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Abstract
The geochemistry of fluvial deposits is one of the most used proxies for contamination 
assessment in mined areas. A river sediment survey was carried out in Iron Quadrangle 
(IQ), Brazil, between 2013 and 2015. Subsequently, in the last four years, two dam 
failures happened, causing great environmental damage. Geostatistical modelling was 
used to model Potentially Toxic Elements’ spatial patterns and the definition of hot/
cold clusters for Arsenic contamination risk concerning catastrophic scenarios, such as 
dam failure. and so used as a tool for vulnerability and risk assessment. The preliminary 
results for Arsenic spatial distribution are introduced and discussed.
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Introduction 

Fluvial sediments come from a myriad of 
sources, diffuse and punctual, whose relative 
contribution varies over time and space. 
Their geochemical composition is a response 
to the availability of materials, whether due 
to natural causes or human activities, such as 
mining. Mining industries produce enormous 
volumes of waste material, mainly tailings, 
which can be a relevant source of trace 
element contamination for the environment, 
especially in the river basins (Krıbek et al. 
2014). Worldwide, billions of tonnes of 
tailings are contained in impoundments 
behind huge dams (Owen et al. 2020). Several 
characteristics of these structures make them 
more susceptible to failures.The enormous 
volume and characteristics of the material 
released in the environment with the collapse 
of the dam, especially in watersheds and river 
basins, affect the quality of sediments and 
water (Kossoff et al. 2014).

Mining is still among the most productive 
activities that support the Brazilian economy 

(12.5% of total exports and 36.6% of the trade 
balance – AMN 2019) and Minas Gerais 
State is responsible for the other 40% of the 
commercialized mineral production (AMN 
2019). The Iron Quadrangle (IQ), southeast 
of Minas Gerais State, (fig. 1) is one of the 
most important mining producing provinces 
in Brazil and one of the World’s most 
important mineral regions, covering an area 
of approximately 7,000 km2. Mining activities 
are focus on iron and gold exploitations, 
whose wastes are stored in large tailings 
dams. The IQ yields the headwaters of two 
major Brazilian River basins: Doce and São 
Francisco. The last one, fed by Velhas (largest 
drainage basin in IQ) and Paraopeba rivers. 
Unfortunately, during the last six years, 
IQ experience two of the most dramatic 
accidents involving the dam’s tailings failure. 
Fundão dam (Bento Rodrigues/Mariana), 
on 5 November 2015, released 4.3×107 m3 

of tailings in Doce River basin (Carmo 
et al. 2017) and Córrego do Feijão dam 
(Brumadinho), on 25 January 2019, released 
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1.2×107 m3 of tailings in Paraopeba River 
basin (Thompson et al. 2020). 

A preliminary multivariate study was 
performed through Principal Component 
Analysis (PCA) (Shaw 2003) to understand 
the attributes of preferential association and 
the reduction of the space of analyses. The 
analysis begins with p random attributes 
X1, X2, …, Xp, where no assumption 
of multivariate normality is required. 
Considering the ACP outputs, Cr, Zn, Cd, 
Ni, Cu and Pb were kept for further spatial 
analysis as they can act as accurate indicators 
for the pollution characterization. 

In the herein survey the results for the 
As spatial distribution are introduced and 
discussed as As plays a key role in soil and 
sediments pollution (Gonzalez-Fernandez 
et al. 2018). Indeed, among the elements 
present in iron and gold tailings, Arsenic 
appears as one of the most dangerous to 
the environment, including human health 
(Fewtrell et al. 2005, Zhang et al., 2019). 
Although the interaction between arsenic and 
the various environmental compartments 
(sediment, soil, water) still needs to be better 
understood, there is no doubt that one of the 
main sources of arsenic contamination in 

river basins is mining activity (Deschamps 
& Matschullat, 2011). Several studies have 
identified anomalous concentrations of 
arsenic in IQ waters and sediments (Costa 
et al. 2015). In the case of sediments, there 
are reports of levels above 4700 µg.g-1 (Borba 
et al. 2000), much higher than the average 
concentration in the Earth’s crust (between 
1.0 – 4.8 µg.g-1, according to Taylor & 
McLennan, 1995 and Rudnick & Gao, 2003).

