

## Biological interactions between nematophagous fungi, *Esteya* spp., and the pinewood nematode, *Bursaphelenchus xylophilus*

David Pires<sup>1,2\*</sup>, Cláudia Vicente<sup>1,2</sup>, Maria L. Inácio<sup>1,3</sup>, Manuel Mota<sup>2</sup>

<sup>1</sup>Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Oeiras, Portugal; <sup>2</sup>Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, Évora, Portugal; <sup>3</sup>GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal. \*david.pires@iniav.pt

## **OBJECTIVES**

The pinewood nematode (PWN), *Bursaphelenchus xylophilus*, is a **quarantine organism** in several countries and the **causal agent of pine wilt disease** (PWD). Controlling the PWN is difficult, but **nematophagous fungi belonging to the** *Esteya* **genus**, *E. vermicola* (*Ev*) and *E. floridanum* (*Ef*), are **promising candidates for biocontrol**. However, they were never tested in the maritime pine, *Pinus pinaster*, the main and most affected species in Portugal.

 Study host-<br/>nematode-fungus<br/>interactions
 Image: Determine the<br/>attraction effect of<br/>*Esteya* spp. on the<br/>PWN
 Image: Image: Determine the<br/>promising *Esteya*<br/>spp. for biocontrol<br/>strategies

## **MATERIAL & METHODS**



## RESULTS

|                      | No living PWNs were recovered from                                                                                              | <b>Table 1.</b> Percent inhibition of potentia Values represent the mean ± SE of 3 i                                          | l antagonists against <i>E. vermicola</i> .<br>replicates.                      |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <u>Fungus-</u>       | after inoculation (DAI);                                                                                                        | Potential antagonist                                                                                                          | Inhibition (%)                                                                  |
| nemaloue             | <ul> <li>E. floridanum dramatically decreased<br/>the initial population 7DAL</li> </ul>                                        | Esteya floridanum                                                                                                             | 7 ± 0,017                                                                       |
|                      |                                                                                                                                 | Ophiostoma ips                                                                                                                | 67 ± 0,276                                                                      |
|                      |                                                                                                                                 | Trichoderma alni                                                                                                              | 91 ± 1,138                                                                      |
| <u>Fungus-fungus</u> | <ul> <li>Antagonism between Ev and Ef;</li> <li>Growth inhibition of E. vermicola by<br/>Ophiostoma ips and T. alni.</li> </ul> | <b>Table 2.</b> Reproductive ability of PWN<br><i>E. floridanum</i> , <i>T. alni</i> and <i>B. cinerea</i> .<br>4 replicates. | Is on fungal mats of <i>E. vermicola</i> ,<br>Values represent the mean ± SE of |

|  |                     |                                                                              | Fungus        | Initial population | Final population | Rf                 |
|--|---------------------|------------------------------------------------------------------------------|---------------|--------------------|------------------|--------------------|
|  | <u>Fungus-plant</u> | <ul> <li>Esteya spp. grew on and colonized P.<br/>pinaster discs.</li> </ul> | E. vermicola  | 500                | 0                | 0                  |
|  |                     |                                                                              | E. floridanum | 500                | 0,75             | $0,0015 \pm 0,002$ |
|  |                     |                                                                              | T. alni       | 500                | 99,75            | 0,1995 ± 0,054     |
|  |                     |                                                                              | B. cinerea    | 500                | 2239,75          | 4,4795 ± 0,323     |



**Figure 1.** Cephalic region of *B. xylophilus*, with visible spores of *E. vermicola* (arrows) attached to the cuticle.



Figure 2. Attraction of PWN to the living mycelia of Esteya vermicola G810 (Ev), E.



*floridanum* V14639 (*Ef*), a naturally-occurring fungus of maritime pine, *Trichoderma alni* (*Ta*), and a non-sporulating strain of *Botrytis cinerea* (*Bc*) after 1 h. Each bar represents mean ± SE of 3 replicates.

**Figure 3.** Chemotaxis index for all treatments after 1 h. Each bar represents mean ± SE of 3 replicates. Arrows indicate PWN preference for *Esteya* spp.

- Our preliminary results reveal a clear preference for Esteya spp. by B. xylophilus, especially E. vermicola, compared to naturally-occurring fungi in P. pinaster, like T. alni, and common PWN food source B. cinerea;
- No living PWNs were recovered from the mycelia of *E. vermicola* and *E. floridanum* 7 DAI, indicating that both fungi killed the nematodes in vitro;
- Both *E. vermicola* and *E. floridanum* can grow on and colonize *P. pinaster* discs, but they are antagonistic to one another;
- These results suggest a promising potential of Esteya spp. for biocontrol of the PWN in maritime pine, but more isolates need to be tested.



This work is funded by the Portuguese Foundation for Science and Technology (*Fundação para a Ciência e a Tecnologia – FCT*), under the project "PineEnemy – Exploring the NEmatode-MYcobiota interactions in Pine Wilt Disease" (PTDC/ASP-PLA/28724/2017), and FEDER (*Fundo Europeu de Desenvolvimento Regional*) (LISBOA-01-0145-FEDER-028724), through Lisbon and Alentejo Regional Operational Programmes. David Pires is supported by the FCT PhD Fellowship 2021.08030.BD.