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Abstract

A physics-based medical image segmentation method is developed. Specifi-

cally, the image greyscale intensity is used to infer the voxel partial volumes

and subsequently formulate a porous medium analogy. The method involves

first translating the medical image volumetric data into a three-dimensional

computational domain of a porous material. A velocity field is then obtained

from numerical simulations of incompressible fluid flow in the porous mate-

rial, and finally a velocity iso-surface provides the surface description of the

target object. The approach is tested on CT images of eight patient-specific

cases, where cerebral aneurysms, nasal cavities (NC), and an aortic arch

(AA) are the objects of interest. In the aneurysm cases, the results are com-

pared against constant greyscale thresholding and manual segmentation. The

manual segmentations of the aneurysms are validated by a clinical practi-

tioner. Only a qualitative comparison is available for the NC, and the AA

geometries. The results show that the proposed method is effective and capable

of extracting the target object in a noisy domain. A sensitivity study is carried

out to verify the method's performance with respect to modelling or user

choices. The segmentation by the proposed method is also evaluated by per-

forming computational fluid dynamics simulation, including a near-wall flow

analysis, to ensure that the segmented geometry and the resulting computed

solution are representative and meaningful.
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1 | INTRODUCTION

Medical images play a crucial role in diagnosis, evaluation and treatment planning. Consequently, processing medical
data has drawn much attention among researchers in terms of identifying and analysing desired features. For instance,
image segmentation, as the delineation and extraction of distinct regions or objects, is one of the most demanding tasks
in medical image analysis.
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The accuracy of a segmentation is adversely affected by uncertainties present in the medical images. Images are
prone to low resolution and partial volume effects, noise, intensity inhomogeneity introduced by image acquisition
devices, as well as imaging artefacts. This makes it challenging and cumbersome to determine whether a segmentation
is accurate, and how any error propagates in subsequent analysis. This concern arises often in some applications related
to the cardiovascular or respiratory systems for example, where the near-wall flow field is of great significance due to
signalling pathways and mass transport. Hence, if the object surface is imprecisely obtained, the physiological and clini-
cal implications could be significantly altered.1–5

The spectrum of available segmentation methods is quite broad, including manual and several automatic tech-
niques. In manual segmentation, a user delineates objects of interest within the medical images, based on clinical
knowledge and experience. This approach is time-consuming and more critically it is not repeatable,6–8 however one
can expect a high precision of the segmentation with high confidence. Manual segmentation by an experienced opera-
tor can typically provide the best possible segmentation, despite uncertainties present. The dramatic increase in medical
data available and the demand for extracting complex features and organs, has led the research community to develop
semi-automated and automatic segmentation methods that not only are able to overcome some limitations of manual
segmentation, but also speed up the image processing and image understanding tasks.9 These approaches can be classi-
fied generally by the underlying algorithm and model adopted, and can include threshold-based methods, clustering
techniques, deformable models, or machine learning and atlas based approaches.9–14 In recent years image processing
has been dominated by artificial neural network (ANN) methods, such as convolutional neural networks (CNN)
architectures.15–18 These methods however require large training datasets, which is often unfeasible, but importantly
these are algorithm-based methods and their success can vary, especially when generalisations are required.

Medical image acquisition and use, including their segmentation, is now a determining factor in different medical
applications, however the images vary immensely from an analysis standpoint. Consequently, despite the progress
made in this field, there is no universal image processing algorithm to meet the demands of various applications.12 This
has spurred the development of segmentation tools which employ different algorithms and methods in order to provide
versatility for users, making them predominantly rule or algorithm-based19–23 rather than based on physical
principles.24,25

There is indeed a wide range of algorithm-based image analysis and segmentation techniques. Conventional seg-
mentation approaches such as level-set and fast marching methods are based on partial differential equations whose
solution specifies the position of a wave front propagating through the target object.24,26 Region growing methods work
based on the similarity of neighbouring pixels in the image, where the pixels with similar intensity are clustered. The
growing process can be initialised with a user-defined seed point. Watershed segmentation is a capable region-based
technique in which the image is treated like a topographic map, where the brightness of each pixel represents its eleva-
tion.27,28 Edge or boundary-based methods are also popular. Edge detectors locate and classify sharp discontinuities in
the image where there are immediate changes in pixels' intensity or concentration. This process is usually performed by
edge detection operators constructed like differential convolution kernels to be sensitive to large gradients in the
image.26 Active contours (or snakes) are subsets of deformable models and are common in image analysis and are for-
mulated as an energy minimising problem. First, an active and deformable contour whose energy depends on its shape
and location within the image is defined. The active contour then evolves toward the target object edge by minimising
the energy.29,30

In this paper the medical image segmentation is motivated by a model of a physical process, namely flow in a
porous medium. Specifically, we translate the image greyscale intensity variations due to partial volume effects as a
domain partially occupied by fluid and by solid material, modelling this as a porous material. With this analogy, the
image dataset is converted to a computational domain, and computational fluid dynamics (CFD) simulations of flow
through the porous medium provides a velocity field. By subsequently selecting a velocity magnitude iso-surface, the
surface description of the object of interest can then be obtained.

