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A B S T R A C T

A finite strain finite element (FE)-based approach to element-free Galerkin (EFG) discretization is introduced,
based on a number of simplifications and specialized techniques in the context of a Lagrangian kernel. In
terms of discretization, a quadratic polynomial basis is used, support is determined from the number of pre-
assigned nodes for each quadrature point and quadrature points coincide with the centroids of tetrahedra.
Diffuse derivatives are adopted, which allow for the use of convenient non-differentiable weight functions
which approximate the Dirac-Delta distribution. Due to the use of a Lagrangian kernel, recent finite strain
elasto-plastic constitutive developments based on the Mandel stress are adopted in a direct form. These recent
developments are especially convenient from the implementation perspective, as EFG formulations for finite
strain plasticity have been limited by the previous requirement of updating the kernel. We also note that,
although tetrahedra are only adopted for integration in the undeformed configuration, mesh deformation is of
no consequence for the results. Four 3D benchmark tests are successfully solved.
1. Introduction

Industrial-worth simulations of engineering materials processing
technology are highly dependent on the quality of elasto-plastic analy-
ses. Yield functions depend on stress values and these are, in traditional
FE methods, discontinuous between elements. Compared with dis-
placements, errors in stresses are a magnitude higher, even without
accounting for constitutive constraints such as incompressibility. High
order (quadratic and cubic) finite elements are typically not adopted in
finite strain elasto-plastic analysis due to well-known shortcomings:

• Mesh distortion in high order elements adversely impacts conver-
gence rate [1]. Adaptive remeshing is required more often with
high-order elements. Even with a total-Lagrangian formulation,
mesh distortion requires changes to the finite element mesh,
since the spatial Jacobian is required to calculate the deformation
gradient.

• High-order problems require dedicated techniques or
architecture-intensive isogeometric formulations [2].

• Although stress quality improves with the order of the complete
polynomial, in finite element methods, stresses are still discon-
tinuous at inter-element boundaries [3]. Plasticity results are

∗ Corresponding author at: DEM - Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001
Lisboa, Portugal .

E-mail address: pedro.areias@tecnico.ulisboa.pt (P. Areias).
1 https://tecnico.ulisboa.pt/.
2 Strictly in particle methods, but stabilized particle methods are known share most properties with EFG.

dependent on the quality of the stresses, which is compromised
even in high-order finite elements.

• Contact algorithms are often more intricate for higher-order ele-
ments. Classical meshless methods based on non-singular weight
functions also involve some intricacies.

Element-free Galerkin (EFG) methods introduced by Belytschko and
co-workers [4] using the least-squares results of P. Lancaster and K.
Salkauskas [5] are especially appealing in the aforementioned context,
as continuity of derivatives is ensured as long as weight functions are
differentiable. Most EFG shortcomings have established remedies, and
in this work we address the issue of the Lagrangian kernel for finite
strain plasticity. Note that Rabczuk, Belytschko and Xiao [6] proved
that a Lagrangian kernel is required for stability, 2 but classical finite-
strain plasticity algorithms (e.g. [7,8]) combined with EFG typically
update the configuration [9]. A comprehensive presentation of devel-
opments in meshless methods (including EFG) was recently published
by J.-S. Chen and co-workers [10]. A related development combining
partition-of-unity and least-squares is described in Cai, Zhuang and Au-
garde [11]. Several remedies are described, in particular for boundary
conditions. Therefore, meshless methods, in particular with quadratic
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basis and satisfying the Kronecker-Delta condition, seemingly fit these
applications, as

• Since no isoparametric mapping is used, mesh distortion sensitiv-
ity is attenuated with respect to finite elements.

• Stresses are in general continuous, as long as all terms participat-
ing in the shape functions are differentiable.

• Contact algorithms are relatively simplified.
• Strain localization problems can be directly addressed via strain-

gradient methods.

everal applications have been published with meshless discretization
or finite strain plasticity [9], but not at the same scale of finite
lements. One of the reasons might be computational cost, as more
odes are often required for the same polynomial degree, the stiffness
atrix is denser. In addition, the reputation for difficult-to-impose

oundary conditions still inflicts EFG, although many meshless options
xist to solve this problem. Recent developments in interpolation have
esurrected interest in the question of the Kronecker-Delta property,
ee [12].

There is also another aspect which is seldom discussed. Although
agrangian kernels are known to be much more cost-effective than
ulerian kernels, meshless finite-strain plasticity problems are tradi-
ionally established in the deformed configuration [9], due to physical
equirements. The Cauchy or Kirchhoff stress tensors are typically the
est choice for the yield functions, and it is an Eulerian tensor. In the
mall strain side of plasticity, several successful results were published,
ee, e.g. [13].

In contrast, hyperelastic implementations of EFG are common, and
ecent papers report realistic results with high degree of continuity, see
14].

However, a newly developed fully anisotropic elasto-plastic frame-
ork based on the iteration for 𝑪𝑒 [15] does not require the explicit

orm of the deformation gradient. This motivates a revisiting of the
oving least-squares/EFG approach.

Since, unlike finite element formulations for finite strains, no trans-
ormation of coordinates is adopted, there is no need for a deformed-
onfiguration Jacobian matrix. Note that in standard finite element
nalysis, the deformation gradient 𝑭 is determined by the chain rule
= 𝒋⋅𝑱−1 where 𝒋 is the deformed-configuration Jacobian matrix and 𝑱

s the undeformed-configuration (or Lagrangian) Jacobian matrix [16].
his means that even if det 𝑱 > 0, if det 𝒋 ≤ 0, a new mesh is required
o continue the analysis.

Another effect that is often reported in the context of EFG is the
olumetric locking in quasi-incompressible applications, [9,17].

In terms of discretization, technical options in this paper are the
ollowing:

• Ab-initio definition of the shape functions and derivatives for the
entire analysis.

