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Does climate determine the trophic organization of communities around the world? A 
recent study showed that a limited number of community trophic structures emerge 
when co-occurrence of trophic guilds among large mammals is examined globally. We 
ask whether the pattern is general across all terrestrial mammals (n = 5272) and birds 
(n = 9993). We found that the six community-trophic structures previously identified 
with large mammals are largely maintained when all mammals and birds are examined, 
both together and separately, and that bioclimatic variables, including net primary 
productivity (NPP), are strongly related to variation in the geographical boundaries of 
community trophic structures. We argue that results are consistent with the view that 
trophic communities are self-organized structures optimizing energy flows, and that 
climate likely acts as the main control parameter by modulating the amount of solar 
energy available for conversion by plants and percolated through food webs across tro-
phic communities. Gradual changes in climate parameters would thus be expected to 
trigger abrupt changes in energy flows resulting from phase transitions (tipping points) 
between different dynamical stable states. We expect future research to examine if 
our results are general across organisms, ecosystems, scales and methodologies, and 
whether inferences rooted in complex systems theory are supported. The emergence 
of general patterns in the functional properties of animal communities at broad scales 
supports the emergence of food-web biogeography as a sub-discipline of biogeogra-
phy focused on the analysis of the geographical distributions of trophic relationships 
among organisms.

Keywords: biogeography, climate change, complex systems theory, food webs, energy 
optimization, net primary productivity, trophic structures

Introduction

Biogeography examines distributions of species and communities at broad geographi-
cal scales of extent. It is often assumed that the effects of biotic interactions on the dis-
tributions of species constitute a second-order effect (also known as the Eltonian noise; 
Soberón and Nakamura 2009), with the relationship between distributions and abiotic 
factors, such as climate, being more important (Whittaker et al. 2001, Pearson and 
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Dawson 2003). These views have been challenged by authors 
examining the potential effects of biotic interactions on spe-
cies range dynamics using theoretical (Mendoza et al. 2004, 
Gravel et al. 2011, Araújo and Rozenfeld 2013, Post 2013), 
empirical (Araújo and Luoto 2007, Baselga and Araújo 2010, 
Meier et al. 2010) and experimental settings (Davis et al. 
1998, Callaway et al. 2002). However, the extent to which 
biotic interactions constrain large-scale biodiversity pat-
terns is still a matter of ongoing debate: are broad scale geo-
graphical distributions of species largely driven by climate? 
Alternatively, are such distributions markedly constrained by 
biotic interactions?

Mendoza and Araújo (2019) contributed to this debate by 
asking how climate variables would determine the worldwide 
distribution of trophic structures, describing how species are 
distributed among feeding groups, and how these groups 
relate to one another. Using data on the geographical dis-
tributions and feeding preferences of large terrestrial mam-
mals (n = 689), they detected six trophic structures broadly 
matching the distribution of climate. They proposed that if 
the regularities detected with community trophic structure 
for large mammals were general across sets of organisms, a 
reasonable interpretation would be that climate does not just 
limit the distributions of species (Peterson et al. 2011), but 
also the types of interactions that are possible at any given 
location. Climate could thus be seen as acting as a boundary 
condition within which specific sets of trophic interactions 
co-exist regardless of the identity of the species available for 
colonization within the species pool (Cornell and Harrison 
2014). Should the assumption be correct, a trophic com-
munity in a humid tropical region in Southeast Asia, for 
example, would be functionally equivalent to a trophic com-
munity in humid tropical areas of Africa, South America or 
northern Australia. To test the generality of these observa-
tions, we expand the analyses conducted by Mendoza and 
Araújo (2019) to all non-marine bird (n = 9993) and terres-
trial mammal (n = 5272) species (total n = 15 265). Other 
vertebrate groups, such as amphibians and reptiles, were not 
included because there is insufficient available information 
on their feeding behaviour.

Background and predictions

The idea of communities being largely determined by cli-
mate and converging across areas with similar climates is 
inspired by the view of trophic interactions being the out-
come of self-organized processes within communities (Solé 
and Bascompte 2012). Communities, like other complex 
dynamic systems, can be described by n state variables belong-
ing to an n-dimensional space known as the state space. The 
structure of the communities can, in turn, be described as 
networks of energy flows whose nodes are groups of species 
exploiting a certain type of resources (i.e. trophic guilds) 
(Zhang 2009, Moore and De Ruiter 2012). Within a com-
plex systems framework, the state variables describing the tro-
phic community are the amount of energy processed by all 
individuals within each guild. Currently, we lack the tools to 

conveniently measure energy flows across trophic community 
structures, especially for multiple species interactions across 
at large scales of extent and resolution. As an approximation 
to the problem one could ideally use abundance weighted 
by body mass as a measure the energy each guild processes. 
But since cell-based species abundance data across the world 
do not exist, we use the number of species within each tro-
phic guild. The underlying assumption is that higher energy 
availability, which is related to greater amounts of resources, 
induce greater numbers of individuals within communi-
ties, consequently increasing species richness by allowing for 
greater numbers of species with viable populations. Empirical 
support for this assumption is mixed and still being discussed 
(Storch et al. 2018) but, given absence of global abundance 
data, the trophic structure of communities, defined by the 
number of species of each trophic guild, is used as a surrogate 
of the energy organization of that community (Mendoza and 
Araújo 2019).

