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ARTICLE HISTORY

Compiled November 14, 2021

ABSTRACT

The main goal of this work is to assess and compare the influence of Allee effects
in profit optimization of stochastically fluctuating harvested populations considering
several harvesting policies. The policies to compare are based on constant, variable,
and stepwise harvesting efforts. For application purposes, the population growth
models considered are the logistic model and a logistic-like model with weak Allee
effects. In recent work, we have shown that the optimal harvesting policy with
variable effort is inapplicable whereas the optimal harvesting policy with constant
effort is easily applicable and leads to population sustainability. However, the latter
implies profit losses, comparing to the first one. So, we consider a stepwise policy
which is applicable but shares some of the problems with the optimal policy based on
variable effort. We also show that some of the disadvantages of the optimal policy
are eliminated by considering a penalized profit with an artificial running energy
cost on the effort. However, the applicability problems remain. Finally, in terms
of optimal profit, we study the influence of Allee effects on all policies and check
whether Allee effects should or should not be taken into account when designing
harvesting policies.

KEYWORDS
Optimal control; profit optimization, stochastic differential equations; Allee effects;
logistic growth.

1. Introduction

Let X(t) be the size, at time t, of a harvested population under the influence of
environmental random fluctuations. The population growth dynamics can be described
by the stochastic differential equation (SDE)

dX(t) = f(X(t))X(t)dt− qE(t)X(t)dt+ σX(t)dW (t), X(0) = x, (1)

where f(X) is the per capita natural growth rate, q > 0 is the catchability coefficient,
E(t) ≥ 0 is the harvesting effort, H(t) = qE(t)X(t) represents the yield from harvest-
ing, σ > 0 measures the strength of environmental fluctuations, W (t) is a standard
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Wiener process and X(0) = x > 0 is the population size at time 0, which we assume to
be known. Particular cases of SDE (1), the ones to be here considered, are the logistic
model and the logistic-like model with Allee effects given, respectively, by

dX(t) = rX(t)

(
1− X(t)

K

)
dt− qE(t)X(t)dt+ σX(t)dW (t), X(0) = x

and

dX(t) = rX(t)

(
1− X(t)

K

)(
X(t)−A
K −A

)
dt− qE(t)X(t)dt+ σX(t)dW (t), X(0) = x.

(2)
The parameter r > 0 represents the intrinsic growth rate and K > 0 is the environ-
ment’s carrying capacity. The Allee parameter, A ∈ (−K, 0), stands for the strength of
the weak Alee effects. The closer A is to 0, the more intense is the Allee effect. On the
contrary, the closer A is to −K, the less intense is the Allee effect. Taking A → −∞
leads to the well-known logistic model. Strong Allee effects occur when A ∈ (0,K) and
they will not be considered here, since population extinction will occur with probability
one even in the absence of harvesting.

The term “harvesting” and the models here presented are suitable for populations
in the areas of forestry, hunting, agriculture, fishing, and others. Since we will illustrate
with applications in fisheries, we often use the term “fishing” in place of “harvesting”.

The presence of Allee effects occurs when, for low values of the population size, we
observe per capita growth rates lower than the high rates one would expect considering
the higher availability of resources per individual. Allee effects may be due to several
causes, such as the difficulty in finding mating partners or in setting up an effective
pack-hunting size or, in the case of prey species, in constructing a strong enough group
defence against predators (see, for instance, [1–4]).

Eq. (2) assumes that the natural growth rate follows a logistic-like model inspired
by a similar deterministic model (see, for instance, [3]). However, without changing
the logistic-like model for the average natural growth rate dynamics, we use a different
parametrization of that model in order to allow easier comparisons with the logistic
model without Allee effects (as in [2]). In particular, the logistic model and the logistic-
like model here considered have in common the same carrying capacity K and the same
slope of the natural growth rate at X = K.

