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In extreme value (EV) analysis, the EV index (EVI), 𝜉, is the primary parame-
ter of extreme events. In this work, we consider 𝜉 positive, that is, we assume
that F is heavy tailed. Classical tail parameters estimators, such as the Hill, the
Moments, or the Weissman estimators, are usually asymptotically biased. Con-
sequently, those estimators are quite sensitive to the number of upper order
statistics used in the estimation. Minimum-variance reduced-bias (RB) estima-
tors have enabled us to remove the dominant component of asymptotic bias
without increasing the asymptotic variance of the new estimators. The purpose
of this paper is to study a new minimum-variance RB estimator of the EVI. Under
adequate conditions, we prove their nondegenerate asymptotic behavior. More-
over, an asymptotic and empirical comparison with other minimum-variance
RB estimators from the literature is also provided. Our results show that the
proposed new estimator has the potential to be very useful in practice.
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1 INTRODUCTION

Given a sample of size n of independent and identically distributed (iid) random variables (rv's), (X1,… ,Xn),
with a common distribution function (df) F, let us denote by X1:n ≤ … ≤ Xn:n the associated ascending order
statistics. Let us further assume that there exist sequences of real constants {an > 0} and {bn} such that
the linearly normalized maximum, that is, (Xn:n − bn)∕an, converges in distribution to a nondegenerate rv.
Then, the limit nondegenerate distribution is necessarily the general extreme value (EV) distribution with df
given by
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EV𝜉(x) =

{
exp(−(1 + 𝜉x)−1∕𝜉), 1 + 𝜉x > 0, if 𝜉 ≠ 0,
exp(− exp(−x)), x ∈ R, if 𝜉 = 0.

(1)

We say then that the df F belongs to the max-domain of attraction of EV𝜉 , and we consider the notation F ∈  (
EV𝜉

)
.

The shape parameter 𝜉, in Equation (1), is the EV index (EVI), the most important parameter of extreme events and
it is related with the heaviness of the right tail. In this paper, we shall assume that F is a heavy tailed model with a
Pareto right tail, that is, F(x) = 1 − F(x) ∼ (x∕c)−1∕𝜉 , as x → ∞, for some positive parameters c and 𝜉. These Pareto tail
models have been successfully used in a variety of fields, to model events such as extreme pollution, internet traffic,
intensity of magnetic storms, large insurance claims, wind speed, just to name a few. The notation g(x) ∼ h(x) means that
g(x)∕h(x) → 1, as x → ∞. Let U(t) ∶= F←(1 − 1∕t) be the reciprocal quantile function, with F←(t) ∶= inf{x ∶ F(x) ≥ t} the
generalized inverse function of F. We are thus assuming the validity of the first-order condition

lim
t→∞

U(tx)
U(t)

= x𝜉 , (2)

for all x > 0. Then, for some c > 0, we can write U(t) ∼ ct𝜉 , as t → ∞. Semiparametric tail inference is usually based on the
k + 1 upper order statistics, Xn−k:n ≤ … ≤ Xn:n. For 𝜉 > 0, the classic and most popular EVI-estimator is the Hill estimator,1

𝜉H(k) ∶= 1
k

k∑
i=1

i{ln Xn−i+1∶n − ln Xn−i∶n}, 1 ≤ k < n, (3)

the average of the scaled log-spacings,

Si ∶= i{ln Xn−i+1∶n − ln Xn−i∶n}, 1 ≤ i ≤ k < n. (4)

Consistency of the Hill estimator as well of many other semiparametric estimators of 𝜉 is achieved if Xn−k:n is an
intermediate order statistic,2 that is, if

k = kn → ∞ and k∕n → 0, as n → ∞. (5)

The asymptotic normality of Hill's estimator, with several types of additional assumptions, has been extensively
studied by several authors (see References 3-6, among others).

Most of classic semiparametric EVI and tail related estimators have a high absolute bias for large values of k and a
high variance for small values of k. The bias, due to model misspecification, makes the estimators very sensitive to the
choice of k. These features led researchers in EV theory to develop reduced-bias (RB) EVI-estimators by accommodating
the bias in an adequate way. We mention the first RB EVI-estimators in References 7-9 (see also References 10 and 11 and
references therein). The first RB EVI-estimators, named second-order RB (SORB) EVI-estimators, were able to reduce the
bias at the expense of a higher variance, the so-called bias-variance tradeoff. In order to overcome this problem, several
authors considered Hall's subclass of heavy tailed models12 characterized by

U(t) ∶= ct𝜉 (1 + dx𝜌 + o(x𝜌)) , as t → ∞, (6)

where c > 0, 𝜉 > 0, 𝜌 < 0, and d ≠ 0, and introduced the minimum-variance RB (MVRB) or corrected-Hill (CH)
EVI-estimators, dependent on an adequate estimation of second-order parameters 𝜌 and 𝛽 ∶= 𝜌 d∕𝜉. To reduce the bias
and keep the asymptotic variance at the minimum value 𝜉2, the asymptotic variance of Hill's estimator, in Equation (3),
it is necessary to estimate 𝜌 and 𝛽 externally, at a level k1 such that k = o(k1), �̂� and 𝛽 need to be consistent estimators of 𝜌
and 𝛽, respectively, and �̂� − 𝜌 = op(1∕ ln n). When the three parameters (𝜉, 𝜌, 𝛽) are jointly estimated at the same level k,
the asymptotic variance of the EVI-estimator turns out to be 𝜉2((1 − 𝜌)∕𝜌)4. The simplest MVRB estimators, introduced
in Reference 13, are given by

𝜉CH(k) ≡ 𝜉CH
𝛽,�̂�

(k) ∶= 𝜉H(k)
(

1 − 𝛽

1 − �̂�

(n
k

)�̂�
)
, 1 ≤ k < n, (7)
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and

𝜉CH(k) ≡ 𝜉CH
𝛽,�̂�

(k) ∶= 𝜉H(k) exp
(
− 𝛽

1 − �̂�

(n
k

)�̂�
)
, 1 ≤ k < n, (8)

with 𝜉H(k) the Hill estimator in Equation (3) and (𝛽, �̂�) a pair of adequate estimators of (𝛽, 𝜌). Since there is not any RB
or MVRB estimator that can always dominate all the alternative estimators, many other MVRB EVI-estimators have been
proposed in the literature. The simulation studies related to the CH estimator, in Equation (7), like the ones in References
14-16, show that for high values of k, the CH-estimator has usually a positive bias, overestimating thus the EVI, 𝜉. To solve
the aforementioned systematic positive bias, a new MVRB EVI-estimator was recently introduced in the literature,17 here
denoted C̃H, with the functional form

