E(t) −

(p2q
2X2(t) + c2)E2(t). The SOCP consists in maximizing the present value, i.e. the
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expected accumulated discounted profit over a finite time interval [0, T ]:

V ∗ := J∗(x, 0) = max
E(τ)

0≤τ≤T

J(x, 0) = max
E(τ)

0≤τ≤T

E0,x

 T∫
0

e−δτΠ(τ)dτ

 ,
subject to the population dynamics given by the SDE (1), to the control restrictions

0 ≤ Emin ≤ E(t) ≤ Emax < ∞ and to a terminal condition J(X(T ), T ) = 0. Note

that we use the short notation E[. . . |X(t) = y] = Et,y[. . .] and that

J(y, t) := Et,y

 T∫
t

e−δ(τ−t)Π(τ)dτ


is, at time t, the expected discounted future profits when the population size at that

time is y. The parameter δ > 0 refers to a discount rate accounting for interest rate

and cost of opportunity losses and other social rates. In addition, we assume that

optimization starts at time t = 0 and harvesting continues up to the time horizon T .

The above SOCP can be solved by stochastic dynamic programming theory through

Bellman’s principle of optimality (see, for instance, [10]). In terms of optimization

theory, the problem resorts to finding the effort (i.e., the control) that maximizes the

present value V := J(x, 0), subject to the growth dynamics given by Eq. (1) and to

the constraints on effort and the terminal condition given above. The control value

that leads to the maximum V ∗ will be called the optimal variable effort and is denoted

by E∗(t). The Hamilton-Jacobi-Bellman (HJB) equation associated with the SOCP is

−∂J
∗(X(t), t)

∂t
=

(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E∗(t)

)
E∗(t)− δJ∗(X(t), t)

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))− qE∗(t)

)
X(t) +

1

2

∂2J∗(X(t), t)

∂X2(t)
σ2X2(t),
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and the optimal variable effort is

E∗(t) =


Emin, if E∗free(t) < Emin

E∗free(t), if Emin ≤ E∗free(t) ≤ Emax

Emax, if E∗free(t) > Emax,

where

E∗free(t) =

(
p1 − ∂J∗(X(t),t)

∂X(t)

)
qX(t)− c1

2 (p2q2X(t)2 + c2)

is the unconstrained effort (see [5]). The HJB equation is a parabolic PDE and an

explicit solution is not available. Hence, to solve it numerically we apply a Crank-

Nicolson discretization scheme as in [1–6].

2.2. Optimal variable effort penalized policies

In Section 1 we have mentioned that the optimal variable effort frequently varies across

time, having periods of zero/low and maximum/high values. This behaviour, typical in

optimal control problems, is not compatible with the logistic of fisheries. In addition,

periods of zero or low effort pose social burdens, as explained in Section 1. One way to

eliminate this problem is to incorporate in the model a term that represents a running

energy cost based on the effort (see, for instance, [12]). This extra cost term is not

a real cost, just an artificial way of penalizing the profit values when, at each time

instant, the effort takes abrupt changes from a reference effort value, say Eref . One

can choose, for instance, Eref as the optimal effort value of the constant effort policy

(see Subsection 2.4). In so doing, the resulting optimal penalized policy will not give

us the optimal real profit. Still, it will behave better than the optimal variable effort

non-penalized policy with milder effort changes.

To implement this approach, the profit per unit time to be optimized is not the real

profit (the one presented at the beginning of Section 2.1) but rather an artificial profit

Πε(t) := R(t)− C(t)− Pε(t), with the artificial penalty cost Pε(t) = ε(E(t)− Eref )2,
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where ε ≥ 0 is a tuning parameter (representing the penalization magnitude). Thus,

we now solve (numerically) the maximization problem

max
E(τ)

0≤τ≤T

Ex

 T∫
0

e−δτ
(

Π(τ)− ε(E(τ)− Eref )2

)
dτ

 ,
where we maximize the artificial expected accumulated discounted profit with an ar-

tificial running energy cost, still subject to the population dynamics (1) and to the

restrictions on the effort and the terminal condition. Let E∗ε (t) be the maximizing

effort, which will be called optimal penalized effort. Note, however, that the real ex-

pected accumulated discounted profit when we adopt the optimal penalized effort

E∗ε (t) should use the real costs and so its expression is

V ∗ε := Ex

 T∫
0

e−δτ
(

(p1qX(t)− c1)E∗ε (t)− (p2q
2X2(t) + c2)E∗

2

ε (t)
)
dτ

 .
Considering an artificial energy cost will not eliminate all the major shortcomings

of the optimal variable effort policy. The introduction of an energy cost will reduce or

even eliminate the social costs arising from the optimal variable effort policy’s null or

low effort periods. However, it is still necessary to keep estimating the population size

at each time instant. In addition, the major problem of the logistic of fisheries will

be kept since the effort still varies frequently across time, although not so intensely.

