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A B S T R A C T   

A large fraction of the current environmental crisis derives from the large rates of human-driven biodiversity loss. 
Biodiversity conservation questions human practices towards biodiversity and, therefore, largely conflicts with 
ordinary societal aspirations. Decisions on the location of protected areas, one of the most convincing conser-
vation tools, reflect such a competitive endeavor. Operations Research (OR) brings a set of analytical models and 
tools capable of resolving the conflicting interests between ecology and economy. Recent technological advances 
have boosted the size and variety of data available to planners, thus challenging conventional approaches 
bounded on optimized solutions. New models and methods are needed to use such a massive amount of data in 
integrative schemes addressing a large variety of concerns. This study provides an overview on the past, present 
and future challenges that characterize spatial conservation models supported by OR. We discuss the progress of 
OR models and methods in spatial conservation planning and how those models may be optimized through 
sophisticated algorithms and computational tools. Moreover, we anticipate possible panoramas of modern spatial 
conservation studies supported by OR and we explore possible avenues for the design of optimized interdisci-
plinary collaborative platforms in the era of Big Data, through consortia where distinct players with different 
motivations and services meet. By enlarging the spatial, temporal, taxonomic and societal horizons of biodi-
versity conservation, planners navigate around multiple socioecological/environmental equilibria and are able to 
decide on cost-effective strategies to improve biodiversity persistence under complex environments.   

1. Introduction 

The world faces one of the most intractable problems: habitats and 
species are declining at unprecedented rates (Barnosky et al., 2011; 
Urban, 2015). Habitat loss, overexploitation of natural resources, bio-
logical invasions, pollution and global climate change are major drivers 
of such declines (Maxwell et al., 2016). In recent decades, the incidence 
of these threats has been expanding, and their synergistic effects add up 
to the already broad additive impacts (Barnosky et al., 2011). Globally, 
multiple institutional instruments have been created to mobilize gov-
ernments to abate and revert those impacts (e.g. Convention on Bio-
logical Diversity, CBD; Intergovernmental Panel on Climate Change, 
IPCC; Intergovernmental Panel on Biodiversity and Ecosystem Services, 
IPBES, 2030 United Nations Agenda for Sustainable Development, 

SDGs). However, the overdependence of modern societies on traditional 
socioeconomic activities coupled with the unprecedented rates of cur-
rent climate change makes biodiversity perspectives bleak in the 
short-term (Seddon et al., 2016; Steffen et al., 2018). 

Biodiversity conservation is deeply reliant on functional protected 
areas (PAs). They are championed as refuges for native species, acting as 
filters against local threats. Since the establishment of PAs restricts the 
free practice of socioeconomic activities, PAs are generally seen as 
competing instruments limiting the development of anthropocentric 
societies, largely reliant on commercial and industrial financial reve-
nues. Under the political sovereignty of short-term economic gains, 
governments naturally support biodiversity-hazardous activities, but to 
pursue the commitments made under global conservation treaties (e.g. 
the post-2020 global biodiversity targets, CBD, 2021; and the Agenda, 
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2030 SDGs, United Nations, 2015), they still need to set aside PAs. In 
many cases, PAs have been used as figurative political instruments, 
established in regions with low socioeconomic appeal (Joppa and Pfaff, 
2009). Consequently, the efforts put in the establishment and manage-
ment of those PAs are ineffective in accomplishing their ultimate goal of 
preserving important ecological features (i.e. natural habitats, species’ 
populations and gene pools) and processes (e.g. at the individual level: 
feeding, mating, resting; at the population level: dispersal, colonization, 
survivorship, abiotic equilibria, and; at the community level: interaction 
networks) in the long-term. For the sake of simplicity, we decided to 
focus OR applications on species, while considering that the same ap-
plications can be used for other biological entities (genes, populations, 
communities, ecoregions) and processes. 

Thirty years ago, a novel scientific body of research emerged to 
support transparent and rational decision-making for the identification 
of ecologically valued areas to protect. Systematic conservation plan-
ning (SCP) originated as a framework rendering the interests of re-
searchers, conservationists, policy-makers, managers, stakeholders and 
citizens in defining the means to conserve not only local natural values, 
but scaling them up to larger areas and wider sets of decision-makers to 
accrue the benefits of shared financial resources and complementary 
conservation actions. This synthesis explores, either directly or indi-
rectly, a small set of questions that emerge from the spatial component 
of SCP (for comprehensive overviews of SCP see for example McDonald, 
2009; McIntosh et al., 2017; Pressey and Bottrill, 2008; Warman et al., 
2004), specifically:  

- Which processes threaten biodiversity? How can they be integrated 
in spatial conservation models?  

- How are the current and aspiring states of biodiversity quantified? 
Are there data available or opportunities to gather them?  

- How should the financial resources available be spent? (i.e. For 
which species? In which areas? In what timing? Are the established 
conservation efforts still valued for the improvement of conservation 
effectiveness?)  

- Is it possible to upscale conservation planning towards larger areas 
and time-horizons, protecting a wider set of species and combining 
the goals and resources of multiple planners? 

- What are the most effective options for action in contexts charac-
terized by a large risk of failure derived by large amounts of 
analytical uncertainty and/or stochasticity? 

Challenged by these questions, cutting-edge conservation planning 
uses analytical tools to undertake planning designs which are expected 
to retrieve the largest conservation gains with the least financial re-
sources, alongside a reduction of conflicts with competing socioeco-
nomic activities (Watson et al., 2011). At this stage, solving optimized 
conservation problems is far from trivial. The need to cover wide sets of 
species, assessing large geographic areas with detailed (high-resolution) 
information and the integration of multiple, sometimes interacting, 
factors makes conservation plans extremely difficult to implement even 
when supervised by expert knowledge (Langford et al., 2011; Poiani 
et al., 2000). In this context, Operations Research (OR) gains relevancy 
as it delivers tools and techniques suited to assist decisions around the 
spatial (and non-spatial) dimension(s) of conservation planning and 
environment. Indeed, OR provides a quantitative basis for 
decision-making as it uses a set of analytical methods (data analysis, 
mathematical modelling, optimization) to solve complex problems 
which arise in large systems, as the ones typically characterizing con-
servation plans. 

In the following sections, we present problems concerning the spatial 
component of SCP, in particular, the identification of adequate areas for 
the establishment of PAs managed uniquely for biodiversity conserva-
tion or areas where some level of ecologically sustainable socioeconomic 
development is allowed. We start by describing two general problems in 
OR that mimic two basic problems in PA selection. Then, we discuss 

more ambitious area-selection problems that integrate several PA 
properties and more elaborate conservation concerns (spatial design, 
connectivity, dynamic PAs prepared to mitigate the effects of climate 
change; use of explicit socioeconomic data; integration of uncertainty 
and risk control). We confront custom and ideal spatially explicit data-
sets informing distinct ecological, budgetary, socioeconomic and 
vulnerability realities. We conclude, debating about new perspectives to 
analyze massive amounts of data that, potentially, better represent the 
broad set of factors likely to determine biodiversity and environmental 
conditions. 