𝜉C̃H(k) ≡ 𝜉C̃H
𝛽,�̂�

(k) ∶= 𝜉H(k)
(

2 − exp
(

𝛽

1 − �̂�

(n
k

)�̂�
))

, 1 ≤ k < n. (9)

In this work, we shall also consider two other alternative MVRB EVI-estimators introduced in Reference 18, which
arise from the exponential regression model applied to the scaled log-spacings Si in Equation (4). We shall thus consider
the ML estimator

𝜉ML(k) ≡ 𝜉ML
𝛽,�̂�

(k) ∶= 𝜉H(k) − 𝛽
(n

k

)�̂�
(

1
k

( k∑
i=1

( i
k

)−�̂�
Si

))
, (10)

and its asymptotic second-order equivalent version

𝜉ML(k) ≡ 𝜉ML
𝛽,�̂�

(k) ∶= 1
k

k∑
i=1

exp
(
−𝛽

(n
i

)�̂�
)

Si. (11)

Since both estimators in Equations (10) and (11) also evidence a positive bias for many heavy tailed models, in this
work, we introduce a new MVRB EVI-estimator of a positive EVI, denoted by M̃L, and given by

𝜉M̃L(k) ≡ 𝜉M̃L
𝛽,�̂�

(k) ∶= 1
k

k∑
i=1

(
2 − exp

(
𝛽
(n

i

)�̂�
))

Si. (12)

The purpose of this work is to study the new MVRB estimator, in Equation (12), and to compare its efficiency with
other MVRB EVI-estimators from the literature. An asymptotic comparison of some of the previous MVRB EVI-estimators
can be found in References 19 and 20. Since theoretical properties of MVRB's EVI-estimators are only valid for models in
Hall's class, in Equation (6), we shall also conduct numerical studies for assessing the finite sample performance of the
estimators for a broader class of heavy tailed models.

The estimation of the EVI is a topic of great importance for the estimation of other important tail parameters, like
extreme quantiles, also called value-at-risk (VaR) in risk management, small tail probabilities, return periods of high
levels, as well as other risk measures such as the conditional tail expectation. For example, whenever dealing with heavy
tailed models and for small values of p, an extreme quantile 𝜒p is a value such that F(𝜒p) = 1 − p, or equivalently,

𝜒p ∶= F←(1 − p) = U(1∕p).

One can easily construct an extreme quantile estimator from the following approximation for heavy tailed models:
U(1∕p) ∼ cp−𝜉 . By replacing the scale parameter c by the corresponding estimator, proposed in Reference 12, we obtain
the following estimator

Q(p)
𝜉
(k) ≡ �̂�p ∶= Xn−k∶n

(
k

np

)𝜉

, (13)

where 𝜉 is any consistent estimator of 𝜉 computed at the level k. When 𝜉 is replaced by the Hill estimator, 𝜉H(k), the class
of estimators in Equation (13) is named Weissman-Hill estimators,21
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4 of 17 CAEIRO et al.

Q(p)
𝜉H (k) ∶= Xn−k∶n

(
k

np

)𝜉H

. (14)

As noted, the estimation of extremes quantiles depends thus on the estimation of the EVI. Bias reduction of the
Weissman-Hill estimator, in Equation (14), can be achieved by replacing the Hill estimator by an MVRB EVI-estimator,
namely, by considering the estimator

Q(p)
𝜉•
(k) ∶= Xn−k∶n

(
k

np

)𝜉•

,

with 𝜉• denoting any arbitrary MVRB semiparametric EVI-estimator. When 𝜉• is replaced by the new MVRB
EVI-estimator in Equation (12), we obtain the new high quantile estimator

Q(p)
𝜉M̃L

(k) ∶= Xn−k∶n

(
k

np

)𝜉M̃L

. (15)

The asymptotic behavior of extreme quantiles estimators is strongly related to the asymptotic behavior of the asso-
ciated EVI estimators. Following References 22 and 23, we can add an extra bias-reduction factor that can lead to an
improvement in the stability of the quantile estimators as functions of k. Since

𝜒p

Xn−k∶n

p∼
(

k
np

)𝜉 (
1 +

((
k

np

)𝜌

− 1
)

A(n∕k)
𝜌

)
,

we can consider new quantile estimators

Q
(p)

𝜉M̃L
(k) ∶= Xn−k∶n

(
k

np

)𝜉M̃L (
1 + 𝜉M̃L𝛽

�̂�

(n
k

)�̂�
((

k
np

)�̂�

− 1

))
(16)

and

Q
(p)

𝜉M̃L
(k) ∶= Xn−k∶n

(
k

np

)𝜉M̃L

exp

(
𝜉M̃L𝛽

�̂�

(n
k

)�̂�
((

k
np

)�̂�

− 1

))
, (17)

asymptotic equivalent, up to a second order, to the estimator Q(p)
𝜉M̃L

(k), in Equation (15). As noticed in remark 1.1 of Refer-
ence 23, the asymptotic behavior of the estimators in Equations (16) and (17) remains the same if we replace (k∕np)𝜌 by
0, due to the fact that (k∕np)𝜌 ln(k∕np) = o(1). The simulation study of the new quantile estimators in Equations (15) to
(17) is a relevant topic outside the scope of this paper and to be addressed in a future work. See chapter 4 of Reference 24
for more details on the estimation of quantiles.

The outline of the paper is as follows. In Section 2, and assuming a third-order framework, we present the asymptotic
properties of the classes of EVI estimators under study, providing full information on the asymptotic bias. In Section 3,
we provide some simulation results to assess the performance of the estimators under study, and finally, in Section 4, we
draw some conclusions regarding the asymptotic and finite behavior of the estimators.

