
Earth’s upper mantle related to large-scale con-

vective processes.
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The Impact of Agricultural Soil
Erosion on the Global Carbon Cycle
K. Van Oost,1*†‡ T. A. Quine,2* G. Govers,1 S. De Gryze,3 J. Six,3 J. W. Harden,4

J. C. Ritchie,5 G. W. McCarty,5 G. Heckrath,6 C. Kosmas,7 J. V. Giraldez,8

J. R. Marques da Silva,9 R. Merckx10

Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect
range from a source of 1 petagram per year−1 to a sink of the same magnitude. By using
caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent
evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of
the carbon transported by erosion. Based on this relationship, we estimated a global carbon
sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year−1 resulting from erosion in the
world’s agricultural landscapes. Our analysis directly challenges the view that agricultural
erosion represents an important source or sink for atmospheric CO2.

H
umans have drastically altered the global

carbon cycle, mostly through increased

use of fossil fuels and land use change

(1). Global earth system models (2, 3) represent

well the changes in carbon flux between soil and

atmosphere resulting from the reduced carbon

inputs to soil and the accelerated decomposition

of soil organic carbon (SOC) that accompany

conversion of land from an undisturbed state to

agricultural use (4, 5). In contrast, the carbon dy-

namics of the well-documented acceleration of

soil erosion and deposition (and resultant lateral

fluxes of SOC) associated with conversion of

land to agricultural use are poorly understood (6).

Soil erosion removes SOC from the site of

formation and results in its burial in depositional

environments. Recent analyses have identified

three key mechanisms whereby these geomor-

phic processes, together or separately, may result

in a change in the net flux of carbon between the

soil and atmosphere (fig. S1). Mechanism M1

involves replacement of SOC at eroding sites as a

result of continued inputs from plants and de-

crease in SOC available for decomposition (6, 7);

mechanism M2 is the deep burial of allochtho-

nous and autochthonous carbon (8) and inhibited

decomposition upon burial (6, 9, 10); and mech-

anismM3 is the enhanced decomposition of SOC

as a result of the chemical or physical breakdown

of soil during detachment and transport (11). The

fundamental controls on the magnitude of the

erosion-induced sink or source are then the rate at

which SOC is replaced at sites of erosion, changes

in the reactivity of SOC as a result of transport

and burial, and the rates of soil erosion and

deposition. Previous global assessments of the

influence of erosion and deposition on carbon

dynamics have made markedly different assump-

tions about these controls, resulting in the diamet-

rically opposed assertions of a global net release

or source of 0.37 to 1 Pg C year−1 (12, 13) ver-

sus a net uptake or sink of 0.56 to 1 Pg C year−1

(6, 9, 10) as a consequence of erosion on agri-

cultural lands.

The controversy about the role of erosion in

the global carbon cycle reflects the inherent dif-

ficulty of quantifying a net flux controlled by

interacting processes that are most often studied

in isolation. We examined the integrated effect of

the interacting processes using evidence for (i)

the rate of SOC replacement at sites of erosion,

(ii) the fate of the eroded and buried SOC within

agricultural watersheds, and (iii) global soil ero-

sion and soil carbon erosion rates (14). The first

two lines of evidence were derived from a com-

prehensive large-scale survey of the SOC and

caesium-137 (137Cs) inventories (mass per unit

area to given depth) of agricultural soils in Europe

and the United States (table S1) that allows us to

assess quantitatively the relationships between

lateral and vertical SOC fluxes. We examined

1400 soil profiles from 10watersheds (1 to 14 ha),

including noneroded soils and eroding hill slopes

as well as colluvial soils where sediment and

SOC are buried. The artificial fallout radioisotope
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