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1  |  INTRODUC TION

Passive acoustic monitoring (PAM) is increasingly used to study an-
imal populations and habitats (Browning et al., 2017). Concurrently, 
rapid technological advances are prompting the appearance of low-
cost recording hardware, better storing and raw data management 
as well as extended battery life. These advances lead, for example, 
to the possibility of deploying multiple recording devices simultane-
ously in the field for progressively longer periods of time. PAM is a 
non-invasive technique enabling the detection of species presence 

and richness, the monitoring of population density and inferring sev-
eral environmental metrics (acoustic diversity, acoustic entropy, etc.) 
at much larger spatial and temporal scales than standard methods 
(Merchant et al.,  2015). However, it is important to note that the 
target species must make detectable sounds that can be identifiable 
to a useful class (a set of cases sharing common characteristics, e.g. 
taxonomic group, species, behaviour) for PAM to be effectively em-
ployed (Browning et al., 2017).

Adopting PAM over broad spatial and temporal scales, however, 
still faces a pressing issue: the reliable detection and classification 
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Abstract
1.	 Passive acoustic monitoring, a non-invasive technique, is increasingly used to 

study animal populations and habitats at much larger spatial and temporal scales 
than standard methods. However, easy to apply tools for reliable detection and 
classification of signals of interest among hundreds or even thousands of hours 
of recording are still lacking.

2.	 We introduce the r package soundClass, a tool to train convolutional neural 
networks, and employ them to classify sound events in recordings. soundClass 
provides a sound event classification pipeline, from annotating recordings to au-
tomating trained networks usage in real-life situations.

3.	 We illustrate the package functionality on bat echolocation calls, bird songs and 
whale echolocation clicks, showing that the package can be used to train net-
works for several types of sound events, taxonomic groups and environments; 
and exemplify its application.

4.	 This tool facilitates the creation and usage of trained networks and was de-
veloped with a strong focus on graphical user interfaces to be used by non-
specialist scientists in statistics and programming.
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of acoustic signals of interest among hundreds or even thousands 
of recording hours. Hand-browsing of recordings is in many cases 
infeasible and the diversity of acoustic signals and environmental 
soundscape hinders the possibility of a single solution (algorithm) 
for every problem. In ecology, project-specific or site-specific audio 
classification tools are commonly built and trained on data repre-
sentative of the actual survey datasets. Such tools, besides lacking 
transferability, are extremely time-consuming to develop and rely on 
statistics and programming experts to be developed, employed and 
maintained (Gibb et al., 2019).

Existing proprietary software offer a growing range of inbuilt au-
tomated tools for large taxonomic groups and geographical regions. 
However, although user-friendly, they are pay-per-use and present 
clear risks due to poorly reported underlying methods, making the 
transferability to novel datasets unclear. Alternative, open-source or 
free-ware tools have no cost but are generally focused on specific 
taxonomic groups. Within the R environment, which is one of the 
most used and flexible open-source languages for statistical anal-
ysis, there are several packages for analysing acoustic datasets but 
they tend to require medium to advanced programming skills to be 
effective (Browning et al.,  2017; Gibb et al.,  2019). Moreover, the 
ability to scale up is essential as automatic recording stations tend 
to generate huge amounts of data. This implies that any feasible 
method must work without manual intervention, in particular in the 
detection of meaningful temporal segments in audio recordings—a 
process known as segmentation (Stowell & Plumbley, 2014)—a fea-
ture many software/packages lacks.

We introduce a new r package, soundClass, developed to tackle 
the limitations of existing tools for PAM projects. By using convo-
lutional neural networks (CNNs) as the base algorithm, manual seg-
mentation is unnecessary. Moreover, the features that discriminate 
between classes are learned automatically by the network, thereby 
effectively extending the functionalities of the package for non-
specialist scientists in the vocalizations of the taxonomic group being 
analysed or in general features of sound analysis. soundClass is open 
source and was developed to implement in a single tool the ability 
to (a) manage and annotate recordings (i.e. create timed-text notes) 
in a database with structured query language (SQL) capabilities, (b) be 
generic so that it can be employed for several taxonomic groups, (c) 
use CNNs for creating custom classification tools, as they can easily 
evolve from new data for better transferability to novel datasets, 
and (d) be used by non-specialist scientists in statistics and program-
ming due to its user-friendly graphical user interfaces (GUIs).