2 ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

2.1 Second- and third-order conditions for a heavy right tail distribution

In order to characterize the asymptotic distributional behavior of the classic semiparametric EVI-estimators, we shall
assume a second-order condition that measures the rate of convergence of in the first-order condition in Equation (2),
that is, in the way U(tx)∕U(t) approaches x𝜉 ,
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CAEIRO et al. 5 of 17

lim
t→∞

ln U(tx) − ln U(t) − 𝜉 ln x
A(t)

=

{ x𝜌−1
𝜌

, if 𝜌 < 0,

ln x, if 𝜌 = 0,
(18)

for every x > 0, where 𝜌 ≤ 0 is a second-order parameter ruling the rate of convergence and |A| must then be of regular
variation with index 𝜌.25 In this work, we shall consider 𝜌 < 0. To derive the asymptotic bias of the MVRB EVI-estimators
considered in this article, we shall further assume a third-order condition, ruling now the rate of convergence in Equation
(18), and which guarantees that,

lim
t→∞

ln U(tx)−ln U(t)−𝜉 ln x
A(t)

− x𝜌−1
𝜌

B(t)
= x𝜌+𝜌′ − 1

𝜌 + 𝜌′
, (19)

for all x > 0, where |B| must then be of regular variation with index 𝜌′. For simplicity, it is often further assumed a slightly
more restrictive third-order condition with

A(t) = 𝜉𝛽t𝜌 and B(t) = 𝛽′ t𝜌′ 𝜌 ≤ 𝜌′ < 0, (20)

with 𝛽 ≠ 0 and 𝛽′ ≠ 0 the “scale” second- and third-order parameters, respectively. If 𝜌 = 𝜌′, then A(t) = O(B(t)), and if
𝜌 < 𝜌′, then A(t) = o(B(t)). This third-order condition holds for several models used in applications as the Fréchet, with df

F(x) = 1 − exp(−x−1∕𝜉), x > 0, 𝜉 > 0, (21)

the Burr, with df

F(x) = 1 − (1 + x−𝜌∕𝜉)1∕𝜌, x > 0, 𝜉 > 0, (22)

the generalized pareto (GP), with df

F(x) = 1 − (1 + 𝜉x)−1∕𝜉 , x > 0, 𝜉 > 0, (23)

the power-pareto with quantile function

F←(p) = c(1 − p)𝜉pa, 0 < p < 1, c, 𝜉, a > 0 (24)

and the student's-t, with df

F(x) =
Γ
(

𝜈+1
2

)
Γ
(

𝜈

2

)√
𝜋𝜈

∫
x

−∞

(
1 + z2

𝜈

)− 𝜈+1
2

dz, x ∈ R, 𝜈 > 0, (25)

where Γ denotes the (complete) gamma function. It is well known that 𝜉 = 1∕𝜈 and for 𝜈 = 1, Equation (25) reduces to
the df of the Cauchy distribution. When 𝜈 → ∞, Equation (25) converges to the df of the standard normal distribution.

2.2 Estimation of the second-order parameters

In order to use any MVRB EVI-estimator, it is necessary to compute adequate estimates of the second-order tail parameters
𝜌 and 𝛽. We shall consider particular members of the class of estimators for the second-order parameter proposed in
Reference 26. Such a class of estimators has been first parametrized by a tuning parameter 𝜏 ≥ 0, but 𝜏 can be more
generally considered as a real number.27 It is defined as follows

�̂�(𝜏)(k) ∶= −
||||3 (T(k; 𝜏) − 1)
(T(k; 𝜏) − 3)

|||| , (26)
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6 of 17 CAEIRO et al.

where

T(k; 𝜏) ∶=

⎧⎪⎪⎨⎪⎪⎩

(
M(1)

n (k)
)𝜏

−
(

M(2)
n (k)∕2

)𝜏∕2

(
M(2)

n (k)∕2
)𝜏∕2

−
(

M(3)
n (k)∕6

)𝜏∕3 , if 𝜏 ≠ 0,

ln
(

M(1)
n (k)

)
− 1

2
ln
(

M(2)
n (k)∕2

)
1
2

ln
(

M(2)
n (k)∕2

)
− 1

3
ln
(

M(3)
n (k)∕6

) , if 𝜏 = 0,

and

M(𝛼)
n (k) ∶= 1

k

k∑
i=1

(ln Xn−i+1∶n − ln Xn−k∶n)𝛼

are the 𝛼-moments of the log-excesses, {ln Xn−i+1∶n − ln Xn−k∶n}, 1 ≤ i ≤ k < n. Consistency and asymptotic normality of
the estimators in Equation (26) were proved in Reference 26 and the dominant component of both the asymptotic bias
and asymptotic variance of these 𝜌-estimators was made explicit in Reference 19. The theoretical and simulated results
in References 26, 28, and 29, together with their use in RB estimation, lead us to suggest in practice the use of 𝜏 = 0 for
𝜌 ∈ [−1, 0) and 𝜏 = 1 for 𝜌 ∈ (−∞,−1). Other estimators of the shape second-order parameter 𝜌 can be found in References
28,30-34, among others.

Regarding the 𝛽-estimation, we shall next consider the 𝛽-estimators introduced in Reference 35 based on the scaled
log-spacings Si in Equation (4). On the basis of any consistent estimator �̂� of the second-order parameter 𝜌, we shall
consider the 𝛽-estimator,

𝛽�̂�(k) = 𝛽(k) = 𝛽�̂�(𝜏)(k)(k) ∶=
(

k
n

)�̂�

{(
1
k

k∑
i=1

( i
k

)−�̂�
)(

1
k

k∑
i=1

Si

)
−

(
1
k

k∑
i=1

( i
k

)−�̂�
Si

)}
(

1
k

k∑
i=1

( i
k

)−�̂�
)(

1
k

k∑
i=1

( i
k

)−�̂�
Si

)
−

(
1
k

k∑
i=1

( i
k

)−2�̂�
Si

) . (27)

The asymptotic behavior of 𝛽𝜌(k), under the second-order framework in Equation (18), was obtained in Reference
35. The full derivation of the asymptotic behavior of 𝛽�̂�(k) under a third-order framework was derived in Reference
19. If the second-order framework in Equation (18) holds, with A(t) = 𝜉𝛽t𝜌 , 𝜌 < 0, for intermediate k-values such
that

√
kA(n∕k) → ∞, and assuming �̂� − 𝜌 = op(1∕ ln n), then 𝛽�̂�(k) is consistent for the estimation of 𝛽. Moreover,

we obtain

𝛽�̂�(k) − 𝛽
p∼ −𝛽 ln(n∕k) (�̂�(k) − 𝜌) .

Regarding the estimation of the “scale” parameter 𝛽, we refer References 27 and 36. In practice, we advise the use of
any intermediate level such as k1 = ⌊n1−𝜖⌋ for some 𝜖 > 0, small, with ⌊x⌋ denoting the integer part of x. The choice of 𝜖
is not crucial, and as a compromise between theoretical and practical considerations19,23,37 we often take 𝜖 = 0.01.