In previous work we discussed the use of a variable effort optimal policy versus
a constant effort optimal policy, considering a logistic-like model with weak Allee
effects (see [1]), the logistic model (see [5,6]), and the Gompertz model ([7,8]), in order
to derive harvesting policies based on profit optimization. We have shown that the
optimal policy with variable effort, obtained using optimal control methods, has several
shortcomings, namely: (i) the effort depends on the randomly varying population size,
implying the estimation of the population size at each time instant, which is a costly,
time consuming and inaccurate task; (ii) this policy is inapplicable from the practical
point of view; (iii) this policy poses social problem during the periods of low or no
harvesting. In fact, the effort is highly variable and may even have frequent periods
of no harvesting or harvesting at the maximum possible rate. On the contrary, the
optimal constant effort policy has strong advantages: (i) leads to sustainable policies
with the population being driven, when t → +∞, to a stationary regimen, reaching
a stochastic equilibrium with a stationary density (see Section 2.4); (ii) it is easily
applicable; (iii) does not require knowledge of population size; (iv) poses no social
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problems. The only disadvantage of this policy is the reduction in profit, which we
show to be slight for the models and data considered.

One way to eliminate the social problems posed by the optimal variable effort policy
is to incorporate in the model a term that represents an artificial running energy cost,
designed to reduce the abrupt changes in effort. This was done in [7] considering
the Gompertz growth model and by taking several cases with different penalization
magnitudes. Unfortunately, the major problem of applicability is maintained, since
the effort still varies frequently across time, although not so intensely. Also, it is still
necessary to keep estimating the population size at each time instant, which is a strong
disadvantage.

Also, one can find, for the logistic model ([8]) and the Gompertz model ([5]), a sub-
optimal policy, named stepwise policy, where the harvesting effort under the optimal
variable effort policy is determined at the beginning of each year period (or at the
beginning of a larger period, for instance, two years) and kept constant during that
period. The authors showed that this policy is not optimal and still poses some social
problems, but has the advantage of being applicable since the changes in the effort are
less frequent and compatible with the fishing activity. Furthermore, although there
is a need to keep estimating the fish stock size, it is not necessary to do it so often.
Replacing the optimal variable effort policy with a stepwise policy has the advantage
of applicability but, at best, considerably reduces the already small profit advantage
of the optimal variable effort policy over the optimal constant effort policy. In some
cases, the optimal sustainable policy even outperforms this stepwise policy in terms
of profit.

This paper is organized as follows: in Section 2 we present four harvesting poli-
cies: three optimal policies and one sub-optimal policy denoted by the stepwise policy.
Section 3 refers to the comparisons between policies using a population under fish-
ing for which we have access to realistic biological and economic data. Finally, some
concluding remarks are given in Section 4.

2. Harvesting policies

2.1. Optimal policy with variable effort

To obtain an optimal policy with variable effort based on profit optimization we follow
the stochastic optimal control problem (SOCP) formulated in [1] and [6]. The profit
per unit time is defined as Π(t) = R(t)−C(t), where R(t) = (p1−p2H(t))H(t) are the
sales revenues per unit time (p1 > 0, p2 ≥ 0) and C(t) = (c1 + c2E(t))E(t) represent
the fishing costs per unit time (c1 > 0, c2 > 0). Hence, Π(t) = (p1qX(t) − c1)E(t) −
(p2q

2X2(t) + c2)E2(t). The SOCP consists in maximizing the present value, i.e. the
expected accumulated discounted profit per unit time over a finite time interval [0, T ]:

V ∗ := J∗(x, 0) = max
E(τ)

0≤τ≤T

J(x, 0) = max
E(τ)

0≤τ≤T

E0,x

 T∫
0

e−δτΠ(τ)dτ

 ,
subject to the population dynamics given by the SDE (1), to the control restric-
tions 0 ≤ Emin ≤ E(t) ≤ Emax < ∞ and to a terminal condition J(X(T ), T ) = 0.
The parameter δ > 0 refers to a discount rate accounting for interest rate and cost
of opportunity losses and other social rates. Note that we use the short notation
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E[. . . |X(t) = y] = Et,y[. . .] and that

J(y, t) := Et,y

 T∫
t

e−δ(τ−t)Π(τ)dτ


is, at time t, the expected discounted future profits when the population size at
that time is y. In addition, we assume that optimization starts at time t = 0 and
harvesting continues up to the time horizon T .