Formally, these problems will remain unchanged whatever ε we choose, except for high

ε values. The only difference between different choices of ε is not the high frequency

of effort changes but the magnitude of such changes. If a low value for ε is chosen, the

resulting policy will be similar to the optimal variable effort policy, with almost the

same social costs and intense variability in effort between null/low and high values.

On the contrary, if a high value for ε is chosen, the resulting policy will still have

frequent changes according to population size changes, but the changes will be small

in magnitude and the effort will stay close to a constant effort, so that social costs will
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be eliminated. However, the operability fishing problems remain unchanged. Since the

variable effort has values close to the constant effort policy, the profit will be practically

indistinguishable from the optimal sustainable constant effort policy profit.

2.3. Sub-optimal policies with variable effort: stepwise policies

To obtain the optimal variable effort policy presented in Subsection 2.1 we need to

compute the optimal effort in each of the points of the discretization scheme (as

in [1–6]). Since we are dealing with a SOCP without any regularizing penalization,

one expects to have frequent and very abrupt changes on the effort, resulting in an

inapplicable policy from the point of view of the fishing activity. One way to mitigate

this behaviour is to consider sub-optimal policies based on stepwise effort. In a stepwise

effort policy, the harvesting effort is determined at the beginning of a time sub-interval

with duration p (for instance, 1 or 2 years), and it is kept constant at that value during

the whole time sub-interval. So, in this stepwise effort policy, for time t in the period

[lp, (l+1)p[, we keep the effort E∗step(t) = E∗(lp) constant and equal to the effort of the

optimal policy at the beginning of the period. For convenience, we use p as a multiple

of the time step ∆t used in the numerical computations and Monte Carlo simulations.

Notice that this policy is obviously not optimal. Since it is a stepwise modification of

the optimal variable effort policy, it is not even optimal among the stepwise policies.

However, it is, as it should, non-anticipative, i.e., it does not use future values of

the fish population size, which are unknown at the time of the decision. This policy is

applicable since changes in effort, although still abrupt, will occur much less frequently

(at most once a year or once every two years).

2.4. Optimal sustainable policy with constant effort

To apply a constant effort policy, one considers a particular case of Eq. (1) with

E(t) ≡ E, i.e.,

dX(t) = f(X(t))X(t)dt− qEX(t)dt+ σX(t)dW (t), X(0) = x.
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For the logistic growth model f(X) = rX(1−X/K), in [7,9] one can find conditions

to avoid population extinction, to have a unique solution and to grant a stationary

density for the population size, such that we have a stochastic equilibrium (in the

sense that the probability distribution of population size converges, in distribution,

to a probability distribution with that stationary density). Namely, it is sufficient to

have 0 ≤ E < r
q

(
1− σ2

2r

)
. Such conditions for more general models can be seen in [8].

The state space of X is (0,+∞) and, if the above conditions on E hold, the bound-

aries X = 0 and X = +∞ are non-attractive. The non-attractiveness of X = 0 ensures

that there is a zero probability of mathematical extinction. The non-attractiveness of

X = +∞ ensures non-explosion and the existence and uniqueness of the solution for

all t > 0. Thus, it may happen that the transient distribution of X(t) stabilizes and

converges, as t→ +∞, to a stationary density. This is indeed the case when the above

conditions on E are met. Denoting by X∞ the random variable with such stationary

density, a good approximation of the expected size of the population E[Xt], for large

t, is the expected value of X∞.