2.3 Asymptotic properties of the EVI-estimators

In this section, we study the asymptotic behavior of all aforementioned EVI-estimators. First, we present without proof
the following lemma.19,38

Lemma 1. Under the third-order framework in Equation (19), for levels k such that Equation (5) holds, with Si, 1 ≤ i ≤
k < n, defined in Equation (4) and for any real 𝛼 ≥ 1, the distributional representation

1
k

k∑
i=1

( i
k

)𝛼−1
Si

d
= 𝜉

𝛼
+

𝜉Z(𝛼)
k√

(2𝛼 − 1)k
+

A(n∕k)
𝛼 − 𝜌

+ Op

(
A(n∕k)√

k

)
+

A(n∕k)B(n∕k)
𝛼 − 𝜌 − 𝜌′

(1 + op(1))

holds, where
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CAEIRO et al. 7 of 17

Z(𝛼)
k =

√
(2𝛼 − 1)k

(
1
k

k∑
i=1

( i
k

)𝛼−1
Ei −

1
𝛼

)
, (28)

with {Ei} a sequence of iid standard exponential rvs, has an asymptotically standard normal distribution.

We shall now study the asymptotic behavior of the aforementioned EVI-estimators defined in Equations (3) and (7) to
(12). We start by presenting the asymptotic behavior of the estimators, under a third-order framework, assuming that the
second-order parameters (𝛽, 𝜌) are known. Next, we shall assume that both second-order parameters are unknown and
adequately estimated by Equations (26) and (27) at a high level of larger order than the level k used in the computation
of the EVI.

Theorem 1. If we assume the validity of the third-order condition, in Equation (19), with the associated functions A and B
given in Equation (20) and for intermediate levels k satisfying Equation (5), we get for the rv 𝜉•

𝛽,𝜌
(k) with • generally denoting

H (𝜉H
𝛽,𝜌
(k) ≡ 𝜉H(k)), CH, CH, C̃H, ML, ML and M̃L defined in (3), (7), (8), (9), (10), (11) and (12), respectively, the asymptotic

distributional representation,

𝜉•𝛽,𝜌(k)
d
= 𝜉 + 𝜉Zk√

k
+ b•

1A(n∕k) + b•
2A(n∕k)B(n∕k) + b•

3A2(n∕k)(1 + op(1)), (29)

with Zk = Z(1)
k the standard normal rv in Equation (28) with 𝛼 = 1,

bH
1 = 1

1 − 𝜌
, bCH

1 = bCH
1 = bC̃H

1 = bML
1 = bML

1 = bM̃L
1 = 0, bCH

2 = bCH
2 = bC̃H

2 = bML
2 = bML

2 = bM̃L
2 = 1

1 − 𝜌 − 𝜌′
, (30)

and
bH

3 = 0, bCH
3 = − 1

𝜉(1 − 𝜌)2 , bCH
3 = − 1

2𝜉(1 − 𝜌)2 , bC̃H
3 = − 3

2𝜉(1 − 𝜌)2 ,

bML
3 = − 1

𝜉(1 − 2𝜌)
, bML

3 = − 1
2𝜉(1 − 2𝜌)

, bM̃L
3 = − 3

2𝜉(1 − 2𝜌)
. (31)

Consequently, if we work with levels k such that
√

kA(n∕k) → 𝜆, finite,√
k
(
𝜉•𝛽,𝜌(k) − 𝜉

) d
→ N(𝜆b•

1, 𝜉
2), as n → ∞.

Moreover, if b•
1 = 0, we get √

k
(
𝜉•𝛽,𝜌(k) − 𝜉

) d
→ N

(
𝜆Bb•

2 + 𝜆Ab•
3, 𝜉

2) , as n → ∞,

provided that 𝜉•
𝛽,𝜌
(k) is an MVRB EVI-estimator and k is such that

√
kA(n∕k) → ∞,

√
kA2(n∕k) → 𝜆A and√

kA(n∕k)B(n∕k) → 𝜆B, both finite.

Proof. We shall only prove the result for 𝜉M̃L, in Equation (12). The results related with 𝜉H , 𝜉CH , 𝜉CH , 𝜉C̃H , 𝜉ML, and 𝜉ML,
in Equations (3), (7), (8), (9), (10), and (11), respectively, can be found in References 17,19,23, among others.

The use of the quadratic Taylor approximation of the exponential function, ex = 1 + x + x2

2
+ o

(
x2), as x → ∞, enables

to write the following asymptotic approximation for the M̃L estimator,

𝜉M̃L
𝛽,𝜌 (k) =

1
k

k∑
i=1

(
2 − exp

(
𝛽
(n

i

)𝜌))
Si =

1
k

k∑
i=1

(
1 − 𝛽

(n
i

)𝜌

− 𝛽2

2

(n
i

)2𝜌
(1 + o(1))

)
Si

= 1
k

k∑
i=1

Si − 𝛽
1
k

k∑
i=1

(n
i

)𝜌

Si −
𝛽2

2
1
k

k∑
i=1

(n
i

)2𝜌
Si(1 + op(1)).
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8 of 17 CAEIRO et al.

Applying the result presented in Lemma 1, for 𝛼 = 1, 𝛼 = 1 − 𝜌, and 𝛼 = 1 − 2𝜌, and with A(n∕k) = 𝜉𝛽(n∕k)𝜌, the
particular case of the result in Equation (29) follows,

𝜉M̃L
𝛽,𝜌 (k)

d
= 𝜉 + 𝜉Zk√

k
+

A(n∕k)B(n∕k)
1 − 𝜌 − 𝜌′

−
3A2(n∕k)
2𝜉(1 − 2𝜌)

(1 + op(1)),

as well as the remaining of the theorem. ▪

Remark 1. The asymptotic distributional representation of all the MVRB EVI-estimators under study has the same b•
1

and b•
2 components. When we compare the b•

3 components, in Equation (31), we get,

bCH
3 = 2bCH

3 = 2
3

bC̃H
3 and bML

3 = 2bML
3 = 2

3
bM̃L

3 .

Since the asymptotic dominant bias component of the MVRB EVI-estimators can be negative, null, or positive, no
further conclusion can be drawn unless we know the true values of second- and third-order parameters.

The next theorem is stated without proof in this paper. It was proved for the CH and CH EVI-estimators in Reference
23, for the ML EVI-estimator in References 18 and 19, for ML estimators in Reference 18 and in Reference 17 for the C̃H
estimator. Using similar arguments, it can be easily proved for the M̃L EVI-estimator, introduced in this article.