To the best of our knowledge, a similar concept which leads to consistently accurate segmentations without manual
intervention has not been adopted. The closest work is the voxel-based CFD modelling and Lattice Boltzmann Methods
(LBM) performed on upper and lower parts of human airways,31–33 however the focus was not image segmentation. As
our test cases, we will first consider five patient-specific datasets in which cerebral aneurysms (CA) are the target
objects, and show that the developed method provides high precision, while being relatively automatic and robust. The
model is then used to segment more anatomically complex shapes, specifically an aortic arch (AA) and two NC.

The paper is organised as follows. In Section 2 the overall methodology is detailed. Section 2.1 explains the medical
image pre-processing tasks, which involve identifying the region of interest and an approximate viable image intensity
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range. The translation from image intensity to porosity is presented in Section 2.2. The governing equations and the
derivation of the semi-empirical equation for resistance in the porous medium, as well as the CFD modelling of the
porous domain, are outlined in Section 2.3. In Section 2.4 the packed bed and shrunken voxel porous resistance models
are compared, indicating that and the shrunken voxel model provides a unique solution and is a viable porosity model.
In Section 2.5 a thresholding value indicator is introduced to make the segmentation relatively automatic, and is based
on a simple spherical object model. The results of the velocity iso-surface thresholding are discussed in Section 3, and
finally the concluding remarks are drawn in Section 4.

2 | MATERIALS AND METHODS

Volumetric medical imaging data is typically formed by stacking a series of two-dimensional images, which have been
acquired with a slice thickness and spacing, or reconstructed from rotational projections. The slice thickness and spac-
ing are chosen to ensure there is some overlap in the domain scanned. The three-dimensional dataset provides a spatial
sampling of the domain into individual voxels, which dimensions depend on the scanning sequence. The image inten-
sity (which is commonly a scalar greyscale value) is constant for each voxel and represents volume averaged informa-
tion. This averaging and the limited resolution available from the scanner can hamper medical image data analysis,
and is commonly referred to as the partial volume effect.34

The image intensity for each voxel provides information of the averaged material properties contained in the vol-
ume of each voxel as well as due to the slice overlap. Taking as example a blood vessel, at the lumen-tissue interface
the delineation of the vessel boundary is challenging due to the partial volume effect, which results in a tessellation,
and smearing of the image intensity. Indeed, at the interface regions the voxel intensity is a result of an average partial
volume of fluid (VoF) and partial volume of tissue within the same voxel volume. We will model this partial volume as
a porous medium.

Each voxel intensity is translated to a porous medium model; where there is a solid part associated with tissue as
well as voids through which fluids may flow (for example air when considering medical images of the airways or blood
in cardiovascular applications). If the voxel contains mostly tissue, then the porosity tends to zero, and conversely if the
voxel contains mostly fluid then the porosity tends to unity. Flow through a porous medium is commonly modelled as
flow across a granular packed bed of spherical particles, however this model is not suitable to represent a voxel partial
volume, for which we can imagine the solid and fluid to occupy opposite regions of the voxel. We therefore develop a
new porous model, discussed in Section 2.3.3, and termed shrunken voxel model (see Figure 4).

We use this analogy to introduce a new method for medical image segmentation. Employing the shrunken voxel
model for flow in a porous medium, we convert the medical image intensity to parameters of porous viscous resistance.
Performing CFD we obtain a velocity field. The iso-surface of velocity magnitude is then used as a tool for extracting
the desired object surface definition. The main steps of the proposed medical image segmentation method are presented
in Figure 1, and are summarised as follows:

1. Image pre-processing: The original image dataset is cropped to the region of interest such that the target object lies
inside. Depending on the image (the target object shape and size, and the image quality), the cropped region is
upsampled using linear interpolation.

2. Coarse thresholding: To reduce severe noise and the size of the computational domain, a coarse image intensity
thresholding operation is performed on the cropped region using a wide threshold range.