In [4] one can find, for the logistic growth model, the expected value of X∞ as

E[X∞] = K
(

1− qE
r −

σ2

2r

)
. The sustainable profit per unit time is similar as in the

case of the optimal variable effort policy and is defined as Π∞ := (p1qX∞ − c1)E −

(p2q
2X2
∞ + c2)E2. The aim is to determined the optimal sustainable effort E∗∗, i.e.

the value of the constant effort E that maximizes the expected sustainable profit per

unit time E[Π∞] := (p1qE[X∞] − c1)E − (p2q
2E[X2

∞] + c2)E2. The optimal expected

sustainable profit per unit time is then given by

E[Π∗∗∞] =

(
p1qK

(
1− qE∗∗

r
− σ2

2r

)
− c1

)
E∗∗

−
(
p2q

2K2

(
1− qE∗∗

r
− σ2

2r

)(
1− qE∗∗

r

)
+ c2

)
E∗∗2.

3. Comparison of policies

Since the sustainable policy maximizes the expected profit per unit time at the stochas-

tic equilibrium while the others maximize the present value (expected accumulated

discounted profit over a finite time horizon [0, T ]), we need to use a common ground
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for comparison purposes. For that purpose, we shall always use the present values, for

which we need the profits per unit time for the several policies used:

Π∗(t) = (p1qX(t)− c1)E∗(t)− (p2q
2X2(t) + c2)E∗

2

(t),

Π∗∗(t) = (p1qX(t)− c1)E∗∗ − (p2q
2X2(t) + c2)E∗∗

2

,

Π+
i (t) = (p1qX(t)− c1)E+

i (t)− (p2q
2X2(t) + c2)E+2

i (t), i = 1, . . . , 54,

where Π∗(t) is the profit per unit time under the optimal variable effort E∗(t) policy,

Π∗∗ is the profit per unit time under the optimal sustainable policy with constant

effort E∗∗, and, for each simulated scenario i, Π+
i (t) is the profit per unit time for

the effort E+
i (t) used in that scenario. Of course, for non-mixed policy scenarios i,

namely optimal variable effort policy scenarios, optimal variable effort penalized policy

scenarios and stepwise policy scenarios, E+
i (t) will coincide with the corresponding

E∗(t), E∗ε (t) and E∗step(t), respectively.

The quantities to be compared, in terms of the expected accumulated discounted

profits (present values), for each policy, are:

V ∗ = Ex
[∫ T

0
e−δτΠ∗(τ)dτ

]
, V ∗∗ = Ex

[∫ T

0
e−δτΠ∗∗(τ)dτ

]
and

V +
i = Ex

[∫ T

0
e−δτΠ+

i (τ)dτ

]
, i = 1, . . . , 54,

respectively for the optimal variable effort policy, the optimal sustainable constant

effort policy and the policies E+
i (t) of the scenarios i = 1, . . . , 54.

To compute the above profit values, we resort to Monte Carlo simulations of the

population, based on an Euler scheme and a 1000 sample paths, and obtain the cor-

responding efforts and profits. We have assumed logistic growth and used realistic

biological and economic parameters from the Pacific halibut (Hippoglossus hippoglos-

sus) that can be found in [11]. Other parameters were taken from [1]. The full list of

parameters is shown in Table 1. For the application of the Crank-Nicolson discretiza-
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Table 1. (Adapted from [1]). Values used in the simulations for the base scenario S1 (i=1). For other scenarios,

the same parameter values are kept, except for ε, Emin and Emax, which values are indicated in Table 2.
aSFU represents the Standardized Fishing Unit. The definition can be found in [11]. y stands for year.

Item Description Value Unita

r Intrinsic growth rate 0.71 y−1

K Carrying capacity 80.5 · 106 kg
q Catchability coefficient 3.30 · 10−6 SFU−1y−1

σ Strength of environmental fluctuations 0.2 y−1/2

x Initial population size 0.5K kg

p1 Linear price parameter 1.59 $kg−1

p2 Quadratic price parameter 5 · 10−9 $y · kg−2

c1 Linear cost parameter 96 · 10−6 $SFU−1y−1

c2 Quadratic cost parameter 10−7 $SFU−2y−1

T Time horizon 50 y
δ Discount factor 0.05 y−1

ε Penalization factor 0 –
Emin Minimum fishing effort 0 SFU
Emax Maximum fishing effort 0.7r/q SFU

tion scheme, applied to solve the HJB equation obtained in Sections 2.1 – 2.3, the

time and space grid was designed with n = 150 intervals for time (with a time step

of ∆t = 4 months) and with m = 75 intervals for the state space (with space step

∆x = 2.15 · 106 kg and Xmax = 2K).