Theorem 2. Under the conditions of Theorem 1 and being (𝛽, �̂�) consistent estimators of the second-order parameters (𝛽, 𝜌),
both computed on the high level k1 of larger order than k, i.e., such that k = o(k1), and assuming that (�̂� − 𝜌) ln n = op(1),

𝜉•
𝛽,�̂�
(k) − 𝜉•𝛽,𝜌(k)

d
= −

A(n∕k)
1 − 𝜌

{(
𝛽 − 𝛽

𝛽

)
+ (�̂� − 𝜌)

(
ln(n∕k) + 1

1 − 𝜌

)}
(1 + op(1)),

with • = {CH,CH, C̃H, ML,ML, M̃L}. If we further assume that (𝛽 − 𝛽)∕𝛽 p∼ −(�̂� − 𝜌) ln(n∕k1), a condition that holds for
the estimator in Equation (27), then

𝜉•
𝛽,�̂�
(k) − 𝜉•𝛽,𝜌(k)

p∼ −
A(n∕k)
1 − 𝜌

(�̂� − 𝜌) ln(k∕k1).

Consequently, 𝜉•
𝛽,�̂�
(k) is consistent for the estimation of 𝜉 if (�̂� − 𝜌) ln(k∕k1) = op(1∕A(n∕k)) and has an asymptotic normal

distribution if (�̂� − 𝜌) ln(k∕k1) = op(1∕(
√

kA(n∕k))).

Remark 2. If we consider a particular class of the heavy tailed models with the functions A and B in Equation (20) with
𝜌 = 𝜌′ < 0 and being 𝛿 = 𝛽′∕𝛽, 𝛽 ≠ 0, we have for any of the aforementioned EVI-estimators,

𝜉•(k)
d
= 𝜉 + 𝜉Zk√

k
+ b•

1A(n∕k) + Op

(
A(n∕k)√

k

)
+ b•

4A2(n∕k)(1 + op(1)),

with b•
1 given in Equation (30) and

bH
4 = 𝛿

𝜉(1 − 2𝜌)
, bCH

4 = 1
𝜉

(
𝛿

1 − 2𝜌
− 1

(1 − 𝜌)2

)
, bCH

4 = 1
𝜉

(
𝛿

1 − 2𝜌
− 1

2(1 − 𝜌)2

)
,

bC̃H
4 = 1

𝜉

(
𝛿

1 − 2𝜌
− 3

2(1 − 𝜌)2

)
, bML

4 = 𝛿 − 1
𝜉(1 − 2𝜌)

, bML
4 = 2𝛿 − 1

2𝜉(1 − 2𝜌)
, bM̃L

4 = 2𝛿 − 3
2𝜉(1 − 2𝜌)

.

As mentioned in Reference 18, the ML estimator is expected to outperform the other MVRB EVI-estimators when the
underlying model is close to Burr or to GP models, in Equations (22) and (23), respectively, that is, for heavy tailed models
with 𝜌 = 𝜌′ and when the parameter 𝛿 is close to 1.

Remark 3. Let Bias∞[𝜉•(k)] and Var∞[𝜉•(k)] denote, respectively, the asymptotic bias and variance of any aforementioned
EVI-estimator 𝜉•(k). Considering the slightly more restrict class of heavy tailed models mentioned in Remark 2, the
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CAEIRO et al. 9 of 17

asymptotic mean squared error (MSE) of 𝜉•(k) is then given by

MSE
[
𝜉•(k)

]
= Var∞

[
𝜉•(k)

]
+ Bias2

∞
[
𝜉•(k)

]
=

{
𝜉2

k
+ (b•

1)
2 A2(n∕k), if b•

1 ≠ 0,
𝜉2

k
+ (b•

4)
2 A4(n∕k), if b•

1 = 0, b•
4 ≠ 0.

(32)

Then, the level k that minimizes the asymptotic MSE in Equation (32) is asymptotically equivalent to

k•
0 ∶= arg min

k
MSE

[
𝜉•(k)

]
=
⎧⎪⎨⎪⎩
(

1
(−2𝜌)(b•1)2𝛽2

) 1
1−2𝜌 n

−2𝜌
1−2𝜌 , if b•

1 ≠ 0,(
1

(−4𝜌)(b•4)2𝜉2𝛽4

) 1
1−4𝜌 n

−4𝜌
1−4𝜌 , if b•

1 = 0, b•
4 ≠ 0.

(33)

Among the EVI-estimators under consideration in this article, only for the Hill estimator is the optimal level in
Equation (33) independent of 𝜉.

3 A SMALL-SCALE SIMULATION STUDY

In this section, we complement the asymptotic results in Section 2 with finite-sample properties of the EVI-estimators
in Equations (3), (7), (8), (9), (10), (11), and (12). A Monte Carlo simulation study was carried out with 2000 samples of
sizes n = 100, 150, 200, 350, 500, 1000, 1500, 2000, 3500, and 5000 from the following heavy tailed models: the Fréchet
model in Equation (21) with 𝜉 = 0.5, the Burr model in Equation (22), the Power-Pareto in Equation (24) with (c, 𝜉, a) =
(1, 0.5, 1.2) and the half-t with 𝜈 = 4 degrees of freedom. The half-t, also known as the folded-t distribution,39 corresponds
to the absolute value of the Student's t distribution in Equation (25). We also considered the log-gamma model with df
F(x) = 1 − x−1∕𝜉(1 + ln(x)∕𝜉), x > 1 (𝜉 > 0). This distribution does not belong to Hall's class in Equation (6), but it is under
the second-order condition in Equation (18), with 𝜌 = 0. A more flexible two parameter log-gamma distribution and its
right tail characterization can be found in Reference 40.

To assess the performance of the estimators, we obtained for each model and sample size, n, the simulated values of
𝜉•i (k), • = {H, CH,CH, C̃H, ML,ML, M̃L}, k = 1, 2,… ,n − 1, i = 1, 2,… , 2000, the estimates of 𝜉 provided by the ith
simulated sample. Next we obtained the Monte Carlo estimates of the mean value (E) and root MSE (RMSE),

E[𝜉•(k)] =
2000∑
i=1

𝜉•i (k)
2000

, RMSE[𝜉•(k)] =

√√√√2000∑
i=1

(𝜉•i (k) − 𝜉)2

2000
, 1 ≤ k ≤ n − 1. (34)

We have further computed the simulated optimum level k̂•
0 = arg minkRMSE[𝜉•(k))],

E[𝜉•0 ] = E[𝜉•(k̂•
0)] and RMSE[𝜉•0 ] = RMSE[𝜉•(k̂•

0)]. (35)