• Quasi-singular weight functions (see [5,18,19])
• Tetrahedra integration with single point quadrature.
• Lagrangian diffuse derivatives are adopted.
• Constitutive integration making use of the Mandel stress tensor

and iteration on 𝑪𝑒 [15].

his paper is organized as follows: Section 2 presents the interpolation,
ased on moving least-squares and diffuse derivatives, as well as the
lgorithm to guarantee a sufficiently small support radius. Section 3
resents the discretization based on the total Lagrangian approach,
ollowed by Section 4 where the constitutive integration, fitting the
evelopments of Section 3, is described in detail. In Section 5 four
enchmark tests are performed and finally conclusions are drawn in
ection 6.
2

o

2. Interpolation

2.1. General approach for moving least-squares

Interpolation with a polynomial basis and least-squares fitting was
introduced by P. Lancaster and K. Salkauskas [5]. Herein, classical
derivations are followed, see [4,18,20]. We introduce 𝑚 as the number
of terms in the polynomial basis, 𝑛 as the number of supporting nodes
and 𝐷 as the dilation parameter, or support radius. For a given node
𝐾, distance to a given point with coordinates 𝑿 is introduced with the
notation 𝑠𝐾 (𝑿). Let us consider a 𝑞−tuple of non-negative integers 𝜶 =
𝛼1,… , 𝛼𝑞) ∈ N𝑞0. We write the absolute value as the sum: |𝜶| = ∑𝑞

𝑖=1 𝛼𝑖.
e consider the set of all polynomials of degree equal or less than 𝑝

s:

𝑝 =
{

𝑝𝛼 (𝑿) = 𝑋𝛼1
1 ⋯𝑋

𝛼𝑞
𝑞 ∣ |𝜶| ≤ 𝑝

}

(1)

We now introduce a polynomial basis as an array of elements of P𝑝:

(𝑿) = {𝑝1 (𝑿) , 𝑝2 (𝑿) ,… , 𝑝𝑚 (𝑿)} 𝑝𝑖 ∈ P𝑝 (2)

ith #𝒒 (𝑿) = (𝑝+𝑞)!∕𝑝!𝑞! = 𝑚. We therefore use 𝑚 elements of P for the
olynomial basis.

The direct form (2) is known to produce conditioning difficulties.
herefore, we adopt a normalized and shifted form using a complete
asis:

(𝑿) =

⎧

⎪

⎨

⎪

⎩

1,

(

𝑋1 −𝑋1

)

𝐷
,

(

𝑋2 −𝑋2

)

𝐷
,

(

𝑋3 −𝑋3

)

𝐷
, (3)

(

𝑋1 −𝑋1

)(

𝑋2 −𝑋2

)

𝐷2
,

(

𝑋1 −𝑋1

)(

𝑋3 −𝑋3

)

𝐷2
,

(

𝑋2 −𝑋2

)(

𝑋3 −𝑋3

)

𝐷2
,

(

𝑋1 −𝑋1

)2

𝐷2
,

(

𝑋2 −𝑋2

)2

𝐷2
,

(

𝑋3 −𝑋3

)2

𝐷2
,…

⎫

⎪

⎬

⎪

⎭

We use 𝑿 as a centroid of the nodes within the 𝐷−radius of 𝑿.
Given a point with coordinates 𝑿, the approximation weight of another
point with coordinates 𝑿𝐼 depends on the distance between the points
𝑠𝐼 (𝑿) = ‖

‖

𝑿 −𝑿𝐼
‖

‖

. The notation 𝑤
[

𝑠𝐼 (𝑿)
]

is introduced to represent
his weight function of 𝑿. From this basis, a 𝑚 × 𝑛 𝑷 Vandermonde
atrix is defined by its elements as follows3:

𝑖𝐽 = 𝑝𝑖
(

𝑿𝐽
)

𝑖 = 1,… , 𝑚, 𝐽 = 1,… , 𝑛 (4)

he components of weight matrix, which is a function of the supporting
oints and the coordinates 𝒙, are given by:

𝐼𝐽 (𝑿) = 𝛿𝐼𝐽𝑤
[

𝑠𝐼 (𝑿)
]

𝐼, 𝐽 = 1,… , 𝑛 (5)

classical form of 𝑠𝐼 (𝑿), as previously stated,

𝐼 (𝑿) = ‖

‖

𝑿 −𝑿𝐼
‖

‖

(6)

pplying the traditional least-squares arguments leads to the following
ormat for the 𝑛-dimensional shape function array 𝑵 (𝑿):

(𝑿) = 𝒑(𝑿) ⋅𝑨−1 (𝑿) ⋅ 𝑩 (𝑿) (7)

here 𝑨 (𝑿) is the 𝑚 ×𝑚 moment matrix 𝑨 (𝑿) = 𝑩 (𝑿) ⋅ 𝑷 𝑇 and 𝑩 (𝑿)
s the 𝑚 × 𝑛 linear combination matrix 𝑩 (𝑿) = 𝑷 ⋅𝑾 (𝑿)

We make use of the 𝑸 ⋅𝑹 decomposition of
√

𝑾 (𝑿) ⋅ 𝑷 𝑇 :

𝑾 (𝑿) ⋅ 𝑷 𝑇 = 𝑸 (𝑿) ⋅𝑹 (𝑿) (8)

3 We use uppercase indices for nodal values to facilitate the interpretation
f the formulas and distinguish between polynomial terms and nodes
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where 𝑸 (𝑿) is an orthogonal matrix and 𝑹 (𝑿) is an upper triangular
matrix [21]. A classical Gram–Schmidt algorithm for the 𝑸 ⋅ 𝑹 de-
composition is used. For our application, only 𝑹 (𝑿) is required. It is
straightforward to obtain, from (7), the following:

𝑵 (𝑿) = 𝒑(𝑿) ⋅𝑹−1 (𝑿) ⋅𝑹−𝑇 (𝑿) ⋅ 𝑩 (𝑿) (9)

Therefore, this operation is relatively inexpensive since it consists of
two triangular solves. Omitting the dependence on 𝑿, we have

𝑹𝑇 ⋅ 𝑼 1 = 𝑩 (10)

𝑹 ⋅ 𝑼 2 = 𝑼 1 (11)

where 𝑼 2 is a 𝑚×𝑛 matrix, which suffices to define the shape functions.
Reintroducing the dependence on 𝑿, the result is:

𝑵 (𝑿) = 𝒑 (𝑿) ⋅ 𝑼 2 (𝑿) (12)

The interpolated value 𝜙 (𝑿) is obtained by linear combination of nodal
values 𝝓 =

{

𝜙1, 𝜙2,… , 𝜙𝑛
}

𝜙 (𝑿) = 𝑵 (𝑿) ⋅ 𝝓. In terms of components,
Eq. (7) is written as:

