Role of QseG membrane protein in beneficial enterobacterial interactions with plants and Mesorhizobia

Autores: Brígido, C. ${ }^{1}$; Pereira Torres, D. ${ }^{1}$; Paço, A. ${ }^{1}$; Menéndez, E. ${ }^{1}$; Mateos, P. M. ${ }^{2}$
Expone: Brígido, C.
Contacto: ccb@uevora.pt

Afiliación: ${ }^{11}$ MED - Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap.94, 7006-554 Évora, Portugal. 2. Departamento de Microbiología y Genética, Centro Hispano Luso de Investigaciones Agrarias, Unidad Asociada csIc-USAL, Universidad de Salamanca, 37007 Salamanca, Spain.

Resumen: Membrane protein Quorum sensing G (QseG) positively interferes in the process of colonization and infection of enteric pathogens in animals. Its gene is located between qseE and qseF genes and is co-transcribed with the two-component system. Homologs of qseG gene, along with qseEF, are present in many Enterobacteriaceae; however, its role in nonpathogenic strains is still unknown. To fill this knowledge gap, we investigated the role of QseG protein of a plant-associated enterobacterium in the interactions with its legume host and in the benefits induced by this enterobacterium in the Mesorhizobium-chickpea symbiosis. Here, we show that Kosakonia sp. MH5 Δ qseG mutant was defective in internal root colonization and inoculation of chickpea seedlings with this mutant increased the expression of the defence-related gene CaRBOH-like in host roots. Furthermore, we show that invasion and a proper establishment within the roots and/or root nodules are essential for MH5 strain to be able to exert beneficial effects on the symbiotic Mesorhizobium-chickpea association under salinity. This study demonstrates, for the first time, that the role of QseG is transversal to pathogenic and nonpathogenic enterobacteria and is a step forward to better understanding the molecular bases of plant-bacteria interactions established between legume and beneficial endophytic enterobacteria.