3. Translating greyscale intensity to a porous model: The porosity for each voxel is found through a simple linear rela-
tion between medical image intensity and the porosity. The porous model resistance is computed using a novel
semi-empirical equation, termed the shrunken voxel model.

FIGURE 1 Flowchart of the steps followed for carrying out the velocity iso-surface segmentation, based on translating the medical

image greyscale dataset to a porous material model
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4. CFD modelling of the porous medium: The voxels are now interpreted as computational cells in a finite volume solver
and CFD simulations can be carried out. The cells with porosity less than 0.1 are considered effectively as solid for
numerical reasons, and are excluded from the domain.

5. Velocity segmentation: An iso-surface of velocity magnitude is used to define the shape of the target object. The
choice of the iso-value is guided by a simplified geometry model analogy.

6. Use in subsequent analysis: The virtual model obtained from the velocity magnitude iso-surface segmentation can be
used for subsequent studies.

To evaluate the success of the proposed method, several numerical tests on different patient specific geometries
were carried out. The segmentations of the aneurysm cases were compared to manual segmentation by an experienced
user and validated by a clinical expert. Additionally, to assess the propagation of segmentation uncertainty, computa-
tional haemodynamic simulations were carried out on a cerebral aneurysm and compared to previous work. As a criti-
cal comparison we focus on the near-wall flow, which is sensitive to the no-slip boundary definition.

2.1 | Image pre-processing: Selecting a region of interest and range thresholding

The medical image datasets evaluated in the present study are CT scans and consist of: five CA,35 two NC,36 one AA.36

Details of the image datasets are provided in Table 1. The cerebral aneurysm cases are used to explain and verify the
proposed segmentation method by example, while segmentation results of the remaining datasets are used to show the
method is versatile and performs generally well without further modification. The image pre-processing stage involves
two steps, which are now discussed.

The first step in the pre-processing is to crop the image to the region of interest, principally to reduce sub-
sequent computational cost. The samples are then refined to have (0.1)3 mm voxel size using linear interpola-
tion, in the case of the aneurysm datasets. This was effected primarily to allow for higher resolution
numerical solutions of flow in porous media. This step can be ignored if the image voxel is fine enough.

In the second step an approximate range of viable image intensity is chosen, based on the object and background
intensities. This is carried out in order to identify the regions correctly, such that we are segmenting the desired object
within the image. The threshold range is chosen to be conservative to ensure the true geometry is retained, and there is
no need for the user to select the limits carefully. A sensitivity study is carried out to verify this, and the ranges chosen
for the test cases studied are presented in Table 2. Voxels with intensity outside the coarse thresholding range are dis-
carded, further reducing the computational cost.

As an example of the procedure, in Figure 2 the original and refined image for CA 5 are shown. Additionally, the
intensity is plotted along a line crossing the aneurysm, together with two constant threshold demarcations for compara-
tive purposes.

TABLE 1 Image information for the dataset considered: 5 cerebral aneurysms (CA), 2 nasal cavities (NC), 1 aortic arch (AA). Iob, Ibg,

σob, and σbg are respectively the average intensity of the object or background, and standard deviation of the object or background

Voxel size (mm) Slice thickness (mm) CNR, Iob�Ibg
σbg

� � SNR, Iob�Ibgffiffiffiffiffiffiffiffiffiffiffi
σ2
ob

�σ2
ob

2

q
0
@

1
A

CA 1 0.5 � 0.5 � 0.4 0.625 46.62 12.02

CA 2 0.4 � 0.4 � 0.5 1 20.35 51.34

CA 3 0.363 � 0.363 � 0.4 0.625 26.87 87

CA 4 0.4 � 0.4 � 0.8 0.8 57.46 6.97

CA 5 0.443 � 0.443 � 0.5 1 60.01 30.49

NC 1 0.505 � 0.505 � 0.5 2 62.83 105.79

NC 2 0.473 � 0.473 � 0.55 0.75 30.34 43.79

AA 1 0.488 � 0.488 � 0.625 1 5.85 15.03
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2.2 | Intensity to porosity conversion

In computed tomography scans, the density of tissue has an approximately linear relation to the attenuation of the
material.37,38 Let us consider a voxel located on the interface between artery lumen and tissue, and in order to quantify
how much of the voxel is occupied by its constituent components, we must first relate the image intensity of a voxel to
the proportion of material constituents within it. The volume of a voxel can be written as the sum of the solid and fluid
volume, or explicitly