𝑁𝐿 (𝑿) = 𝑝𝑗 (𝑿)𝑈2𝑗𝐿 (𝑿) 𝐿 = 1,… , 𝑛; 𝑗, 𝑘 = 1,… , 𝑚 (13)

First derivative of 𝑁𝐿(𝒙) with respect to coordinates 𝑥𝑚, 𝑚 = 1, 2, 3 is
here denoted as:

𝑁 ′
𝐿 (𝑿) =𝑝′𝑗 (𝑿)𝑈2𝑗𝐿 (𝑿)

−𝑝𝑗 (𝑿)𝐴−1
𝑗𝑙 (𝑿)𝐴′

𝑙𝑝 (𝑿)𝑈2𝑝𝐿 (𝑿)

+𝑝𝑗 (𝑿)𝐴−1
𝑗𝑘 (𝑿)𝐵′

𝑘𝐿 (𝑿) (14)

where

𝐵′
𝑘𝐿 (𝑿) = 𝑃𝑘𝐽𝑊

′
𝐽𝐿 (𝑿) (15)

𝐴′
𝑙𝑝 (𝑿) = 𝐵′

𝑙𝐿 (𝑿)𝑃𝑝𝐿 (16)

In terms of 𝑝′𝑗 (𝑿) and 𝑊 ′
𝐽𝐼 (𝑿), Eq. (14) can be written as a sum of two

terms:

𝑁 ′
𝐿 (𝑿) = 𝑁⋆

𝐿 (𝑿) +𝑁 ∙
𝐿 (𝑿) (17a)

where

𝑁⋆
𝐿 (𝑿) = 𝑝′𝑗 (𝑿)𝑈2𝑗𝐿 (𝑿) (17b)

and

𝑁 ∙
𝐿 (𝑿) = 𝑝𝑗 (𝑿)𝐴−1

𝑗𝑙 (𝑿)𝑃𝑙𝑀𝑊 ′
𝑀𝑄 (𝑿)

[

𝛿𝑄𝐿 − 𝑃𝑝𝑄𝑈2𝑝𝐿 (𝑿)
]

(17c)

It is a tradition to identify (17b) as the diffuse derivative. We can clearly
prove that 𝑁 ∙

𝐿
(

𝑿𝐾
)

= 0 if the Kronecker-Delta condition is satisfied
𝑁𝐿

(

𝑿𝐾
)

= 𝛿𝐿𝐾 :

𝑁𝐿
(

𝑿𝐾
)

= 𝛿𝐿𝐾
⇒𝑃𝑗𝐾𝐴

−1
𝑗𝑛

(

𝑿𝐾
)

𝐵𝑛𝐿
(

𝑿𝐾
)

= 𝛿𝐿𝐾
⇒𝑁 ∙

𝐿
(

𝑿𝐾
)

= 0

2.2. Quasi-singular weight function

Singular weight functions are known to produce an interpolation
satisfying the Kronecker-Delta property [5]. Quasi-singular functions
have been adopted to approximate this property [18]. The following
quasi-singular weight function is introduced (see, e.g. [18,19]):

𝑤
[

𝑠𝐼 (𝑿)
]

=

⎧

⎪

⎨

⎪

⎩

[

𝑠2𝐼 (𝑿)∕𝐷2 + tol2
]−1

−
[

1 + tol2
]−1

𝑠𝐼 ≤ 𝐷

0 𝑠𝐼 > 𝐷
(18)

where tol ∈ R+ is a tolerance parameter. The maximum value of 𝑤
[

𝑠𝐼
]

is obtained as:
2 4
3

𝑤[0] = 1∕(tol + tol ) (19)
Here we adopt tol=1×10−3. The Kronecker-Delta property is approxi-
mately satisfied:

𝑁𝐼
(

𝑿𝐽
)

≅ 𝛿𝐼𝐽 (20)

Derivatives of 𝑤
[

𝑠𝐼
]

with respect to 𝑠𝐼 are trivially given by

d𝑤
[

𝑠𝐼
]

d𝑠𝐼
= −

2𝐷2𝑠𝐼
(

𝐷2tol2 + 𝑠2𝐼
)2

(21)

plot of the shape functions and derivatives for tol = 1 × 10−3 is
xhibited in Fig. 1 for 𝐷 = 2 (first column) and 𝐷 = 4 (second column).

Strong versions of this weighting are available, see M Dehghan,
22], but entail a more intricate implementation.

.3. Lumping

An implementation-oriented approach is adopted. Using the tetrahe-
ral support, a composition of shape functions is performed. Only the
ndeformed Jacobian is required and hence the formulation is nearly
nsensitive to deformation-induced mesh distortion.

We now use the nodes to establish localized shape functions in the
etrahedra. This concept is based on the original shape-function deriva-
ives at the nodes of each tetrahedra. Using node 𝑀 , the corresponding
erivative is given by:
′
𝑀 (𝑿𝑀 ) = 𝑝′𝑗

(

𝑿𝑀
)

𝑈2𝑗𝑀
(

𝑿𝑀
)

(22)

ewriting the derivative, we have:

d𝑁𝑀
(

𝑿𝑀
)

d𝑿𝑚
=

d𝑝𝑗
(

𝑿𝑀
)

d𝑿𝑚
𝑈2𝑗𝑀

(

𝑿𝑀
)

(23)

Standard finite element shape functions are adopted now for interpola-
tion of the nodal values. This is akin to the partition of unity method
(PUFEM) but makes use of nodes not belonging to the integration
domain (the finite element itself).

For a tetrahedron we have the following volume-based shape func-
tions:

𝑴 (𝝃) =
{

𝜉1, 𝜉2, 1 − 𝜉1 − 𝜉2 − 𝜉3, 𝜉3
}

(24)

e have 0 ≤ 𝜉𝑖 ≤ 1 with

=
[

𝑿1 −𝑿3 𝑿2 −𝑿3 𝑿4 −𝑿3
]

(25)

he derivatives of the shape functions 𝑴 with respect to 𝑿 are given
s Eq. (26) in Box I:

The shape functions for a given element are given by:
⋆
𝑀 (𝑿) =𝑀𝐾 (𝝃)𝑁𝑀 (27)

𝑀 ∈ Vis [𝐺 (𝐾)] (28)

here Vis [𝐺 (𝐾)] indicates the visibility of node 𝐾. Implementation is
ased on the following steps, performed at the start of the analysis:

1. For each face 𝐹 of the tetrahedra mesh, flag it if it’s a boundary
face. Each boundary face shares only one tetrahedron.

