

Nematode-Mycobiota Interactions in Pine Wilt Disease

Cláudia VICENTE, Jorge FARIA, Margarida ESPADA, Filomena NÓBREGA, Luís BONIFACIO, Manuel MOTA, Helena BRAGANÇA, Edmundo SOUSA, Maria L INÁCIO

Instituto Nacional de Investigação Agrária e Veterinária, I.P.

Forests communities in nature

- Forest trees harbour extremely complex communities that play important roles on ecosystem multifunctionality and equilibrium.
- Under the presence of non-native pathogens, these ecosystems suffer shifts that can eventually lead to considerable spatial and temporal communities variation.
- In the context of PWD, the presence of Bursaphelenchus xylophilus causes imbalances in the communities associated with the host tree.

Nematode – Fungi Interaction

- Description of fungal communities has been made in different pine species, insect-vectors and PWN cultures across China, Japan, Korea, USA and Portugal;
- Most of the described taxa are common saprophytes and probably not specific to the disease or associated to PWN;
- Recent HTS studies showed that fungal community richness and diversity decreases with the increase of disease disturbance – presence of PWN.

Table 1. Culture-dependent mycoflora isolated from the PWN, insect-vectors, and host pines. PWN, Bursaphelenchus xylophilus; Ma, Monochamus alternatus; Ms, M. scutellatus; Mg, M. galloprovincialis (A-Adult, L-Larvae); Pd, Pinus densiflora; Pm, P. massoniana; Pt, P. thunbergii; Pb, P. banksiana; Pr, P. resinosa; Pp, P. pinaster (W-wood, Pc, pupal chamber); JP, Japan; PT, Portugal; KR, Korea; CH, China; USA, United States of America.