2  |  SOUNDCL A SS DESCRIPTION AND 
WORKFLOW

The main purpose of soundClass is to provide a sound classification 
pipeline, from annotating sound events in recordings to automating 
the usage of fitted CNN models in real-life situations. This package 
is aimed at biologists and ecologists working with sound events that 
could benefit greatly from machine learning algorithms applied to 

their research. Using the package requires a pre-compiled collection 
of recordings and it can be employed for (Figure 1):

1.	 Annotation: create a database of annotated recordings,
2.	 Training: prepare training data from annotated recordings and fit/

train CNN models,
3.	 Classification: automate the use of the fitted CNN model for clas-

sifying new recordings.
To be accessible to a larger number of users, soundClass was de-

veloped with a focus on GUIs and does not require advanced cod-
ing or statistical skills. Nevertheless, advanced users may also use 
the package through scripting for training and classification, which 
provides a reproducibility advantage. The functions composing the 
package and a brief description are found in Tables S1 and S2.

1.	 Annotation: Create a database of annotated recordings

Sound recordings generally have many sound events. Therefore, 
annotating sound events in recordings with the correct class label is 
the first step for obtaining a trained model for classification purposes. 
To automate the classification process with the fitted CNN in new, 
non-segmented recordings (i.e. recordings where meaningful tem-
poral segments for classification are unknown), an ‘irrelevant’ class 
(referring to sound events that are not the target of our research) 
must be included in the training data (Marques et al., 2013; Stowell 
et al., 2019). This class should include typical ‘background’ sounds 
such as environmental noise (e.g. rustling foliage, wind, rain), other 
animal vocalizations (e.g. insects, birds, mammals) or anthropogenic 

F I G U R E  1  Package usage workflow. Training recordings are 
annotated (1) and a training dataset is created and used to fit a 
convolutional neural network (CNN) (2). The fitted CNN is then 
used to classify new recordings (3).
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noise (Mac Aodha et al., 2018). Please note that this class must have 
the label ‘0’ to be correctly processed by the package.

To facilitate the annotation of sound files for posterior processing, 
the ‘Annotations GUI’ converts the original sound wave with the Fast 
Fourier Transform into a spectrogram image (Mac Aodha et al., 2018). 
By clicking on the spectrogram on events of interest, annotations are 
created (Figure 2) and stored in a relational database with SQL ca-
pabilities (Figure S1). For better results, it is recommended to place 
annotations approximately in the middle of the sound events.

2.	 Training: Prepare training data from annotated recordings and 
fit/train CNN models

The training data are composed of spectrogram images com-
puted for a time frame centred at the annotations in the training 
recordings, as CNNs classify images and not raw sound waves. A de-
noising method to filter out background noise by removing the mean 
amplitude in each frequency band is applied to each spectrogram 
(Aide et al.,  2013; Mac Aodha et al.,  2018). Manual segmentation 
and feature extraction are unnecessary as the features that discrimi-
nate between classes are learned automatically by the CNN from the 

image as a whole. The computation of the spectrograms of sound 
events providing images to train the network is done in conforma-
tion with the requirements of Keras (Chollet, 2015), the open-source 
library used in this package to create and train CNNs. This task can 
be done through the ‘Training GUI’ which requires the parameters 
for computing the spectrograms and the path to the folder where 
the recordings are stored (Figure S2).

When choosing the spectrogram parameters for a type of sound 
event, it should be noted that there is a trade-off between tempo-
ral and frequency precision, as they are inversely related. Shorter 
windows will give a more accurate temporal precision at the cost of 
frequency precision. The length should be small enough to capture 
the change in time, without sacrificing too much frequency precision 
(Figure  3). Additionally, the parameter ‘spec_size’ should be large 
enough to encompass the maximum duration of the events and the 
parameter ‘freq_range’ should cover their typical frequencies range. 
The other parameters are more generalist and the same values can 
be used for different sound events, as they only change the resolu-
tion of the images created.