2. For each node 𝐾, flag it as boundary node if it shares a boundary
face.

3. Loop over all nodes that are not at the boundary:

(a) For each non-boundary node 𝐾 determine the smallest
edge containing 𝐾.

(b) Sets 𝑟𝐿 as 10% of its length as the maximum perturbation.
(c) Using a sphere of radius 𝑟𝐿 and center 𝐾 randomly deter-

mines the new position of node 𝐾 inside the sphere.

4. Loop over all tetrahedra. For tetrahedron 𝐸:
(a) For a given list of size 𝑛 ≥ 4, insert:
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Fig. 1. Shape functions, diffuse and total derivatives for a quadratic basis, 𝑋 = {−1,−0.5, 0,+0.5,+1} with 𝐷 = 2 and 𝐷 = 4.
d𝑴
d𝑿

=

⎡

⎢

⎢

⎢

⎢

⎣

[

𝑱−1]
11

[

𝑱−1]
12

[

𝑱−1]
13

[

𝑱−1]
21

[

𝑱−1]
22

[

𝑱−1]
23

−
[

𝑱−1]
11 −

[

𝑱−1]
21 −

[

𝑱−1]
31 −

[

𝑱−1]
12 −

[

𝑱−1]
22 −

[

𝑱−1]
32 −

[

𝑱−1]
13 −

[

𝑱−1]
23 −

[

𝑱−1]
33

[

𝑱−1]
31

[

𝑱−1]
32

[

𝑱−1]
33

⎤

⎥

⎥

⎥

⎥

⎦

(26)

Box I.
i. All nodes of the tetrahedron.

ii. Other 𝑛 − 4 closest nodes to the centroid of 𝐸.
4

(b) Use the farthest node in the list to determine the support

radius 𝐷 for tetrahedron 𝐸.

(c) Use Eqs. (23) to calculate the shape function derivatives.
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5. In the Newton–Raphson iteration loop, only 𝑪 is calculated,
shape function derivatives are stored in memory.

3. Discretized equilibrium equations

A straightforward total-Lagrangian implementation is followed (see,
e.g. [16]). We make use of the definition of the right Cauchy–Green
tensor:

𝑪
(

𝑿ℎ
)

= 𝑭 𝑇 (

𝑿ℎ
)

⋅ 𝑭
(

𝑿ℎ
)

(29)

For a given point 𝑿ℎ with discrete support 𝛺𝑿ℎ
, we have:

𝑭
(

𝑿ℎ
)

=
d𝒙ℎ
d𝑿ℎ

=
∑

𝐿∈𝛺𝑿ℎ

(

d𝑁𝐿
(

𝑿ℎ
)

𝒙𝐿
d𝑿ℎ

)

(30)

In terms of components and omitting the dependence on 𝑿ℎ, we obtain
the components of 𝑭 as:

𝐹𝑖𝑗 =
d𝑁𝐿
d𝑋𝑗

𝑥𝑖𝐿 (31)

Using the variation symbol, 𝛿 we introduce the variation of 𝑭 , in the
equilibrium sense, as:

𝛿𝐹𝑖𝑗 =
d𝑁𝐿
d𝑋𝑗

𝛿𝑥𝑖𝐿 (32)

ntroducing the notation 𝑁𝑗𝐿 = d𝑁𝐿∕d𝑋𝑗 for the shape-function deriva-
ives, the following results for 𝑪 and its first and second variations are
btained:

𝐶𝑖𝑗 = 𝑁𝑖𝐾𝑁𝑗𝐿𝑥𝑘𝐾𝑥𝑘𝐿 ⇒

𝐶𝑖𝑗 = 𝑁𝑖𝐾𝑁𝑗𝐿
(

𝑥𝑘𝐿𝛿𝑥𝑘𝐾 + 𝑥𝑘𝐾𝛿𝑥𝑘𝐿
)

�̇�𝑖𝑗 = 𝑁𝑖𝐾𝑁𝑗𝐿
(

𝑥𝑘𝐿�̇�𝑘𝐾 + 𝑥𝑘𝐾 �̇�𝑘𝐿
)

�̇�𝑖𝑗 = 𝑁𝑖𝐾𝑁𝑗𝐿
(

�̇�𝑘𝐿𝛿𝑥𝑘𝐾 + �̇�𝑘𝐾𝛿𝑥𝑘𝐿
)

quilibrium is established in weak form by the use of the second
iola–Kirchhoff stress 𝑺 and the spatial configuration variation 𝛿𝒙:

1
2 ∫𝛺0

𝑺 ∶ 𝛿𝑪 d𝛺0 = 𝒇 ext ⋅ 𝛿𝒙 (33)

or the application of Newton–Raphson iteration, we require the first
ariation of (33). To avoid confusion with the variation symbol 𝛿, we
se the time-derivative to denote the variation of equilibrium. By taking
his time-derivative variation, the tangent modulus C is employed to
ead:

1
2 ∫𝛺0

𝑺 ∶ 𝛿�̇�d𝛺0+
1
4 ∫𝛺0

𝛿𝑪 ∶ C ∶ �̇� d𝛺0 = 𝒇 ext⋅𝛿𝒙− 1
2 ∫𝛺0

𝑺 ∶ 𝛿𝑪 d𝛺0

(34)

here 𝒇 ext is the external load vector and is the nodal velocity vector.
ote that, in the implementation, the second derivative of 𝑪 is required

n 𝛿�̇�. In Voigt form (see [23]), we have the following internal force
nd tangent stiffness:

𝒇𝐿 = ∫𝛺0

𝑩𝑇
𝐿 ⋅ �̂� d𝛺0 (35)

𝐾𝐿 = ∫𝛺0

𝑩𝑇
𝐾 ⋅ C ⋅ 𝑩𝐿 d𝛺0 + ∫𝛺0

𝑩⋆𝑇
𝐾 ⋅ �̌� ⋅ 𝑩⋆

𝐿 d𝛺0 (36)

mitting dependence on 𝑿, notation in (35)–(36) is as follows:

𝐿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝐹11𝑁1𝐿 𝐹21𝑁1𝐿 𝐹31𝑁1𝐿
𝐹12𝑁2𝐿 𝐹22𝑁2𝐿 𝐹32𝑁2𝐿
𝐹13𝑁3𝐿 𝐹23𝑁3𝐿 𝐹33𝑁3𝐿

𝐹11𝑁2𝐿 + 𝐹12𝑁1𝐿 𝐹21𝑁2𝐿 + 𝐹22𝑁1𝐿 𝐹31𝑁2𝐿 + 𝐹32𝑁1𝐿
𝐹13𝑁1𝐿 + 𝐹11𝑁3𝐿 𝐹23𝑁1𝐿 + 𝐹21𝑁3𝐿 𝐹33𝑁1𝐿 + 𝐹31𝑁3𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(37)
5

⎣𝐹12𝑁3𝐿 + 𝐹13𝑁2𝐿 𝐹22𝑁3𝐿 + 𝐹23𝑁2𝐿 𝐹32𝑁3𝐿 + 𝐹33𝑁2𝐿⎦
pecific form of 𝑩⋆
𝐾 in (36) is not needed at this point, and can be

consulted in [3]. The Voigt form of the second Piola–Kirchhoff stress is
given by:.

�̂� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑆11
𝑆22
𝑆33
𝑆12
𝑆13
𝑆23

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(38)

We also have:

𝑩⋆𝑇
𝐾 ⋅ �̌� ⋅ 𝑩⋆

𝐿 = 𝑟𝐾𝐿𝑰3×3 (39)

where

𝑟𝐾𝐿 =

⎧

⎪

⎨

⎪

⎩

𝑁1𝐾
𝑁2𝐾
𝑁3𝐾

⎫

⎪

⎬

⎪

⎭

𝑇

⋅
⎡

⎢

⎢

⎣

𝑆11 𝑆12 𝑆13
𝑆12 𝑆22 𝑆23
𝑆13 𝑆23 𝑆33

⎤

⎥

⎥

⎦

⋅

⎧

⎪

⎨

⎪

⎩

𝑁1𝐿
𝑁2𝐿
𝑁3𝐿

⎫

⎪

⎬

⎪

⎭

(40)

which is a compact form for the geometric stiffness. In contrast with ad-
vanced finite element formulations [24,25], these are classical and di-
rect derivations. In addition, shape functions and corresponding deriva-
tives can be calculated once, in the beginning of the solution process.

4. Hyperelasticity/plasticity using the elastic mandel stress tensor

4.1. Formulation

The Mandel stress tensor approach to finite-strain plasticity is
adopted [26,27]. We make use of the Kröner–Lee decomposition [28,
29] (see also [30]):

𝑭 = 𝑭 𝑒 ⋅ 𝑭 𝑝 (41)

Using (41), the velocity gradient is determined by its definition and
then partitioned as follows:

𝑳 = �̇� ⋅ 𝑭 −1 = 𝑳𝑒 + 𝑭 𝑒 ⋅𝑳𝑝 ⋅ 𝑭 −1
𝑒 (42)

ith 𝑳𝑒 = �̇� 𝑒 ⋅𝑭 −1
𝑒 , the elastic velocity gradient and 𝑳𝑝 = �̇� 𝑝 ⋅𝑭 −1

𝑝 , the
plastic velocity gradient. The second Piola–Kirchhoff stress is a function
of the elastic part of 𝑭 by means of 𝑪𝑒 = 𝑭 𝑇

𝑒 ⋅ 𝑭 𝑒 (cf. [31] page 166),
the second Piola–Kirchhoff stress at the intermediate configuration is
given by 𝑺𝑒

(

𝑪𝑒
)

(see [32]), from which energy consistency results in a
second Piola–Kirchhoff stress 𝑺 = 𝑭 −1

𝑝 ⋅𝑺𝑒
(

𝑪𝑒
)

⋅𝑭 −𝑇
𝑝 . In the hyperelastic

case, a strain–energy density function 𝜓
(

𝑪𝑒
)

exists such as

𝑺𝑒
(

𝑪𝑒
)

= 2d𝜓(𝑪𝑒)∕d𝑪𝑒 (43)

The Neo-Hookean model is used, with the following strain–energy
density function:

𝜓(𝐂𝑒) =
𝜇
2
[

tr
(

𝐂𝑒
)

− 3
]

− 𝜇 log
√

det
(

𝐂𝑒
)

+ 𝜆
2

[

log
√

det
(

𝐂𝑒
)

]2
(44)

he flow law follows similar arguments [27], assuming that the initial
lastic deformation gradient corresponds to the identity,

[

𝑭 𝑝
]

0 = 𝑰 .
greeing with standard derivations on plasticity, a yield function 𝜙 is

ntroduced, as well as a plastic multiplier �̇�. Introducing the notation
𝑝 = 𝑭 −1

𝑝 . We summarize the constitutive system as:

𝑺 = 𝑸𝑝 ⋅ 𝑺𝑒
(

𝑪𝑒
)

⋅𝑸𝑇
𝑝 (45)

�̇�𝑝 = −�̇�𝑸𝑝 ⋅𝑵
[

𝑻 𝑒
]

(46)
[

𝑸𝑝
]

0 = 𝑰 (47)

𝜙
(

𝑻 𝑒
)

+ �̇� ≻ − �̇� = 0 (48)

ith ≺ ∙ ≻= ∙+|∙|
2 being the unit ramp function. In (46), the Mandel

tress [26] 𝑻 𝑒 is given by:
( )
𝑻 𝑒 = 𝑪𝑒 ⋅ 𝑺𝑒 𝑪𝑒 (49)
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Fig. 2. Elasto-plastic pressurized cylinder, closed-form solutions obtained from Chapter 5 of Chakrabarty [33]. Inner radius: 𝑎 = 1, outer radius: 𝑏 = 2 and 𝜎𝑦 = 1, 𝑝 = 0.800377.
Fig. 3. Stress results for the pressurized cylinder for two values of the pressure.