In a dynamical system, all possible trajectories representing 
the motion of initial states under the system dynamics con-
form the phase portrait. An attractor is a region of the phase 
portrait towards which the dynamical system evolves for a 
set of initial states, which conforms its basin of attraction. 
System states that reach the vicinity of an attractor remain 
close to the attractor, even if they are slightly perturbed. Thus, 
although any configuration of the state variables describing 
the behaviour of the system could occur a priori, only some 
of them – the attractors – eventually emerge under the system 
dynamics. Trophic communities, as other dynamics systems, 
are expected to have stable configurations described as attrac-
tors of the energy transfer dynamics (Scheffer and Carpenter 
2003, Mendoza et al. 2004, Moore and De Ruiter 2012). 
That is, trophic communities should not be formed by any 
combination of species or guilds, just but by those contribut-
ing to reaching a stable organization of energy flows.

The phase portrait topology, i.e. the number, location and 
shape of attractors and their basin of attraction, is determined 
by a set of p parameters known as control parameters, which 
define a p-dimensional space known as the parameter space. 
While the control parameters (e.g. climate variables) deter-
mine the emergent dynamics of the system (e.g. energetic 
organization of the food webs), thus affecting the individual 
behaviour of the state variables (e.g. energy processed by the 
trophic guilds), they are not affected by such organization. 
This does not imply that biota does not affect climate. It does 
but, as an approximation, a state variable can be treated as 
a control parameter when the time scale at which it acts is 
much larger (e.g. evolutionary changes in ecological surveys), 
or also when its influence on the dynamics of the system is 
much larger than the one it has on it (e.g. mean temperature 
or precipitation on the energy organization of communities).

In terrestrial ecosystems it has been known for over 200 
hundred years that the availability of energy and water 
throughout the year largely determines the amount and type 
of vegetation that can grow (Humboldt 1807, Holdridge 
1947) and the production rate of different plant resources for 
animals (Hawkins et al. 2003). Thus, it is reasonable to expect 
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that climate variables functioning as key control parameters 
for vegetation would also act as control parameters of trophic 
communities (Currie et al. 2004) even if lagged responses to 
historical climates changes might occasionally be expected, 
chiefly among dispersal-limited species (Araújo et al. 2008) 
or clades limited by niche conservatism (Romdal et al. 2013, 
Bennet et al. 2021). In such cases, individual species–climate 
relationships can be stronger with historical climate than 
with contemporary climate even if non-equilibrium causing 
species to be absent from otherwise suitable climates (Araújo 
and Pearson 2005, García-Valdés et al. 2013) might be com-
pensated locally by functional equivalence among species 
(Loreau 2004, Hubell 2005).

Small changes in control parameters of complex systems 
can result in small variations in the location and shape of 
attractors and their basin of attraction. In some cases, a small 
change in some parameters can trigger drastic changes in the 
phase portrait topology. These drastic changes, known as 
phase transitions or tipping points, can lead to alterations in 
the emerging dynamics and organization of the system. It can 
be the case, for example, of the transitions between vegetation 
dominated by different functional types such as biomes (De 
Angelis 2021). As a consequence of phase transitions, qualita-
tive changes in the trophic structure of terrestrial communi-
ties have also been detected in model systems (Mendoza et al. 
2004, Mendoza 2008, Boettiger and Batt 2020).

Demonstrating that gradual changes in the control param-
eters governing community dynamics can lead to emergence 
of well-defined groups separated from each other by abrupt 
transitions is far from trivial, because observations of these 
phenomena are difficult under fully controlled conditions. 
Previous studies have used indicators at local to regional 
geographical scales using field data (Scheffer and Carpenter 
2003). They included examinations of: 1) jumps in time 
series, as between eutrophic and dystrophic states of lake 
ecosystems associated with distinct differences in phosphorus 
and organic carbon input (Carpenter and Pace 2013) or the 
collapse of Saharan vegetation triggered by the gradual orbital 
increases in summer season insolation (Demenocal et al. 
2000); 2) spatial patterns, such as patchwork mosaics of 
barren areas and kelp beds that characterize many kelp for-
est ecosystems (Konar and Estes 2003), striking geometric 
patterns in the vegetation of extensive areas of arid or semi-
arid Africa (Couteron and Lejeune 2001) or isolated vegeta-
tion patches observed in nutrient-poor territories of South 
America and West Africa (Lejeune et al. 2002); and 3) the 
emergence of discrete units as lakes with scarce or abundant 
submerged macrophytes (Van Geest et al. 2003).