Arsenic is defined as a ‘Regionalized 
Variable (Matheron 1971) and consequently 
additive by construction, since the mean 
value within given observed support is equal 
to the arithmetic average of sample values, 
regardless of the statistical distribution of the 
values. Geostatistical modelling (Goovaerts 
1997, Journel and Huijbregts 1978) was 
used, throughout conventional variography 
followed by Sequential Gaussian Simulation 
algorithm (SGS) and local G clustering, 
to model Arsenic concentration’s spatial 
patterns and the definition of hot/cold 
spots for contamination risk. The Standard 
Deviation map, obtained from the performed 
one hundred simulations (SGS), allowed 
the visualization of the correspondent 
spatial uncertainty and, therefore, acting 

Figure 1 Study area location.
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as a measurement of the obtained clusters 
robustness and providing a faster and 
more intuitive way to verify whether the 
problematic zones detected previously are 
true of concern, focusing on the visualization 
and delineation of potential zones for future 
monitoring and remediation.

Methods 

Five hundred and forty-one (541) stream 
sediments were sampled throughout the 
entire IQ (7,000 km2), providing a sampling 
density of one sample per 13 km2. The 
concentrations of the key PTEs: As; Cd; Co; 
Cr; Cu; Ni; Pb and Zn and associated metals 
(Fe, Mn) were obtained through aqua regia 
digestion followed by ICP-AES (Spectro 
Ciros CCD) analysis.

A three-stepgeostatistical modelling 
methodology was used for the construction 
of the Arsenic spatial distribution maps and 
the definition of spatial hot-spots, as follows:
1. Selected attributes went through 

structural analysis and experimental 
variograms were computed. The 
variogram is a vector function used to 
compute the spatial variation structure of 
regionalized variables (Matheron 1971; 
Journel and Huijbregts 1978);

2. Sequential Gaussian Simulation (SGS) 
was used as a stochastic simulation 
algorithm. SGS starts by defining 
the univariate distribution of values, 
performing a normal score transform of 
the original values to a standard normal 
distribution. Normal scores at grid node 
locations were simulated sequentially 

with simple kriging (SK) using the normal 
score data and a zero mean (Goovaerts 
1997). Once all normal scores had been 
simulated, they were back-transformed to 
original grade values (Albuquerque et al., 
2017). For the computation, the Space-
Stat Software V. 4.0.18, Biomedwere, was 
used. The outcome of a simulation is a 
twisted version of an estimation process, 
which reproduces the statistics of the 
known data, making a realistic look of the 
exemplar, but providing a low prediction 
behaviour. If multiple sequences of 
simulation is designed, it is possible to 
obtain more reliable probabilistic maps;

3. Finally, Local G clustering allowed 
measurement of the degree of association 
that results from the concentration of 
weighted points (or region represented by 
a weighted point) and all other weighted 
points included within a radius of distance 
from the original (Getis and Ord 1992).

When predicting the risk of contamination 
(e.g. months ahead), it is mandatory to 
stress the relevance of the chances for the 
future estimated values exceeding maximum 
admissible values. The delineation of zones of 
high and low risk requires the interpolation 
of risk values to the nodes of a regular grid 
making possible proper risk assessments, 
and a prediction model working as guidance 
to a more sustainable environmental 
management. The three watersheds (Doce, 
Velhas, and Paraopeba) were processed 
separately (fig. 2) guarantying that only the 
samples inside each geographic envelop were 

Figure 2 Arsenic Spatial Distribution – SGS mean image.
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used for the correspondent spatial modelling. 
Finally, all the representations were projected 
together for visualization purposes (fig. 3 and 
fig. 4). Observing the three surveyed units, 
Velhas, Doce, and Paraopeba watersheds, 
it is possible to acknowledge, for As spatial 
distribution, the low risk in the Paraopeba 
and the high risk observed mostly in the 
central area of the Velhas basin.

It is also worth notice the high spatial 
uncertainty associated with the Velhas’ basin 
data, mainly due to the presence of several 
severe outliers within the studied area (fig. 3). 
Seventeen percent of As concentration values 
are higher than the mean (32.33 µg.g-1) and 
6,7% higher or equal to 100 µg.g1.

Finally, when observing the G-clusters it 

is possible to identify high rings (hot spots 
for As pollution) and low rings (cold spots for 
As pollution) pointing out to the Velhas and 
Doce watersheds as the ones in need of close 
monitoring.

