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Abstract: Historical glazed wall tiles are a unique vehicle of artistic expression that can be
found outdoors, integrating the buildings of many countries, therefore they are often subjected to
biodeterioration. In this work, the applicability of protective coatings on glazed tiles to prevent
biological colonization was evaluated. Thin films of titanium dioxide (TiO;) obtained by sol-gel were
applied on glazed tiles to appraise its anti-biofouling properties and to evaluate their suitability for
cultural heritage application. The TiO, coating was tested on four different Portuguese glazed tiles
and a modern tile. The chemical and mineralogical characterization of the glaze and ceramic body of
the tiles was examined by wavelength dispersive X-ray fluorescence spectroscopy (WDXRF) and X-ray
diffraction (XRD). The produced TiO; coating was chemically and morphologically characterized by
micro Raman spectroscopy (u-Raman) and field emission scanning electron microscopy (FESEM).
The anti-biofouling properties of the TiO, treatment were evaluated by inoculating the fungus
Cladosporium sp. on the glazed tiles. Potential chromatic and mineralogical alterations induced by the
treatment were assessed by color measurements and XRD. The TiO, coating did not prevent fungal
growth and caused aesthetical alterations on the glazed tiles. A critical analysis evidenced that the
tested coating was not suitable for cultural heritage application and highlighted the challenges of
developing protective coatings for glazed tiles.
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1. Introduction

Glazed wall tiles are ceramic plates covered with a vitreous glaze applied as revetment on buildings.
As an integrated heritage, their uniqueness and artistic value result from the communion with the
architectural structure for where they were originally designed [1]. Therefore, the displacement from their
original location will influence their artistic and cultural value. When exposed outdoors, they are often
susceptible to weathering [2—4] and biological colonization [3,5-10]. Complex microbial communities
composed of bacteria, fungi, algae and cyanobacteria, have been identified on glazed tiles [3,5,7,8,10,11].
Aesthetical disfiguration is a conspicuous consequence of microbial growth [5,9,10,12]. Researchers have
also reported other injurious effects, such as physical decay caused by the penetration of microorganisms
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into fissures or underneath the glaze [5-7] and chemical decay associated with corrosion by metabolic
substances [3,8], which could lead to irreversible losses.

Biodeterioration of outdoor built heritage assets is still an unsolved issue since environmental
conditions and microorganisms cannot be controlled. Routine procedures for treating glazed tiles
with biological colonization include mechanical cleaning (with brushes and scalpels) and biocides
application to remove biofilms and inactivate microorganisms [13,14]. Several mechanical, physical
and chemical methods have been tested for handling microbial growth on built heritage made of
stone [15-19], but specific treatments for glazed tiles are scarce. Sparse studies tested thermal treatment,
gamma radiation, commercial biocides and TiO, nanoparticles on tiles to inactivate and mitigate
microorganisms [5,9,20]. Often, no long-term actions are foreseen, leading to recolonization after
the treatment [5,21-23]. The need for recurrent interventions, besides costly, may have adverse
side effects on the substrate. So, protective coatings could be a promising solution for glazed tile
preservation. Coatings are currently applied on outdoor glazed tile interventions mainly to improve
water repellence and delay deterioration processes. Different materials are thus selected for these
purposes, such as organic resins (acrylic, epoxydic, polyester, vinylic, polyurethane), microcrystalline
waxes, siloxanes and other hybrid polymers [24-29]. Many of these materials have a low resistance
towards outdoor conditions [29] and can even encourage colonization by microorganisms (increasing
bioreceptivity [30]) [10]. An experimental study tested applying TiO, and SiO, thin films by ion plating
plasma on historical tiles, but their efficacy or harmfulness was not evaluated [31]. Protective coatings
have been widely researched for their application on glass cultural heritage due to its propensity
to corrosion. Studies included SiO, sol-gel and nanocomposite coatings, showing good properties
for preventing the glass corrosion on stained glass, glass mosaic tesserae and glass models with
chemical compositions based on historical glasses [32-35]. However, some of these studies reported
that the coatings were visible at naked eye [34,36]. Neither the coatings tested on glass nor glazes were
evaluated regarding anti-biofouling properties.