If gradual changes in climate parameters trigger abrupt 
changes in energy flows resulting from phase transitions 
between different dynamical stable states (Beisner et al. 2003, 
Scheffer and Carpenter 2003, Mendoza et al. 2004, Moore 
and De Ruiter 2012), distinguishable trophic structures 
should emerge at global scale (Mendoza and Araújo 2019). 
Our first prediction is that communities continuously dis-
tributed in a geographical space should not be distributed 
continuously in the trophic space, defined by the number of 

species of each trophic guild – a surrogate of their energy 
organization – rather forming discrete groups. Assuming that 
climate variables are the main control parameters of trophic 
terrestrial communities at broad scales, via their direct effects 
on net primary productivity (NPP) and broad vegetation 
types (von Humboldt and Bonpland 1807, Holdridge 1947, 
Woodward 1987), our second prediction is that regions with 
similar climatic conditions should feature similar trophic 
structures regardless of where they occur in the planet.

Methods

Data

Three sources of geographical data were extracted and plot-
ted in a world terrestrial 1 × 1° grid system: 1) global distri-
butional ranges of non-marine mammal and bird species; 2) 
bioclimatic variables; and 3) net primary productivity. The 
global species distributions were derived from IUCN Global 
Assessment distributional data for native ranges (IUCN 
2014). Specific occurrences in grid cells were used to produce 
a presence/absence matrix with names of 9993 non-marine 
birds and 5272 terrestrial mammals (15 265 species) as col-
umns and 18 418 1 × 1° grid cells as rows.

The feeding habits of the bird and mammal species were 
obtained from the global species-level compilation of key 
attributes published by Wilman et al. (2014). No records for 
species occurring in Antarctica were available.

Bioclimatic data for the terrestrial surface of the Earth 
were obtained from WorldClim – Global Climate Data 
(Hijmans et al. 2005). We used the full set of 19 bioclimatic 
variables available in WorldClim for exploration of biocli-
matic correlates of biological patterns inferred. The variables 
represent annual trends (e.g. mean annual temperature, 
annual precipitation), seasonality (e.g. annual range in tem-
perature and precipitation) and extreme or limiting climatic 
factors (e.g. temperature of the coldest and warmest month, 
and precipitation of the wet and dry quarters).

Net primary productivity (NPP) data at 0.25 × 0.25 deci-
mal degree were obtained from Imhoff et al. (2004), and then 
resampled to the 1 × 1° degree grid system used. It represents 
the total amount of carbon absorbed by land plants every year 
that is fixed in plant structures. NPP is the primary trophic 
source of energy for consumers and is measured in grams of 
carbon per grid cell.

In order to investigate whether community trophic struc-
tures are not just affected by cell-based climate conditions, 
but also by broader regional patterns, we also investigated the 
relationship between trophic structure membership and aver-
aged climate values across neighbour cells within a radius of 
1–8° (averaged values). Thus, from each variable we derived 
9 metrics (Garcia et al. 2014).

Identification of trophic guilds

In the global species-level compilation published by 
Wilman et al. (2014), trophic resources are classified into 
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10 categories shared by terrestrial mammals and non-marine 
birds (Fig. 1). The trophic profile of each species is obtained 
from the estimated percentage of each type of resource in 
their diet (similar procedure was undertaken by Mendoza 
and Araújo 2019). The result is a matrix with the 10 trophic 
resources categories as columns, 15 265 species of birds and 
mammals as rows, and values representing the estimated per-
centage of each type of resource. The trophic profile of each 
species is thus a point in a 10-dimensional ‘trophic space’ 
defined by the estimated percentage of each type of resource 
in their diet (a vector of dimension 10). This 10-dimen-
sional space, which includes all mammal and bird species 
together, will be referred to here as ‘species-level trophic 
space’, as opposed to the ‘community-level trophic space’  
described below.

Trophic guilds are commonly defined based on arbitrary 
thresholds regarding the percentage of each type of resource 
in the diet of the species (Janis 1990, Wilman et al. 2014). 
Consequently, species located next to either side of the thresh-
old are classified into different groups, despite consuming 
very similar types of resources. To avoid such arbitrariness and 
sensitivity to threshold choice, trophic guilds were obtained 
with c-means clustering (Dunn 1973, Bezdek 1981), on the 
basis of the Euclidean distance between the 15 265 species 
in the 10-dimensional ‘species-level trophic space’ described 
above. Clustering analysis takes advantage of the less densely 
populated regions of this 10-dimensional trophic space to 
make the divisions, thus minimizing the number of species 
having very similar types of food and being classified into 

different trophic groups. The number of clusters was selected 
based on the AMDi curve (Supporting information).