Fungal Taxonomy				Insect-Vec			-Vecto	ctor				Host	Host Pine				2		
· · · · · · · · · · · · · · · · · · ·	Tung	ar raxonomy			M	[a	M	[s	Mc	Mg	Pd	Pm	P	rt	Pb	Pr	Pp	Country	References
Phylum	Class	Family	Genus	PWN	A	L	A	L	Α	A	W	Pc Pc	W	Pc	Pc	Pc	W		
	Blastomycetes	Crytococcaceae	Candida								•							JP	[52]
			Diplodia								•		•					JP	[39,52]
		Botryosphaeriaceae	Botryosphaeria							•								PT	[46]
		bea) of principal	Macrophoma								•							JP	[53]
			Sphaeropsis										•					JP	[54]
		Cladosporiaceae	Cladosporium		•					•	•		•				•	JP, PT	[39,43,45,46,52]
		Didymellaceae	Epicoccum							•							•	PT	[45,46]
	Dothideomycetes	Dothideaceae	Rhizosphaera								•								[39]
		Leptosphaeriaceae	Leptosphaeria		•													KR	[44]
		Massarinaceae	Helminthosporium				•	•			1.22							USA	[42]
			Alternaria	1.0							100							JF, FI	[39,45,46,52]
		Pleosporaceae	Estpolaria Curralaria															CH	[45]
			Cur outur tu															PT	[55]
		Faccothogiacaaa	Aurophysidium															ID PT	[45]
		Accorrectaceae	Aureovasiaiam		1.1		-	-					-					JI, II	[42,44-
		мэрегдшасеае	Aspergillus	•	•		•	•		•	•		•				•	JP, CH, PT	46,52,54,551
Ascomycota		-	Penicillium	1.0	•	•	•	•		•	•		•	•	•		•	IP, CH, PT	[39,44-46,52-54]
Tibeoiny com	Eurotiomycetes	Irichocomaceae	Paecilomyces							•							•	PT	[45,46]
		77	Phialophora										•		•	•		JP	[42,52]
		Herpotrichiellaceae	Rhinocladiella												•	•		USA	[42]
	Leotiomycetes	Sclerotinuaceae	Botrytis							•				•			•	CH, PT	[44-46]
	0.1.1	0.1.11	Arthrobotrys	•							•				•	•		JP, CH, USA	[42,52,53]
	Orbinomycetes	Orbinaceae	Dactylaria								•							JP	[52]
		Amphisphaeriaceae	Pestalotia		•													JP	[39]
		Aspiosporaceae	Arthrinium							•							•	PT	[45,46]
		Rioportriacoao	Bionectria											•				KR	[44]
		Dioneculaceae	Clonostachys							•								PT	[45,46]
		Boliniaceae	Camarops											•				KR	[44]
	Sordariomycetes	Ceratocystidaceae	Ceratocystis	•	•		•	•	•		•	•	•		•	•		JP, CH, USA	[39,42,44,53,55]
		Chaetomiaceae	Chaetomium															CH	[55]
		Cordycipitaceae	Beauveria				•	•		•							٠	USA, PT	[42,45,46]
		Glomerellaceae	Colletotrichum	•	•		•	•										JP, CH	[39,55]
		Hypocreaceae	Нуростеа		•									•				KR	[44]
		11	Cephalosportum								•							JP IB LICA	[52]
			Gnocuunum															JF, USA	[42,54]
			Trichoderma	•			•	•		•	•		•	•	•	•	•	JF, CH, USA,	551
		Microascacoao	Cranhium															IP	1521
		Microascaceae	Cibberella															VP	[44]
			Fusarium															IP CH KR PT	[39 44-46 53-55]
		Nectriaceae	Mariannaea															IP	[52]
			Nectria															KR	[44]
			Ceratocustionsis				•	•	•						•	•	•	USA, PT	[42,46]
			Granhilhum										•					KR. PT	[46,47,50]
		Ophiostomataceae	Levtogravhium															IP	[39,53]
			Ophiostoma		•	•				•								CH. KR. PT	[44-47,56]
			Sporothrix										•					CH, PT	[46,47]
		Plectosphaerel-	Plectosphaerella		•													KR	[44]
		laceae	Verticillum	•									•					IP	[53]
		Sordariaceae	Sordaria	•														CH	[55]
		Coorosadasaaa	Monochaetia	•														CH	[55]
		Sporocadaceae	Pestalotiopsis	•							•		•				•	JP, CH, PT	[43,46,52-55]
		Trichosphaeriaceae	Nigrospora	•									•					JP, CH	[43,55]
		Xenospadicoidaceae	Spadicoides											•	•			USA	[42]
		Valsaceae	Phomopsis	•							•		•					JP	[52,53,55]
		Incertae sedis	Trichothecium							•							•	PT	[45,46]
Basidiomycota	Agariomycetes	Irpicaceae	Irpex		٠													KR	[44]
Subitionity cold	Guinomy celles	Ceratobasidiaceae	Rhizoctonia										•					JP	[54]
	Mortierellomy-	Mortierellaceae	Mortierella															JP	[54]
Mucoromy-	cetes																		
cota	Mucoromycetes	Mucoraceae	Mucor											•				KR	[44]
		Khizopodaceae	Rhizopus	•														CH	[55]

Nematode – Fungi Interaction: the case of Ophiostomatales

	E.c. all	F					Insec	t-Vecto	or					Hos	t Pine				
Fungal Taxonomy					Ma		Ms		Mc	Mg	ig Pd	?d	Pm	Pt		Pb	Pr	Pp	Country
Phylum	Class	Family	Genus	PWN	Α	L	Α	L	Α	Α	W	Pc	Pc	W	Pc	Pc	Pc	W	
			Ceratocystiopsis						•							•	•	•	USA, PT
			Graphilbum										•	•				•	KR, PT
Ascomycota	Sordariomycetes	Ophiostomataceae	Leptographium																JP
-	-		Ophiostoma	•			•			•			•	•	•			•	CH, KR, PT
			Sporothrix										•	•				•	CH, PT

Blue-stain fungi (Image taken on January 3rd, 2021)

- Beetle-associated fungi from unrelated orders Ophiostomatales and Microscales (*Ceratocystis*) are mostly necrotrophic pathogens able to colonize the phloem and xylem of pine trees;
- Reproduction structures of some blue-stain fungi were detected in Monochamus sp. tunnels, as well as pine trees or nematode – association with the disease;
- Several studies showed the relation between the presence of Ophiostomatales and the dense multiplication of PWN, as well as the number of PWN transferred to *Monochamus* sp. (Maehara and Futai, 1996, 1997, 2000; Maehara et al., 2006; Maehara, 2008);
- Other studies suggested that PWN uses high monoterpene concentrations and native blue-stain fungi to improve its propagation (Niu et al. 2012)