TiO, nanoparticles are the most studied photocatalytic materials for preventing biological
colonization of cultural heritage [37,38]. The TiO, anti-biofouling properties result from the
photocatalytic effect, which generates free radicals and hydrogen peroxide when irradiated with
UV-light (bandgap energy of 3.2 eV, circa A = 388 nm) [39]. On the one hand, these free radicals
attack cell walls and cell structures, resulting in microbial growth inactivation [40]. On the other hand,
TiO, creates a self-cleaning surface due to its photoinduced superhydrophilicity (water contact
angle close to 0°). A thin water film is formed on the surface, avoiding dirt and microorganisms
accumulation [41]. Different methods have been attempted to impart anti-biofouling properties to
built heritage structures with TiO, nanoparticles [42—44]. The simplest method has been tested on
several substrates, including on historical glazed wall tiles. It consists of applying nanoparticles
in solvent suspension directly on the surface [5,42,45-48]. Several TiO, coatings of diverse nature
(organic, inorganic and hybrid) have also been described in literature reviews on TiO, materials
for cultural heritage applications [37,43]. Sol-gel is probably the most straightforward method for
producing these coatings in terms of required equipment, low-temperature processing, and good results
regarding film properties (homogeneity and purity) [35,43]. The method involves a two-step reaction:
hydrolysis and condensation. First, the metal alkoxides (Ti-OR in the case of TiO; or Si-O in the case of
5i0;) react with water through a hydrolysis reaction resulting in the replacement of the alkyl group.
Then, condensation occurs, forming amorphous hydroxides (M-O-M bonds). Thermal treatment of the
film might be necessary for densification, obtain the desired crystalline phase, and increase adhesion
with the substrate. Diverse formulations have been evaluated for cultural heritage application: TiO,,
doped TiO;, nanocomposite coatings with SiO, and TiO; and hybrid coatings. Doping TiO, with other
ions, such as Fe, Cu, Ag, S, N and C, is a common solution to overcome the need for UV-light and extend
the photocatalytic activity into the visible spectral range [43]. However, the absorption in the visible
region causes coloration [47,49]. A review on TiO; nanocoatings for cultural heritage applications
concluded that doped coatings usually induced higher chromatic variations [43]. Recent studies have
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emphasized that the substrate properties, particularly high roughness and porosity, also influence the
treatment’s efficacy [50,51]. One of the advantages of the TiO, applied as coatings is the immobilization
of the nanoparticles on the surface, avoiding their penetration and reducing leaching. The impact
of nanoparticles on the environment following leaching from treated surfaces is an actual concern
due to the lack of ecotoxicity data [12]. The aging of coatings and consequent loss of their properties
are also a major concern that has been described in several works [52,53]. In addition, some of these
novel coatings are still not adapted for in-situ application due to the complexity of the depositional
procedures required for the application of TiO, coatings [31]. However, many tile interventions,
such as desalinization treatments, replacement of mortars, and stabilization of the building structures,
involve the removal of tiles, which would allow an appropriate application of these coatings before the
remounting of the tiles onto the original location. Yet, it is important to emphasize that the efficacy
of any treatment on cultural heritage assets must comply with several requirements, specifically:
(i) harmless and compatibility with the substrate; (ii) long-term stability; (iii) reversibility (or at least
retractability); (iv) environmental sustainability, and (v) aesthetical compatibility [37,54].

The functionalization of glazed surfaces for several purposes (self-cleaning, anti-fouling or
antimicrobial) is well-established in the field of building materials, but not on historical glazed tiles [55].
In Europe, lead glazes (such as tin-opacified, lead-alkali or high lead silicate glazes) were mainly applied
to produce historical tiles [56-58], which are very different from the lead-less chemical compositions of
modern glazes. Lead glazes tend to be susceptible to acidic corrosion, causing lixiviation of lead and
other ions [32,59]. Thus, the reproduction of historical materials might not mimic the complexity of
aged surfaces. The applicability of these coatings on historical tiles must be evaluated to understand if
these promising treatments can be a solution to protect them against biodeterioration.

In this work, the feasibility of applying photocatalytic TiO, coatings on historical glazed tiles
to prevent biodeterioration was evaluated. The deposited sol-gel thin-films were characterized by
p-Raman for mineralogical analysis and field emission scanning electron microscopy (FESEM) for
morphological characterization. The efficacy of the TiO, coatings on glazed tiles for preventing microbial
growth was evaluated through bioreceptivity tests by inoculating the fungus Cladosporium sp. and
further evaluating fungal growth. The harmfulness of the treatment on historical tiles was appraised
regarding its aesthetical alteration visually and by measuring chromatic variation. Additionally,
the mineralogical composition of the tile’s ceramic body was investigated after the treatment. The results
were then critically assessed, considering the specific requirements for cultural heritage application.

2. Materials and Methods

2.1. Tile Samples

Four types of tile substrates were selected for sol-gel thin coatings deposition (samples 1BW, 2W,
3TS and 4MW). The set of tiles was selected to represent different production techniques: a hand-painted
blue and white earthenware tile (1BW), a semi-industrial stencil decorated tile (2W), a white industrial
earthenware tile (3TS) and a modern tile (4MW). The details of the tile samples used in this work are
summarized in Table 1. The tiles comprised damaged fragments without known provenance and did
not evidence any previous degradation, such as biological colonization, salt damage, or corrosion.
Samples 1BW, 2W and 3TS were obtained from a deposit of construction materials from demolished
buildings and 4MW is an industrial modern white tile. The tiles were cut into pieces with circa
1.5 x 3 cm?. Before the coating application, glaze surfaces were cleaned with ethanol and rinsed with
distilled water. Small samples of the ceramic body were cut into smaller pieces (10 mm x 10 mm) for
compositional analysis and harmfulness testing.
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Table 1. Description of the tile samples selected for the experiment.

Ref. Tile Description

1BW Blue and white majolica tile. Possibly dating from the 18th or 19th century.
Green and white tile decorated with stencil. Possibly dating from the late 19th or

2W early 20th century. Solely white areas of the tile were selected for analysis.
3TS Transparent glazed tile. Early 20th century tiles from the Sacavém Ceramic
Factory (Portugal).
4AMW Modern industrial white tile.

2.2. Tile Characterization

Elemental analysis of the tiles” ceramic body and glaze was conducted by wavelength dispersive
X-ray fluorescence spectrometry (WDXRF). The analyses were performed with a PANalytical XRF-WDS
4 kW AXIOS (PANalytical B.V., Almelo, The Netherlands) sequential spectrometer using a Rh X-ray
tube and an He flow. Spectra deconvolution by the iterative least-squares method and standardless
semi-quantitative analysis based on the fundamental parameter approach were carried out with the
SuperQ IQ+ software package (PANalytical B.V., Almelo, The Netherlands). The glaze was analyzed
directly over the tile samples and the ceramic body was separated from the glaze and ground into
a fine powder. For accuracy purposes, the lead-silicate reference glass Corning Museum of Glass C
(CMOG C) was also analyzed.