2. The basics of or in spatially-explicit biodiversity conservation 

Operations Research is a discipline that develops analytical models 
and methods to help decision-making. It has applications in many fields 
of science and management, including engineering, economics and lo-
gistics, where optimal decisions need to be taken in the presence of 
trade-offs between two or more conflicting goals (Ravindran, 2008). The 
cornerstone of OR is optimization, which, in its simplest form, consists of 
identifying a solution among a set of potential solutions that either 
maximizes or minimizes an objective function. Problems in OR are 
characterized by a set of constraints that have to be satisfied, outlining if 
a candidate solution is feasible (when all constraints are fulfilled) or not 
(when at least one constraint is missed). A feasible solution that maxi-
mizes (or minimizes) the objective function is called an optimal solution. 
A problem may have several optimal solutions. Depending on the spe-
cific nature of the objective function and constraints, optimization 
problems are approached by specific methods (e.g. linear, integer, 
mixed, nonlinear, network, robust, stochastic and dynamic program-
ming procedures) (Hillier and Lieberman, 2015). 

In conservation planning, decisions often reflect the interplay of 
social, economic, political and scientific priorities. The multifactorial 
dimension of conservation results in contentions and conflicts. For 
example, activities that retrieve high financial outcomes may lead to 
significant ecological disturbances. On the other hand, conservation 
measures may lead to important reductions of agricultural or forestry 
net production. Once a criterion of optimality is established (e.g. one 
that benefits the conservation side of a wide bio-socioecological system), 
it is not possible to achieve it without conflicting with the aspirations of 
other socioecological players. The complex trade-offs among these fac-
tors led Smith and Theberge (1987) and Cocks and Baird (1989) to use 
OR for the first time in support of spatially-based decision-making in 
conservation. Since then, the use of optimization models in biological 
conservation research is increasing, both in number and complexity 
(Fig. 1). 

3. Two basic models and some extensions 

Two OR problems were initially proposed to guide spatial conser-
vation decisions for both effectiveness (i.e. accomplishment of estab-
lished goals) and efficiency (i.e. saving the resources available to 
undertake conservation decisions and actions). The minimum set cover 
(MSC) problem aims to choose a subset from the set of candidate se-
lection units (e.g. grid cells in a map or, in more general terminology, 
sites) to build a network of PAs that consume the fewest resources (i.e. 
number of sites, total surface area, financial resources, etc.), while 
guaranteeing that each of the species to conserve is adequately covered 
in those PAs; i.e. the presence of each species within PAs should equalize 
or exceed a given representation level (i.e. a target). Ideally, this target 
certifies the persistence of a species in the long-term (Justus et al., 2008; 
Moilanen et al., 2009b). In these types of problems, sites are selection 
units that cannot be partially selected, making the problem combina-
torial. When a large number of sites and species are analyzed (i.e. 
ten-to-hundreds of thousands), the massive number of combinations to 
explore (i.e. potential solutions to certify) makes these problems hard to 
solve to full optimality (Pressey et al., 1996; Rodrigues et al., 2000). 
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An alternative approach to conservation planning that expresses the 
context most often faced by conservationists (i.e. the impossibility of 
protecting all concerning species) assumes that the resources available 
for the selection of PAs are fixed and limited. Conservationists then look 
to find solutions in which the number of species adequately covered by 
PAs is maximized (the maximal coverage problem, MC) (Box S1 in Ap-
pendix A). We invite readers with interest in the mathematical formu-
lations to consult boxes in Appendix A. 

Originally, these two models were built with the general assumption 
that the representation of a species in a single protected site would 
suffice to consider the species adequately represented in PAs. More 
general conditions are, however, well accommodated by these prob-
lems. For example, the adequate representativeness may differ among 
species, and/or may require more than one protected site to provide a 
precautionary, redundant protection. While these generalizations are 
straightforward and integrated into the MSC, they are slightly less 
obvious to be accommodated in the MC (Figure S1). Likewise, both 
problems are flexible on the use of distinct types of data. The use of 
presence/absence data about each species in each site in the study re-
gion may be replaced by (and mixed with) other types of data (e.g. 
species abundance, local environmental suitability, local probability of 
occurrence, etc.) (Fig. 1). Ultimately, decisions based on data to use and 
on the settled representation targets should approximate PAs to the 
leading goal of a conservation plan: to foster biodiversity persistence 
(Pressey et al., 2007). 

Depending on data quality, availability and treatment, planners may 
consider complementing the representativeness of species in PAs, with 
PA spatial properties. This choice gains special relevancy when PAs are 
exposed to detrimental impacts from neighboring regions that may flow 
into PAs (i.e. edge-effects) or when environmental and/or threat gra-
dients make PA location and design strategic for biodiversity protection. 
The shape and compactness of PAs (Billionnet, 2015; Nalle et al., 2002; 
Williams, 2002), length of PA edges (Cerdeira et al., 2005; Fischer and 
Church, 2003; McDonnell et al., 2002; Önal and Briers, 2002), the 
number of PA isolates and their proximity (Alagador and Cerdeira, 2007; 
Cerdeira and Pinto, 2005; Nalle et al., 2002; Önal and Briers, 2002) are 
spatial attributes (i.e. constraints) that add up to the species’ represen-
tativeness in MSC and MC problems (see Baskent and Keles, 2005; Bil-
lionnet, 2013 for a review on other spatial design models; Williams 
et al., 2004). Other approaches combine the constraints of PA placement 
and design with species-specific requirements or with the heterogeneity 
of the landscape. For example, Ciarleglio et al. (2009) and Cerdeira et al. 

(2010) introduced two unrelated problems in which the cost/area of PA 
networks is minimized, while cohesive subsets of PAs are identified for 
each species in which their representation targets are met. Hamaide 
et al. (2014) formulated the MSC and MC problems attending the risks of 
expanding threats (e.g. contagious diseases and fires), which are het-
erogeneously distributed across space. Under their formulations, final 
solutions are characterized by small PAs, where expanding threats are 
very likely to occur and large PAs (multiple cohesive protected sites) 
where these threats are unlikely. 

Given that most of the spatial attributes imply nonlinear relation-
ships among sites, the computational tractability of problems request, 
when possible, the nonlinearities in decision variables to be linearized 
(Billionnet, 2014). These transformations make solutions harder to 
obtain when compared with solutions from models that, originally, do 
not involve nonlinear relationships. However, there is a particular class 
of nonlinear problems (i.e. their solution space defines a convex set) for 
which global optima are also obtainable through nonlinear convex 
optimization methods (Bazaraa et al., 2013). 

4. Connectivity 

In the previous problems, biodiversity persistence is based on the 
representativeness of species within PAs and on the effects of hetero-
geneity, redundancy, and modularity of PA networks for those species. 
However, those PA selection models still miss critical factors promoting 
biodiversity persistence: the natural flows of genes, propagules, in-
dividuals, populations and energy across the landscape (Crooks and 
Sanjayan, 2006). A network of PAs that safeguards these processes and 
that, consequently, circumvents habitat fragmentation is said to be 
connected. The connectivity of PAs reinforces dynamic processes and 
therefore the resiliency of natural (meta)populations to environmental 
changes (Cabeza et al., 2004; Keith et al., 2008; Minor and Lookingbill, 
2010). Depending on the nature of connectivity and the final purpose of 
a conservation plan, connectivity may be grouped using two classifica-
tion systems (Correa Ayram et al., 2015). In one, connectivity is said to 
be structural when it implies the spatial contiguity of sites and is func-
tional when it defines a spatial arrangement of sites in which, being 
spatially contiguous or not, the flow processes are effectively assured 
(Calabrese and Fagan, 2004). Under the second classification system, 
when a conservation plan seeks to identify connected sites (structural or 
functional) between regions that have been previously targeted as 
ecologically significant (e.g. discrete population units of a species, key 