Identification of community trophic structures

A 1 × 1° grid cell surface is about 12 300 km2 at the equa-
tor. Such cells will often include several types of communi-
ties. However, for convenience, and assuming that differences 
within cells will be smaller than differences between cells 
located in different biogeographic regions, we considered 
species found in individual cells as belonging to the trophic 
community of that cell (and referred to henceforth as ‘com-
munity’). Of course, this is a simplification because species 
within a cell might pertain to different trophic structures 
(e.g. a Savannah crossed by river surrounded by lush tropi-
cal vegetation will have distinct trophic structures in each of 
the two habitats). Such assumptions of homogeneity within 
sampling units are common and inevitable in regionalization 
exercises at both global (Holt et al. 2013) and regional levels 
(Rodrigues et al. 2015).

As a starting point, we assigned the 15 265 terrestrial 
mammal and non-marine bird species to their correspondent 
guild and then counted the number of species of each guild 
within each cell. The result is a matrix with the 9 trophic 
guilds as columns, 18 418 communities as rows, and val-
ues representing numbers of species. The trophic profile of 
every community is thus a point in a 9-dimensional ‘trophic 
space’ defined by the number of species from each trophic 
guild (a vector of dimension 9). This 9-dimensional space 

Figure 1. Distribution of the percentages (y-axis) of the ten types of trophic resources (x-axis) consumed by species across each one of the 
nine trophic guilds identified with c-means clustering. Trophic resources: invertebrates, Inv; vertebrate endotherms, Vend; vertebrate ecto-
therms, Vect; fish, Vfish; vertebrates in general, Vunk; carrion, Scav; fruit and drupes, Fruit; nectar and pollen, Nect; seed and grains, Seed; 
other plant material and fungi, Plant (see for detailed description Wilman et al. 2014).
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will be referred to here as ‘community-level trophic space’, as 
opposed to the 10-dimensional ‘species-level trophic space’ 
described above.

Our first prediction is that communities, even if continu-
ously distributed in a geographical space, will not be con-
tinuously distributed in the ‘community-level trophic space’, 
rather forming well-defined groups separated by empty or 
sparsely populated regions. A multidimensional space cannot 
be represented on a two-dimensional surface so, in order to 
test this prediction, we developed the average mean decrease 
analysis (‘AMD analysis’, Supporting information). The tro-
phic structures identified were represented with boxplots 
showing the distribution of the numbers of species within 
nine trophic guilds.

The same analyses were also performed for mammals 
(n = 5272) and birds (n = 9993), independently, but not to 
test the first prediction with them, but to test the general-
ity of the community trophic structures found, comparing 
them with each other, as well as with the structures identified 
combining both groups (n = 15 265) and those previously 
found for large terrestrial mammals (n = 689, Mendoza and 
Araújo 2019).

Climatic modelling of community trophic structures

The second prediction proposes that regions with similar cli-
matic conditions feature the same trophic structure regardless 
of their location in the planet. The relationship between tro-
phic structure and both climate and NPP was modelled using 
two different machine learning techniques: Random Forests 
(Breiman 2001) with the package RandomForest (Liaw and 
Wiener 2002), and evolutionary learning of globally opti-
mal classification trees (Krętowski and Grześ 2005) with the 
package evtree (Grubinger et al. 2017). Random forests were 
selected for their extraordinary capacity to deal with com-
plex relationships, decorrelating highly correlated variables 
and taking advantage of much of the information contained 
in them (Boulesteix et al. 2012). It is based on hundreds of 
trees, which can hardly be analyzed to see how the predictor 
variables interact with each other to determine the behavior 
of the target variable (the type of trophic structure in this 
case). A simple tree, however, especially if optimized with 
evolutionary algorithms (such as the one used by the evtree 
package), can reveal some of the most important interactions, 
albeit in a simplified form.

Like other predictive models, the RandomForest pack-
age can provide predictions for out-of-the-bag (OOB) 
samples not used for training the algorithms (often referred 
to as ‘projection’ when the prediction domain is spatially 
uncorrelated with the model training domain, Araújo et al. 
2019). When OOB samples are selected at random, they 
are inevitably similar to those used for training the model. 
This can cause a problem for projections since the similar-
ity between training data and test data violates the statistical 
independence between the two sets owing to spatial auto-
correlation. The result typically implies inflated assessments 
of models predictive performance (Araújo et al. 2005). To 

limit the effects of spatial autocorrelation on the predictions, 
the algorithms were tested on previously excluded regions 
(Dormann et al. 2007). Firstly, we divided the globe into 36 
bins of 10° longitude (from 180° West longitude to 180° 
East longitude). Secondly, we fitted the models with cells 
from all bins except one, which is used for testing. This pro-
cedure of 36-fold cross-validation is repeated so that all bins 
are used for testing once. Agreement between predicted and 
observed trophic structures on testing bins is measured with 
the kappa coefficient, which quantifies the overlap expected 
by chance (Carletta 1996), and a kappa value is thus obtained 
for all cross-validated model runs (see for similar approach 
Madon et al. 2013).