2.3. Synthesis and Application of TiO, Coatings

Sol-gel was prepared according to a previously described procedure [60] using the following
reagents without further purification: Titanium (IV) isopropoxide (Sigma-Aldrich, St. Louis, MO, USA,
99.9%) as the precursor, ethanol (CH3OH) (Sigma-Aldrich, Puriss p.a) and acidic water (HNO3). Sol
was refluxed for 48 h at 85 °C. The superficial liquid phase was collected and separated from the white
deposit formed after the refluxing process was obtained. The sol (pH 1.25) was deposited on the tile
samples through the Spincoat G3P-8 (Special Coating Systems, SCS) device at a speed of 2500 rpm/s to
ensure reproducibility. Samples were air-dried for 24 h prior to thermal treatment. Tiles with air-dried
coatings were annealed on the furnace at 350 °C for 4 h. The thermal treatment was necessary to
crystallize the amorphous TiO; thin-film into the anatase phase.

2.4. Characterization of TiO, Thin Film

u-Raman was performed to analyze the crystallinity of the TiO, thin film with a Labram 300 Jobin
Yvon spectrometer, equipped with a He-Ne laser of 17 mW power operating at 632.8 nm and also a
solid-state external laser of 50 mW power operating at 514.5 nm. Spectra were recorded as an extended
scan and the laser beam was focused with 100x Olympus objective lens. The laser power at the surface
of the samples varied with the aid of a set of neutral density filters of 0.6.

Surface morphology, thickness and the interface between the glaze and the deposited thin films
were observed by field emission scanning electron microscopy (FESEM). The analysis was carried
out with a Jeol JSM-7001F microscope equipped with an Oxford EDS light elements detector for
chemical analysis using secondary X-rays and standard ZAF corrections that allow semi-quantitative
microanalysis. Tile samples were previously sputter-coated with a thin gold/palladium film.

2.5. Tertiary Bioreceptivity Experiment

A set of non-treated tile samples (n = 3) and a set of TiO,-treated samples (n = 3) were selected
for a tertiary bioreceptivity experiment (Figure 1). The selected fast-growing fungus Cladosporium sp.
was previously isolated from a biological patina growing over the majolica glazed tiles from Pena
National Palace, Portugal [61]. The fungus was grown in potato dextrose agar (PDA) plates at room
temperature. For the inoculum, the fungal strain was scraped from 1 cm? of the PDA plates with
a sterile scalpel and suspended in dilute PDA liquid medium (10 g/L) (Scharlau, Barcelona, Spain).
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On the inoculation day, each set of tiles were placed inside a glass Petri dish suspended over a net with
distilled water at the bottom. Non-treated and TiO;-treated samples of each tile were placed in the
same Petri dish. Before the inoculation, Petri dishes containing the tile samples on the top of a net
and water at the bottom were sterilized (autoclaved at 120 °C at 100 kPa above atmospheric pressure
for 20 min). After slow cooling at room temperature, 150 puL of fungal suspension was inoculated
on the center of each tile sample. All tile samples were kept outdoors on the terrace of a building
situated in Almada (Portugal) exposed to direct sunlight for 40 days (March to April). The climatic
conditions were characterized by mild temperatures with an average day temperature of circa 14-16 °C.
The water at the bottom of the Petri dishes was periodically re-filled. Fungal growth was studied
through photographic documentation at four different incubation times: 0 (t = 0), 10 (t = 10), 20 (t = 20)
and 40 days (t = 40). The recorded images were then treated by digital image analysis using Photoshop
CS6 and MATLAB software to determine the percentage of the colonized area (Equation (1)):

%colonized area = (nr. of colonized pixels x 100)/nr. pixels tile area @

Total of 24 glazed tile samples
1

12 non-treated tile samples 12 treated tile samples

| ]
1 1 TR

3x1BW 3x2W 3x3TS 3x4MW 3x 1IBWT 3x2WT 3x3TST 3x 4MWT

Figure 1. Scheme with experimental design with the number of replicates of non-treated (1BW, 2W,
3TS and 4MW) and TiO;-treated (1IBWT, 2WT, 3TST and 4MWT) samples.

2.6. Characterization of Tiles before and after Treatment

Macroscopic observations were performed by visual inspection and photographic documentation
before and after the coating application with an Olympus C-5060 digital camera (Olympus Europa SE
& Co. KG, Hamburg, Germany). A Kodak Color scale was included in each record for light and color
adjustment of the images.

The aesthetic effect of the TiO, coating on tile samples was also evaluated by UV-Visible diffuse
reflectance. The spectra were collected with a Shimadzu UV-2501PC spectrometer directly on the surface
of the tiles using an integrating sphere and BaSOj as a reference. Spectra were then converted into
chromaticity values defined by CIELAB coordinates UV-2501 PC Colour Analysis software. The color
was defined through three different parameters, L*(brightness), a*(red/green) and b*(yellow/blue).
To assess the chromatic alteration caused by TiO, coatings, the tile surfaces were analyzed before
and after coating deposition. The variation between the treated and original were calculated for
each parameter (AL*, Aa* and Ab*), and total color difference (AE*) with the following equation
(Equation (2)):

AE = \/[(AL*)Z +(aa) + (Ab*)z] @)