V v ¼VsþVf ð1Þ

where Vv, Vs and Vf are volume of the voxel, solid (tissue) and fluid (blood/air), respectively. The intensity can be
defined by

Iv ¼VsIsþVf If
V v

¼ Vs

V v
IsþVf

V v
If ð2Þ

where Iv, Is and If are the intensity of voxel, solid and fluid, respectively. Introducing Equation 1 into Equation 2, we get

FIGURE 2 Comparison of intensity between the original (not upsampled) and refined (with upsampling) image, along with plot of

intensity on an axial slice through the aneurysm, for patient CA 5. The image intensity is plotted along the red line marked. The refined

image is upsampled to (0.1)3 mm using linear interpolation

TABLE 2 Threshold values used in the velocity thresholding and image greyscale thresholding segmentation method. The inlet

Reynolds number of each case is also presented. The image grayscale range for (cerebral aneurysm) CA 1–5, (nasal cavity) NC 1–2, and
aortic arch (AA) 1 are: (�3024,3071), (�1024,2013), (�3024,3071), (0,622), (�1024,2745), (�1024,2976), (�1024,1989), (�3023,3071)

respectively. Note that no plausible greyscale iso-surface value exists for NCs and AA, as the image data is of poor quality and the object is

too complex

Re

Velocity thresholding Greyscale thresholding

Coarse threshold limits Iso-surface value, juj(m/s) Iso-surface value, I

CA 1 0.059 (50 ≤ I ≤ 200) 10�10 100

CA 2 0.056 (90 ≤ I ≤ 200) 10�10 150

CA 3 0.089 (80 ≤ I ≤ 200) 10�10 150

CA 4 0.066 (100 ≤ I ≤ 200) 10�10 170

CA 5 0.132 (50 ≤ I ≤ 200) 10�8 160

NC 1 0.063 (�1000 ≤ I ≤ �200) 5 � 10�6 —

NC 2 0.045 (�1000 ≤ I ≤ �200) 5 � 10�6 —

AA 1 0.656 (�1200 ≤ I ≤ �1100) 10�5 —
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Iv ¼
V v�Vf
� �

IsþVf If
V v

¼V v

V v
Is�Vf

V v
IsþVf

V v
If ¼ IsþVf

V v
If � Is
� � ð3Þ

Vf/Vv is the ratio of the volume of the fluid over the volume of the voxel, which is the definition of porosity. In other
words, the relation between voxel porosity and intensity can be written as

ε¼ Vf

V v
¼ Iv� Is
If � Is

ð4Þ

If and Is can be considered the minimum and maximum intensity in the cropped image, regardless of whether we
have a fluid-tissue interface in the target object.

2.3 | Model for resistance to flow in a porous medium

The pressure drop for fluid flow through porous media can be suitably described by Darcy's law, provided the Reynolds
number is sufficiently low (Re � 1). Darcy's law relates the pressure drop and fluid velocity as follows

�rp¼ μ

kp
vs ð5Þ

where μ is the fluid dynamic viscosity, and kp is the permeability which is an intrinsic property of the porous medium.
The superficial velocity, vs, is defined as the volume flow rate through a unit cross-sectional area of the domain, compris-
ing both solid and fluid regions. It has been shown that as the fluid velocity is increased, the relation between pressure
drop and velocity becomes nonlinear.39 To describe this nonlinearity, Dupuit and Forchheimer39 included a quadratic
term to generalise Equation 5, resulting in

�rp¼ μ

kp
vsþbρv2s ð6Þ

Equation 6 is known as the Forchheimer equation. Factor b depends on the flow properties and medium of interest,
and is determined experimentally from the Forchheimer graph.39

The semi-empirical Ergun equation is an example of the Forchheimer equation, and is a well-known relation for
predicting pressure drop in granular packed beds of spherical particles. We will adopt this model to motivate and derive
appropriate coefficients in Equation 6. The Ergun equation is a superposition of pressure drop due to viscous and iner-
tial effects of the flow, which are known as Blake-Kozeny and Burke-Plummer equations, respectively.40,41