Study Aims

Exploring the NEmatode-MYcobiota interactions in Pine Wilt Disease

https://twitter.com/EnemyPine https://projects.iniav.pt/pineenemy/

Identification of PWD-associated fungal communities through metagenomic analysis

Characterization of candidate fungi (Ophiostomatales) for PWN feeding

Effect of PWN specific associated fungi on the nematode life-cycle

Understand if **nematode**associated mycoflora plays a key-role in the development of the disease, in interaction with nematode and insect-vector, and into which extend it can be used to disrupt the disease cycle.

Methodology

ICNF, Updated data from 2020

Sampling processing

		Collectio	on sites		Pinus pinaster samples						
Location	GPS	Tmax (℃) ¹	Tmin (℃) ¹	Precipitation (mm) ¹	Altitude (m)	PWD symptoms	Tree ID	PWD symptoms ²	PWN class		
Soia (S)			0.5		701		S1	0	0		
							S2	0	0		
						No	S13	0	0		
							S19	0	0		
	40°15'57.0"N	18		50-100			S32	0	0		
0014 (0)	7°42'47.6"W	10	0.0	50-100			S9	3	IV		
							S36	3	IV		
						Yes	S38	3	IV		
							S39	3	III		
							S40	3	111		
Companhia das			1.5	50-100			CL7	0	0		
		10					CL8	0	0		
						No	CL9	0	0		
							CL10	0	0		
	38°49'17.6"N 8°52'20.5"W				38		CL11	0	0		
Lezírias (CL)				30-100	50		CL2	4	III		
							CL3	3	111		
						Yes	CL4	3	IV		
							CL5	3	111		
							CL6	4	IV		
							T8	0	0		
							Т9	0	0		
						No	T10	0	0		
							T11	0	0		
Tráin (T)	38°28'07''N	20	0.5	15	250		T12	0	0		
110ia (1)	8°52'18''W	20	0.5	1-5	359		T1	4	IV		
							T2	4	111		
						Yes	Т3	4	П		
							T4	4	111		
							T7	4	IV		

• Surveys were conducted before maturation feeding phase of the insect-vector *Monochamus galloprovincialis*.

PWD-associated fungal community: metagenomic

approach - preliminary data

Location	Sample ID	Presence of PWN	DNA extraction method
Seia	S40_2	YES	QIAGEN DNeasy
Seia	S2_2	NO	QIAGEN DNeasy
Troia	T7_1	VEC	CTAB modified
Troia	T7_2	TES	QIAGEN DNeasy
Troia	T8_1	NO	CTAB modified
Troia	T8_2		QIAGEN DNeasy

- Data set: 158,325 ITS2 reads from 6 samples ranging between 8545 (sample T8_1) to 75629 reads (S2_2);
- Few differences between the two extractions methods;
- Close-reference clustering (at 97% sequence similarity cutoff) produced a range of <u>40-65 operational taxonomic units (OTUs)</u> for *P. pinaster* trees infected with PWN and <u>103-116 OTUs for *P. pinaster* without PWN</u>;
- Fungal communities from Seia showed higher diversity than fungal communities of Troia.
- Core metrics also suggest that the presence of PWN may alter the fungal community structure.

FIGURE 1|Accumulation curves of fungal mycobiomes per sample. Sequencing depth was normalized at 8500 features per sample.

TABLE 1 | Core metrics (diversity indices) calculated for each sample from collection sites Troia (T) and Seia (S).

Core Metrics	Pres	ence o	f PWN	Absence of PWN				
	17_1	T7_2	S40_2	T8_1	T8_2 118 116 0.91 4.51 0.66	\$2_2		
Chao1	70	68	53	106	118	135		
Observed OTU	62	65	40	103	116	112		
Simpson index	0.93	0.92	0.60	0.90	0.91	0.74		
Shannon Entropy	4.06	4.06	1.84	4.42	4.51	3.12		
Pielous J	0.68	0.68	0.34	0.66	0.66	0.46		
Good Coverage	0.99	0.99	0.99	0.99	0.99	0.99		

← T7_1 → T7_2 → T8_1 → T8_2 → S2_2 → S40_2

Not only the communities differ between study sites, which are biogeographically distinct, but also due to the **presence of the nematode**.