X-ray diffraction (XRD) analysis of the powdered ceramic body was performed for mineralogical
characterization. After treatment (coating deposition and thermal treatment), XRD was performed
to detect possible induced alterations on the mineralogical composition of the ceramic body due to
the TiO, treatment. The XRD patterns were recorded on a Rigaku Dmax III-C 3 kW diffractometer
(Rigaku Corporation, Tokyo, Japan), using the following operating conditions: Cu K radiation at 40 kV
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and 30 mA in the 26 ranging from 20° to 80°, and an acquisition time of 1 s and 26 increment of 0.08°.
The EVA software (Bruker AXS GmbH, Karlsruhe, Germany) was used for spectral deconvolution and
mineral phase identification compared with standard files ICDD, Newtown Square, PA, USA).
Considering that the 1BW tile samples showed dark stains on the surface after TiO, coating
application and thermal treatment, further analyses were performed to investigate this alteration.
Small fragments of these tiles were exposed to HNOj3 solution, with pH = 1.25 (equal to the prepared
sol-gel) for 2 h by placing a soaked cotton swab over the glazed surface. Scanning electron microscopy
with energy-dispersive X-ray spectroscopy (SEM-EDS) examinations were conducted for investigating
the morphological alteration of the surface after exposure. These tile samples were directly mounted on
sample stubs, sputter-coated with gold and examined on a Hitachi 3700 N SEM (Hitachi, Tokyo, Japan)
interfaced with a Quantax EDS microanalysis system (Bruker AXS GmbH, Karlsruhe, Germany).
The Quantax system was equipped with a Bruker AXS XFlash Silicon Drift Detector (129 eV spectral
resolution at full width at half maximum—Mn Ko). The operating conditions were backscattered
electron mode, 20 kV accelerating voltage, 10 mm working distance and 120 mA emission current.

3. Results

3.1. Chemical Composition of Tile Glaze and Ceramic Body

The chemical composition of the glaze and ceramic body of the tile samples obtained by WDXRF
are shown in Table 2. The main components of the glaze tile samples 1BW, 2W and 3TS were SiO,
and PbO, with values ranging between 60-70 and 14-17 wt.%, respectively. The content of alkalis
(NayO and K;O) was higher for sample 1BW, followed by sample 2W and 3TS. Glaze 1BW depicted
the lowest content of Al,O3 of the three historical glazes and 3TS the highest content with 10 wt.%.
On samples 1BW and 2W, the calcium content was lower than the glaze of the 3TS sample (Table 2).
SnO; (5 wt.%) was detected on the glaze of 1BW and 2W samples; both are opaque white glazes
opacified with SnO,. On sample 1BW, taken from a blue and white tile, cobalt was also detected
(Table 2). The major components of the tile glaze 4MW were SiO,, Al,O3 and CaO. This glaze belongs
to a modern industrial tile, which differed significantly from the historical glazed tiles (1BW, 2W
and 3TS), particularly by the absence of lead and tin. A high percentage of ZrO (3 wt.%) was detected
on the 4AMW glaze since this was probably used as an opacifier.

Table 2. Major and minor oxide components of the glaze and ceramic body of the tile samples in wt.(%).

Sample 1BW 2W 3TS 4AMW CMOG C
Area G CB G CB G CB G CB Meas Ref
Na,O 4 <1 1 <1 <1 <1 1 1 1 1.07
Al,O3 3 8 4 11 10 21 14 22 0.9 3
SiO, 60 39 71 57 66 73 67 62 45 34.8
KO 5 1 3 2 4 2 3 3 3 2.84
CaO 1 45 1 22 5 <1 9 9 6 5.07
TiO, <1 1 <1 1 <1 <1 <1 <1 0.9 0.79
Fe, O3 1 5 1 5 1 1 1 1 0.6 0.34
CoO 2 - - - - <1 - - 0.2 0.18
ZrO - - - - - - 3 <1 - -
SnO, 5 - 5 - - - - - 0.4 0.19

PbO 17 <1 14 <1 15 <1 <1 <1 27 36.7

G—CGlaze; CB—Ceramic body; Meas—Measured; Ref—Reference composition; <1—<1 wt.%.

The ceramic body of the tile samples 1IBW and 2W were rich in SiO; (39 and 57 wt.%, respectively)
and CaO (45 and 22 wt.%) (Table 2), with similar contents of Al;O3 (8 and 11 wt.%) and Fe,O3 (5 wt.%).
The ceramic body of samples 3TS and 4MW showed lower contents of CaO (bellow 1 and 9 wt.%) and
Fe; O3 (1 wt.%) and were richer in Al,O3 (21 and 22 wt.%) (Table 2).
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3.2. Characterization of TiO, Thin-film

3.2.1. y-Raman Analysis

Raman spectra obtained directly on the coated tile surfaces revealed spectral features corresponding
to the anatase polymorphic phase of TiO,. Figure 2 displays a spectrum obtained on sample 3TS,
showing the banding pattern of anatase with a slight shift from assignments made in the literature [62]:
146 cm™! (Blg mode, very intense), 198 cm~! (Eg mode, very weak), 400 cm~! (Blg mode, intense),
516 cm™! (A1 g, Blg modes, less intense) and 634 cm™! (Eg mode, less intense).

146

Raman Intensity/a.u.

634
516

80 180 280 380 480 580 630
Wavenumber/cm-1

Figure 2. Representative Raman spectrum of TiO,-coatings. Example of anatase Raman spectrum
collected from the thin film deposited on a 3TS sample.