The importance of the predictor variables for the devel-
opment of random forests was obtained from the average 
decrease of the Gini coefficient (MDG), which is based on 
the contribution that each of them makes to increase the 
homogeneity of the nodes when incorporated to the trees 
from which the random forests are constructed (Strobl et al. 
2008).

Coastal communities, identified by zero distance to the 
sea, were excluded because energy input from the sea is 
expected to affect the energy organization of coastal com-
munities independently of the climate. This left 15 370 out 
of 18 418 communities. NPP values were not available for 
some high-latitude regions, e.g. most of Greenland, so these 
regions were also not used in our study. The final number of 
cells used for both climate and NPP modeling was 14 563.

Results

Trophic guilds

We selected nine major trophic guilds (Supporting infor-
mation, Fig. 1). Specialist invertivores and plantivores are 
considered specialist groups as they consume, on average, 
100% of either invertebrates or plants. Carnivores, necta-
rivores, frugivores and granivores are well-defined trophic 
guilds, although they also consume to a small extent, inverte-
brates. The remaining 3 groups are generalist invertivores (as 
opposed to the specialist invertivores), plant-invertivores and 
frug-invertivores. Invertebrates are a significant component 
of the diet in these three groups. Some trophic resources, 
such as fish (Vfish), vertebrates in general (Vunk) or carrion 
(Scav) represent such low percentage of the total consump-
tion that they played a small role in the formation of the 
trophic guilds.

Community trophic structures

The curve resulting from the application of the AMDi analy-
sis to the 18 418 world terrestrial grid cells describing the 
9-dimensional community-level trophic space obtained 
with mammals and birds together showed a peak for 6 user-
defined clusters (Fig. 2e), indicating that there are six well-
defined groups (Supporting information). These groups are 
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the six trophic structures, whose main characteristics are rep-
resented in Fig. 3. AMDi reaches a value (0.56) comparable 
to that of Fig. 2c, which was obtained with the same number 
of samples forming six groups whose standard deviation was 
10 (in a space of side 100). As expected, the communities 
from each group share a common pattern in the number and 
the relative proportion of coexisting guilds (Fig. 3).

The projection of the six community trophic structures 
on any of the 9-dimensional community-level trophic space 
(the number of species from each trophic guild) shows a 
significant overlap between them (Fig. 3). However, in the 
9-dimensional space it is expected that the six trophic groups 
show an overlap equivalent to six clusters of samples with a 
standard deviation of only one tenth of the hypercube edge 
in which they are found.

The AMDi curves obtained with mammals and birds 
independently also showed a peak for 6 user-defined groups. 
The overlap between the geographical distributions of 
the six trophic structures identified by both curves is high 
(kappa = 0.73, Fig. 4a and b respectively). The main differ-
ences between trophic structures identified for mammals and 
birds are on islands, which are differentially colonized by fly-
ing and non-flying animals, and also on the Indian Peninsula. 
The geographical limits of trophic structures 2 and 3 (dark 
blue and light blue respectively, Fig. 4a and b) are also mis-
matching in Asia. Finally, small areas in Europe with trophic 

structure 4, present with mammals, are absent with birds 
(yellow, Fig. 4a and b).

Climatic modelling of community trophic structures

The geographical distribution of the six community trophic 
structures predicted by Random Forests using climatic predic-
tors (Fig. 4d and e), closely matches the observed distribution 
(Fig. 4c). Using climatic variables as predictors at cell-level 
(Fig. 4d), the agreement between predicted and observed is 
substantial (kappa = 0.73, Table 1). When NPP is addition-
ally included, the prediction capacity of the resulting model 
practically does not change (kappa = 0.74, Table 1), but NPP 
becomes the single most important variable (MDG, Table 1). 
Using smoothed climatic variables by averaging values across 
neighbour cells, the match between predicted (Fig. 4e) 
and observed structures (Fig. 4c) increases (kappa = 0.81, 
Table 1). When NPP is also included, kappa increases only 
slightly (kappa = 0.82, Table 1), while still remaining the 
most important variable (MDG, Table 1). Using only local 
and averaged values of NPP, the agreement between pre-
dicted and observed decreases (kappa = 0.54, Table 1). A tree 
model including only averaged values of NPP (not shown 
here) explains the general geographical pattern of the global 
distribution of the six trophic structures around the world 
(kappa = 0.59, Fig. 4f ). A tree model including cell-level 