Figure 1 shows, for scenario S1, what will happen when applying the optimal vari-

able effort harvesting policy (left side) and the optimal constant effort sustainable

policy (right side), in terms of the evolution, during 50 years, of the population size

(top), optimal effort (middle), and profit per unit time (bottom). The black thin lines

show one path chosen randomly from the 1000 simulated sample paths, and the thick

gray lines show the mean of the 1000 simulated sample paths, which estimates the

expected value. Dashed lines show the exact values (only available for the constant

effort policy). Looking at what the harvester typically experiences (thin lines in Figure

1), one can see that the two policies behave quite differently. In fact, while the con-

stant effort policy is easily applicable since we apply the same effort E∗∗ irrespective

of the population size path and of the environmental conditions (middle right, where,

of course, we cannot distinguish between the solid, the thin and the dashed lines),
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Figure 1. Mean (thick lines) and randomly chosen sample path (thin lines) for the population (first row),

the effort (second row) and the profit per unit time (third row) for the optimal variable effort policy (left side)

and the optimal sustainable policy (right side). Image adapted from [5].

the optimal policy is inapplicable since the effort E∗(t) changes quite frequently and

abruptly (thin line on the middle left). We see that its values depend on time and the

fish population size (which is influenced by the random fluctuations of environmental

conditions), requiring constant evaluation of the fish stock. Furthermore, it exhibits

periods of no or low harvesting, posing social burdens and possible extra costs of

unemployment compensation (not considered in our cost structure), and periods of

harvesting at the maximum effort Emax, which may also involve extra costs (e.g.,

investment in backup equipment or hiring of extra employees not trained in fishing).

Table 2 shows alternative scenarios S1 (Base scenario) to S54 corresponding to

different combinations of the parameters: Emin (0, 0.2r/q 0.4r/q), Emax (0.7r/q and
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0.6r/q), step parameter (no steps, 1-year steps and 2-year steps), penalization level

ε (no penalization ε = 0, weak penalization ε = 0.0001 and strong penalization ε =

0.01). For each scenario Si (i = 1, . . . , 54), we have computed the corresponding profit

present value V +
i , the relative profit difference ∆∗i between V +

i and V ∗ = V +
1 and the

relative profit difference ∆∗∗i between V +
i and V ∗∗ (computed for the parameter values

of Table 1). Thus, one can easily compare the harvesting policies in terms of profit.

Table 2.: Numerical comparisons for the alternative scenarios

S1 (Base scenario) to S54. The profit value V +
i denotes the

value of V + for scenario i = 1, . . . , 54. The relative profit

difference between V +
i and V ∗ = V +

1 is given by ∆∗i , and

the relative profit difference between V +
i and V ∗∗ is given by

∆∗∗i . Profit values are in million dollars.

Scenario i Emin Emax Step Penalization V +
i ∆∗i ∆∗∗i

1 (Base) 0 0.7r/q No ε = 0 413,586 0,00% 4,33%

2 ε = 0.0001 413,384 -0,05% 4,28%

3 ε = 0.01 398,884 -3,55% 0,62%

4 Yes (1-year) ε = 0 406,716 -1,66% 2,60%

5 ε = 0.0001 410,650 -0,71% 3,59%

6 ε = 0.01 398,645 -3,61% 0,56%

7 Yes (2-years) ε = 0 390,499 -5,58% -1,49%

8 ε = 0.0001 403,158 -2,52% 1,70%

9 ε = 0.01 398,336 -3,69% 0,48%

10 0.6r/q No ε = 0 410,055 -0,85% 3,44%

11 ε = 0.0001 409,887 -0,89% 3,40%

12 ε = 0.01 398,884 -3,55% 0,62%

13 Yes (1-year) ε = 0 405,444 -1,97% 2,28%

14 ε = 0.0001 407,788 -1,40% 2,87%

15 ε = 0.01 398,645 -3,61% 0,56%

16 Yes (2-years) ε = 0 393,718 -4,80% -0,68%

Continued on next page
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17 ε = 0.0001 402,248 -2,74% 1,47%