3.2.2. Morphology of the TiO, Coating

SEM images revealed that the TiO, film completely coated the surface of the glazed tiles
(Supplementary Materials Figure S1). Nevertheless, existing fissures on the glaze could still be
observed on the coated tile samples 1IBWT and 3TST (Figure S1). The surface morphology of the
applied TiO, coating was also investigated by FESEM (Figure 3). The TiO, coating formed a crack-free
thin film over the glazed surface. Atlower magnification, a homogeneous thin-film with larger particles
dispersed on the surfaces were observed on all types of tile (Figure 3a—d). The TiO,-coated 1BWT
sample showed a few dispersed pores (Figure 3a), but less surface particles in comparison with other
samples (Figure 3b—d). At higher magnification, the nanostructure of the thin film was similar for
all tile samples, with small agglomerates of cauliflower-like structures distributed over the surface
(Figure 3e-h). The grain size of the TiO, coating was not measured, but at higher magnifications,
it is possible to infer that it is in the nanometric scale (Figure 3e-h). Additionally, details of the
microstructure of the glaze were observed by SEM and FESEM examinations. Dark and light-colored
areas were observed on the glazed surface of samples 2WT (Figure 3b,f) and 1BWT (Figure S1),
which could be related to the presence of inclusions richer in elements with lower (dark areas) or
higher atomic number (light areas).

FESEM investigations allowed observing the thin film section and measuring the thickness of
the TiO, coating, which was 60-89 nm (Figure 4). FESEM images of the tile sections revealed good
adherence of the TiO; coating to the glazed surface for all tile samples (Figure 4). A well-defined
interface between the glaze and the TiO; coating could be observed, with no evident signs of a corrosion
layer underneath the coating.



Coatings 2020, 10, 1169 8 of 20

Figure 3. Field emission scanning electron microscopy (FESEM) images of the TiO;-coated glazed
surfaces. Surface of: (a) tile IBWT, (b) tile 2WT, (c) tile 3TST and (d) tile 4AMWT. Higher magnification
images of TiO; coating on: (e) 1IBWT, (f) 2WT, (g) 3TST, and (h) 4AMWT.

3.3. Tertiary Bioreceptivity Experiment

Throughout 40 days of incubation, photographic documentation showed fungal growth on the
non-treated and treated samples (Figure 5). The results showed that the fungal growth rate was faster
for the first 10 days of incubation. There was no significant growth between the 10th and the 20th
days of incubation or between the 20th and 40th days, confirming the stagnation of the fungal growth
(Figure 5).

Digital image analysis was performed to quantify the percentage of the tile surface that was
colonized by the fungus Cladosporium sp. (Figure 6). Fungal proliferation over the tile surfaces was
more extensive on samples 4MW and less abundant on sample 3TS. In general, the comparison between
the non-treated and TiO,-treated tiles showed that fungal proliferation was higher on the non-treated
samples (Figure 6). The only exception was observed on 4MW samples, where the treated tiles (4AMWT)
showed higher fungal proliferation, reaching values close to 40% (Figure 6).
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Figure 4. FESEM images of cross-sections of the coated tile surfaces with arrows indicating the TiO,
coating and Y value showing the measurement of the thickness of the thin film. (a) Sample 1IBWT with
Y = 83.33 nm, (b) sample 2WT with Y = 87.500 nm, (c) sample 3TST with Y = 89.583 nm, and (d) sample
AMWT with Y = 62.500 nm.

After Inoculation
1BWT 1BW

|

3TST 3TS 3TST 3Ts 3TST - 3TS 3TST 3TS
St Ak n]., R AR PR

wmem G are ” B sre - % 5 wope
l._‘i‘- e w‘-fi R N

4AMWT 4MwW 4AMWT 4MW 4AMWT 4MW 4AMWT 4AMW

sse Jou
,o.. &a@

wee b AoE|ens
mch‘# E"MM

Q'. L

Tem

Figure 5. Photographic documentation made during the experiment of the fungal growth on
glaze tile samples 1BW (non-treated); 1IBWT (TiO,-treated); 2W (non-treated); 2WT (TiO,-treated);
3TS (non-treated); 3TST (TiO,-treated); 4AMW (non-treated) and 4AMWT (TiO,-treated) at four different
stages: after inoculation, after 10 days incubation, after 20 days incubation and after 40 days incubation.
Scale bar: 1 cm.
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Colonized area (%)

Figure 6. Average percentage and standard deviation of tile surface (%) colonized by the fungus
Cladosporium sp. on non-treated (n = 3, darker color) and TiO,-treated (1 = 3, lighter color) tiles obtained
by digital image analysis after 10-, 20- and 40-days incubation.

3.4. Evaluation of the Chromatic Alteration Caused by Thin-Film Deposition

Visual inspection and photographic recording were performed before and after the coating
application to observe possible aesthetical alterations. The major change that occurred on all the
samples due to the application of the TiO; coating was the iridescent effect of the surface, particularly
conspicuous when observed under oblique angles (Figure 7a,b). Despite this effect being similar on all
tile surfaces, it was difficult to document by photographic recording (Figure 7a,b).

