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Abstract

Stress Intensity Factors (SIFs) for cracks emanating from circular holes in two-dimensional orthotropic

bodies were numerically computed taking into account the effect of geometry and orthotropy. A semi-

analytical expression for the correction factor was found fitting the numerical data. Finally, it was

demonstrated how the same expression can be used to calculate the SIF for cracks emanating from

elliptical holes once appropriate changes of variables are made.
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Nomenclature

a, crack length

c, ellipse aspect ratio

i, j, k, l, indexes

sij , element of the compliance matrix

w, semi-width of the holed plate

x1, x2, natural axes of the body

x́2, rescaled coordinate

E1, Young’s modulus in x1 direction

E2, Young’s modulus in x2 direction

É, equivalent modulus

GI , energy release rate in mode I

G12, in-plane shear modulus

KI , stress intensity factor in mode I

L, semi-length of the holed plate

Pijkl, fitting parameter

U , Airy stress function

R, Radius of the hole

α, normalised crack length

ζ, normalised length

λ, dimensionless elastic constant

λ́, rescaled dimensionless elastic constant

νij , minor or major Poisson’s ratio

ξ, dimensionless variable function of α

ρ, dimensionless elastic constant

σ∞, remote tensile stress

φ, correction factor (circular hole)

ψ, correction factor (elliptical hole)

ω, normalised width

ERR, Energy Release Rate

FEA, Finite Element Analysis

FEM, Finite Element Method

FFMs, Finite Fracture Mechanics

SIF, Stress Intensity Factor

1. Introduction

Holes are one of the most common structural features found in aeronautic structures because they

are used in mechanically fastened joints and are also used to enable the connection of different systems

using cables. The strength of notched composite plates in fibre-reinforced composite laminates can

be promptly estimated using both advanced numerical progressive damage models [1] and simple5

analytical methods [2, 3] based on Finite Fracture Mechanics (FFMs). FFMs requires solving a system

of two equations that represent coupled stress and energy based criteria. Clearly, an expression of the

Energy Release Rate (ERR), or equivalently, of the Stress Intensity Factor (SIF) needs to be available.

If for quasi-isotropic laminates the SIF for isotropic materials can be used [2], for general orthotropic

laminates [4] an expression for the SIF is not available.10
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Here, this problem will be solved providing an expression for the SIF of rectilinear cracks emanating

from circular holes in plates loaded in mode I by a remote tensile stress. Moreover, it will also be

shown that with an appropriate change of variables the same expression will also provide the SIF for

cracks emanating from elliptical holes.

2. Circular holes15

Let 2w, 2L, and 2R be respectively the width, the length, and the diameter of the notched plate

depicted in Fig. 1. Let a be the length of two rectilinear cracks originating from the notch that

propagates along the x1 direction. Let x1 and x2 be the two natural axes of the orthotropic body.

The plate is loaded with a remote tensile stresses σ∞, and the two cracks are loaded in mode I. Plane

stress states in the plane x1 − x2 is assumed.20

Figure 1: Cracks emanating from a circular hole in a finite width plate.

The SIF takes the expression:

KI =
√
Rσ∞φ (1)

where φ is a correction factor that depends on the shape of the plate and on the orthotropy of the

material. Formally, the correction factor takes the form:

φ = φ (α, ρ, λ, ω, ζ) (2)
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where α is the normalised crack length, α = a/R; ω is the normalised width, ω = w/R; ζ is the

normalised length ζ = L/R; and λ and ρ are two materials parameters defined as [5]:25

λ =
s11
s22

, ρ =
2s12 + s66
2
√
s11s22

(3)

where sij are the elements of the compliance matrix that can be expressed in terms of the engineering

constants as:

s11 =
1

E1
, s22 =

1

E2
, s66 =

1

G12
, s12 = −ν12

E1
= −ν21

E2
(4)