In Figures 1 to 5, we present, at the left, the Monte Carlo estimates of the mean value and, at the right, the correspond-
ing estimates of the RMSE, provided by the aforementioned EVI-estimators. The horizontal solid line, at the left plot,

F I G U R E 1 Simulated mean
values (left) and RMSEs (right) of the
EVI-estimators under study for
samples of size n = 500 from a
Fréchet parent with 𝜉 = 0.5
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F I G U R E 2 Simulated
mean values (left) and RMSEs
(right) of the EVI-estimators
under study for samples of size
n = 500 from a Burr parent
with 𝜉 = 0.5 and 𝜌 = −0.75
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F I G U R E 3 Simulated
mean values (left) and RMSEs
(right) of the EVI-estimators
under study for samples of size
n = 500 from a Power-Pareto
parent with
(c, 𝜉, a) = (1, 0.5, 1.2)
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F I G U R E 4 Simulated
mean values (left) and RMSEs
(right) of the EVI-estimators
under study for samples of size
n = 500 from a half-t parent
with 𝜈 = 4 (𝜉 = 0.25)
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F I G U R E 5 Simulated
mean values (left) and RMSEs
(right) of the EVI-estimators
under study for samples of size
n = 500 from a log-gamma
parent with 𝜉 = 0.5
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CAEIRO et al. 11 of 17

indicates the true EVI value. As expected, we conclude that the Hill estimator, in Equation (3), is much more sensitive to
the choice of the threshold and all MVRB EVI-estimators outperform the Hill estimator in terms of bias and RMSE. This
conclusion also holds for the log-gamma model, although it is not under the considered theoretical framework. It seems
that the MVRB EVI-estimators have some robustness for models outside Hall's subclass of heavy tailed distributions. For
the sample size n = 500 considered for the plots, all MVRB EVI-estimators provide identical bias and RMSE for k ≤ 100.
For k > 100, some MVRB EVI-estimators perform better than other MVRB EVI-estimators: CH and ML for the Fréchet
model, C̃H and ML for the Burr model and ML, C̃H and M̃L for the Power-Pareto, Half-t, and log-gamma models. This
behavior depends on the underlying model and was expected (see Remark 1). Moreover, the new MVRB EVI-estimator
M̃L performs well in comparison with the remaining MVRB EVI-estimators.

In Tables 1 to 3, we present the simulated values of the optimal sample fraction (the optimal level divided by the
sample size), the mean value, and the RMSE of the different estimators under study. For each model, the mean value

T A B L E 1 Simulated optimal sample fraction

100 150 200 350 500 1000 1500 2000 3500 5000

Fréchet parent with 𝜉 = 0.5

H 0.3400 0.3000 0.2750 0.2429 0.2360 0.1830 0.1520 0.1465 0.1151 0.0976

CH 0.7700 0.7667 0.6550 0.4714 0.4140 0.3090 0.3287 0.3035 0.2989 0.2928

CH 0.7700 0.6600 0.6550 0.5943 0.5880 0.3430 0.3587 0.3035 0.3454 0.3412

C̃H 0.4600 0.4533 0.4200 0.3800 0.3400 0.3090 0.2900 0.2975 0.2680 0.2652

ML 0.5500 0.4667 0.4500 0.4171 0.3580 0.3090 0.3000 0.3030 0.2680 0.2652

ML 0.7700 0.7667 0.7550 0.7171 0.5900 0.3430 0.3580 0.3035 0.3454 0.3342

M̃L 0.3700 0.3733 0.3450 0.3000 0.2880 0.2700 0.2313 0.2485 0.2391 0.2324

Burr parent with 𝜉 = 0.5 and 𝜌 = −0.75

H 0.1700 0.1467 0.1250 0.1029 0.0920 0.0740 0.0620 0.0580 0.0489 0.0452

CH 0.3900 0.3600 0.3700 0.3629 0.2940 0.2440 0.2453 0.2390 0.1929 0.1966

CH 0.2900 0.2800 0.2900 0.2429 0.2340 0.2230 0.1840 0.1885 0.1637 0.1290

C̃H 0.4000 0.4333 0.4450 0.4571 0.4140 0.4600 0.4853 0.4965 0.8483 0.8438

ML 0.5100 0.4333 0.5150 0.4629 0.4520 0.5650 0.5580 0.9960 0.9960 0.9992

ML 0.3700 0.3533 0.2900 0.2600 0.2560 0.2440 0.2193 0.2105 0.1800 0.1662

M̃L 0.3900 0.3533 0.3200 0.2886 0.2900 0.2800 0.2527 0.2470 0.2337 0.2244

Power-Pareto parent with (c, 𝜉, a) = (1, 0.5, 1.2)

H 0.1300 0.1200 0.1100 0.0857 0.0800 0.0730 0.0533 0.0535 0.0477 0.0362

CH 0.2700 0.2600 0.2350 0.2143 0.1820 0.1610 0.1520 0.1465 0.1403 0.1320

CH 0.2200 0.2333 0.2150 0.1943 0.1600 0.1460 0.1400 0.1155 0.1151 0.0984

C̃H 0.3700 0.3067 0.2700 0.2829 0.2360 0.2220 0.1827 0.1895 0.1574 0.1530

ML 0.3100 0.3067 0.2700 0.2600 0.2360 0.1830 0.1793 0.1625 0.1440 0.1420

ML 0.2500 0.2400 0.2150 0.2000 0.1820 0.1600 0.1520 0.1465 0.1180 0.1116

M̃L 0.3800 0.4000 0.4200 0.4000 0.3880 0.3720 0.3673 0.3550 0.3451 0.3324

(Continues)
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12 of 17 CAEIRO et al.