Figure 7. Aesthetical interference of the TiO, coating. (a) Sample 3TS photographed from a straight
angle (90°); (b) Iridescent of the TiO, coating applied on tile sample 3TS observed from an oblique
angle. Tile 1BW (c) before TiO, and (d) staining and darkening of the surface after the application of
TiO; coating. Scale bars: 1 cm.
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On tile sample 1BW, the iridescent effect was accompanied by the darkening of the surface and
grey stains formed underneath the coating (Figure 7c,d). The stains were only visible on this tile type;
none of the other samples showed this effect after the coating application. The dark stains could
not be identified by p-Raman. To understand if the blacking was caused by the acidic effect of the
TiO; sol-gel, non-treated 1BW samples were exposed to HNOj solution with pH 1.25, which was the
same pH as the applied sol-gel. At naked eye, the samples did not show any signs of corrosion or
blackening. SEM observations of these tile surfaces revealed small deposits, probably of corrosion
products. Neither pitting nor cracking was detected on the surface of the tested tiles (Figure S2).

Chromatic changes caused by the coating application and the thermal treatment were analyzed
by color measurements using the CIELAB coordinates (Figure 8). The AE* obtained before and after
the application of the coating varied between 3.38 and 5.93. These values resulted from the variation of
the luminosity parameter (AL*), which was considerably higher than the variation of the chromaticity
expressed in Ag*and Ab* (Figure 8). The b* parameter of all tile samples decreased, which reflects a
shift towards the blue color.

3 AE*
! e
; C
1N —

1BW 2w 3TS amw

Figure 8. Colorimetric variation before and after the coating application expressed as AE*, AL*, Aa* and Ab*.

3.5. XRD Analysis

XRD results revealed that the ceramic body of sample 1BW contained quartz (SiO),
calcite (CaCO3), gehlenite (Cay Al SiOy), dkermanite (CapMg-5i,O7) and wollastonite (CaSiOs3) (Figure 9).
The mineralogical composition of sample 2W was similar regarding the detected mineral phases, but
the Ca-bearing phases presented less intense bands (Figure 9a). Quartz was the most prominent peak
on sample 2W (Figure 9b), instead of calcite and gehlenite that were the main phases in sample 1BW
(Figure 9a). Quartz (S5iO;) and mullite (3A1,03-25i0,) were the mineral phases detected in sample 3TS
(Figure 9c). XRD revealed quartz (SiO;) as the most prominent phase, as well as albite (NaAlSi3Og)
in sample 4MW (Figure 9d). The analysis performed on the ceramic body after thermal treatment
to evaluate the effect of the film application suggested that no significant changes occurred in the
crystalline phases of the tiles.
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Figure 9. X-ray diffraction patterns of the ceramic body before and after the treatment: A—albite,
C—calcite, G—gehlenite, Q—quartz, M—mullite, W—wollastonite and A—ikermanite. Diffractogram
of ceramic body of the tile: (a) 1BW (before—1BW and after—1BWT); (b) 2W (before—2W and
after—2WT); (c) 3TS (before—3TS and after—3TST); and (d) 4AMW (before—4MW and after—4MWT).

4. Discussion

The reproduction of tiles can be difficult due to the innumerous variables involved in the ceramic
production process, such as granulometry, nature of raw materials, and firing (cycle, temperature and
atmosphere). However, TiO-coated tiles are already a market product with good results in modern
tiles [55], which significantly differ from historical tiles. Therefore, real tile samples were selected to
evaluate the application of the coatings on historical glazed tiles with diverse compositions and that
were naturally weathered. The use of authentic materials for testing conservation treatments can be
controversial, yet many studies have adopted this approach by employing test subjects (tiles without
specific cultural value) due to the constraints mentioned above [63-66].

4.1. Tile Samples

The surface of tile 1BW showed a continuous glaze without a regular network of cracks (Figure 1).
The glaze sample 1BW, taken from a blue and white majolica tile, was a lead-alkaline silicate glaze
opacified with SnO, (Table 2). Pereira et al. [67] and Coutinho et al. [5] also characterized blue and
white tiles with similar stylistic features [68] and obtained compositions similar to tile 1IBW, with Si,
Pb and Sn as main components. The ceramic body of sample 1BW showed a Ca-rich composition
(Table 2), as well as mineral phases commonly found on ceramic bodies with high Ca content, such as
gehlenite, wollastonite and anorthitic plagioclases (Figure 9). These minerals are formed when the
firing temperature is above 950 °C during the ceramic production process [69]. After firing, the presence
of calcite can be related either to low firing temperatures, high rates of Ca/Si ratio or degradation of
calcium phases [70]. Regarding the glaze’s morphology, some disperse micro-fissures were observed
on the surface of the glaze (Figure S1). SEM analysis revealed some micro-fissures formed around
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dark inclusions (Figure Sla), probably composed of quartz. Similar micro-fissures were previously
observed on majolica glazed tiles from the Casa da Pesca Manor House [5]. These may be attributed to
production flaws caused by the different behavior of glass and quartz inclusions during firing.

The glaze of sample 2W depicted cracks visible by the naked eye (Figure 1), which can occur due
to production flaws and aging processes [71]. Sample 2W has a lead-alkaline silicate glaze opacified
with SnO,, typically employed on the majolica technique. The ceramic body had a lower content
of CaO and a higher Al;O3; content than sample 1BW (Table 2). The numerous Ca-bearing phases
detected by XRD, such as calcite, gehlenite, dkermanite and wollastonite (Figure 9), corroborate the
relatively high Ca content. This mineralogy was similar to the ceramic body of the blue and white tile
(1BW). In fact, both tiles showed a similar type of glaze and ceramic body. However, based on stylistic
features [68] and particularly the stencil decoration of tile 2W, we can consider that 2W tiles correspond
to a more recent production than 1BW. The 2W tiles are probably pre-industrial tiles, which were
used for claddings produced during 1840-1920 [68]. The SEM analysis performed for characterizing
the TiO, coating revealed dark and light-colored inclusions, which could be composed of quartz and
tin-oxide, respectively (Figure 3b,f and Figure S1b).