18 ε = 0.01 398,336 -3,69% 0,48%

19 0.2r/q 0.7r/q No ε = 0 413,413 -0,04% 4,29%

20 ε = 0.0001 413,152 -0,10% 4,22%

21 ε = 0.01 398,884 -3,55% 0,62%

22 Yes (1-year) ε = 0 409,296 -1,04% 3,25%

23 ε = 0.0001 410,407 -0,77% 3,53%

24 ε = 0.01 398,645 -3,61% 0,56%

25 Yes (2-years) ε = 0 401,794 -2,85% 1,35%

26 ε = 0.0001 404,795 -2,13% 2,11%

27 ε = 0.01 398,336 -3,69% 0,48%

28 0.6r/q No ε = 0 409,854 -0,90% 3,39%

29 ε = 0.0001 409,681 -0,94% 3,34%

30 ε = 0.01 398,884 -3,55% 0,62 %

31 Yes (1-year) ε = 0 407,289 -1,52% 2,74%

32 ε = 0.0001 407,675 -1,43% 2,84%

33 ε = 0.01 398,645 -3,61% 0,56%

34 Yes (2-years) ε = 0 402,297 -2,73% 1,48%

35 ε = 0.0001 403,632 -2,41% 1,82%

36 ε = 0.01 398,336 -3,69% 0,48%

37 0.4r/q 0.7r/q No ε = 0 411,164 -0,59% 3,72%

38 ε = 0.0001 411,098 -0,60% 3,70%

39 ε = 0.01 398,884 -3,55% 0,62%

40 Yes (1-year) ε = 0 408,654 -1,19% 3,09%

41 ε = 0.0001 408,902 -1,13% 3,15%

42 ε = 0.01 398,645 -3,61% 0,56%

43 Yes (2-years) ε = 0 404,930 -2,09% 2,15%

44 ε = 0.0001 405,533 -1,95% 2,30%

45 ε = 0.01 398,336 -3,69% 0,48%

46 0.6r/q No ε = 0 408,090 -1,33% 2,94%

Continued on next page
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47 ε = 0.0001 408,047 -1,34% 2,93%

48 ε = 0.01 398,884 -3,55% 0,62%

49 Yes (1-year) ε = 0 406,622 -1,68% 2,57%

50 ε = 0.0001 406,607 -1,69% 2,57%

51 ε = 0.01 398,645 -3,61% 0,56%

52 Yes (2-years) ε = 0 404,455 -2,21% 2,03%

53 ε = 0.0001 404,467 -2,20% 2,03%

54 ε = 0.01 398,336 -3,69% 0,48%

We begin by looking at the individual effect of each type of modification on the

base scenario (scenario S1), which corresponds to Emin = 0, Emax = 0.7r/q and the

use of the optimal variable effort policy (without steps and without penalization).

Several comments can be done from Table 2, as follows. Clearly, reducing Emax

reduces the profit and keeps the inapplicability of the policy and the need to estimate

the population size. A reduction on Emax might be used, for instance, whenever outer

information exists recommending a decrease in harvesting effort due to high fuel price

or when there is a suspicion for the population being depleted.

On the other hand, depending on the value, increasing Emin reduces or eliminates

social problems but does not affect the inapplicability of the policy or the need to

estimate the population size. When compared with the Emin = 0 case, there is a small

profit reduction (0.59%) when Emin = 0.4r/q and a negligible reduction (0.04%) when

Emin = 0.2r/q.

We now refer to the effect of penalization w.r.t. the optimal policy and the optimal

sustainable policy. We use Eref = E∗∗ as a reference, but the value of Eref has a

small influence (we have considered other Eref close to E∗∗ but the profit differences

were minimal). The application of a penalized policy keeps the frequent oscillations

in the effort, implying the inapplicability of the harvesting policy. Also, the need to

estimate population size all the time is kept. Values much smaller than 0.0001 (previous

paper) show almost negligible differences w.r.t. the optimal policy. The value 0.0001

attenuates the range of variability of the effort but not very much. The profit is also

very similar to the corresponding policy with ε = 0, but it helps reduce social problems.
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Considering ε = 0.01 attenuates the variability range, making an effort close to a

constant, thus avoiding social problems. However, the profit is close to the profit of

the constant effort policy.