For very long plates (ζ > 4ω) the stress intensity factor does not depend on the length of the

specimen and therefore the dependence on ζ can be eliminated from Equation (2). Moreover, it is

convenient to define a new dimensionless variable, ξ, as:30

ξ =
α

ω − 1
(5)

and, since α ranges between [0, ω − 1], ξ ∈ [0, 1]. Therefore Equation (2) can be rewritten as:

φ = φ (ξ, ρ, λ, ω) (6)

An expression for Equation (6) can be deduced by finding an appropriate fitting function for data

generated through Finite Element Analyses (FEA) as shown in [6, 7]. For any combination of input

variables, (ξ∗, ρ∗, λ∗, ω∗) the corresponding values of the ERR, G∗
I , can be computed, and since the

SIF and ERR are related, GI = K2
I/É, being É = [s11s22 (1 + ρ) /2]

1/2
λ−1/4, the equivalent modulus,35

the corresponding value of the correction factor is readily found as φ (ξ∗, ρ∗, λ∗, ω∗) =
√

G∗
I É

∗/R∗/σ∗

where R∗ and σ∗ are the radius and remote stress used in the FEM model.

Values for the correction factor were computed for λ ∈ [0.05, 16], ρ ∈ [0, 10], ω ∈ [2, 10] and

ξ ∈ [0.02, 0.9]. Noticing that φ (0, ρ, λ, ω) = 0 (there is no crack when ξ = 0) and φ (1, ρ, λ, ω) = ∞
(when ξ = 1 there is no ligament and the crack has reached its maximum extension), it is appropriate40

to chose the following expression for φ:

φ =

(
tan

πξ

2

) 1
4 ∑

i,j,k,l

Pijklξ
iρjλ−

1
4kωl (7)

where Pijkl are the parameters that are computed using the Levenberg-Marquardt algorithm (Table 1).

As shown in Figure 2, the fitting function matches very well the numerical data, and ensures a mean

error of about 2% in the selected domain.
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Table 1: Parameters of Equation (7), Pijkl.

(j,k,l) i=0 i=1 i=2 i=3

(0,0,0) 3.66E+00 1.39E+01 -4.18E+01 3.11E+01

(0,0,1) 1.81E-01 -8.42E+00 2.05E+01 -1.22E+01

(0,0,2) -1.91E-02 1.25E+00 -2.87E+00 1.73E+00

(0,0,3) 6.88E-04 -5.40E-02 1.22E-01 -7.33E-02

(0,1,0) -8.54E-01 -2.11E+00 2.63E+01 -2.31E+01

(0,1,1) -1.23E-01 5.16E+00 -1.87E+01 1.37E+01

(0,1,2) 3.95E-02 -8.70E-01 2.81E+00 -1.99E+00

(0,1,3) -2.14E-03 4.10E-02 -1.28E-01 8.91E-02

(1,0,0) 3.37E-01 -6.13E+00 1.46E+01 -9.21E+00

(1,0,1) -1.78E-01 2.76E+00 -6.46E+00 3.89E+00

(1,0,2) 2.55E-02 -3.77E-01 8.66E-01 -5.19E-01

(1,0,3) -1.15E-03 1.66E-02 -3.76E-02 2.24E-02

(1,1,0) -1.65E-01 3.64E+00 -1.11E+01 7.70E+00

(1,1,1) 1.29E-01 -2.19E+00 5.95E+00 -3.92E+00

(1,1,2) -2.10E-02 3.27E-01 -8.61E-01 5.57E-01

(1,1,3) 1.00E-03 -1.50E-02 3.88E-02 -2.49E-02

(2,0,0) -2.03E-02 3.95E-01 -9.58E-01 6.06E-01

(2,0,1) 1.09E-02 -1.79E-01 4.26E-01 -2.59E-01

(2,0,2) -1.59E-03 2.45E-02 -5.72E-02 3.45E-02

(2,0,3) 7.22E-05 -1.08E-03 2.48E-03 -1.49E-03

(2,1,0) 1.28E-02 -2.62E-01 7.71E-01 -5.27E-01

(2,1,1) -8.77E-03 1.51E-01 -4.08E-01 2.67E-01

(2,1,2) 1.40E-03 -2.25E-02 5.89E-02 -3.79E-02

(2,1,3) -6.70E-05 1.03E-03 -2.66E-03 1.69E-03
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Figure 2: Fitting function (lines) and FEM generated data (points) for different input parameters.