The above SOCP can be solved by stochastic dynamic programming theory through
Bellman’s principle of optimality (see, for instance, [9]). In terms of optimization the-
ory, the problem resorts to finding the effort (i.e., the control) that maximizes the
present value V := J(x, 0), subject to the growth dynamics given by Eq. (1) and to
the constraints on effort and the terminal condition given above. The control value that
leads to the maximum V ∗ will be called the optimal variable effort and is denoted by
E∗(t), which exists and is unique since E(t) is a Markov control and Π is concave with
respect to the control (see, for instance, [10]). The Hamilton-Jacobi-Bellman (HJB)
equation associated with the SOCP is

−∂J
∗(X(t), t)

∂t
=

(
p1qX(t)− c1 − (p2q

2X2(t) + c2)E∗(t)

)
E∗(t)− δJ∗(X(t), t)

+
∂J∗(X(t), t)

∂X(t)

(
f(X(t))− qE∗(t)

)
X(t) +

1

2

∂2J∗(X(t), t)

∂X2(t)
σ2X2(t),

and the optimal variable effort is

E∗(t) =


Emin, if E∗free(t) < Emin

E∗free(t), if Emin ≤ E∗free(t) ≤ Emax
Emax, if E∗free(t) > Emax,

where

E∗free(t) =

(
p1 − ∂J∗(X(t),t)

∂X(t)

)
qX(t)− c1

2 (p2q2X(t)2 + c2)

is the unconstrained effort (see [1,11]). The HJB equation is a parabolic PDE and an
explicit solution is not available. Hence, to solve it numerically we apply a Crank-
Nicolson discretization scheme as in [1,5–8,12].

2.2. Optimal variable effort penalized policy

In Section 1 we have mentioned that the optimal variable effort varies frequently across
time between periods of zero/low and maximum/high values. This behaviour, typical
in optimal control problems, is not compatible with the logistic of fisheries. In addition,
periods of zero or low effort poses social burdens, as explained in Section 1. One way to
eliminate this problem is to incorporate in the model a term that represents a running
energy cost based on the effort (see, for instance, [15]). This extra cost term is not
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a real cost, just an artificial way of penalizing the profit values when, at each time
instant, the effort takes abrupt changes from a reference effort value, say Eref . One
can choose, for instance, Eref as the optimal effort value of the constant effort policy.
In so doing, the resulting optimal penalized policy will not give us the optimal real
profit but will behave better than the optimal variable effort non-penalized policy in
terms of having milder effort changes.

To implement this approach, the profit per unit time to be optimized is not the real
profit (the one presented at the beginning of Section 2.1) but rather an artificial profit
Πε(t) := R(t)− C(t)− Pε(t), with the artificial penalty cost Pε(t) = ε(E(t)− Eref )2,
where ε ≥ 0 is a tuning parameter (representing the penalization magnitude). Thus,
we now solve (numerically) the maximization problem

max
E(τ)

0≤τ≤T

E0,x

 T∫
0

e−δτ
(

Π(τ)− ε(E(τ)− Eref )2

)
dτ

 ,
where we maximize the artificial expected accumulated discounted profit with an ar-
tificial running energy cost, still subject to the population dynamics (1) and to the
restrictions on the effort and the terminal condition. Let E∗ε (t) be the maximizing
effort, which will be called optimal penalized effort. Note, however, that the real ex-
pected accumulated discounted profit when we adopt the optimal penalized effort
E∗ε (t) should use the real costs and so its expression is