Regarding the effect of stepwise policies w.r.t. the optimal policy and the optimal

sustainable policy, they eliminate the inapplicability problem and the need to estimate

population size is reduced to once a year (or once every two years). Social problems,

when they exist, are not attenuated. The profit is reduced, particularly for 2-year

steps, when it sometimes becomes lower than the profit of the constant effort policy.

Figures 2 – 4 show one sample path for the effort (the thin lines) obtained by the

application of each policy according to Table 2 and represent the effort that would

typically be applied if that policy was chosen. The randomly chosen sample path of

W (t) (underlying cumulative environmental noise effect) is the same for all scenarios,

but the corresponding effort varies according to the scenario chosen. The thick lines

correspond to the average of over 1000 simulated paths and are a close estimate of

the expected value of the effort.

We now look at cross-effects, i.e., the joint influence of different types of parameter

modifications on the base scenario:

• Cross-effects of Emax and Emin: has no qualitative interaction w.r.t. profit, the

changes being almost additive.

• Cross-effects of Emax and penalization: for ε = 0.01, since the effort changes

in a small neighbourhood of a constant, the value of Emax has no effect. For

ε = 0.0001, reducing Emax reduces the profit almost in the same way as for the

ε = 0 case.

• Cross-effects of Emax and stepwise: increasing Emax increases the profit for no-

step policies (as we have seen already) or 1-year step policies, but it has almost

no effect or has an opposite effect for 2-year step policies.

• Cross-effects of Emin and penalization: for ε = 0.01, since the effort changes

in a small neighbourhood of a constant, the value of Emin has no effect. For

ε = 0.0001, increasing Emin reduces the profit almost in the same way as for
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S1 S2 S3 

S4 S5 S6 

S7 S8 S9 

S10 S11 S12 

S13 S14 S15 

S16 S17 S18 

Figure 2. Mean (thick line) and randomly chosen sample path (thin line) for the effort (in SFU units) for
each of the scenarios 1 to 18 in Table 2 with Emin = 0. Each row represents 3 consecutive scenarios differing in

penalization level ε (no penalization ε = 0 on the left, ε = 0.0001 in the center and ε = 0.01 on the left), with
different lines corresponding to different combinations of the Emax and the step parameters. In each figure,

the horizontal axis corresponds to time varying from 0 to 50 years.

the ε = 0 case. We have seen that increasing Emin has little effect on the profit

and reduces or eliminates (depending on the value of Emin) the social problems.

In contrast, a penalization of ε = 0.0001 has a similar or better result on the
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S19 S20 S21 

S22 S23 S24 

S25 S26 S27 

S28 S29 S30 

S31 S32 S33 

S34 S35 S36 

Figure 3. Mean (thick line) and randomly chosen sample path (thin line) for the effort (in SFU units) for
each of the scenarios 1 to 18 in Table 2 with Emin = 0.2r/q. Each row represents 3 consecutive scenarios

differing in penalization level ε (no penalization ε = 0 on the left, ε = 0.0001 in the center and ε = 0.01 on
the left), with different lines corresponding to different combinations of the Emax and the step parameters. In

each figure, the horizontal axis corresponds to time varying from 0 to 50 years.

profit reduction but may not attenuate the social problems. A value of ε = 0.01

solves the social problems but has a strong profit reduction. Non-applicability is

common to both actions.
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S49 

S52 

S38 

S41 

S44 

S47 

S50 

S53 

S39 

S42 

S45 

S48 

S51 

S54 

Figure 4. Mean (thick line) and randomly chosen sample path (thin line) for the effort (in SFU units) for
each of the scenarios 1 to 18 in Table 2 with Emin = 0.4r/q. Each row represents 3 consecutive scenarios

differing in penalization level ε (no penalization ε = 0 on the left, ε = 0.0001 in the center and ε = 0.01 on
the left), with different lines corresponding to different combinations of the Emax and the step parameters. In

each figure, the horizontal axis corresponds to time varying from 0 to 50 years.