Fig. 1. Relevant data to be used in spatial conservation planning.  
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habitat patches, PAs), connectivity is said to be primary. Contrarily, 
when a plan combines connectivity requirements with species repre-
sentativeness, connectivity is said to be secondary (e.g. Cerdeira et al., 
2010; Wang and Önal, 2015). Regardless of the type of connectivity, 
graphs are adequate mathematical representations. Graphs are mathe-
matical entities settled around a robust theoretical background, allow-
ing solutions to be obtained efficiently (i.e. saving time and 
computational resources) (Bunn et al., 2000; Urban and Keitt, 2001). In 
a structural approach, a landscape is characterized using a single graph 
describing the spatial arrangement of sites. The sites to be linked are 
represented by nodes and their topologic relationships (e.g. adjacency, 
distance, etc.) described by edges linking pairs of nodes. In a functional 
approach, the specificities associated with each species and flow process 
imply that a graph uniquely characterizes the ecology of a set of species 
with similar connectivity requirements. In these graphs, nodes represent 
areas of occupancy and/or passages for a species (or where processes 
flow through) and values associated with edges denote geographic or 
functional distances between nodes, as perceived by the respective 
species or characterizing a flow process (e.g. a resistance metric char-
acterizing movement cost across the landscape that depends on habitat 
characteristics) (Bunn et al., 2000). 

Most of the connectivity concerns published in conservation plan-
ning literature have focused on primary connectivity using one of three 
OR problems in graphs (Rayfield et al., 2011): the shortest (or least cost) 
path (LCP), the minimum spanning tree (MST) and the minimum Steiner 
tree (MStT) problems. The LCP between a source and a target node 
(population, habitat, PAs, etc.) in a graph is a path (sequence of nodes 
and edges) that links the source and target nodes that presents the lowest 
cumulative cost (i.e. distance or a landscape resistance measure) among 
the edges that make up the path (Box S2 in Appendix A). One limitation 
of LCP is that it only predicts connectivity between a single source and a 
single target node (see Cushman et al., 2009 for an ecological applica-
tion). Real-world approaches often require more comprehensive as-
sessments of connectivity (Sawyer et al., 2011). For example, planners 
may require that (if possible) all targeted sites of the study region 
(special nodes in the graph) are connected together, so that flows exist 
between every pair of these special nodes (either directly or indirectly 
through other special nodes) (e.g. Cushman and Landguth, 2012; Fall 
et al., 2007; Landguth et al., 2012). The MST problem finds such a fully 
connected solution with the minimum cost. The MStT problem is a 
generalization of the MST when extra nodes (not necessary to represent 
important occupancy sites, the Steiner nodes) are defined in the original 
graph to reduce the cumulative cost of the MST over the original nodes 
(Sessions, 1992). This problem is more realistic than MST, given that 
connectivity paths are not limited to strict linkages between pairs of 
important nodes to connect (e.g. Alagador et al., 2012; Brás et al., 2013; 
Lai et al., 2011). Possibly, in large inhospitable landscapes, a single (or a 
set of) habitat center(s) may stay isolated, with no possibility of con-
necting to the remaining ones. In these cases, planners may consider 
using generalizations of the MST and MStT that search for the MST and 
MStT within each isolated set of important areas to link: the minimum 
spanning forest and the Steiner forest problems, respectively (Alagador 
et al., 2012). 

A challenge in modeling dispersal routes is that individuals rarely use 
a single optimum route (Driezen et al., 2007) and therefore the optimum 
routes obtained from OR problems miss such a variable use of landscape 
by propagules and individuals (Bélisle, 2005) (unless a minimum 
number of linkages are defined as a requisite for feasible solutions, 
Rayfield et al., 2010). For these specific cases, tools derived from the 
circuit (Dickson et al., 2019; McRae et al., 2008), diffusion (Ovaskainen, 
2004) and percolation theories (With, 2002) are best suited to deriving 
the relative connectivity value of all sites in a map. 

5. Making socioeconomy explicit 

A central contribution of economists to the development of 

conservation plans involves the incorporation of financial costs into 
planning settings (Fig. 1). The inclusion of these costs in PA selection 
problems shifts the efficiency measure of solutions, from area-based or 
accounting the number of sites to one depicting the financial effort 
required to conserve the areas to be protected (Balmford et al., 2000). 
Compared to standard area-based procedures, the consideration of 
financial costs more clearly captures the conservation benefits to be 
obtained from the investments made, and tends to generate more 
distinct sets of optimal PAs (Ando et al., 1998). Socioeconomic costs 
associated with conservation plans may include the capital needed: 1) 
for the acquisition of PAs (i.e. within land markets); 2) to establish 
time-limited contracts with landowners; 3) to compensate landowners 
for foregone revenues from their local activities; and 4) to undertake 
conservation actions, which may depend, for example, on the distance to 
the established PAs or to operational headquarters of conservation 
agencies (Naidoo et al., 2006; Naidoo and Ricketts, 2006). Conservation 
costs may also represent nonmarket values that impair conservation 
effectiveness (Chan et al., 2011) and may also be associated with 
extinction risk of a species or process (Game et al., 2008; Tulloch et al., 
2013) and with measurable uncertainties about the true distribution of 
species (Kujala et al., 2013; Lemes and Loyola, 2013) (more details 
below). 

With explicit socioeconomic data available, novel models may be 
settled such to maximize both the socioeconomic revenues and the 
conservation benefits in final solutions. In these multi-objective prob-
lems, the maximization of ecological and socioeconomic revenues from 
PAs is undertaken using distinct analytical designs. With MSC and MC 
problems, the ecological and financial components of a plan are fixed 
while the other is maximized. However, when a planner aims to achieve 
a compromise between the ecological and the socioeconomic goals, 
multi-objective efficiency frontiers (i.e. Pareto solutions) allow the 
identification of balanced solutions, in which improving one side of the 
(socioecological) system implies the reduction of revenues on the other 
side (Polasky et al., 2005, 2008). 

Overall, socioeconomic data contribute to making conservation de-
cisions cost-effective in ways that reflect how the non-biophysical as-
pects of a conservation plan influence the optimal PA location. The 
scarcity of these data at workable resolutions limits the applicability of 
socioeconomic settings in conservation plans, blurring the accuracy of 
cost-effectiveness metrics in conservation decisions (Armsworth, 2014; 
Sutton and Armsworth, 2014). 

6. Anticipating future threats 

The PA selection models discussed above are static in the sense that 
area-selection decisions are exclusively based on information from a 
single period of time that is implicitly assumed to be stable in the future. 
However, the pervasive, wide-scaled nature of current threats makes 
anticipative plans critical for the accomplishment of conservation goals 
cost-effectively. In these strategies, upfront predictions and inferences 
concerning the plausible responses of socioecological systems over time 
put planners one step ahead of possible negative effects (Hannah et al., 
2007). Predictive ecological models that expand empirical data to wide 
geographic spaces and distant temporal horizons (e.g. species distribu-
tion models, Elith and Leathwick, 2009) give planners plausible over-
views on future conditions of their working systems (see time dimension 
in Fig. 1). These tools enable conservation planners to anticipate the 
management of financial investments over time and to decide which, 
where and when a conservation action should be undertaken (Mouquet 
et al., 2015). Proactive approaches resulting from anticipated informa-
tion are especially relevant when species are continuously pressed, so 
that their persistence depends both on the success of their adaptive re-
sponses and the on opportune conservation actions (Naujokaitis-Lewis 
et al., 2018). Importantly, the way PAs are realized needs to shift from a 
static, perpetual set of areas, in which species are set aside from local 
threats, to a network of PAs that, altogether, cover the adaptive 
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movements of species and flow processes with time, favoring their 
persistence even under global-scale stressors (i.e. dynamic equilibrium) 
(Hannah, 2008; Hannah et al., 2002a, 2002b). The unprecedented rate 
of current and future-predicted climate change and the impacts on 
biodiversity need to be explicitly accommodated in anticipative con-
servation plans (Bonebrake et al., 2019). 