T A B L E 1 (Continued)

100 150 200 350 500 1000 1500 2000 3500 5000

half-t parent with 𝜈 = 4 (𝜉 = 0.25)

H 0.0800 0.0733 0.0600 0.0514 0.0340 0.0280 0.0200 0.0235 0.0169 0.0136

CH 0.1400 0.1000 0.1000 0.0771 0.0620 0.0470 0.0313 0.0245 0.0229 0.0190

CH 0.1400 0.0867 0.0950 0.0743 0.0620 0.0380 0.0313 0.0245 0.0229 0.0190

C̃H 0.1400 0.1133 0.1100 0.0771 0.0620 0.0470 0.0413 0.0245 0.0231 0.0190

ML 0.1400 0.1133 0.1100 0.0771 0.0620 0.0470 0.0413 0.0245 0.0231 0.0190

ML 0.1400 0.1000 0.1000 0.0743 0.0620 0.0470 0.0313 0.0245 0.0229 0.0190

M̃L 0.6300 0.6267 0.6250 0.6286 0.6300 0.6310 0.6313 0.6300 0.6291 0.6286

Log-gamma parent with 𝜉 = 0.5

H 0.2500 0.1933 0.1750 0.1257 0.0900 0.0900 0.0673 0.0440 0.0277 0.0272

CH 0.7000 0.6733 0.6450 0.5743 0.5720 0.6420 0.0853 0.0675 0.0474 0.0272

CH 0.6500 0.6533 0.5650 0.5543 0.3540 0.0920 0.0853 0.0675 0.0474 0.0272

C̃H 0.5400 0.6733 0.6450 0.6486 0.7480 0.7980 0.8187 0.8435 0.8551 0.8628

ML 0.7000 0.1000 0.0700 0.0629 0.9160 0.0560 0.9167 0.9175 0.9160 0.9186

ML 0.7000 0.6733 0.6450 0.5743 0.5720 0.1180 0.0853 0.0675 0.0474 0.0272

M̃L 0.4400 0.5400 0.5350 0.6486 0.7660 0.8850 0.9060 0.9275 0.9263 0.9310

closest to the target value 𝜉 and the smallest RMSE are written in bold. Note that the direct estimation of the optimal level
of the MVRB EVI-estimators has limited interest for practitioners, since it depends not only on the value of the EVI itself,
but also on the value of second- and third-order parameters. We observe that the optimal sample fraction is much larger
for the MVRB EVI-estimators than for the Hill estimator. The MVRB EVI-estimators have also a smaller absolute bias
and RMSE than the Hill estimator. Again, the best EVI-estimator in terms of bias or RMSE depends on the underlying
model.

4 CONCLUSIONS

In this article, we have compared the classical Hill estimator of the EVI with several MVRB EVI-estimators from the
literature. A new MVRB EVI-estimator has also been introduced in this article. We have established the asymptotic lim-
iting distribution of the EVI-estimators under a third-order framework and we have illustrated their performance with
a Monte Carlo simulation study. Overall, we have concluded that MVRB EVI-estimators are much less sensitive to the
choice of the threshold and are never less efficient than the Hill estimator, for the same value of k. In terms of simulated
bias and RMSE, the proposed estimator M̃L is better than previous MVRB EVI-estimators, for several heavy tailed
models. From a practical point of view, this new MVRB EVI-estimator is an important addition to the existing
literature, since for central values of k, the reduction of the bias depends on the combination of EVI-estimator
and tail model. Moreover, data-adaptive procedures for choosing both the most adequate MVRB EVI-estimator
and the corresponding optimal level k is a relevant topic that needs to be addressed in future current work.
We believe that such a research work would enhance the importance of the MVRB EVI-estimators in practical
applications.
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T A B L E 2 Simulated mean values, at optimal levels

100 150 200 350 500 1000 1500 2000 3500 5000

Fréchet parent with 𝜉 = 0.5

H 0.5563 0.5468 0.5414 0.5365 0.5358 0.5263 0.5213 0.5213 0.5153 0.5132

CH 0.4898 0.4935 0.4896 0.4939 0.4959 0.5000 0.4997 0.5008 0.4997 0.4997

CH 0.5208 0.5065 0.5079 0.5065 0.5064 0.5025 0.5026 0.5029 0.5016 0.5012

C̃H 0.4724 0.4790 0.4837 0.4913 0.4942 0.4975 0.4984 0.4988 0.4987 0.4987

ML 0.4690 0.4799 0.4834 0.4897 0.4939 0.4978 0.4983 0.4989 0.4990 0.4990

ML 0.5055 0.5078 0.5090 0.5080 0.5015 0.5012 0.5012 0.5020 0.5005 0.5003

M̃L 0.4684 0.4755 0.4809 0.4898 0.4925 0.4964 0.4985 0.4987 0.4980 0.4984

Burr parent with 𝜉 = 0.5 and 𝜌 = −0.75

H 0.5987 0.5831 0.5708 0.5592 0.5526 0.5446 0.5376 0.5364 0.5328 0.5299

CH 0.5432 0.5327 0.5327 0.5282 0.5212 0.5150 0.5155 0.5149 0.5124 0.5125

CH 0.5446 0.5384 0.5384 0.5266 0.5251 0.5224 0.5177 0.5182 0.5164 0.5125

C̃H 0.5167 0.5075 0.5060 0.5012 0.5019 0.4982 0.4973 0.4968 0.5010 0.4999

ML 0.5250 0.5173 0.5182 0.5137 0.5132 0.5129 0.5130 0.5122 0.5126 0.5104

ML 0.5503 0.5423 0.5317 0.5252 0.5241 0.5215 0.5194 0.5181 0.5160 0.5146

M̃L 0.4794 0.4815 0.4868 0.4886 0.4880 0.4884 0.4917 0.4924 0.4944 0.4954

Power-Pareto parent with (c, 𝜉, a) = (1, 0.5, 1.2)

H 0.5907 0.5796 0.5731 0.5526 0.5494 0.5463 0.5338 0.5343 0.5287 0.5219

CH 0.5504 0.5447 0.5359 0.5289 0.5220 0.5166 0.5140 0.5134 0.5111 0.5098

CH 0.5482 0.5505 0.5419 0.5337 0.5233 0.5195 0.5171 0.5114 0.5099 0.5065

C̃H 0.5461 0.5347 0.5261 0.5266 0.5206 0.5176 0.5111 0.5126 0.5073 0.5066

ML 0.5395 0.5382 0.5296 0.5276 0.5243 0.5145 0.5136 0.5117 0.5078 0.5077

ML 0.5482 0.5438 0.5350 0.5298 0.5259 0.5199 0.5174 0.5167 0.5091 0.5080

M̃L 0.4935 0.4919 0.4843 0.4890 0.4916 0.4945 0.4946 0.4963 0.4968 0.4979

half-t parent with 𝜈 = 4 (𝜉 = 0.25)