• Cross-effects of Emin and stepwise: increasing Emin produces a small reduction

in the profit for no-step policies (as we have seen already) or 1-year step policies,

but it improves the profit for 2-year steps.
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• Cross-effects of penalization and stepwise: the joint use of steps and penalization

keeps the benefits of steps in terms of applicability and reduction of the need

to estimate the population size. When using steps, a large penalization (ε =

0.01) considerably reduces social problems (when they exist) but makes a lower

profit. When using steps, a small penalization (ε = 0.0001) improves the profit,

strongly for Emin = 0 and slightly for Emin = 0.2r/q, but has a negligible effect

(sometimes favourable, sometimes unfavourable) for E = 0.4r/q. So, for small

Emin, it somehow smoothens the effect of the step discretization.

Keeping in mind all of the above, we now suggest policies – the best choices – that are

a compromise between the profit and the applicability and social issues. A policy with

no social problems and no applicability problems that provides a reasonable profit

reduction w.r.t. the base optimal policy seems to be the 1-year stepwise penalized

policy with ε = 0.0001, Emax = 0.7r/q and with an Emin = 0.2r/q or Emin =

0.4r/q (depending on what is the threshold for relevant social problems to occur).

When compared with the base scenario, the profit differences are, respectively, −0.77%

and −1.13%. Comparing with the base scenario sustainable policy, the profit gain is,

respectively, 3.53% and 3.15%. Of course, both scenarios still require estimating the

population size once a year, which cost is not considered in our cost structure. If one

has to estimate so often for other reasons, there is no need to consider such costs for

optimization purposes. If one does not need to estimate so often for other reasons

and those costs are sizeable, one may deduct the extra estimation discounted costs

from the overall profit of this policy and compare with the profit of the constant effort

policy (which does not require population size estimation). In this case, it might be

preferable to use the constant effort policy, which has the advantage of straightforward

implementation.

4. Conclusions

This work presents numerical profit comparisons among harvesting policies based on

constant, variable (with and without penalization), and stepwise effort for populations

living in a randomly varying environment. To obtain the profit values, we have per-
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formed 1000 Monte Carlo simulations using a Crank-Nicolson discretization scheme

in time and space of the HJB equation and an Euler scheme for the population paths

and using realistic biological and economic parameters from the Pacific halibut (Hip-

poglossus hippoglossus) that can be found in [11].

The optimal policy with variable effort has frequent strong changes in effort, in-

cluding periods of null effort, posing serious applicability problems, producing social

burdens and out-of-model costs (such as unemployment compensations), and leading

to great instability in the profit earned by the harvester. On the contrary, the optimal

sustainable policy based on constant effort does not have these shortcomings, is very

easy to implement, and drives the population to a stochastic equilibrium. It also avoids

the need for frequent estimation of population size, a difficult and costly process (with

costs not considered in the cost structure).

Since the optimal policy is not applicable, we have presented sub-optimal policies,

named stepwise policies, based on variable effort but with periods of constant effort.

These policies are not optimal but have the advantage of being applicable since the

changes in the effort are not so frequent and can be compatible with fishing activity.

Furthermore, although we still need to estimate the fish stock size, we do not need to

do it so often. The stepwise policies share with the optimal variable effort policy the

disadvantage of having periods of null or low fishing and fishing at the highest rate,

with the corresponding social implications and out-of-model costs.

One way to eliminate the social problems posed by the optimal variable effort policy

is to incorporate in the model a term that represents an artificial running energy cost

designed to tame the abrupt changes in effort. This was done by considering several

cases with different penalization magnitudes. Unfortunately, the major problem of

applicability is maintained since the effort frequently varies across time, although not

so intensely. Also, it is still necessary to keep estimating the population size at each

instant, which is a strong disadvantage.

We have also compared, for realistic data and the for the stochastic logistic model,

these several policies, as well as changes in Emin and Emax and looked at 54 scenarios

resulting from different combinations of these modifications.

Since the optimal policy is not applicable and has social problems, we suggest the
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best choice policies that are a compromise between the profit and the applicability

and social issues. These policies, which presents no social nor applicability problems,

incorporate a 1-year stepwise effort, a light penalization level ε = 0.0001, have Emax =

0.7r/q and have Emin = 0.2r/q or Emin = 0.4r/q (depending on the threshold for

relevant social burdens). They still require the estimation of the population size once

a year. If this involves extra costs (not considered in the profit structure), one should

compare their adjusted profits with the profit of the optimal sustainable constant effort

policy to decide on the final policy to apply. We can now answer the question: “Is the

optimal enemy of the good?” In this case, yes!
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