In contrast to local threats that commonly impact local communities 
as a whole, climate change influences species idiosyncratically, as their 
genetic, physiological or behavioral adaptive apparatuses lead to spe-
cific adaptive responses. Climate change-concerned conservation plan-
ners need to focus their efforts on these species-specific responses. Under 
climate change, many species are forced out of PAs (Araújo et al., 2004; 
Halpin, 1997; Hannah, 2008) with projections indicating that important 
networks of PAs will lose suitable climates for species of high conser-
vation concern to subsist therein (Araújo et al., 2011; Beale et al., 2013; 
D’Amen et al., 2011; Hole et al., 2009; Lemes et al., 2014; Prieto-Torres 
et al., 2016; Regos et al., 2016; Wise et al., 2012). To address this 
challenge, new PAs need to be planned into the future and their effec-
tiveness re-evaluated through time. The problem is that conservation 
resources are limited and classifying new PAs to buffer against the 
negative effects of climate change can be extremely expensive (Hannah 
et al., 2007; Shaw et al., 2012; Wise et al., 2012). Thus, the question is 
whether efficient strategies can be devised so that long-term conserva-
tion targets (e.g. representation targets) are continually met while 
keeping budgets under control. 

Williams et al. (2005) developed a multistage framework (i.e. 
enabling decisions to be made among several time-steps into the future) 
with the goal of identifying the sets of areas of minimum cost that cover 
the adaptive movements of species in a number of unitary dispersal 
corridors, which define likely trajectories of the species over time within 
the study region. Later, Phillips et al. (2008) formulated this same 
problem using classical OR tools from network flow theory. These au-
thors explored special properties in the structure of the modeling net-
works to make solvable problems dealing with massive datasets. For the 
same study system, the optimal solution obtained was 30% less costly 
than the solution obtained by Williams et al. (2005) using a greedy 

heuristic approach. Recently, Alagador et al. (2014) and Alagador et al. 
(2016) proposed several related problems that, instead of a network-like 
formulation, represent the selection of dispersal corridors as 
OR-covering problems (line MSC and MC) (Alagador and Cerdeira, 
2020). In these new problems, representation targets are replaced by 
persistence targets relying on persistence scores of species within 
dispersal corridors (i.e. the selection units). Although other data may be 
used to make such scores more accurate, the basic version of persistence 
scoring uses data reflecting two ecological processes that, depending on 
availability or planning requirements, are able to be modeled within a 
gradient of detail: 1) the probability of a species to occur in a given site 
in a given time period, and 2) the probability of a species to successfully 
disperse between sites. In a precautionary perspective, the (overall) 
persistence expectancy of a species in the final solution is obtained using 
the maximum accumulated persistence in non-converging dispersal 
corridors (i.e. a set in which two corridors cannot use the same site in the 
same period of time) (Fig. 2). This property of structural independence 
among dispersal corridors to be used by a species mitigates possible 
negative contagious effects (e.g. propagation of infectious diseases and 
fires) (Alagador et al., 2021). Importantly, in these models, area selec-
tion is not obligatorily additive, in the sense that, in each time-period, 
sites that have been previously targeted for protection may be 
removed from the solution for later periods of time (Fuller et al., 2010). 
The resources saved from area deselection are then redirected to other 
areas expected to retrieve the largest gains (considered overall within 
the objective function). Similar to the original MSC and MC problems, 
the objective functions of these two equivalent problems are the mini-
mization of total solution cost and the maximization of the number of 
species “fully covered” (i.e. in these models, representation targets are 
replaced by persistence targets). Alagador and Cerdeira (2017) and 
Alagador and Cerdeira (2020) introduced a third model in which solu-
tion effectiveness is measured using a continuous benefit function. The 
goal is to minimize the sum of shortfalls to the persistence targets among 
the focal species. With this objective function, the investments made for 
the protection of a species whose persistence target is missed still profit 
and, consequently, contribute to the overall solution effectiveness. 

Fig. 2. –The climate adaptive trajectories of the 
Iberian lynx up to 2080. a) the climatic suitability of 
occurrence areas in the baseline period and the 
average climatic suitability for the species in Europe 
from baseline to 2080; b) the map of average persis-
tence scores of the top 500 trajectories crossing each 
site and the summed persistence scores associated to 
the top trajectories (6.5% of potential maximum 
score); c) relationship between persistence of top 
trajectories and a measure of local human pressure, 
the Human Footprint Index (HF), the size of Natura 
(2000) (N2K) and protected areas (PA). 
Figure adapted from Alagador et al. (2021).   
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Importantly, the three problems formulated therein assume that costs on 
sites vary over time, making them close to real-world dynamic land 
markets. 

Traditional representational targets (i.e. number of sites or total 
selected area) as settled in the initial PA selection problems have a 
geographic nature but are established as proxies of species persistence (i. 
e. the higher the number of sites or the larger their total area, the more 
likely a species will be maintained). The link between area and persis-
tence is ideally made under the concept of minimum viable population 
(Clements et al., 2018; Di Marco et al., 2016; Flather et al., 2011; 
Wiersma and Nudds, 2006), which requires detailed information on 
(meta-)population dynamics. With these data unavailable, a proximal 
metric on persistence may be derived using probabilistic or 
probabilistic-like information on species to define targets using a mini-
mum required persistence threshold for each species (Alagador et al., 
2016). However, similar to the probabilistic versions of the MSC and MC 
problems (see Box S1 in Appendix A), explicit persistence targets do not 
have an intuitive geographic transposition, making it difficult for a 
planner to acknowledge aprioristically if a given target is (or is not) 
achievable by a species within a given conservation setting. This diffi-
cultly may result in unfeasible spatial conservation problems, because 
one (or more) persistence target was too inflated given the species 
condition in the working-system or because a target that, although 
achievable by a species individually, is not achievable in conjunction 
with the targets defined for the remaining ones, given the financial re-
sources available for area selection (Alagador and Cerdeira, 2017). To 
overcome such a drawback, Alagador and Cerdeira (2020) introduced a 
parameter that enables a planner to relax to K the number of species 
with their persistence targets fulfilled in final solutions. 

7. Dynamics, stochasticity and anticipative approaches 

Although conceiving a dynamic selection of PAs over time, the 
anticipative approaches mentioned above assume a deterministic over-
view of future states, so that a decision made to protect an area does not 
change its predicted ecological and socioeconomic condition in the time 
periods time ahead (nor the condition of neighboring areas) (Costello 
and Polasky, 2004; Polasky, 2006). Additionally, those problems do not 
assume irreplaceable losses of species when a site fully exposed to local 
threats is left unprotected over time (i.e. these sites will be less valued 
for conservation than originally assumed). This is an acceptable con-
servation template where protective measures can be applied exten-
sively and rapidly, where the planning domain is public and the loss of 
native vegetation is unlikely, and when climate change is the main factor 
guiding the establishment of a PA network (in this case, any local con-
servation action hardly changes the climatic pattern of an area). How-
ever, when financial resources are collected incrementally, possibly 
extending over decades, and where this gradual resource-acquisition is 
accompanied by a progressive, selective loss of species, then the in-
terplays between the timing of decisions and local land condition and 
socioeconomic value are best modeled using stochastic dynamic pro-
gramming (SDP) (Costello and Polasky, 2004; Meir et al., 2004; Strange 
et al., 2006; Westphal et al., 2003; Wilson et al., 2006). The optimal 
solution from SDP defines the optimal sequence of decisions when the 
future status of the sites inside and outside PAs is uncertain and 
dependent on previous decisions; when these actions present a 
geographic and/or temporal window of influence; and when stochastic 
processes prevail (Box S3 in Appendix A). 