Assuming an associated flow law [30], we have the flow vector 𝑵
(

𝑻 𝑒
)

determined from the derivative of 𝜙
(

𝑻 𝑒
)

:

𝑵(𝑻 𝑒) = d𝜙(𝑻 𝑒)∕d𝑻 𝑒 (50)

When hardening is present, power equivalence provides the effective
plastic strain rate �̇�𝑝 as a function of the yield stress 𝜎𝑦:

�̇�𝑝 = �̇�
𝑻 𝑒 ∶ 𝑵(𝑻 𝑒)

𝜎𝑦
(51)

4.2. Constitutive integration

For the constitutive integration, we use superscripts 𝑛 and 𝑛 + 1
to identify two consecutive time-steps and 𝛥𝑡 as the time-step size.
6

Fig. 4. Comparison between 𝑛 = 10 and 𝑛 = 20 for the pressurized cylinder for two
values of the pressure.

Applying the backward-Euler method for �̇�𝑝 and �̇� results in:

𝑸𝑛+1
𝑝 = 𝑸𝑛

𝑝 ⋅
[

𝑰 + 𝛥𝛾�̂�
(

𝑪𝑛+1
𝑒

)

]−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[

𝛥�̂�
(

𝑪𝑛+1𝑒 ,𝛥𝛾
)]−1

(52)

𝛾𝑛+1 = 𝛾𝑛 + �̇�𝑛+1𝛥𝑡
⏟⏟⏟

𝛥𝛾

(53)

We now define the elastic trial Cauchy–Green tensor as 𝑪⋆
𝑒 =

[

𝑸𝑛
𝑝

]𝑇
⋅

𝑪𝑛+1 ⋅𝑸𝑛. Introducing the function �̂�
⋆ (

𝑪𝑛+1) =
(

𝑸𝑛
)𝑇

⋅𝑪𝑛+1 ⋅𝑸𝑛, the
𝑝 𝑒 𝑝 𝑝
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Fig. 5. Quasi-incompressible Neo-Hookean compression test.
constitutive system for 𝛥𝛾 > 0 consists of the following equations:
[

𝛥�̂�
(

𝑪𝑛+1
𝑒 , 𝛥𝛾

)

]𝑇
⋅ 𝑪𝑛+1

𝑒 ⋅
[

𝛥�̂�
(

𝑪𝑛+1
𝑒 , 𝛥𝛾

)

]

− �̂�
⋆
𝑒
(

𝑪𝑛+1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒓𝑐
(

𝑪𝑛+1𝑒 ,𝛥𝛾,𝑪𝑛+1
)

= 𝟎 (54)

𝜙⋆
[

𝑪𝑛+1
𝑒 ⋅ �̂�𝑒

(

𝑪𝑛+1
𝑒

)]

= 0 (55)

Since 𝑪𝑛+1
𝑒 is symmetric, Voigt notation can be used, 𝐂𝑛+1𝑒 = Voigt

[

𝑪𝑛+1
𝑒

]

and 𝐫𝑐
(

𝐂𝑛+1𝑒 , 𝛥𝛾,𝐂𝑛+1
)

= Voigt
[

𝒓𝑐
(

𝑪𝑛+1
𝑒 , 𝛥𝛾,𝑪𝑛+1)]. Omitting

the function arguments for conciseness, the Newton–Raphson iteration
for 𝐂𝑛+1𝑒 (Voigt form) and 𝛥𝛾 is written as:

⎡

⎢

⎢

⎣

𝜕𝐫𝑐
𝜕𝐂𝑛+1𝑒

𝜕𝐫𝑐
𝜕𝛥𝛾

𝜕𝜙
𝜕𝐂𝑛+1𝑒

0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑱

{

𝛥𝐂𝑛+1𝑒
𝛥𝛥𝛾

}

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝛥𝐘

= −

⎧

⎪

⎨

⎪

⎩

𝐫𝑐
(

𝐂𝑛+1𝑒 , 𝛥𝛾,𝐂𝑛+1
)

𝜙⋆
[

𝐂𝑛+1𝑒 ⋅ �̂�𝑒
(

𝐂𝑛+1𝑒
)

]

⎫

⎪

⎬

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐫

(56)

with 𝐘 =
{

𝐂𝑛+1𝑒 𝛥𝛾
}𝑇 being the constitutive unknowns for this

problem. Following 𝐂𝑛+1𝑒 , 𝑸𝑛+1
𝑝 is determined by (52) and the second

Piola–Kirchhoff stress at step 𝑛 + 1 is given in tensor notation by:

�̌�𝑛+1
⎛

⎜

⎜

⎜

⎝

𝐂𝑛+1𝑒 , 𝛥𝛾
⏟⏞⏟⏞⏟

𝐘

⎞

⎟

⎟

⎟

⎠

= 𝑸𝑛
𝑝 ⋅

[

𝛥�̂�
(

𝐂𝑛+1𝑒 , 𝛥𝛾
)

]−1
⋅ �̂�𝑒

(

𝐂𝑛+1𝑒
)

⋅
{

[

𝛥�̂�
(

𝐂𝑛+1𝑒 , 𝛥𝛾
)

]−1
}𝑇

⋅
(

𝑸𝑛
𝑝

)𝑇

(57)

Stress sensitivity, the determination of the consistent modulus, with
𝐒𝑛+1 = Voigt

[

𝑺𝑛+1
]

, is determined as follows:

d𝐒𝑛+1
d𝐂𝑛+1

= 𝜕�̂�𝑛+1

𝜕𝐂𝑛+1𝑒
⋅
d𝐂𝑛+1𝑒

d𝐂𝑛+1
+ 𝜕�̂�𝑛+1

𝜕𝛥𝛾
d𝛥𝛾
d𝐂𝑛+1

(58)

In (58), a single product dot ⋅ is adopted for double contraction of quan-
tities in Voigt form. From (58) we can conclude that C is determined
as a function of the solution of (56), since

d𝐘∕d𝐂𝑛+1 = −𝑱−1 ⋅ 𝜕𝐫∕𝜕𝐂𝑛+1 (59)

therefore, stress sensitivity is simply given by:

d𝐒𝑛+1
d𝐂𝑛+1

= −
(

d�̂�𝑛+1∕d𝐘
)

⋅ (d𝐘∕d𝐂𝑛+1) (60)

When hardening is present, the effective plastic strain rate follows the
integration of (51):

𝜀𝑛+1𝑝 = 𝜀𝑛𝑝 + 𝛥𝛾
𝑻 𝑒 ∶ 𝑵(𝑻 𝑒) (61)
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𝜎𝑦
4.3. Specific yield function

The nondimensional yield function is given by:

𝜙⋆
(

𝑻 𝑒
)

=
𝜎eq

(

𝑻 𝑒
)

𝜎𝑦
− 1 (62)

where, as a prototype equivalent stress, a specific Hill48 criterion
(1948 [35]) is adopted. The general form of the Hill48 equivalent stress
𝜎eq is written as:

𝜎eq
(

𝑻 𝑒
)

=

√

𝐹
(

𝑇22 − 𝑇33
)2 + 𝐺

(

𝑇33 − 𝑇11
)2 +𝐻

(

𝑇11 − 𝑇22
)2 + 2𝑆1

(

𝑇 𝑠4
)2

+ 2𝑆2
(

𝑇 𝑠5
)2

+ 2𝑆3
(

𝑇 𝑠6
)2

(63)

where the subscript 𝑒 of 𝑻 𝑒 is omitted for conciseness). In (63), the
superscript 𝑠 is adopted to indicate a symmetrized quantity. For ex-
ample, 𝑇 𝑠6 = 1∕2

(

𝑇23 + 𝑇32
)

. Introducing the yield ratios, 𝑦1,… , 𝑦6 as
constitutive data, we have for F, G, H, 𝑆1,…,3:

𝐹 = 1
2
(

1∕𝑦22 + 1∕𝑦23 − 1∕𝑦21
)

(64)

𝐺 = 1
2
(

1∕𝑦21 + 1∕𝑦23 − 1∕𝑦22
)

𝐻 = 1
2
(

1∕𝑦21 + 1∕𝑦22 − 1∕𝑦23
)

𝑆𝑘 = 3∕2
(

𝑦2𝑘+3
)

𝑘 = 3,… , 6

We note that many other yield criteria can be used, since any specific
form of 𝜎eq

(

𝑻 𝑒
)

can be inserted. Specific yield criteria for hexagonal
closed-packed crystalline structures, such as Cazacu and Barlat [36] can
be directly applied. Along those lines, the work of Chen et al. regarding
tension/compression asymmetry performs a comparison between these
yield criteria [37].

5. Numerical tests

Numerical tests were performed with the code from the leading
Author, SimPlas [39], and the specific source code for EFG was created
using Mathematica [40] with the AceGen add-on [16,41]. Source code
for the equations in this work is available via Github [42].

5.1. Thick cylinder under pressure

We now consider a thick cylinder (internal radius 𝑎 and exter-
nal radius 𝑏) under internal pressure 𝑝, as discussed in chapter 6 of
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Fig. 6. Quasi-incompressible Neo-Hookean compression test, 𝑆22 contour plots,
comparison of node densities. 𝑛 = 30 with quadratic basis.

Chakrabarty [33]. Internal pressure Onset of yielding is obtained, in
the plane strain case is given by:

𝑝𝑒 = 𝜎𝑦

(

𝑏2 − 𝑎2
)

𝑏2
√

𝑎4(1−2𝜈)2+3𝑏4
𝑏4

(65)

where 𝜈 is the Poisson coefficient. Using the condition 𝑝 <
𝜎𝑦2

√

3(1−𝜈)∕(6𝜈−3), a solution is possible using a correction of Tresca
criterion. For the non-hardening case, we have the following stress
components:

𝜎𝑟 =
𝜎𝑦
√

3

⎧

⎪

⎨

⎪

(

𝑐2

𝑏2
− ln 𝑐2

𝑟2
− 1

)

𝑐 > 𝑟 ≥ 𝑎
(

1 − 𝑏2
2

)

𝑐2
2 𝑏 ≥ 𝑟 ≥ 𝑐

(66)
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⎩

𝑟 𝑏
Fig. 7. Quasi-incompressible Neo-Hookean compression test. Finite element results
from a stabilized mixed formulation by Caylak and Mahnken [34] are also presented.

𝜎𝜃 =
𝜎𝑦
√

3

⎧

⎪

⎨

⎪

⎩

(

𝑐2

𝑏2
− ln 𝑐2

𝑟2
+ 1

)

𝑐 > 𝑟 ≥ 𝑎
(

1 + 𝑏2

𝑟2

)

𝑐2

𝑏2
𝑏 ≥ 𝑟 ≥ 𝑐

(67)

Pressure is related to the radius coordinate of the elasto-plastic interface
𝑐 as:

𝑝(𝑐) =
𝜎𝑦
√

3

(

1 − 𝑐2

𝑏2
+ 2 ln

𝑐
𝑎

)

(68)

from which, the fully-plastic condition is obtained for 𝑝(𝑏) =
(

2𝜎𝑦∕
√

3
)

ln
𝑏∕𝑎. For 𝑏 = 2𝑎, 𝑝(𝑏) ≅ 0.800377𝜎𝑦. Fig. 2 shows the results for 𝑎 = 1,
𝑏 = 2, 𝜈 = 0.3 and 𝐸 = 1 using a quadratic basis. Stress contour plots
are very smooth, as shown in Fig. 2. Comparing the results with the
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Fig. 8. Relevant dimensions and mesh for the Neo-Hookean/Hill48 tension test.
Fig. 9. Tension test: deformed configurations for both yield functions with the corresponding effective plastic strain colors. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
closed-form solutions in Chakrabarty and with a crossed-configuration
FE triangular mesh, we can observe the great advantage of this EFG
formulation in Fig. 3 where 𝑛 = 10 was adopted for EFG. Comparing
𝑛 = 10 and 𝑛 = 20, see Fig. 4, we conclude that higher stress accuracy
is obtained for 𝑛 = 20, although at an added computational cost.

To assess the effect of the support on the stress error, we compare
𝑛 = 10 with 𝑛 = 20 in Figure...