V ∗ε := E0,x

 T∫
0

e−δτΠ∗ε,real(τ)dτ

 ,
with Π∗ε,real(t) := (p1qX(t)− c1)E∗ε (t)− (p2q

2X2(t) + c2)E∗
2

ε (t).
Considering an artificial energy cost will not eliminate all the major shortcomings

of the optimal variable effort policy. The introduction of an energy cost will reduce or
even eliminate the social costs arising from the null or low effort periods of the optimal
variable effort policy, but it is still necessary to keep estimating the population size
at each time instant. In addition, the major problem of the logistic of fisheries will
persist, since the effort still varies frequently across time, although not so intensely.
Formally, these problems will remain unchanged whatever ε we choose, except for high
ε values. The only difference between different choices of ε is not in the high frequency
of effort changes but in the magnitude of such changes. If a low value for ε is chosen,
the resulting policy will be similar to the optimal variable effort policy, with almost the
same social costs and intense variability in effort between null/low and high values.
On the contrary, if a high value for ε is chosen, the resulting policy will still have
frequent changes according to population size changes, but the changes will be small
in magnitude and the effort will stay close to a constant effort so that social costs
will be eliminated. However, the operability fishing problems remain unchanged and,
since the variable effort has values close to the constant effort policy, the profit will be
practically indistinguishable from the optimal sustainable constant effort policy profit.
In Section 3, we will apply this policy to the logistic model and the logistic model with
Allee effects.
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2.3. Sub-optimal policies with variable effort: stepwise policies

To obtain the optimal variable effort policy presented in Section 2.1 we need to com-
pute the optimal effort in each of the points of the discretization scheme (as in [1,5–
8,12]). Since we are dealing with a SOCP without any regularizing penalization, one
expects to have frequent and very abrupt changes on the effort, resulting in an inap-
plicable policy from the point of view of the fishing activity. One way to mitigate this
behaviour is to consider sub-optimal policies based on stepwise effort.

In [5], for the logistic model, and in [8], for the Gompertz model, stepwise poli-
cies (without penalization) were introduced and applied to real harvested populations
without Allee effects. In a stepwise effort policy, the harvesting effort is determined
at the beginning of a time sub-interval with duration p (for instance, 1 or 2 years)
and is kept constant at that value during the whole time sub-interval. Therefore, in
this stepwise effort policy, for time t in the period [lp, (l + 1)p[, we keep the effort
E∗step(t) = E∗(lp) constant and equal to the effort of the optimal policy at the begin-
ning of the period. For convenience, we use p to be a multiple of the time step ∆t used
in the numerical computations and Monte Carlo simulations.

Notice that this policy is obviously not optimal. Since it is a stepwise modification
of the optimal variable effort policy, it is not even optimal among the stepwise policies.
However, it is, as it should, non-anticipative, i.e. it does not use future values of the fish
population size, which are unknown at the time of the decision. It will not eliminate
abrupt changes in effort but will result in an applicable policy.

2.4. Optimal sustainable policy with constant effort

To apply a constant effort policy, one considers a particular case of Eq. (1) with
E(t) ≡ E. In [13,14], for the logistic growth model, and in [1] for the logistic-like growth
model with Allee effects, one can find conditions to avoid population extinction, to
have a unique solution and to grant a stationary density for the population size. Hence,

for the logistic model, it is sufficient to have 0 ≤ E < r
q

(
1− σ2

2r

)
and, for the logistic-

like growth model with Allee effects, it is sufficient that 0 ≤ E < r
q

(
A

A−K −
σ2

2r

)
.

Under such conditions, the distribution of X(t) stabilizes and converges, as t→ +∞,
to a distribution with a stationary density. Denoting by X∞ the random variable with
such stationary density, a good approximation of the expected size of the population
E[Xt], for large t, is E[X∞].

Following [1,5–8], the sustainable profit per unit time is defined similarly to the case
of the optimal variable effort policy as Π∞ := (p1qX∞ − c1)E − (p2q

2X2
∞ + c2)E2.

The effort that maximizes the expected sustainable profit E[Π∞], i.e. the optimal
sustainable effort, will be denoted by E∗∗ and the corresponding profit by Π∗∗∞ :=
(p1qX∞ − c1)E∗∗ − (p2q

2X2
∞ + c2)E∗∗2.