A key advantage of SDP is its ability to produce feedback policies 
specifying optimal decisions for possible future system states rather than 
expected future states (Williams and Johnson, 2013). Depending on the 
spatial grain, a decision to protect a given site may also influence the 
condition of sites and species in the neighboring regions. Replicated 
among the whole landscape, these interdependencies among sites make 
the problem of selecting PAs, with the largest long-term benefits enor-
mously complex because the computational burden to obtain an optimal 

solution increases exponentially with the number of sites and system 
states: the Bellman’s curse of dimensionality (Bellman, 2010). The use of 
SDP for realistic instances made of hundreds to thousands of sites, 
several time-periods and several system states is therefore impracti-
cable. To circumvent this drawback, several heuristic approaches have 
been developed to retrieve suboptimal solutions of good quality (for an 
overview of such methods in ecology and conservation see Chadès et al., 
2014; Nicol and Chadès, 2011; Nicol et al., 2010). 

The nature of SDP makes it suitable to explicitly accommodate in-
terrelationships between conservation decisions and land prices. Market 
feedbacks determine the effectiveness of conservation investments. 
First, land prices rise when conservation groups invest significantly in 
local land markets, making future investments more difficult (Arms-
worth et al., 2007; Tóth et al., 2011). For example, Armsworth et al. 
(2006) show how conservation acquisitions alter nearby land values in 
ways that can accelerate development near PAs. The acquisition of land 
for additional PAs may increase land prices, making them too expensive 
for conservation purposes. The assumption of constant marginal land 
costs neglects land market feedback and underestimates the actual land 
costs leading to suboptimal solutions (Jantke and Schneider, 2011). In 
competitive land markets, rental values reflect the supply and demand 
equilibrium price at a given time and location. When PAs expand over 
agricultural or forested areas, the equilibrium between supply and de-
mand in regional land markets is distorted and a new equilibrium is 
obtained with the readjustments of land rental rates. This feedback from 
land markets affects the economic feasibility of conservation, as along 
with the costs of future conservation efforts (Polasky, 2006). The more 
land that is allocated to PAs, the higher are their opportunity costs (e.g. 
costs of forgone agricultural, forestry production) because of price ad-
justments in several commodity markets (e.g. agriculture, forest) (Butsic 
et al., 2013; Dissanayake and Önal, 2011). Commonplace, nonfinancial 
approaches to PA selection should perform satisfactorily in places where 
land outside PAs is biodiversity poor. These approaches will fail where, 
alongside PAs, the countryside surrounding PAs is critical for the spe-
cies’ persistence. In this case, the net gains from conservation in-
vestments may be negative, thus making them counterproductive, 
condemning more species than they save (Armsworth et al., 2006). 

Second, conservation investments may displace development pres-
sure locally, and the net biodiversity improvement in the area protected 
(through full acquisition or rental contracts) may be less than the one 
expected from the full area purchased. Development pressure can 
potentially be displaced onto properties of large conservation value that 
would otherwise have gone unthreatened, meaning that conservation 
efforts may sometimes do more harm than good (i.e. leakage) (Bode 
et al., 2015; Moilanen and Laitila, 2016; Renwick et al., 2015). 

Finally, the establishment of PAs can change the overall attractive-
ness of an area to developers seeking to capitalize on conservation 
amenities (i.e. amenity values). When acknowledging the ecological 
value of unprotected land, the effectiveness of conservation efforts is 
improved by accounting for land market dynamics through reliable data 
on land rents, land price elasticities and other land market forces (Jantke 
and Schneider, 2011). 

8. Handling uncertainty and risk within on land decisions 

Economic theory integrates strategies to deal with uncertainty in 
economic and financial markets. Conservationists may use some of these 
strategies to increase the probability of achieving their objectives in 
contexts wherein distinct types of uncertainty exist (Ando and Hannah, 
2011; Langford et al., 2009; Regan et al., 2009). These strategies may be 
typified as: 1) operational-based: when unmeasurable, uncertainty is 
handled using spatial-based rules-of-thumb likely to absorb high levels 
of variability, leading to robust-perceived solutions, or; 2) 
analytical-based: when uncertainty is measurable (thus referred to as 
risk), it is typically represented by probabilistic data analyzed statisti-
cally. Operational management of uncertainty in PA selection is 
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undertaken, e.g. when conservationists engage in temporary contracts, 
instead of acquiring areas in perpetuity to keep future conservation 
options open until uncertainty is resolved (i.e. option value) (Araújo, 
2009; Armsworth et al., 2011; Lennox et al., 2017; Newburn et al., 2005; 
Rissman et al., 2015). Albers et al. (2016) show that a less agglomerated 
pattern of PAs delivers more insurance against spreading hazards such as 
fire, invasive species, or pests. Instead of applying investments in 
neighboring areas with similar characteristics, a precautionary conser-
vationist spreads investments in mosaics of areas (sets of heterogeneous 
areas) that, as a whole, are more robust against risk than areas of similar 
biotic and abiotic characteristics (Anderson and Ferree, 2010; Araújo, 
2004; Beier and Brost, 2010; Beier and de Albuquerque, 2015; Lawler 
et al., 2015). 

In terms of risk analysis, modern portfolio theory allows planners to 
exploit quantitative data about likely correlations between the ecolog-
ical changes in different areas to choose the collection of lands that, for a 
given ecological projection, minimizes the uncertainty in the achieve-
ment of their goals, e.g. when models retrieve divergent predictions 
based on several future scenarios (Alvarez et al., 2017; Ando and Mal-
lory, 2012; Doremus, 2003; Hoekstra, 2012; Lahtinen et al., 2017; Liang 
et al., 2018). 

In addition to considering expected returns and standard deviations 
(i.e. risk) of individual investment options, portfolio theory analyzes the 
covariance structure of investments to limit the aggregated risk of a 
collection of decisions. A portfolio of investments that co-vary positively 
would be riskier than one made of decisions whose results co-vary 
negatively. Portfolio theory looks to maximize benefits from a given 
level of risk to minimize risk for a given level of benefit or, through an 
efficient frontier, to balance benefit and risk in conjunction (Eaton et al., 
2019; Hoekstra, 2012; Sierra-Altamiranda et al., 2020). Software to 
assist an easy implementation of these approaches are available (Gha-
semi Saghand et al., 2021). 