The 3TS tile showed a glaze layer with a well-defined crack network visible by the naked eye
(Figure 1). The regular crack network is typical of white fine earthenware ceramics due to the ceramic
body’s porosity and its tendency to expand due to hydration with the aging process. Sample 3TS was
taken from a tile produced in the Sacavém’s ceramic factory (Portugal) at the beginning of the 20th
century. This showed a lead silicate glaze rich in CaO without any opacifying compound. The glaze
was applied over a white industrial earthenware body rich in SiO; and Al,O3. The ceramic body was
fired at high temperatures since quartz and mullite were the main mineral phases detected on the tile
samples 3TS. Mullite is formed on ceramic bodies with low content in CaO [72]. The composition of the
ceramic body is in fair agreement with the notes on ceramic paste recipes presented in the catalogue of
the Museu da Ceramica de Sacavém, which described the use of kaolin, ball clays, feldspars and small
amounts of cobalt oxide [73]. In fact, cobalt was also detected as a minor element in tiles 3TS (Table 2).

The glaze of 4AMW tile was smooth and no surface flaws were visually detected on the tile surface
(Figure 1). This modern industrial tile (4MW) showed a ZrO opacified glaze which is today the
most used opacifier. The ceramic body composition comprised a modern ceramic paste with low
calcium oxide content and a high content of alumina and silica, commonly reported in modern tile
compositions [74].

In conclusion, the four types of ceramic tiles studied showed different compositions and physical
features. The three historical tiles had considerable amounts of lead in the glaze composition; only the
modern tile did not present lead in its glaze. Nowadays, lead oxide can no longer be used in high
amounts due to its toxicity [75]. Additionally, their physical features showed differences, particularly in
the extents of micro-fissures or cracks: the modern tile showed a flawless surface (dMW), sample 1BW
displayed dispersed micro-fissures and samples 2W and 3TS a regular network of cracks visible at
naked eye. Therefore, an increasing permeability from 4MW < 1BW < 2W/3TS can be expected,
as the higher the number of breakages (micro-fissures or cracks) of the glazed surface, the higher the
permeability [6].

4.2. Characterization of the TiO, Coatings

The produced TiO; thin-films could be visually detected by the naked eye on the surface of the tile.
They showed good adherence and were not detached to the touch nor by water immersion. The p-Raman
analysis confirmed the presence of the polymorphic anatase on all samples. This crystalline phase
of TiO, is the most widely used for photocatalytic purposes [39,76]. Morphological and structural
characterization of the coating showed good surface coverage and few surface flaws, like pores and
large particles (Figure 3). The micro-fissures detected on the coating of some tile samples seemed
to result from pre-existing fissures (Figure S1). The nanostructure of the TiO; film was similar to
other sol-gel produced coatings, with cauliflower-shaped aggregates formed on the tiles” surface,
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as previously described in the literature [77]. Similar morphological features were observed among all
types of tiles studied in this work, indicating that sol-gel and spin-coating produced similar coatings
on all tile samples.

4.3. Effect of TiO, Coatings on Tile Bioreceptivity

To test the efficacy of the deposited coatings, a tertiary bioreceptivity laboratory-based experiment
was performed [30]. It was observed that the fungus Cladosporium sp. proliferated on all tile samples,
both on the TiO,-treated and non-treated ones. Nevertheless, fungal proliferation was lower on the
TiO;-coated samples, suggesting that the coating reduced tile bioreceptivity (Figures 5 and 6). The only
exception was observed for the modern tile samples (dMW), where the fungal proliferation was higher
on the treated samples (4AMWT) than on the non-coated samples (4AMW). In fact, these tiles depicted the
highest surface colonization (Figure 6). After 40 days of incubation, a decrease in fungal growth could
be percieved on all the samples (Figure 6), probably due to the consumption of the nutrients from the
culture medium [8]. This decrease seemed more accentuated on the TiO,-treated samples, which could
be attributed to the photocatalytic effect of the TiO, nanoparticles. A previous study on mortars with
TiO, additive showed good resistance against Cladosporium ssp. [78].

The results of previous studies showed that tile bioreceptivity to fungal colonization was in
general reduced and seemed to indicate that fungal growth was strongly dependent on the presence
of nutrients [79,80]. Thus, the use of a fast-growing fungus and higher nutrient concentration in the
inoculum resulted in faster and more extensive growth than the results obtained on previous studies
on glazed tiles [8]. A lower level of fungal proliferation occurred on samples with micro-fissures or
cracks on the glaze. These results suggest that the amount of nutrients retained on samples without
surface fissures was higher, promoting a higher level of fungal proliferation.

Further research should address the influence of the surface permeability, surface wettability
and slope angle on the bioreceptivity of TiO;-treated tiles. The slope angle may be a relevant factor
when testing bioreceptivity and anti-biofouling properties, particularly on self-cleaning materials.
In general, the deposited TiO, coatings slightly reduced tile bioreceptivity, but did not avoid the
fungal proliferation on the surface of the tiles. In fact, other studies have also reported the inability
of TiO; to prevent biological colonization [5]. However, nanoparticles are still a promising field
for developing novel conservation materials [38]. Multiple solutions such as the combination of
TiO, with other nanoparticles or the use of other particles, such as Cu, Ag, Zn might improve the
efficacy of thin-coatings [38]. Yet, the impact of nanoparticles on the environment is still a major
concern, particularly due to their effect on non-target organisms and their production processes [38].
Novel approaches are being tested for the reduction in the environmental impact of the production
process. For instance, Estevez et al. [81] recently evaluated the use of biogenic Ag nanoparticles to
eradicate biofilms, obtaining promising results. However, for the application of cultural heritage
materials, the effect of the treatment on the substrate can be challenging.