From [5] and [1], for the logistic model we obtain E[X∞] = K
(

1− qE
r −

σ2

2r

)
and

E[Π∗∗∞] =

(
p1qK

(
1− qE∗∗

r
− σ2

2r

)
− c1

)
E∗∗

−
(
p2q

2K2

(
1− qE∗∗

r
− σ2

2r

)(
1− qE∗∗

r

)
+ c2

)
E∗∗2.
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and, for the logistic-like model with Allee effects, we obtain E[X∞] = I1(E)
I0(E) and

E[Π∗∗∞] =

(
p1q

I1(E∗∗)

I0(E∗∗)
− c1

)
E∗∗ −

(
p2q

2 I2(E∗∗)

I0(E∗∗)
+ c2

)
E∗∗2,

with Ij(E) =
+∞∫
0

zα−βE+j−1e−γ(z−(K+A))2dz, α = 2rA
σ2(A−K)−1, β = 2q

σ2 , γ = r
σ2K(K−A) .

3. Comparison of policies

Policies comparison, in terms of the expected accumulated discounted profit, between
the optimal variable effort policy and the optimal sustainable constant effort policy
cannot be done directly, since the first one maximizes the accumulated discounted
profit over a finite time interval [0, T ] and the second one maximizes the profit per
unit time as T →∞. Thus, for comparisons purposes, we will consider:

(A) the optimal profit per unit time under the optimal variable effort E∗(t):

Π∗(t) = (p1qX(t)− c1)E∗(t)− (p2q
2X2(t) + c2)E∗

2

(t),

(B) the optimal profit per unit time under the optimal penalized effort E∗ε (t):

Π∗ε,real(t) = (p1qX(t)− c1)E∗ε (t)− (p2q
2X2(t) + c2)E∗

2

ε (t),

(C) the optimal profit per unit time under the stepwise variable effort E∗step(t):

Π∗step(t) = (p1qX(t)− c1)E∗step(t)− (p2q
2X2(t) + c2)E∗

2

step(t),

and

(D) the optimal sustainable profit per unit time under the optimal constant effort
E∗∗:

Π∗∗(t) = (p1qX(t)− c1)E∗∗ − (p2q
2X2(t) + c2)E∗∗

2

.

The quantities to be compared in terms of the expected accumulated discounted
profits (present values), for each policy, are:

V ∗ = E0,x

[∫ T

0
e−δτΠ∗(τ)dτ

]
, V ∗ε := E0,x

 T∫
0

e−δτΠ∗ε,real(τ)dτ

 ,

V ∗step = E0,x

[∫ T

0
e−δτΠ∗step(τ)dτ

]
, V ∗∗ = E0,x

[∫ T

0
e−δτΠ∗∗(τ)dτ

]
,

which represent the optimal present values under (A), (B), (C) and (D), respectively.
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To compute V ∗, V ∗ε , V
∗
step and V ∗∗, we resort to Monte Carlo simulations of the

population, based on an Euler scheme and a 1000 sample paths, and obtain the corre-
sponding efforts and profits. We have used realistic biological and economic parameters
from the Pacific halibut (Hippoglossus hippoglossus) that can be found in [11]. Other
parameters were taken from [1]. The full list of parameters is shown in Table 1. For
the application of the Crank-Nicolson discretization scheme, applied to solve the HJB
equation (see Sections 2.1 – 2.3), the time and space grid was designed with n = 150
intervals for time (with a time step of ∆t = 4 months) and with m = 75 intervals for
the state space (with space step ∆x = 2.15 · 106 kg and Xmax = 2K kg).

Table 1. Values used in the simulations. Adapted from [1].

Item Description Value Unita

SDE parameters

r Intrinsic growth rate 0.71 year−1

K Carrying capacity 80.5 · 106 kg
A Allee parameter −0.75K,−0.10K kg
q Catchability coefficient 3.30 · 10−6 SFU−1year−1

σ Strength of environmental fluctuations 0.2 year−1/2

x Initial population size 0.5K kg

Bioeconomic parameters

p1 Linear price parameter 1.59 $kg−1

p2 Quadratic price parameter 5 · 10−9 $year · kg−2

c1 Linear cost parameter 96 · 10−6 $SFU−1year−1

c2 Quadratic cost parameter 10−7 $SFU−2year−1

Other parameters

T Time horizon 50 year
δ Discount factor 0.05 year−1

Emin Minimum fishing effort 0 SFU
Emax Maximum fishing effort 0.7r/q SFU

aSFU represents the Standardized Fishing Unit. The definition can be found in [11].