5.2. Block compression

Using a quasi-incompressible hyperelastic law, we test the present
finite-strain EFG formulation with a benchmark consisting of an asym-
metric compression of a block described by Reese, Wriggers and Reddy
[43]. The strain–energy density function adopted here is the following:

𝛹 = 1𝜇
(

tr
[

�̂�
]

− 3
)

+ 1𝜅 (log [𝐽 ])2 (69)
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2 2
In (69), �̂� = 𝐽−2∕3𝑪 and 𝑪 = 𝑭 𝑇𝑭 with 𝜅 = 400 889.806 and 𝜇 = 80.194
(consistent units). In this example, large compressive strains and strain
gradients are combined. It is a demanding test to assess the effect of the
polynomial basis and support size. The relevant data for the compres-
sion test is shown in Fig. 5. Due to the presence of two symmetry planes,
only one quarter of the geometry is discretized. Relevant properties
and dimensions for this problem are shown in Fig. 5. We also show
the deformed configuration including the support tetrahedra. Three
different nodal distributions are employed, with 1331, 2197 and 4913
nodes. In Fig. 6 the effect of mesh density in the deformed configuration
is shown. In the three cases, very large deformations are reached and
no indication of instabilities was apparent. The stress 𝑆22 contour
plot is smooth, even in the highly deformed region, confirming the
effectiveness of the EFG formulation.

In Fig. 7 results for 𝑛 = 15 with 𝑚 = 4, 𝑛 = 20 with 𝑚 = 4 and
𝑛 = 10, 20 and 30 with 𝑚 = 10 are shown. For comparison, we also report
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Fig. 10. Comparison with advanced finite element technology and effect of mesh
density on the results with the quadratic basis. Structured mesh.

the results by Caylak and Mahnken [34], using the reduced integration
hexahedron Q1R and 8 elements per edge, and a classical tetrahedron
𝑇 4 with a crossed-configuration (i.e. a hexahedral mesh with a regular
division in 24 tetrahedra). As can be observed, results with lower values
of 𝑛 converge to the Caylak and Mahnken solution, even in the coarser
case. Finer nodal distributions produce more flexible results and with
the quadratic basis (𝑚 = 10) with 𝑛 = 20 results are nearly insensitive
to the nodal refinement. We also conclude that with a strictly sufficient
support, i.e. 𝑛 = 10 for 𝑚 = 10, exceedingly flexible results are obtained.

5.3. Tension test

We apply the EFG discretization algorithm to the tension test orig-
inally discussed by Simo and co-workers in the context of 𝐽2 plasticity
[7] (see also the 1993 Ref. [44] where the test is explored in detail). Ge-
ometry, boundary conditions and material properties are summarized
in Fig. 8, along with the two cases of nodal distribution: structured and
unstructured, as this was found to have an effect on the results. contour
plot of the effective plastic strain, given by Eq. (61). The specific yield
stress 𝜎𝑦 is given by the hardening law shown in Fig. 8. Fig. 9 shows
the deformed configurations resulting from both yield functions.

Comparatively to mixed FE formulations, results are competitive
but slightly distinct in behavior. When compared with enhanced as-
sumed strain hexahedra, for example Simo and Armero [45], the post-
localization behavior is distinct, see Fig. 10(a). We note that two
significant differences exist: (i) Simo and Armero adopted a formulation
based on the Kirchhoff stress tensor and radial-return mapping for 𝐽2
plasticity and (ii) hexahedra tend to reproduce the incompressibility
condition with sharper stretching. A comparison with mixed tetrahedra,
10

b

Fig. 11. Effect of structured/unstructured node distribution.

specifically the MINI element by Arnold, Brezzi and Fortin [46] is
shown in Fig. 10(b). Our own implementation of MINI element was
adopted, with the same constitutive integrator.

For the structured mesh with 3760 nodes, the effect of 𝑛 and 𝑚
linear basis has 𝑚 = 4 and quadratic basis 𝑚 = 10), Fig. 11(a) shows
he results. These are clear: a quadratic basis accentuates the post-
ocalization necking behavior and, for the same basis, higher 𝑛 produces
harper results.

When adopting an unstructured node distribution, a less pronounced
ost-localization behavior is exhibited, see Fig. 11(b), which shows the
mportant effect of using a quadratic basis in this case.

.4. Upsetting test

We resort to M. Puso’s upsetting test [38] in its two elasto-plastic
ersions (linear and power hardening). Geometry, boundary conditions
nd constitutive properties for this test are shown in Fig. 12. Three
niform meshes are adopted for comparison, containing 236, 527 and
03 nodes. Nodes are forced to remain above an horizontal plane by
non-penetration condition using Lagrange multipliers. The elasto-

lastic case described by M. Puso is the most demanding and it is
eported that only their nodally integrated and stabilized UT4s provides
cceptable results from the stability and accuracy standpoints. We point
ut that, in [38], a stabilization parameter is required. In the present
ormulation, no parameters are required and no hourglass instabilities
ere detected. Fig. 13 shows the very smooth contour plots for 𝜀𝑝
nd hydrostatic 𝜎𝐻 . Fig. 14(a) presents a comparison between nodal
istributions, support sizes (𝑛) and basis dimension. All three factors
ontribute to a more flexible behavior: finer meshes are less stiff, larger
upports produce softer behavior and quadratic basis produce results
eneath the reaction–displacement curve reported in [38].
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Fig. 12. Upsetting test: relevant data.
Fig. 13. Upsetting test: contour plots (𝜀𝑝, 𝜎𝐻 = tr[𝑺]∕3) for the linear hardening case.
6. Conclusions

We introduced a tetrahedra-based least-squares EFG which incorpo-
rates the following properties:

• An initial perturbation of internal FE nodal positions is performed
for efficiency reasons (low 𝑛).

• Linear and quadratic shape functions and Lagrangian diffuse
derivatives are defined ab-initio for the entire analysis.

• A pre-established nodal support is imposed, where all nodes of
the corresponding tetrahedron are forced to be present.
11
• A tetrahedra integration with single point quadrature is adopted.
• Constitutive integration makes use of the Mandel stress tensor and

iteration on 𝑪𝑒 [15].

Implementation is straightforward and was performed in SimPlas
[39] with AceGen [41] and Mathematica [40]. Four benchmark tests
were performed, which allow the following conclusions:

• Even with small values of 𝑛, results are highly competitive with
established finite elements.

• Results with coarse point distributions exhibit a large dependence
on the number of support points 𝑛.
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Fig. 14. Displacement/reaction for the upsetting test. Effect of 𝑛, 𝑚 and comparison
ith results reported by M. Puso [38].

• Stress quality measured as the distance to the closed-form solution
in the pressurized cylinder problem was found to be superior to
classical FEM solutions.

• A finite strain solution is simpler than with mixed finite elements
and on-par with displacement-based FEM.

evelopments into strain localization and fracture fit into this frame-
ork, since stress quality is of paramount importance in modeling real
aterials.
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