Once the spectrograms of individual sound events have been 
computed, the CNN model can be fitted. A model architecture with 

F I G U R E  2  Annotations graphical user interface (GUI) with an example of an annotated recording of bat echolocation calls (Barbastella 
barbastellus). To create a new annotation, the user must click on the sound events, indicate the correct class label in the text box ‘Label’, 
and press the ‘Set labels’ button to enter the annotations in the database. The black lines will then be drawn to show the position of the 
annotations entered in the database. The labels must be unique for each class, as they will be used in the next step to create the training 
data. The time expanded factor must be also set: for real-time recordings, the value must be 1 and for bat recordings—which sometimes are 
10× time-expanded—‘auto’ can be used. The Butterworth filter is optional as it is only used for visualization purposes.
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360,000 parameters (Simonyan & Zisserman,  2015), which can be 
trained on a CPU relatively quickly and is adequate for many sound 
events classification (Figure S3), is bundled with the package. Other 
networks can also be used, the user can adjust the pre-defined net-
work or build a new one. The CNN model can be fitted with the 
‘Training GUI’ (Figure S4), using a stochastic gradient descent optimizer 
to adjust the network parameters (LeCun et al., 2012). The inherent 
randomness of the optimizer implies that each fitted CNN is unique.

3.	 Classification: Automate the use of the fitted model for clas-
sifying new recordings

To automate the classification process, each new recording is 
split into multiple chunks without overlap. For each chunk, the lo-
cation of maximum energy is detected, converted to a spectrogram, 
and classified into one of the known classes of the trained model. 
Irrelevant events are discarded and the class obtained in the major-
ity of the chunks is considered the class of the recording. With this 
approach, no human intervention is required, rendering the classifi-
cation process fully automatic (Figure S5).

The classification process outputs a database, in the sqlite3 for-
mat, with the sound events detected and the respective class labels 
and probabilities. Additionally, a file in CSV format is saved to disk, 
containing summary statistics per recording: the average probability 
of the class with most events detected and their average frequency 
of maximum energy. Additionally, the annotated spectrograms of 
the classified recordings may also be plotted and saved to disk.

3  |  WORKING E X AMPLE

soundClass depends on several r packages that are automatically 
installed. Nevertheless, before first use, Keras must be manually in-
stalled. After loading soundClass for the first time run:

keras::install_keras()

To demonstrate the package functionality and versatility we 
trained three CNN models to classify: (a) European bat echoloca-
tion calls, (b) owl songs (Strix aluco and Athene noctua), and (c) sperm 
whale echolocation clicks (Physeter macrocephalus). A detailed de-
scription of the first model is presented as an example and the code 
related to the other models is found in Supporting Information 
(Figures S6 and S7). Before running this example, please download 
and extract the necessary data: https://doi.org/10.6084/m9.figsh​
are.19550​605.v2.

The downloaded data includes an annotations database and 
the recordings for training and validation. The database was cre-
ated with the ‘Annotations GUI’ and contains the annotations of bat 
echolocation calls and irrelevant sound events in the supplied train-
ing recordings. We start this example by setting the extracted folder 
as the working directory and defining the path to both the training 
recordings and database:

setwd("/path_to_extracted_folder/")  
train_recs_folder <- "./training_recordings/"  
label_database <- "./db_bat_calls.sqlite3"

To create the training data, spectrogram images with pre-defined 
size and centred at the annotations of the recordings are calculated with 
the function spectro_calls(). This function outputs a list with four compo-
nents: (a) an array with the spectrogram matrices; (b) the class labels for 
each matrix in one-hot-encoded format (i.e. each class label is converted 
into a new column and each observation is assigned a binary value: 1 in 
its class label column, 0 otherwise); (c) the parameters used to create the 
matrices; and (d) the class labels with their respective numeric index. In 
this example, we are going to train a CNN model to detect European bat 
echolocation calls (excluding Rhinolophus genus). We use a ‘freq_range’ 
between 10 and 80 kHz to cover the emitting frequency range, ‘spec_
size’ of 20 ms to encompass the total length of calls from all species and 
a ‘window_length’ of 0.5 ms as bat calls have a high rate of change. We 
decided to exclude the Rhinolophus genus as their calls are quite idio-
syncratic: they emit longer calls (>40 ms) at higher frequencies (>80 kHz) 
and with a lower rate of change (Russo & Jones, 2002):

train_calls <- spectro_calls(  
files_path = train_recs_folder,  
db_path = label_database,  
spec_size = 20,  
window_length = 0.5,  
overlap = 0.5,  
dynamic_range = 100,  
freq_range = c(10, 80),  
tx = "auto")