Table 2. Numerical comparisons among the profits obtained by the application of policies (A) to (D), respective

standard deviation (sd) and relative differences (∆ and ∆1 in percentage), using the logistic model (LM) and two
scenarios for the logistic-like model with Allee effects (LMAE). ∆ represents the relative difference w.r.t. V ∗ of

the same model and ∆1 the relative differences w.r.t V ∗ of the logistic model. Profit values are in million dollars.

LM LMAE (A = −0.75K) LMAE (A = −0.10K)

profit sd ∆ profit sd ∆ ∆1 profit sd ∆ ∆1

V ∗ 413.59 38.32 0.0 296.14 44.66 0.0 -28.4 218.79 44.70 0.0 -47.1

V ∗
ε

ε=0.001 407.46 37.99 -1.5 286.87 43.62 -3.1 -30.6 203.07 43.11 -7.2 -50.9
ε=0.01 398.88 35.84 -3.6 271.75 41.03 -8.2 -34.3 176.88 39.86 -19.2 -57.2
ε=0.1 396.71 35.06 -4.1 263.63 37.72 -11.0 -36.3 155.27 41.65 -29.0 -62.5
ε=0.5 396.48 34.97 -4.1 263.27 36.97 -11.1 -36.3 152.08 40.30 -30.5 -63.2

V ∗
step

1-year 406.72 38.79 -1.7 287.70 44.22 -2.9 -30.4 208.32 44.47 -4.8 -49.6
2-years 390.50 38.14 -5.6 270.00 42.46 -8.8 -34.7 186.52 44.96 -14.7 -54.9

V ∗∗ 396.42 34.95 -4.1 261.85 36.19 -11.6 -36.7 83.41 7.40 -61.9 -79.8

In Table 2 we summarize and compare results for the logistic model (LM) and the
logistic-like model with Allee effects (LMAE) with Allee parameters A = −0.75K
(mild Allee effects) and A = −0.10K (more intense Allee effects). Regarding other
values for A (not shown here) we can conclude that when A becomes smaller, the
Allee effects have less influence on the policies. When A increases (approaching zero),
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the Allee effects become more pronounced and imply large differences in terms of
profit values. Table 2 shows the values of the profits V ∗, V ∗ε , V ∗step and V ∗∗ (where the
expectations are obtained approximately by taking the average value over the 1000
Monte Carlo simulations of the observed profits) and their relative differences to the
optimal policy (A). Fishermen observe only one trajectory, hence it is interesting to
have a measure of the uncertainty of the observed profit. In Table 2 we also show, for
each policy, the standard deviation of the observed profits among the 1000 simulated
trajectories.

The case ε = 0 corresponds to considering a non-penalized policy with variable
effort and the resulting profits are the same as for V ∗ (first line of Table 2). Increasing
ε values from 0.001 to 0.5 implies a decrease of profit between 1.5% and 4.1% when
comparing the penalized policy with the non-penalized policy. Taking into account less
intense Allee effects (A = −0.75K), profit differences also increase with ε values but are
higher (from 3.1% to 11.1%). More intense Allee effects (A = −0.10K) imply higher
profit differences (from 7.2% to 30.5%). The comparison of penalized policies with
Allee effects and penalized policies without Allee effects shows very large differences
(from 30.6% to 36.3%) in present values, being much higher when Allee effects are
more intense (from 50.9% to 63.2%).

For the stepwise policy, we have chosen time sub-intervals with a duration of p =
1 year and p = 2 years, i.e., the optimal effort is determined at the beginning of
each year/each biennium and kept constant during that period. The application of
a stepwise policy instead of the optimal variable effort policy will cause a decrease
between 1.7% (1-year step) and 5.6% (2-years step), on average. These differences are
more pronounced in the presence of Allee effects (from 2.9% to 8.8% for less intense
effects and from 4.8% to 14.7% for a higher intensity).