An info-gap decision model is a meaningful analytical approach to 
uncertainty when it is so extreme and pernicious that it cannot be dealt 
with common probabilistic methods (Ben-Haim, 2001). This often 
happens when data are so limited that the associated uncertainty is hard 
to get, so that the parameterization of the study system with a proba-
bility distribution is unattainable. An info-gap uncertainty model spec-
ifies the levels of uncertainty around each of the model parameters 
characterizing the system (Box S4 in Appendix A). The parameters are 
settled as nominal points and, after defining a domain of uncertainty, a 
window or ‘‘horizon’’ of uncertainty is specified around each nominal 
point. These levels of decision uncertainty are therefore assessed relative 
to a performance criterion (i.e. the minimum acceptable state of the 
system). Decisions that cause the system to attain or exceed the per-
formance criterion over a wide range of uncertainty are said to be 
‘‘robust’’ or ‘‘immune to failure’‘. A question thus remains: what is the 
smallest level of uncertainty that one needs to assume so that a desirable 
outcome is possible (but not guaranteed)? Decisions that do not require 
large amounts of uncertainty to meet this possibility are said to be 
‘‘opportune’’ or ‘‘less immune to success’’. There is often a trade-off 
between decisions that are optimal (i.e. maximize the criterion) and 
those that are robust to uncertainty (Moilanen et al., 2006; Moilanen and 
Wintle, 2006). Thus, Regan et al. (2005) and McDonald-Madden et al. 
(2008) have shown that decisions in endangered species management 
could change as uncertainty increases or when management criteria 
change. 

Robust optimization is the main method used to address data un-
certainty in mathematical programming formulations. This method has 
been successfully applied to solve many problems (under uncertainty) 
when the exact probability distribution for the uncertain data is un-
known or difficult to determine or otherwise when stochastic optimi-
zation techniques are computationally impractical (Gorissen et al., 
2015) (Box S5 in Appendix A). Robust optimization problems are 
computationally tractable, provided the underlying uncertainty sets 
satisfy mild convexity and computability assumptions (e.g. are given by 

explicit systems of efficiently computable convex inequalities) (Ben-Tal 
et al., 2009). Robust optimization is a conservative approach that seeks 
to protect the decision-maker against the worst outcomes (Haider et al., 
2018). The approach has several appealing features. First, it is explicitly 
tied to the data available to the decision-maker and captures the idea of 
robustness with standard likelihood bounds, making the approach both 
familiar and intuitively appealing. Second, since the approach is 
numerically tractable, it is applicable to a wide range of problems. 
Finally, because the framework allows policy-makers to choose the de-
gree of precaution desired and to map the precautionary levels of a 
dynamically optimal policy, it presents a clear and intuitive framework 
to be used by land managers (Woodward and Tomberlin, 2014). 

Classical (frequentist) and Bayesian statistical analyses dedicated to 
the integration of uncertainty in decision-making problems use proba-
bilistic distributions to define a controlled spectra of possible outputs 
from decisions through confidence intervals (Burgman et al., 2005; 
Gelman and Hill, 2006; Lin et al., 2018) or to identify conditions that 
ensure, with a given probability, a certain ideal output is obtained 
(Carroll et al., 2010; Schapaugh and Tyre, 2012). Both approaches enter 
an optimization protocol with the incorporation of uncertainty functions 
on parameter values (probabilistic and belief models, for the frequentist 
and Bayesian paradigms, respectively), which are integrated into the 
objective function. The Bayesian approaches present the advantage of 
providing sequential updates of belief functions (specified in terms of 
model parameters) as new information is acquired through time (e.g. 
adaptive decisions) (McDonald-Madden et al., 2010; Sanderlin et al., 
2014; Wade, 2000). 

9. Challenges ahead – the way forward 

With thirty years of growth, the spatial dimension of SCP is now 
facing challenging times. Large problems require quick responses. 
Although the protection of biodiversity is not commonly driven by so-
cietal demands (i.e. the no-value land paradigm, Joppa and Pfaff, 2009; 
Venter et al., 2018), human aspirations still need to be integrated into its 
machinery so that achievable win/win scenarios are identified, making 
conservation goals better supported (Fahrenkamp-Uppenbrink, 2014; 
Howe et al., 2014; Reyers et al., 2012). These requirements give con-
servation planning the need to be more realistic by: 1) gathering more 
and better data; 2) building flexible decision support models able for the 
characterization of a wide array of realities; and 3) promoting stake-
holder engagement across the full SCP process, to: 3.1) find consensual 
and explicit goals; 3.2) use proper models to fulfil those goals in each 
particular study system, and 3.3) evaluate and reformulate provisional 
solutions. Framed in these multiplayer studies, we overview some 
challenges that the quantitative module of conservation planning 
already faces or will face in the short-term. 

9.1. Building more realistic assumptions 

The multidimensional complexity of biodiversity conservation de-
mands access to a wide set of accurate data for planning designs to be 
effective in maximizing biodiversity persistence. Information on the 
distribution, abundance and the dynamics of genes, populations, species 
and biotic communities; plausible changes in environmental, physical, 
social and economic drivers; and the impacts of global environmental 
changes should be collected at the spatial and temporal scales matching 
the relevancy of the phenomena and the established goals (Fig. 1). 
Importantly:  

• Good quality data with high-resolute spatial grain allow a large 
number of decisions to be evaluated and therefore to enlarge the 
analytical space to look for the most informative solutions;  

• The increase of geographic windows permits the expansion of the 
political, jurisdictional and institutional scopes of biodiversity con-
servation to profit not only from the individual potential of each 
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player but, mainly, from collaborations and shared goals. In wide 
geographic contexts, detailed data of local ecological and socioeco-
nomic processes approximate conservation plans to the real scales in 
which key biodiversity processes operate, especially when environ-
ments are heterogeneous and dynamic (e.g. the “geography of spe-
cies’ adaptations” to climate change);  

• High-resolute temporal data allow planners to strengthen the control 
of their conservation systems, making them capable of opening up 
opportunities for quicker readjustments of conservation actions. 
With the tendency for a massive array of-ecological data to be 
available, the monitoring of conservation systems may operate 
similarly to the (quasi-) continuous scanning performed within 
meteorological and climate assessments (Kissling et al., 2018; Pro-
ença et al., 2017). Precautionary approaches demand that actions 
today are made for plausible scenarios ahead. Thus, expanding the 
time horizon of conservation plans allows a plausible future to be 
anticipated, leading to informed-proactive preparation of the ex-
pected outcomes and therefore more robust PA mappings. The 
extension of future temporal data implies large predictive capabil-
ities for the environmental, the ecological and the socioeconomic 
systems. The farthest in the future they are, the more uncertain the 
predictions (Northrop and Chandler, 2014). This temporal gradient 
of uncertainty needs to also be accommodated in conservation 
planning models (see time-varying costs, interest rates, SDP and 
robust optimization, above);  

• Biodiversity refers to structural elements (i.e. genes, populations, 
species, communities and ecosystems) that have coevolved over 
thousands of years and the complex multi-scaled processes (e.g. 
physiological, genetic, behavioral, ecological, evolutionary, abiotic) 
that generate and link them together and sustain the whole. 
Expanded data on the evolutionary, genetic, taxonomic and func-
tional components of biodiversity permit planners to control the 
countless aspects that act at multiple scales and allow ecosystems to 
be, by definition, dynamic and complex. The realization of these kind 
of data demand the emergence of hierarchical nonlinear decision- 
support models and powerful algorithms to be developed and/or 
accessed.  

• Some threats to biodiversity are not easy to mitigate as they express 
legitimated socio-cultural actions. Landscape use, consumption of 
water, food and energy, access to services such as education and 
medical assistance are issues that are driving the current biodiversity 
crisis. The consideration of these processes in the build-up of a 
conservation plan is critical and for the sake of effectiveness turning 
the scientific outcomes into practical tools needs the engagement of 
local, empirically based knowledge (Bray and Velázquez, 2009; 
Velázquez et al., 2009). These spatially heterogeneous layers of local 
information add-up to all the other socioecological layers integrating 
a comprehensive conservation plan. 