Figure 2. AMDi curves: (a) obtained with 18 418 artificial samples randomly distributed in a 9-dimensional space of side 100; (b) 18 418 
artificial samples in a 9-dimensional space of side 100, grouped in 6 clusters with standard deviation 5 (highest definition); (c) with standard 
deviation 10 (intermediate definition); (d) with standard deviation 15 (lowest definition); (e) 18 418 communities (cells) in the 9-dimen-
sional community-level trophic space; (f ) 15 265 species in the 10-dimensional species-level trophic space; y-axis: AMDi values (Supporting 
information).
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Figure 3. Representation of the six trophic structures identified with the AMDi analyses. Frequency distribution of the numbers of species 
within nine trophic guilds across six trophic structures. Values within parentheses are number of cells. Trophic guilds are: specialist inverti-
vores, SIn; generalist invertivores, GIn; plant-invertivores, PIn; frug-invertivores, FIn; carnivores, Crn; plantivores, Pln; frugivores, Frg; 
nectivores, Nct; granivores, Grn; note that the range of species numbers in the first three trophic structures (0–80) is lower than that of the 
last three (0–250).
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NPP and climatic variables (Fig. 5, kappa = 0.64) shows how 
climate modulates NPP to determine the trophic structure.

Discussion

Consistent with the two predictions made, we found that 
1) well-defined community trophic structures emerge 
when examining trophic preferences of land mammals and 
birds around the world; and 2) the distribution of trophic 

structures matches climatic gradients, areas sharing similar 
environmental characteristics also sharing similar community 
trophic structures regardless of the biogeographic region they 
occur. It is thus reasonable to interpret climate, namely the 
energy available for species, as a boundary condition within 
which trophic communities self-organize. In other words, 
climate should impose the limits on the types and quanti-
ties of resources available for first-order consumers, which in 
turn limit the types and quantities of resources available for 
second-order consumers, and so on.

Figure 4. Geographical distribution of the six trophic structures with: (a) all mammal species (5272 species); (b) all bird species (9993 spe-
cies); (c) both mammal and bird species together (15 265 species). Geographical distribution of the six trophic structures predicted (d) by 
random forests using climatic predictors, values at cell level (kappa = 0.73); (e) climatic predictors, values averaging across neighbour cells 
(kappa = 0.81); (f ) by classification trees using only NPP values averaging across neighbour cells (tree not shown here, kappa = 0.59).

Table 1. Predictor variable importance of community trophic structures using Random Forest models.

Predictors Fig. Kappa MDG

Climate (cell level) 4d 0.73 BIO10, BIO13, BIO16
Climate and NPP (cell level) 0.74 NPP
Climate (cell level and averaged) 4e 0.81 BIO10 (averaged values)
Climate and NPP (cell level and averaged) 0.82 NPP (averaged values)
NPP (cell level and averaged) 0.54 NPP (averaged values)

The Kappa coefficient measures the agreement between observed and predicted trophic structures on test data (previously excluded longi-
tudinal bins 10° width). The most important predictors are mean temperature of warmest quarter (BIO10), precipitation of wettest month 
(BIO13), precipitation of wettest quarter (BIO16) and net primary production (NPP).
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Figure 5. Classification tree model relating net primary production and climate with the six trophic structures (kappa = 0.64). Its two main 
branches are shown separately for easy viewing. n indicates the total number of communities contained by that terminal node and y-axis 
the proportion of these communities corresponding to each type of trophic structure (TS). All the communities contained in each terminal 
node (lower) fulfil the conditions leading to it from the root node, which divides those communities whose NPP value < 133.6 from those 
in which the NPP value ≥ 133.6. Variables: net primary productivity (× 10-9), NPP; annual mean temperature, BIO1; mean diurnal range 
(mean of monthly (max temp − min temp)), BIO2; isothermality (BIO2/BIO7) (× 100), BIO3; temperature seasonality (standard devia-
tion × 100), BIO4; max temperature of warmest month, BIO5; min temperature of coldest month, BIO6; temperature annual range 
(BIO5–BIO6), BIO7; mean temperature of wettest quarter, BIO8; mean temperature of driest quarter, BIO9; mean temperature of warm-
est quarter, BIO10; mean temperature of coldest quarter, BIO11; annual precipitation, BIO12; precipitation of wettest month, BIO13; 
precipitation of driest month, BIO14; precipitation seasonality (coefficient of variation), BIO15; precipitation of wettest quarter, BIO16; 
precipitation of driest quarter, BIO17; precipitation of warmest quarter, BIO18; precipitation of coldest quarter, BIO19.
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Rather than simply conforming ‘point estimates of over-
lapping regional species distributions’ (Ricklefs 2008), ani-
mal communities at broad biogeographical scales can thus be 
seen as constrained by the sets of biotic interactions that are 
possible given the environmental characteristics of the area 
in which they occur (Mendoza and Araújo 2019). Species 
might be still be said to be doing ‘their own thing’ (acting 
independently from each other in order to maximize their fit-
ness), as expected under the individualist viewpoint of com-
munity organization (Gleason 1926). However, their ‘degrees 
of freedom’ should be constrained by the limiting effects of 
climate on the critical physiological limits of consumers and 
the plant production rates affecting the quantity and quality 
of the biomass available for consumption. Within these lim-
its, optimal foraging strategies (Pyke 1984, Parker and Smith 
1990) might be invoked as one of the mechanisms driving 
the community self-organization leading to convergence in 
trophic structures across biogeographical regions with similar 
climates.