Once the data has been prepared, a blank model must be loaded 
into R and compiled. Two variables must be created in the global envi-
ronment before loading the model: the input shape (input_shape) with 
the format ‘c(number of rows, number of columns, number of channels)’ 
and the number of classes (num_classes). These values can be found 
in the third component of the list train_calls (note that the number of 
channels is always 1, as we are working with pseudo-coloured images).

input_shape <- c(  
train_calls$parameters$img_rows,  
train_calls$parameters$img_cols, 
1)

num_classes <- train_calls$parameters$num_classes

With the training data prepared and the global model variables 
defined, a model can now be loaded with the base function source(). 
In this example we use the bundled model:

model_path <- system.file(  
"model_architectures", "model_vgg_sequential.R",  
package = "soundClass") 

source(model_path, local = TRUE)
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At this point, the parameters for compiling and fitting the model 
must be set. Please note that as we are using classification models, 
both ‘loss’ and ‘metrics’ should always be set as they are in this ex-
ample. The other parameters can be tuned as desired. For further 
information about the parameters in the optimizer, please refer to 
Keras documentation (https://keras.io/api/).

model %>% keras::compile( 
optimizer = keras::optimizer_sgd( 

learning_rate = 0.01, 
momentum = 0.9, 
nesterov = TRUE), 

loss = "categorical_crossentropy", 
metrics = "accuracy")

The model is now ready to be fitted. Three callbacks (objects 
that can perform actions at various stages of training) are speci-
fied: (a) early stopping, (b) model checkpoint and (c) CSV logger. 
These objects permit, respectively, to (a) stop the fitting process 
if there is no improvement in the validation dataset accuracy for a 
defined number of epochs, (b) save the partially fitted model to disk 
after each iteration and keep only the best model after training for 
further use and (c) save to disk the log of the training process. For 
further information about the callbacks available and their usage, 
please refer to Keras documentation (https://keras.io/api/). To fit 
the model the function fit() from package keras is used:

model %>% keras::fit( 
x = train_calls$data_x, 
y = train_calls$data_y, 
batch_size = 128, 
epochs = 20, 
callbacks = list( 

keras::callback_early_stopping(patience = 4, monitor = 
"val_accuracy"), 
keras::callback_model_checkpoint("./fitted_model.hdf5", 

monitor = "val_accuracy", save_best_only = TRUE), 
keras::callback_csv_logger("./fitted_model_log.csv")), 

shuffle = TRUE, 
validation_split = 0.3, 
verbose = 1) 

metadata <- train_metadata(train_calls)  
save(metadata, file = "./fitted_model_metadata.RDATA")

The fitted model and an additional file with fitting and training 
data parameters are saved to disk in the working folder for further 
use in the classification of novel recordings. To validate the perfor-
mance of the model, we use recordings not used to calibrate the 
model. To evaluate model transferability, we use recordings with 
the same species used for training but also new ones, obtained with 
a different recorder. The validation dataset is composed of 76 re-
cordings, each 0.5 s long: Barbastella barbastellus was present in 13, 
Myotis escalerai in 9, other bat species in 24, and 30 without bats. The 