In the age of big data (Farley et al., 2018), raising the quantity and 
quality standards of data; identifying interrelationships among data 
types and making a wide set of analytical tools available offers planners 
the flexibility in tailoring a conservation plan to the idiosyncrasies of 
their contextual working systems. These datasets may establish seed-
lings for the advance of conservation plans under different viewpoints, 
different solution philosophies and goals (Bayraktarov et al., 2019). 
With this flexibility comes the burden of choice and, fortunately, with 
OR, the set from which to make that choice grows (Figs. 1 and 3). 

9.2. Placement and management decisions 

With its multi-scaled structure, conservation plans need to be 
comprehensive and to incorporate important components of SCP. For 
example, conservation models need not only support decisions about the 
timing and location of PAs but also quantify which/where/when con-
servation actions (e.g. threat prevention, monitoring, and effective 

management actions) should be taken and distributed. Given the feed-
back characterizing these systems, models of this type require an 
improved bio-socioeconomic realism and a continuous supply of data 
(Williams and Johnson, 2013; Wilson et al., 2011). 

Future research should analyze operational decisions, such as the 
allocation of personnel resources, equipment and other assets among 
different treatment sites, and the routing of crews between selected sites 
for management (Sewell et al., 2012; Yokomizo et al., 2004). Deploy-
ment of multiple resources such as funding and labor among different 
management options, over multiple areas and time periods, is also 
another possible future direction (i.e. logistical problems). Parallel to 
area selection, the scheduling of management actions and the allocation 
of tasks among personnel are relevant issues for future investigation 
(Adams and Setterfield, 2015; Baker and Bode, 2016; Moore and 
McCarthy, 2016; Watts et al., 2009; Wilson et al., 2011). Another 
interesting research line is the coordination of capacity (e.g. personnel 
and equipment) and governance (e.g. local, regional, national re-
sponsibilities) among stakeholders. In particular, cooperation between 
independent but related parties to share their resources, capacities, and 
information could improve the cost-effectiveness of PAs (Frank and 
Sarkar, 2010). Models in OR have been widely used to supply chain 
coordination among agents involved in production and manufacturing, 
disaster management and bioterrorism response (Altay and Green, 2006; 
Ravindran, 2008). Future studies should incorporate the risks of inva-
sive species related to transportation in an optimization model in which 
the routes, through which manufactures (e.g. wood, food) are trans-
ferred, are optimally selected while minimizing the distances that po-
tential invaders are transported (Büyüktahtakın and Haight, 2017). 
Network optimization models, such as LCP and network flow problems 
(Ahuja et al., 1993) can be used to frame the transportation of goods 
such that it poses the minimum invasion risks (see Connectivity section 
and Box S2 in Appendix A). Future research may consider the optimi-
zation of the transportation network and the selection of appropriate 
means for transportation and distribution activities while minimizing 
the risk of introduction and the establishment of new invaders (Courtois 
et al., 2018; Yemshanov et al., 2017). 

9.3. Coordination among multiple stakeholders 

Biodiversity conservation crosses jurisdictional boundaries since it 
constitutes a platform to respond to the adaptive spatial responses of 
biodiversity to expanding, globalized threats. The fitness of populations 

Fig. 3. –Classes of OR area selection models, their hardness in finding full- 
optimal solutions (size of circles) and their potential inter-relationships (ar-
rows). Predictive uncertainty, with varied nature and magnitude, is combinable 
among all model types. 
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and the way they spread depend on the choices made by several 
decision-makers in organized or less structured bodies of governance. 
Each conservation agency typically decides on where, when and how to 
undertake formal decisions on conservation based on local damage and 
management costs, without considering the benefits of protection 
generated by actions already made in neighboring regions by other 
conservation players. Therefore, independent agents are likely to 
underinvest in conservation from a societal perspective. The cooperative 
or centralized control of conservation planning across jurisdictions de-
livers superior performances when compared with independent 
decision-making (Albers et al., 2008; Kroetz and Sanchirico, 2015). A 
mechanism of transfer payments in which one jurisdiction pays another 
to increase their level of decision (Bhat and Huffaker, 2007) is one 
method of cooperation. In other situations, jurisdictions may simply 
agree to coordinate their efforts in a beneficial way to minimize spillover 
effects (Epanchin-Niell and Wilen, 2015). Cooperative game theory 
(Curiel, 2013), a branch of OR specifically devoted to explicit or implicit 
strategy coordination, may be used to determine compensation efforts 
and optimal cooperation among multiple stakeholders (Alvar-
ado-Quesada and Weikard, 2017b; Epanchin-Niell and Wilen, 2012, 
2015; Frank and Sarkar, 2010; Iacona et al., 2016). Few studies have 
compared the distribution of PAs derived from coarse-scale (regional) 
and fine-scale (local) data, but these have demonstrated significant 
cost-effective differences (Kukkala et al., 2016; Moilanen and Arponen, 
2011; Pouzols et al., 2014). At many spatial scales, decisions are likely to 
be under the purview of groups rather than individuals, and the size, 
composition and organization of groups are likely to vary with the 
geographical scale (Alvarado-Quesada and Weikard, 2017a; Frank and 
Sarkar, 2010). Different types of uncertainty and risk prevail at (and 
percolate between) different scales in ways that are difficult to quantify. 
The design of market-based and regulatory policies to enhance cooper-
ation across jurisdictions is a primary area of further research. 

9.4. Computational infrastructures 

The computational burden of dealing with realistic spatial conser-
vation planning have remained the greatest challenge to implement OR 
models and to obtain optimal or good quality suboptimal solutions 
(Beyer et al., 2016; Song et al., 2018). The growing number of powerful 
computational facilities has provided the background for the establish-
ment of consortia in which computational scientists collaborate with 
conservation planners (La Salle et al., 2016). Under these partnerships, 
while data analysts and managers are challenged by real-world prob-
lems inspiring them to develop and test new models and techniques, 
conservation planners are offered access to state-of-the-art computa-
tional tools allowing “good quality solutions” to be obtained. The field of 
computational sustainability (Lässig et al., 2016) has paved the way for 
interdisciplinary calls for the development of techniques from computer 
and information science and related disciplines (e.g. OR, applied 
mathematics and statistics) to trade-off environmental, economic and 
societal needs and aspirations so that sustainable development is 
accomplished (Gomes, 2011). Logistically, these consortia enable 
ecological data-intensive problems to be solved in high performance 
computing infrastructures (e.g. cluster and grid computing), thus 
allowing researchers to make use of tens of thousands of dedicated 
servers to execute coordinated solving tasks (Abreu et al., 2014). Fast 
and cheap local cluster computing is now possible through off-the-shelf 
computational nodes and software, allowing the easy construction and 
maintenance of supercomputers. For example, while LIFEWatch-ERIC 
(https://www.lifewatch.eu), ELIXIR (https://www.elixir-europe.org) 
and EUBrazilOpenBio (http://www.eubrazilopenbio.eu) are key initia-
tives already in place, they still lack spatial conservation planning 
modules that may provide the crucial link from ecological sciences to 
policy-making. We envisage a wide range of opportunities for interdis-
ciplinary expansion in the short-term. 

In addition to the full use of available computing infrastructures, the 

work undertaken by operations researchers should not be neglected. 
They formulate problems and conceive dedicated algorithms for solving 
very particular questions (i.e. large analytical resolution). Until now, the 
use of Marxan (Ball et al., 2009), Zonation (Moilanen et al., 2009a) and 
other easy to use software (for a list see http://conservationcorridor. 
org/corridor-toolbox/programs-and-tools/and https://applcc.org/plan- 
design/gis-planning/conservation-planning/conservation-planning-so 
ftware) has been commonplace in many published studies, but these 
tools were not always properly developed to deal with very particular 
contingencies and requirements. Possibly, many researchers have cho-
sen to simplistically adapt their studies to the principles of such general 
models. “Wasting” time with the mathematical formulation of a con-
servation problem may retrieve fruitful results later on, by either, 
maximizing the utility of the proposed solutions, minimizing their 
associated costs or, ideally, both. 