3. Elliptical holes45

Consider now the orthotropic plate with an elliptical notch of Figure 3(a). Let the two axes of the

ellipse be R and cR long (c > 0), where c is the ellipse aspect ratio or its inverse if c > 1 or 0 < c < 1,

respectively.

Supposing that the length of the specimen is large enough not to influence the calibration of the
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a)

b)

Figure 3: Elliptical-holed plate and equivalent circular-holed plate.

correction factor ψ, the SIF reads:50

KI =
√
Rσ∞ψ (α, ρ, λ, ω, c) (8)

where now the correction factor depends also on c. The calculation of ψ can be done following the

procedure explained in the previous section. However, in this case, it possible to derive an expression

for ψ without performing any additional numerical simulation. In fact, at equilibrium, the stress field

in the body reads:

σ1 =
∂2U

∂x22
, σ2 =

∂2U

∂x21
, τ12 =

∂2U

∂x1∂x2
(9)

where U is the Airy stress function, while the compatibility equation reads:55

∂4U

∂x41
+ 2ρ

√
λ

∂4U

∂x21∂x
2
2

+ λ
∂4U

∂x42
= 0 (10)

Rescaling the x2-axis, posing x́2 = x2/c, causes a contraction (c > 1) or dilatation (0 < c < 1) of

the plate along the x2 direction. In the new coordinate system, x1-x́2, the plate has a circular hole, as

shown in Figure 3(b). With this change of variables, the compatibility equation reads:

∂4U

∂x41
+ 2ρ

√
λ

c2
∂4U

∂x21∂x
2
2

+
λ

c4
∂4U

∂x42
= 0 (11)
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Using λ́ = λ/c4, and replacing in Equation (11), yields:

∂4U

∂x41
+ 2ρ

√
λ́

∂4U

∂x21∂x
2
2

+ λ́
∂4U

∂x42
= 0 (12)

Comparing Equation (12) to Equation (10) reveals that the SIF for the elliptical-holed plate (Fig-60

ure 3(a)) can be determined computing the SIF of the equivalent circular-holed plate (Figure 3(a))

where λ is replaced with λ́ = λ/c4. Therefore, the correction factor for the elliptical-holed plate reads1:

ψ (α, ρ, λ, ω, c) = φ

(
α, ρ,

λ

c4
, ω

)
(13)

As a demonstrative example, the correction factor for elliptical-holed cracked plates was numerically

computed for plates with c = 0.5, 1.5, 2; ρ = 8; λ = 1; and ω = 4, 6, 8. The comparison between the

numerically generated data, and the predictions obtained using the expression in Equation (13), is65

excellent as shown in Figure 4.
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Figure 4: Elliptical-holed plate and equivalent circular-holed plate.

Conclusions

An expression for the correction factor of cracks emanating from circular holes in finite-width or-

thotropic plates was found. Numerical models were used to determine the value of the correction

factor and an appropriate function was defined to fit the data. With an appropriate change of vari-70

ables, it was demonstrated that the same expression can be used to compute the correction factor for

cracks emanating from elliptical holes. The expression provided will be used to extend the range of

applicability of the FFMs models to the case of general orthotropic laminates.

1Assuming the length of the equivalent specimen, 2L/c, to be large.
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 SIFs were computed for cracks emanating from circular holes in 
orthotropic plates.

 A semi-analytical expression for the correction factor was proposed.

 A change of variables yields the SIFs for cracks emanating from 
elliptical holes.
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