Still, a source of countless debates, 
the anthropogenic contribution to high 
concentrations of arsenic in fluvial sediments 
is not well defined. Even so, establish the 
natural abundance of an element is essential 
to support any type of environmental 
analysis. Concerning sediments, global or 
regional standards can be used. Arsenic 
average concentrations calculated for QF 
(18.17 µg.g1), Velhas river basin (32.33 µg.g- 1) 
and Doce river basin (14.23 µg.g-1) are 
considerably higher than the highest value 

Figure 3 Arsenic Spatial Distribution – SGS mean image and spatial uncertainty (standard deviation).

Figure 4 Arsenic Spatial G-Clusters.
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set for the Earth’s crust (4.8 µg.g-1 – Rudnick 
& Gao 2003). Only in the Paraopeba river 
watershed As mean concentration is lower 
(4.01 µg.g-1). Besides that, Costa et al. 
(2015) defined the natural background of 
As concentration in IQ as 6.1 µg.g-1 and 
values >12.8 µg.g-1 as anomalies. Regardless 
of the limits considered, Velhas and Doce 
river basins can be considered areas with 
anomalous values of As concentrations. 

Several studies pointed out that in 
IQ, arsenic concentrations in water and 
sediments are related to gold deposits, 
present in minerals such as arsenopyrite 
and arseniferous pyrites (Borba et al. 2000). 
Gold can be found in veins of quartz and 
carbonates from the Nova Lima Group (base 
of the Rio das Velhas Supergroup) and base 
of the Minas Supergroup (Deschamps and 
Matschullat, 2011). Moreover, gold mine 
waste (tailings) containing arsenic have been 
released to the environment or store in tailing 
dams for the last three centuries (Matschullat 
et al. 2000, Borba et al. 2000). Although iron 
ores usually have As concentrations <1 µg.g-1, 
sorbed, or coprecipitated in iron (oxy)(hydr) 
oxides, their tailings can be enriched in As. 
Indeed, it is possible to identify significant-
high rings in the northern and southeast 
areas of the Velhas River watershed, all 
famous locations for primary gold deposits 
and gold mines. Considering the Au/As 
ratio presented by Costa (2007) for gold 
ore exploitations in IQ, almost 2,000,000 
tons of As are potentially scattered in the 
basin or stored in waste piles and tailings 
dams, including abandoned mines, which 
represents a major concern in catastrophic 
scenarios identified in this research. Besides 
that, in Velhas river basin there are, actually, 
16 iron tailing dams, five of then with a high 
risk of failure. It should be noted that in the 
high ring identified in the north of figure 3, 
currently, 450,000 inhabitants live, in addition 
to hosting the main source of water supply for 
the city of Belo Horizonte, the state capital, 
with 2,500,000 inhabitants. Three of the five 
dams with a risk of failure are localized in 
or upstream this area, and part of the people 
living downstream from these structures have 
already been removed.

Conclusions

The stochastic modelling of the arsenic 
concentrations in the fluvial sediments 
in the IQ allowed to identify the Velhas 
River watershed as the most vulnerable 
area to catastrophic risk given the high 
concentrations of Arsenic in this basin, with 
an average of 32.33 µg.g-1, about 16 times 
above the upper crustal average, showing that 
there is a significant amount of this element 
scattered throughout the watershed.

In this basin there are 18 gold mines, six in 
operation and 12 paralyzed, (Pinto and Silva, 
2014), which extracted approximately 692 tons 
of gold over the last 40 years (Goldfarb and 
Groves 2015, Codemge 2017), considering 
the Au/As ratio presented by Costa (2007), 
it is estimated that 1,868,400 tons of As, are 
potentially scattered in the basin or stored 
in tailings piles, including abandoned mines 
and waste pile, which represents a major 
concern in catastrophic scenarios, which are 
identified in this research. 

Although recent dam breaks have 
occurred in the Doce river basin and the 
Paraopeba River Basin, the average As 
concentrations in these areas, when compared 
with Velhas river basin, are much lower, 
4.01 µg.g-1 (8 times below) in the Paraopeba 
river and 14.23 µg.g- 1 (2.3 times below) in the 
Doce River, which points to its higher risk in 
the event of the failure of one or more tailings 
dams, as in the other two basins. 
Thus, it was observed that in the Rio das 
Velhas Basin there is a greater catastrophe 
vulnerability, which confirms the need to 
apply geostatistical modeling as a tool to 
identify these areas and spatial patterns of 
PTEs, supporting government agencies in the 
prevention of environmental damage and the 
execution of more accurate monitoring. 
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