In summary, emerging tools, technologies, infrastructures and in-
formation technology partnerships in the age of big data may boost 
state-of-the-art approaches for better research and management. Those 
advances facilitate the integration of several environmental dimensions 
taking part in ecological equilibria providing a way to better understand 
and control biological systems. Additionally, the modern integrated 
environmental overview will alter how conservation planning is looked 
even from inside, opening opportunity-windows for fundamental ad-
vances and applied research, thus making biodiversity conservation 
more effective over time. 

10. Conclusions 

1. Biodiversity conservation considers several problems in which con-
servation interests compete with the socioeconomic expectations 
governing modern societies. In this context, the scarce resources 
available for planning, acquisition and management of PAs need to 
be optimally distributed. 

2. Given that the current biodiversity crisis impacts a wide set of bio-
logical features and processes, spans large regions and is likely to 
subsist in time, the combinatorial nature of conservation decisions 
makes real-world conservation problems hardly solvable by intuition 
alone. 

3. Operations Research (with particular emphasis in optimization) of-
fers powerful tools and methods for planners and policy-makers to 
make the “best” decisions. Under the OR framework, decision 
problems need to be defined, analyzed and solved using a rational, 
systematic and scientific designs, based on data, facts, information 
and logic, and not on mere guesswork or rules-of-thumb.  

4. The dynamic and complex nature of socioecological systems and the 
increasing availability of ecological, socioeconomic and institutional 
data still challenge the way OR delivers good-quality solutions. More 
elaborated models, able to deal with a large array of factors, need to 
be developed and critically discussed and upgraded with stakeholder 
involvement.  

5. Fusing together the spatial, temporal and management dimensions of 
conservation planning; dealing with multi-scaled agents and budgets 
under coordinated schemes; and promoting collaborative consortia 
provide the modern ingredients to achieve a paramount societal 
goal: to preserve biodiversity under grand challenging environ-
mental scenarios. 
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Gorissen, B.L., Yanıkoğlu, İ., den Hertog, D., 2015. A practical guide to robust 
optimization. Omega 53, 124–137. 

Haider, Z., Charkhgard, H., Kwon, C., 2018. A robust optimization approach for solving 
problems in conservation planning. Ecol. Model. 368, 288–297. 

Halpin, P.N., 1997. Global climate change and natural-area protection: management 
responses and research directions. Ecol. Appl. 7, 828–843. 

Hamaide, B., Albers, H.J., Busby, G., 2014. Backup coverage models in nature reserve 
site selection with spatial spread risk heterogeneity. Soc. Econ. Plann. Sci. 48, 
158–167. 

Hannah, L., 2008. Protected areas and climate change. Ann. N. Y. Acad. Sci. 1134, 
201–212. 

Hannah, L., Midgley, G.F., Andelman, S., Araújo, M.B., Hughes, G., Martinez-Meyer, E., 
Pearson, R.G., Williams, P.H., 2007. Protected area needs in a changing climate. 
Front. Ecol. Environ. 5, 131–138. 

Hannah, L., Midgley, G.F., Lovejoy, T., Bond, W.J., Bush, M., Lovett, J.C., Scott, D., 
Woodward, F.I., 2002a. Conservation of biodiversity in a changing climate. Conserv. 
Biol. 16, 264–268. 

Hannah, L., Midgley, G.F., Millar, D., 2002b. Climate change-integrated conservation 
strategies. Global Ecol. Biogeogr. 11, 485–495. 

Hillier, F.S., Lieberman, G.J., 2015. Introduction to Operations Research, tenth ed. 
McGraw-Hill Education, New York, USA.  

Hoekstra, J., 2012. Improving biodiversity conservation through modern portfolio 
theory. Proc. Natl. Acad. Sci. Unit. States Am. 109, 6360–6361. 

Hole, D.G., Willis, S.G., Pain, D.J., Fishpool, L.D., Butchart, S.H.M., Collingham, Y.C., 
Rahbek, C., Huntley, B., 2009. Projected impacts of climate change on a continent- 
wide protected area network. Ecol. Lett. 12, 420–431. 

Howe, C., Suich, H., Vira, B., Mace, G.M., 2014. Creating win-wins from trade-offs? 
Ecosystem services for human well-being: a meta-analysis of ecosystem service 
trade-offs and synergies in the real world. Global Environ. Change 28, 263–275. 

Iacona, G.D., Bode, M., Armsworth, P.R., 2016. Limitations of outsourcing on-the-ground 
biodiversity conservation. Conserv. Biol. 30, 1245–1254. 

Jantke, K., Schneider, U.A., 2011. Integrating land market feedbacks into conservation 
planning—a mathematical programming approach. Environ. Model. Assess. 16, 
227–238. 

Joppa, L.N., Pfaff, A., 2009. High and Far: biases in the location of protected areas. PLoS 
One 4, e8273. 

Justus, J., Fuller, T., Sarkar, S., 2008. Influence of representation targets on the total area 
of conservation-area networks. Conserv. Biol. 22, 673–682. 

Keith, D.A., Akçakaya, H.R., Thuiller, W., Midgley, G.F., Pearson, R.G., Phillips, S.J., 
Regan, H.M., Araújo, M.B., Rebelo, T.G., 2008. Predicting extinction risks under 
climate change: coupling stochastic population models with dynamic bioclimatic 
habitat models. Biol. Lett. 4, 560–563. 

Kissling, W.D., Ahumada, J.A., Bowser, A., Fernandez, M., Fernández, N., García, E.A., 
Guralnick, R.P., Isaac, N.J.B., Kelling, S., Los, W., McRae, L., Mihoub, J.-B., Obst, M., 
Santamaria, M., Skidmore, A.K., Williams, K.J., Agosti, D., Amariles, D., 
Arvanitidis, C., Bastin, L., De Leo, F., Egloff, W., Elith, J., Hobern, D., Martin, D., 
Pereira, H.M., Pesole, G., Peterseil, J., Saarenmaa, H., Schigel, D., Schmeller, D.S., 
Segata, N., Turak, E., Uhlir, P.F., Wee, B., Hardisty, A.R., 2018. Building essential 
biodiversity variables (EBVs) of species distribution and abundance at a global scale. 
Biol. Rev. 93, 600–625. 

Kroetz, K., Sanchirico, J.N., 2015. The bioeconomics of spatial-dynamic systems in 
natural resource management. Annual Review of Resource Economics 7, 189–207. 

Kujala, H., Burgman, M.A., Moilanen, A., 2013. Treatment of uncertainty in conservation 
under climate change. Conservation Letters 6, 73–85. 

Kukkala, A.S., Arponen, A., Maiorano, L., Moilanen, A., Thuiller, W., Toivonen, T., 
Zupan, L., Brotons, L., Cabeza, M., 2016. Matches and mismatches between national 
and EU-wide priorities: examining the Natura 2000 network in vertebrate species 
conservation. Biol. Conserv. 198, 193–201. 

La Salle, J., Williams Kristen, J., Moritz, C., 2016. Biodiversity analysis in the digital era. 
Phil. Trans. Biol. Sci. 371, 20150337. 
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