Table 2 also shows that the optimal policy with constant effort has a profit reduction
of 4.1% when compared with the optimal variable effort policy, both without Allee
effects. We notice that the policy with constant effort implies identical profit values
when compared to the penalized policy (with ε ∈ {0.01, 0.1, 0.5}) and even outperforms
the stepwise policy with 2-years steps (−4.1% against −5.6%). However, when Allee
effects are taken into account, one observes a decrease of the profit values for the
sustainable policy.

Regarding the standard deviation of the profit among the 1000 simulated trajecto-
ries, the values obtained for all policies are similar, although slightly higher for the
policies with Allee effects.

The black thin lines on Figures 1 to 4 show one path chosen at random from the 1000
simulated sample paths and the thick gray lines show the mean of the 1000 simulated
sample paths, which estimates the expected value.

Figure 1 compares the optimal variable policy, showing in the middle line the optimal
effort E∗(t) for the three models considered here: (a) logistic model, (b) logistic-like
model with Allee effects with A = −0.75K, (c) logistic-like model with Allee effects
with A = −0.10K. The population size and the profit per unit time when applying
the optimal effort are shown on the top and the bottom line, respectively. Figures
2 to 4, respectively, for the logistic model, for the logistic model with Allee effects
with A = −0.75K, and for the logistic model with Allee effects with A = −0.10K,
compare the optimal efforts obtained by applying the optimal policy with variable
effort (first row (a)), the optimal sustainable policy with constant effort (first row
(b)), the optimal penalized policy (ε = 0.001) with variable effort (second row (a)),
the optimal penalized policy (ε = 0.01) with variable effort (third row (a)), the optimal
policy with stepwise effort with 1-year steps (second row (b)) and the optimal policy
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Figure 1. Mean (thick lines) and randomly chosen sample path (thin lines) for the population (first row),

the effort (second row) and the profit per unit time (third row) for the optimal variable effort policy when the
growth model is: (a) logistic, (b) logistic-like with Allee effects with A = −0.75K, (c) logistic-like with Allee

effects with A = −0.10K.

with stepwise effort with 2-year steps (third row (b)).
The optimal policy (Figure 1 (a)) exhibits frequent and abrupt changes on effort

and profit per unit time, contrasting with the corresponding trajectories for the op-
timal sustainable policy based on constant effort (for the effort dynamics, see first
row of Figure 2 (b)). The depicted trajectory is one of the possible outcomes that the
harvester may experience. In terms of the population size, the logistic model produces
the trajectory with less size oscillations (comparison along the first row of graphics in
Figure 1). Note that, for the policies with variable effort, harvesters should adjust the
fishing effort at every time instant. Effort adjustments often correspond to changes
from periods with zero effort (i.e., the fishery is closed, with possible social problems
or the need for compensations not considered in the profit structure) to periods with
maximum effort (i.e., fishing with all available equipment and manpower). Clearly,
this is not applicable since abrupt and frequent changes on effort are not compatible
with the logistic of fisheries and, in addition, it is not feasible to obtain information on
population size all the time. On the contrary, the optimal sustainable policy implies
the application of a constant effort at every time instant, making this policy very easy
to implement by harvesters.

The penalized policies attenuate the social problems since they have obviously effort
changes milder than the optimal variable effort policy, as can be seen by comparing the
middle line of Figure 1 with the left second rows (for ε = 0.001) and the left third rows
(for ε = 0.01, with very mild changes) of Figures 2 to 4. However, the applicability
problem due to frequent changes in the effort persists.

Another possible policy, without the shortcomings of the optimal variable policy, is
the stepwise policy. This one is suboptimal but has the advantage of being applicable
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since, although there are still abrupt changes in effort, they occur less frequently (at
most once a year or once every two years). The stepwise policies (Figures 2 to 4,
middle (1-year step) and bottom (2-years step) images on the right-side (b)) present
large variations in terms of the effort per unit time. For the logistic growth model, both
stepwise policies (middle and bottom of Figure 2 right side) have similar behaviour as
for the logistic model policies without steps (middle-left of Figure 1). However, for the
stepwise policies, effort values during a year (or a 2 year) period are very often equal
to the maximum effort or to the zero effort; remembering that the effort is computed
at the beginning of that period according to the optimal policy, this behaviour may
be due to a compensation of the effort having been fixed without any adjustment
during the previous period. We can also notice that these policies mimic the optimal
variable effort policy in terms of the considerable rise of the average effort near the
time horizon. This is not a surprise since both policies are not designed to provide a
sustainable behaviour of the population size.