The proposed viewpoint offers an intermediate perspective 
between the two historically opposed perspectives on com-
munity organization (e.g. see for recent discussions Baselga 
and Araújo 2009, Loreau 2020) – the superorganism per-
spective, whereby strong assembly rules would determine the 
collective response of individuals and species within com-
munities, and the individualistic perspective, whereby indi-
vidual species would act independently of each other, and 
often idiosyncratically, to maximize the fitness of its indi-
viduals. Top down (and individualistic) perspectives propose 
that biotic interactions, namely predation, drive community 
dynamics and the ensuing patterns. There are local empiri-
cal examples supporting this view (Post et al. 1999) but at 
broad biogeographic levels the view is put to question by the 
overwhelming evidence of bottom–up abiotic environmental 
constraints controlling the distribution of major vegetation 
(community) types (Holdridge 1947). What our analysis 
reveals is that climate constraints do not simply affect indi-
vidual species dynamics, as inferred from individualistically-
inspired ecological niche theory underlying, for example, 
species distributions models (Peterson et al. 2011), but also 
constrains the types of trophic communities that can be 
expected in any particular location.

The existence of clearly defined animal communities at 
global level whose distributions match climatic gradients 
lends credence to the view that bottom–up processes control 
community dynamics. While ecologically-driven regularities 
in animal communities have not been detected in classic eco-
regionalization exercises (Holt et al. 2013, Morrone 2015, 
Rodrigues et al. 2015), we believe the reason for this is that 
species co-occurrence patterns rather than their functional 
attributes were the focus. In such studies, faunal differen-
tiation among regions exposed to similar climates emerges 
as a consequence of different evolutionary pathways caused 
by limited dispersal (Holt et al. 2013, Ficetola et al. 2017). 
For example, in a classic eco-regionalization, the faunas of 
Australasia are grouped differently from the faunas of the 
Nearctic even when they are exposed to similar climates 

(Holt et al. 2013). However, when examining the compo-
sition of functional attributes within animal communities, 
instead of simply the species composition, regions with dif-
ferent evolutionary pathways are grouped together owing to 
their similar trophic structures. In other words, if communi-
ties are analysed not just by the composition of their spe-
cies, which are affected by historical patterns of speciation, 
extinction and colonization, but also by their numbers and 
functional (trophic) properties, regularities emerge.

Although regions with the same climatic conditions tend 
to feature the same trophic structures, we also found that 
communities exposed to different climatic conditions could 
feature the same trophic structure. This is because net pri-
mary production (NPP), strongly covaries with trophic com-
munity structures. NPP responds non-linearly to energy 
and water and determines the amount of chemical energy 
processed by plants through photosynthesis (Cramer et al. 
1999, Sitch et al. 2003). In our analysis, NPP is the vari-
able best explaining geographic transitions among animal 
trophic structures, and areas with different climates can have 
equivalent trophic structures because NPP is similar. It is the 
case, for example, of both hot and cold deserts, or the Arctic 
regions – all sharing similar trophic structures (TS 1) and 
low inputs of energy. In deserts, photosynthesis is limited 
by the lack of water, and in cold and the Arctic regions it is 
limited by the lack of both liquid water and sunlight over a 
long period of the year. When moving away from hot deserts 
and cold and arctic climates, trophic structures TS 1 change 
into TS 2 and the latter into TS 3. This sequence (TS 1 → 
TS 2 → TS 3) appears in regions of the world with different 
climatic transitions, all sharing increases of energy available: 
the increase of precipitation when moving away from des-
erts and the increase of sunlight when moving away from the 
poles. The same pattern of transitions associated with increas-
ing levels of precipitation and sunlight is observed worldwide 
from TS 3 to TS 6 trophic structures.