FIGURE 3 | Principal coordinate analysis (PCoA) based on Bray-Curtis distance matrix of 6 samples (2 *Pinus pinaster* from Seia and 4 *P. pinaster* from Troia.

FIGURE 2 | Relative frequency of fungal communities (level order) of *Pinus pinaster* trees infected with PWN (showing visible PWD symptoms) and without PWN.

PWD-associated fungal community: culturomics

- Total number of fungal isolations: 242 isolates were obtained from *P. pinaster* trees (45 from 2; 94 from 3; and 103 from 1) and 80 isolates from the emerged *M. galloprovinciallis* (48 from 1; 30 from 3; and 3 from 2);
- Fungal communities shifts between *P. pinaster* infected and non-infected with PWN;
- Total number of sequences for phylogenetic inference: 366 (126 ITS2; 84 TUB; 89 TEF; 67 CAL) distributed from 51 (2), 203 (1) and 112 (3).

TABLE 2	Core	metrics	(diversity	indices)	calculated	for	each	sample
from coll	ectior	i sites Tro	oia (T) and	l Seia (S).				

		By Lo	cation x	PWN dete	ection			
Diversity Indices	Seia	a (1)	Leziri	as (2)	Troia (3)			
	No PWN	PWN	No PWN	PWN	No PWN	PWN		
Taxa_S	6	4	4	6	6	5		
Individuals	43	60	25	20	44	50		
Dominance_D	0.2872	0.535	0.36	0.255	0.469	0.3096		
Simpson_1-D	0.7128	0.465	0.64	0.745	0.531	0.6904		
Shannon_H	1.434	0.8711	1.139	1.51	1.106	1.276		
Evenness_e^H/S	0.6989	0.5974	0.7808	0.7544	0.5038	0.7162		
Chao-1	6	4	4	9	6.5	5		

FIGURE 4 | Accumulation curves of fungal communities per sample.

PWD-associated fungal community: culturomics

FIGURE 5 | Frequency of isolation of fungal genera in each collection site.

- In overall, dominance of Ophiostomatales (*Ophiostoma ips* > 50% FI) in *P. pinaster* infected with PWN;
- In exception of 1 tree in Seia (1), Ophiostomatales were only present in *P. pinaster* infected with PWN;
- *P. pinaster* without PWN (healthy trees) presented more diverse fungal community than *P. pinaster* with PWN.

Not all Ophiostomatales are suitable for PWN multiplication

Data and images obtained by Miguel Soares (Master Student)

FIGURE 6 | Effect of Ophiostomatales in PWN growth in comparison with *Botrytis cinerea*. Asterisks on top of columns indicate significant diferences at 99% (**) of confidence.

- Intraspecific variability between fungi isolates;
- PWN growth in *Ophiostoma ips* S38.16 and S39.1 was closest to growth in *B. cinerea* (p>0.001);
- All Leptographium terebrantis and Graphilbum sp. isolates were not suitable for PWN (in comparison with *B. cinerea*, p<0.001);
- Almost no PWN growth in *Leptographium* sp. S40.4b and L2.6;
- Question raised: was PWN concentration high in *P. pinaster* trees infected by *Leptographium* or *Graphilbum* (mostly from Tróia and Lezírias collection sites)?

Conclusions

Explore the biocontrol potential of these Ophiostomatales isolates, as well as, other already described nematophagous fungi such as *Esteya vermicola* (PhD student David Pires).

Acknowledgments

NemaINIAV, INIAV I.P. : Marina Cardoso and Miguel Soares (not in the picture)

Molecular Biology & Biochemistry Lab, INIAV I.P. : Filomena Nóbrega, Rita Varela

Mycology Lab , INIAV I.P. : Helena Bragança, Florinda Medeiros

Entomology Lab, INIAV I.P. : Edmundo Sousa, Luís Bonifácio, Pedro Naves, Adérito Sousa

NemaLab, MED-UE: Manuel Mota e Margarida Espada

Funding:

Partners and Consultants:

Instituto Nacional de Investigação Agrária e Veterinária, I.P.