H 0.3449 0.3364 0.3266 0.3184 0.3017 0.2958 0.2882 0.2904 0.2831 0.2800

CH 0.3290 0.3150 0.3131 0.3038 0.2979 0.2918 0.2841 0.2796 0.2784 0.2767

CH 0.3327 0.3123 0.3136 0.3044 0.2989 0.2882 0.2844 0.2798 0.2786 0.2769

C̃H 0.3249 0.3162 0.3132 0.3023 0.2969 0.2911 0.2881 0.2793 0.2784 0.2765

ML 0.3225 0.3145 0.3120 0.3014 0.2962 0.2907 0.2878 0.2791 0.2782 0.2764

ML 0.3278 0.3139 0.3125 0.3026 0.2975 0.2915 0.2839 0.2794 0.2783 0.2766

M̃L 0.2530 0.2539 0.2515 0.2499 0.2498 0.2504 0.2498 0.2498 0.2500 0.2500

Log-gamma parent with 𝜉 = 0.5

H 0.6324 0.6230 0.6172 0.6076 0.5961 0.5963 0.5910 0.5840 0.5757 0.5759

CH 0.5519 0.5686 0.5736 0.5847 0.5897 0.5937 0.5868 0.5852 0.5809 0.5740

CH 0.5769 0.5883 0.5889 0.5960 0.5971 0.5857 0.5869 0.5852 0.5809 0.5740

C̃H 0.5319 0.5432 0.5521 0.5657 0.5657 0.5699 0.5714 0.5727 0.5734 0.5739

ML 0.5347 0.5757 0.5741 0.5761 0.5657 0.5809 0.5706 0.5720 0.5723 0.5727

ML 0.5712 0.5826 0.5856 0.5924 0.5963 0.5891 0.5865 0.5850 0.5808 0.5740

M̃L 0.5260 0.5382 0.5453 0.5444 0.5309 0.5079 0.5037 0.4989 0.5002 0.4994
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T A B L E 3 Simulated RMSE at optimal levels

100 150 200 350 500 1000 1500 2000 3500 5000

Fréchet parent with 𝜉 = 0.5

H 0.1051 0.0902 0.0818 0.0674 0.0597 0.0457 0.0395 0.0365 0.0296 0.0262

CH 0.0885 0.0769 0.0703 0.0585 0.0512 0.0387 0.0333 0.0289 0.0227 0.0190

CH 0.0805 0.0693 0.0631 0.0536 0.0477 0.0377 0.0323 0.0283 0.0222 0.0185

C̃H 0.1019 0.0864 0.0782 0.0626 0.0539 0.0399 0.0343 0.0298 0.0233 0.0195

ML 0.0984 0.0844 0.0766 0.0615 0.0532 0.0395 0.0340 0.0295 0.0231 0.0194

ML 0.0797 0.0689 0.0635 0.0539 0.0484 0.0380 0.0325 0.0285 0.0223 0.0186

M̃L 0.1095 0.0923 0.0834 0.0657 0.0564 0.0411 0.0354 0.0305 0.0240 0.0200

Burr parent with 𝜉 = 0.5 and 𝜌 = −0.75

H 0.1675 0.1445 0.1291 0.1055 0.0931 0.0739 0.0644 0.0600 0.0509 0.0453

CH 0.1051 0.0857 0.0764 0.0576 0.0498 0.0358 0.0305 0.0274 0.0233 0.0206

CH 0.1125 0.0927 0.0825 0.0627 0.0553 0.0411 0.0352 0.0322 0.0269 0.0237

C̃H 0.0990 0.0800 0.0698 0.0491 0.0417 0.0264 0.0214 0.0176 0.0115 0.0097

ML 0.0960 0.0785 0.0687 0.0489 0.0423 0.0279 0.0235 0.0205 0.0175 0.0159

ML 0.1072 0.0886 0.0790 0.0602 0.0529 0.0389 0.0337 0.0307 0.0257 0.0228

M̃L 0.1026 0.0844 0.0748 0.0549 0.0474 0.0330 0.0270 0.0238 0.0186 0.0159

Power-Pareto parent with (c, 𝜉, a) = (1, 0.5, 1.2)

H 0.1784 0.1522 0.1376 0.1092 0.0963 0.0769 0.0672 0.0600 0.0487 0.0430

CH 0.1113 0.0926 0.0820 0.0650 0.0567 0.0415 0.0346 0.0312 0.0245 0.0210

CH 0.1183 0.0999 0.0883 0.0705 0.0604 0.0447 0.0376 0.0338 0.0262 0.0225

C̃H 0.1004 0.0837 0.0739 0.0579 0.0501 0.0365 0.0312 0.0277 0.0218 0.0185

ML 0.0992 0.0838 0.0742 0.0592 0.0516 0.0382 0.0324 0.0289 0.0227 0.0194

ML 0.1122 0.0946 0.0839 0.0671 0.0584 0.0431 0.0363 0.0329 0.0255 0.0219

M̃L 0.0832 0.0671 0.0583 0.0438 0.0370 0.0254 0.0211 0.0185 0.0143 0.0120

half-t parent with 𝜈 = 4 (𝜉 = 0.25)

H 0.1468 0.1273 0.1159 0.0975 0.0854 0.0694 0.0620 0.0560 0.0476 0.0439

CH 0.1129 0.0986 0.0903 0.0764 0.0688 0.0576 0.0515 0.0469 0.0402 0.0376

CH 0.1160 0.1002 0.0921 0.0775 0.0696 0.0581 0.0518 0.0471 0.0404 0.0377

C̃H 0.1095 0.0965 0.0882 0.0752 0.0679 0.0571 0.0511 0.0467 0.0401 0.0375

ML 0.1070 0.0946 0.0869 0.0743 0.0673 0.0567 0.0509 0.0465 0.0399 0.0374

ML 0.1114 0.0974 0.0895 0.0758 0.0684 0.0573 0.0513 0.0468 0.0401 0.0375

M̃L 0.0626 0.0378 0.0365 0.0225 0.0186 0.0128 0.0107 0.0093 0.0070 0.0059

Log-gamma parent with 𝜉 = 0.5

H 0.1820 0.1680 0.1556 0.1400 0.1294 0.1141 0.1079 0.1035 0.0950 0.0897

CH 0.1285 0.1200 0.1171 0.1111 0.1098 0.1056 0.1026 0.0996 0.0932 0.0885

CH 0.1280 0.1243 0.1217 0.1163 0.1147 0.1080 0.1027 0.0996 0.0932 0.0885

C̃H 0.1448 0.1239 0.1174 0.1069 0.1027 0.0926 0.0884 0.0862 0.0816 0.0795

ML 0.1292 0.1838 0.1823 0.1495 0.0986 0.1146 0.0843 0.0821 0.0782 0.0767

ML 0.1258 0.1217 0.1196 0.1141 0.1130 0.1077 0.1025 0.0995 0.0931 0.0885

M̃L 0.1513 0.1277 0.1192 0.1040 0.0954 0.0732 0.0618 0.0527 0.0399 0.0326
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