4.4. Harmfulness Evaluation of TiO, Coatings on Historical Glazed Tiles

The TiO, coating induced aesthetic changes on all tile samples, which were evident by the
iridescent colors on the tile surfaces (Figure 7a,b). Even though it is frequently claimed in the literature
that the application of these coatings is not accompanied by visual alteration of the substrates [82,83].
However, Aversa et al. [31] reported similar aesthetic effects on semi-glazed historical tile coated with
TiO,. The depositions of the thin TiO, coating over the glazes resulted in iridescent surfaces and
increased reflectivity due to optical interference (Figure 7). The reflection between parallel surfaces
(in this case, TiO; coating and translucent glaze) generates optical interferences, like the ones described
for self-cleaning glass [84]. These colored effects result in reflection amplitudes that depend on the
light wavelength and film thickness, which in reflectance cause interference like iridescence and color.
The increase in reflectivity observed on the coated samples has also been described on glass samples [84].
This increase may be related to the difference between the refraction index of TiO, and glass. For future
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development of coatings to be applied on glazed tiles, the reflection index needs to be evaluated
to reduce the optical interference-effect. Regardless of the aesthetical alterations on sample 1BW,
staining and darkening were also observed. The TiO; coating and heat treatment probably induced
chemical alteration of the substrate. Considering that dark stains were not detected on non-treated
1BW samples exposed to HNOj3 (Figure 52), lead corrosion products might have been reduced during
thermal treatment into metallic lead. The blackening of lead glazes during the firing process can occur
due to the reduction of lead oxide to its metallic form [85]. Further investigations need to be performed
to understand the formation of these stains. To avoid chemical alterations, Bertoncello et al. [82]
added small amounts of Pb(NO3); silica sol-gel coatings applied on lead glass. Regarding the effect
of the coating application process (thermal treatment) on the ceramic body, XRD revealed no drastic
changes on the mineral phase composition (Figure 9). However, small changes might not be detected.
According to the thermal analysis of pottery, the main reactions that can be observed until 350 °C in
calcareous ceramics are related to water loss by the dehydration and the beginning of de-hydroxylation
of clay minerals [40]. In fact, the decarbonization reaction that could affect the high calcite content of
samples 1BW and 2W only occurs at temperatures of around 750 °C [70]. However, further analysis
should involve the characterization of the thermal expansibility to understand if the tensions created
by the expansion and contraction of the glaze and ceramic body during thermal treatment can cause
the decay of mechanical properties. The long-term performance, durability and reversibility of the
studied treatment were not evaluated due to the aesthetical and chemical alterations observed during
the experiment. Thus, future work should comprise the evaluation of the long-term performance of
the coatings through accelerated aging or long-term on-site experiments. Since the lack of long-term
evaluation of the behavior of these materials is still represents a barrier for their application [86].
For the in-situ application of the TiO, treatment on historical tiles, the need for thermal treatment of the
sol-gel would represent a drawback. This could be overcome as the removal and remounting of tiles
for the cleaning and renewal of aged mortars is a common procedure in historical tile conservation.

The application of glazed tiles in architecture is strongly related to an aesthetical intention [87].
Therefore, the alterations observed on the tile’s surface after the application of TiO, coating suggest
that the tested methodology is not suitable for glazed tiles from cultural heritage. The results also
emphasize the importance of testing treatments for cultural heritage application in conditions as
close as possible to real conditions regarding substrate characteristics and environmental conditions.
However, the development of preventive coatings still represents a promising solution for protecting
outdoor heritage against external threats.

5. Conclusions

Thin TiO, coating produced by the sol-gel method was tested on three historical glazed tiles
and one modern tile to assess its anti-biofouling properties and to evaluate its suitability for cultural
heritage application. The coating did not prevent fungal growth, although a slight reduction in the
proliferation was observed for most of the samples. The bioreceptivity experiment also showed that
the cracks on the glaze’s surface influenced fungal growth, probably due to the different amounts of
nutrients that remained on the surface.

The application of the TiO; thin-coating on the blue and white historical tile chemically affected
the glaze and induced aesthetical alteration on all tested glazed tiles. Despite the promising features of
the deposited TiO, coatings (good adherence, anatase crystalline structure and a small decrease in
bioreceptivity), our results indicate that the tested TiO, coating is unsuitable for application on glazed
tiles from cultural heritage due to chemical and aesthetical interferences with the substrate.

Still, our research proved to be valuable for understanding certain critical issues for the future
development of protective coatings. Research must focus on coatings with a less aggressive pH, a lower
thermal treatment and presenting better aesthetical properties. Future work also needs to address
the reversibility and durability of the coatings. Many coatings currently under investigation, such as
TiO; and SiO;, are not reversible from glassy substrates. Therefore, novel reversible coating materials
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may be a solution to overcome this limitation, as well as the development of coatings that can be
applied in-situ.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/12/1169/s1.
Figure S1: Scanning electron microscopy images of the surface of the TiO,-treated glazed tiles and Figure S2:
Scanning electron microscopy images of the surface of glazed tile IBW before and after 2 h exposure to HNOs.
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