F I G U R E  3  Spectrogram parameters 
effect on the training images. (a) A smaller 
window leads to less frequency precision 
but captures quick changes in time; (c) a 
larger window leads to better frequency 
precision at the cost of temporal 
precision; (b) and (d) greater overlap leads 
to better resolution, but there may be an 
impractical increase in computation and 
memory resources required.
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classification is applied to a folder containing these recordings with 
function auto_id() and the results are saved to the ‘out_dir’ folder:

auto_id( 
model_path = "./fitted_model.hdf5", 
metadata = "./fitted_model_metadata.RDATA", 
file_path = "./validation_recordings/", 
out_file = "id_results", 
out_dir = "./output/", 
save_png = TRUE, 
win_size = 40, 
remove_noise = TRUE,  
tx = "auto")

The model class predictions were evaluated using (a) Recall—the 
proportion of correctly classified samples of a specific class against 
the total number of samples of that class; (b) Precision—the propor-
tion of correctly classified samples of a specific class against the 
total number of predicted samples of that class and (c) F1-score—the 
harmonic mean of recall and precision (or accuracy) for a particular 
class (Tharwat, 2018). The results show that the fitted model was 
able to classify bat calls with reasonable accuracy (Table 1). For the 
class ‘bats’, this metrics can be interpreted as: 98% of all recordings 
containing bats were predicted to have bats (Recall); of all bat pre-
dictions made, 79% are correct (Precision); the accuracy of a predic-
tion for this class is 87% (F1-score).

4  |  DISCUSSION

PAM is rapidly expanding with the recent boom in low-cost, open-
source passive acoustic sensors resulting in massive acoustic 
audio datasets that still present serious analytical difficulties (Aide 
et al., 2013; Gibb et al., 2019). Despite the increasing number of 
algorithms to automate acoustic species identification (e.g. Mac 
Aodha et al., 2018; Rasmussen & Širović, 2021; Stowell et al., 2019), 
many users do not have the programming or statistical skills to 
adapt those algorithms to their particular needs (Aide et al., 2013).

Here we present the r package soundClass, which provides a sim-
ple and reliable approach to analyse sound recordings resulting from 
passive acoustic biodiversity monitoring schemes and, importantly, 
it does not require that the user has extensive coding or statisti-
cal skills. Given the ongoing concerns with biodiversity, but also the 
availability of increasing computational power, these methods are 
bound to become increasingly used by researchers.

We demonstrate that the soundClass package is a versatile tool for 
biodiversity monitoring, being able to cover several taxonomic groups, 
as it is adequate for classification of a variety of sound events, in broad 
frequency ranges and multiple environments. Indeed, we underline 
the multi-functionality of soundClass using bat echolocation calls, bird 
songs, and whale echolocation clicks as study taxa in our examples. It 
should be noted, however, that the performance of the fitted CNNs 
in the examples has much space for improvement. To a large extent, 
this is because we used limited training datasets for demonstration 
purposes and the size of the training dataset is crucial for CNNs per-
formance, to account for within-class variability and diversity of back-
ground noise (Gibb et al., 2019). Additionally, the parameters used for 
creating the spectrograms can be tweaked to find optimal values for 
the target species and using different CNN architectures could also 
lead to better performance. Furthermore, as each fitted CNN is unique 
due to the inherent randomness of the training algorithm, fitting mul-
tiple CNNs to obtain one with better performance is also a possibility.

Nevertheless, by encapsulating the complex steps of data prepara-
tion and model fitting in a small number of functions and by creating 
easy to use GUIs, the package presents a straightforward approach 
to the process of obtaining trained CNNs for sound events classifica-
tion and applying them in real-life situations, even for those with little 
coding or statistical skills. In this sense, soundClass brings to a broader 
number of users the ability to use machine learning methods, particu-
larly CNNs, for their particular research objectives.
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Bat
No 
bat Observed Recall Precision F1-score

Bat 45 1 46 98% 79% 87%

No bat 12 18 30 60% 95% 73%

Predicted 57 19 76

TA B L E  1  Confusion matrix with the 
performance of the trained convolutional 
neural network (CNN)
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DATA AVAIL ABILIT Y S TATEMENT
soundClass is hosted on CRAN (https://cran.r-proje​ct.org/web/packa​
ges/sound​Class/​index.html) and the development version is on GitHub 
(https://github.com/bmsas​ilva/sound​Class). The example data can be 
downloaded at: https://doi.org/10.6084/m9.figsh​are.19550​605.v2.
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