To examine the role of energy in explaining shifts in 
community trophic structures, we explore the relationship 
between trophic structures and NPP independently of cli-
mate. The predictive power of models including NPP alone 
is lower than models including all climate variables. However, 
NPP alone can reproduce the general division between tro-
phic structures (Fig. 4f ). Adding NPP to models including 
climate variables do not increase their predictive power, which 
again is unsurprising given that climate variables explain ca 
97% of NPP variance. But when NPP is added alongside 
climate it becomes by far the single most important variable, 
suggesting that community trophic structures are strongly 
associated with the chemical energy available for consumers.

The emergence of community trophic structure seems 
strongly related to plant production rates, a feature that NPP 
seeks to characterize. However, that NPP alone does not 
explain all the variation in trophic structures explained by 
climate, suggests that additionally to plant production other 
aspects of climate exert controlling effects (e.g. its effects on 
vegetation types or via physiological effects influencing the 
identity of the extant species available for colonization within 
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regional pools). The observed trophic-structure-NPP pat-
terns are consistent with the idea that average scores of NPP 
present in any location act as a surrogate for the amount of 
resources available for consumption by resident animal com-
munities (Phillips et al. 2008, Pellissier et al. 2018), includ-
ing humans (Krausmann et al. 2013, Moore et al. 2019), 
whereas excesses scores of NPP over the mean would rep-
resent resources becoming available for harvest by external 
migrant species (Thorup et al. 2017), a pattern apparently 
reproduced across geological period (Thorup et al. 2021).

As many other macroecological data explorations, our 
analysis has several potential caveats. Firstly, the number of 
species per trophic guild is only an estimation of the energy 
processed by each guild and may vary substantially across 
regions and sets of organisms. Secondly, we use grid cells with 
more than 10 000 km2, because this is the resolution of the 
data, and they are treated as homogeneous. However, there 
are major local sources of within-cell environmental and bio-
logical variation, especially in heterogeneous environments, 
which could add biases and noise to the results. Naturally, 
the expectation is that, at global scale, such within-cell varia-
tion would be smoothed out giving raise to first order gradi-
ents of biogeographical significance. Thirdly, despite using a 
long list of bird and mammal species the faunal list of each 
cell is a subset of the total number within communities and 
their distributions were estimated based on global species 
range maps, which are interpolated based on sets of rules 
and expert judgement. Therefore, they likely include a large 
quantity of false positives. Fourthly, the characterization of 
the feeding habits that underlies the classification of guilds 
and then of trophic structures is an approximation given that, 
for most species, feeding preferences are based on a single 
study. For many species, there are not even studies available, 
and their trophic habits are inferred from taxonomy. For 
instance, some Thamnophilidae and Tyrannidae are classified 
as specialized insectivores, but some can also eat vertebrates 
or fruits. Finally, most communities have been altered by 
human activities and the different species of birds and mam-
mals are unlikely to be affected in the same way causing biases 
that are difficult to qualify let alone quantify.

These uncertainties will undoubtedly encourage others 
to do more and better. Notwithstanding, the implications 
of our results are important for several reasons. Firstly, given 
the close correspondence between the trophic structures and 
climate, it is possible to infer the range of expected num-
bers of species per guild in any given region thus providing a 
convenient baseline against which to compare observed pat-
terns (Gillson et al. 2011). Measurements of the multivariate 
distance between observed trophic structures and expected 
trophic structures given the climate, also allow analysis of 
the departures from this relationship and exploration of the 
potential causes. Modelled trophic structures against climate 
variables can also be projected into the future, thus enabling 
assessments of climate change effects on the biogeography of 
feeding relationships among species.

Secondly, the analysis of trophic structures can be modi-
fied to contribute to species distribution modelling efforts 

(Peterson et al. 2011). Essentially, the procedure described 
in this study can be used to identify the potential set of 
interaction links among species; analogous to approaches 
leading to the identification of the backbone of biotic inter-
action networks or meta-webs (Morales-Castilla et al. 2015, 
Albouy et al. 2019). Taking into account the trophic inter-
actions of the target species, one can build co-occurrence 
networks (Araújo et al. 2011) or joint species distribution 
models (Norberg et al. 2019), also known as community-
based species distribution models (Ferrier and Guisan 2006, 
Baselga and Araújo 2009), that exclude coexisting species for 
which no critical interaction is expected. Such an approach 
is common for species distribution models that use a small 
subset of covariate species known to be critical interactors 
(Araújo and Luoto 2007, Heikkinen et al. 2007, Meier et al. 
2010, Fordham et al. 2013), but it has not yet been per-
formed in models examining large numbers of coexisting 
species simultaneously.

All in all, the emergence of general patterns in the func-
tional properties of animal communities at broad scales is 
likely to spur several additional questions and analyses, and 
support the emergence of food-web biogeography as a new 
sub-discipline of biogeography focusing on the analysis of 
the geographical distributions of trophic relationships among 
organisms.
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