Comparing the effort sample paths from the middle of Figure 1 ((a) and (b)) with
the middle and bottom right sides of Figures 3 and 4, one can see long periods with zero
effort, corresponding to long periods where the fishery is not working. Closing a fishery
is not desirable since it provokes serious social and economic problems. The presence
of Allee effects should be checked since they may, depending on their strength, have a
considerable impact on effort values and in designing appropriate fishing policies.
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Figure 2. Effort mean (thick lines) and effort of a randomly chosen sample path (thin lines) for the logistic
model for: the optimal policy with variable effort (first row (a)), the optimal sustainable policy with constant

effort (first row (b)), the optimal penalized policy (ε = 0.001) with variable effort (second row (a)), the optimal

penalized policy (ε = 0.01) with variable effort (third row (a)), the optimal policy with stepwise effort with
1-year steps (second row (b)) and the optimal policy with stepwise effort with 2-year steps (third row (b)).
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Figure 3. Effort mean (thick lines) and effort of a randomly chosen sample path (thin lines) for the logistic
model with Allee effects with A = −0.75K for: the optimal policy with variable effort (first row (a)), the

optimal sustainable policy with constant effort (first row (b)), the optimal penalized policy (ε = 0.001) with

variable effort (second row (a)), the optimal penalized policy (ε = 0.01) with variable effort (third row (a)),
the optimal policy with stepwise effort with 1-year steps (second row (b)) and the optimal policy with stepwise

effort with 2-year steps (third row (b)).

4. Conclusions

In this work, although the stochastic models presented (logistic and logistic-like with
Allee effects) can be suitable for harvested problems in general, due to data availability,
we illustrate an application in fisheries using realistic biological and economic param-
eters. We have presented numerical profit and effort comparisons between harvesting
policies based on constant, variable (with and without penalization), and stepwise ef-
fort. For that, we have performed simulations with a discretization scheme in time and
space of the HJB equation and an Euler scheme for the population paths.

The optimal policy with variable effort poses serious applicability and social prob-
lems, leads to great instability in the profit, and can create a possibly dangerous effect
near the time horizon. On the contrary, the optimal sustainable policy does not have
these shortcomings, is very easy to implement, drives the population to a stochastic
equilibrium, and avoids the need for frequent estimation of population size.

One way to eliminate the social problems posed by the optimal variable effort pol-
icy is to incorporate a penalization in the form of an artificial running energy cost,
designed to tame the abrupt changes in effort. Unfortunately, the major problems of
applicability and need to estimate the population size at each time instant do persist.

Since the optimal policy is not applicable, we have presented sub-optimal policies,
the stepwise policies. These policies share some disadvantages with the optimal variable
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Figure 4. Effort mean (thick lines) and effort of a randomly chosen sample path (thin lines) for the logistic

model with Allee effects with A = −0.10K for: the optimal policy with variable effort (first row (a)), the
optimal sustainable policy with constant effort (first row (b)), the optimal penalized policy (ε = 0.001) with

variable effort (second row (a)), the optimal penalized policy (ε = 0.01) with variable effort (third row (a)),

the optimal policy with stepwise effort with 1-year steps (second row (b)) and the optimal policy with stepwise
effort with 2-year steps (third row (b)).

effort policy but have the advantage of being applicable. Furthermore, although we
still need to keep estimating the fish stock size, we do not need to do it so often.

In the absence of Allee effects, the profit differences among these policies are rela-
tively small. When Allee effects are present, their influence, in comparison with the
pure logistic model, depends on the Allee intensity parameter A. When A increases
(approaching zero), the Allee effects become more influential and imply large reduc-
tions in profit, as well as large profit differences among the different policies. So,
although the logistic model (without Allee effects) is the common paradigm in fishery
applications, the possible presence of Allee effects should be assessed and, depending
on their strength, taken into account in the design of the fishing policy.
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