FIGURE 3 A packed bed of spherical particles (A), randomly distributed to make up a porous material (B), can be alternatively

modelled as a tube bundle (C) when we consider a bulk flow direction along the axis of the tubes (here in horizontal direction)
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Let us first consider the viscous forces. Flow through a granular packed bed can be considered as flow in a bundle of
tangled cylindrical tubes assumed to have a uniform diameter along their length,42 as shown in Figure 3. The laminar
flow in each cylinder is described by the Hagen-Poiseuille equation for incompressible and Newtonian fluid. The
Hagen-Poiseuille equation is then generalised for the bundle of tubes by introducing the hydraulic radius, Rh, and con-
stant shape factor k to include the effect of arbitrary capillary cross-section. The generalised Hagen-Poiseuille equation
is then written as

v¼ΔpR2
h

kμL
ð7Þ

where μ is the fluid dynamic viscosity, v is termed the physical velocity and represents the average velocity of the flow
within the tubes, and Δp is the pressure drop along an equivalent channel of length L.41 The hydraulic radius can be
expressed as the ratio of the available void space for the flow and the wetted surface as follows

Rh ¼ cross-sectional area normal to the flow
wetted perimeter

¼ volume of fluid
wetted surface

ð8Þ

or equivalently

Rh ¼Vf

As
¼ εVo

As
¼ εVs

As 1� εð Þ ð9Þ

where Vf is the VoF, Vs is the volume of solid, Vo is the volume of porous medium (i.e., Vo = Vf + Vs), and As is the wet-
ted surface. In this context, porosity is defined by

ε¼Vf

Vo
ð10Þ

The ratio of the solid volume over the wetted surface is given by Vs/As in Equation 9. For a single spherical particle
making up the granular bed this ratio is given by

Vs

As
¼

4
3πr

3
p

4πr2p
¼ rp

3
¼Dp

6
ð11Þ

where Dp is particle diameter (see Figure 3). Substituting this expression into Equation 9, the hydraulic radius for a
granular porous media can be expressed as

Rh ¼ εDp

6 1� εð Þ ð12Þ

Substituting this expression for the hydraulic radius into Equation 7, the mean co-axial velocity may be written as

v¼ ε2D2
p

36kμ 1� εð Þ2
Δp
L

ð13Þ

The physical velocity may be expressed as

v¼ Q
ε A�

¼ 1
ε
vs ð14Þ
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where Q is the volume flow rate and A� is the cross-sectional area of the domain. The ratio Q/A� is the superficial veloc-
ity, vs. It is apparent from Equation 14 that in porous media the physical velocity is greater than the superficial velocity,
since there is less space available for the fluid to flow. When superficial velocity is substituted into Equation 13, we
obtain

Δp
L

¼ 36k
1� εð Þ2
ε3

μvs
D2
p

¼A
1� εð Þ2
ε3

μvs
D2
p

ð15Þ

where coefficient A is an empirical correction factor, which is proposed to be A = 150.40 The Blake-Kozeny equation,
which considers the viscous effects, is then given by

ΔP
L

¼ 150
1� εð Þ2
ε3

μvs
D2
p

ð16Þ

Let us now consider the inertial forces on the flow. It has been shown that the friction factor for highly turbulent
internal flows no longer depends on Reynolds number.42 As such, Darcy's law cannot be attributed to the turbulent
flow regime. In order to account for turbulent flow in the tubes, we start by expressing the volume flow rate for an
incompressible and Newtonian fluid as

Q¼ πD4Δp
128μL

ð17Þ

where D is the tube diameter, L is the tube length, and Δp is the pressure drop across the tube.43 Given that the volume
flow rate is equal to velocity multiplied by cross-sectional area (Q = uA = uπD 2/4), the pressure drop for flow in a pipe,
in absence of body force, is given by

Δp¼ 32μv
L

D2 ð18Þ

In order to describe Equation 18 in terms of dimensionless quantities, one can divide both sides by the dynamic
pressure, ρv 2/2, to obtain the dimensionless form as follows

Δp
1
2ρv

2
¼ 32μLv=D2

1
2ρv

2
¼ 64

μ

ρvD

� �
L
D

� �
¼ 64
Re

L
D

� �
ð19Þ

This is often written as

Δp¼ f
L
D
ρv2

2
ð20Þ

where the dimensionless quantity

f ¼ Δp
1
2ρv

2

D
L

ð21Þ

Is termed the friction factor.43 Using the hydraulic radius given by Equation 12, the friction factor can be rewritten
as follows

f ¼ Δp
1
2ρv

2

Rh

L
¼

ΔP
L

1
2ρv

2

εDp

6 1� εð Þ¼B
ΔP
L

ρv2
εDp

1� εð Þ ð22Þ

Introducing superficial velocity into Equation 22 and rearranging it for the pressure drop, we get
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Δp
L

¼B
1� εð Þ
ε3

ρv2s
Dp

ð23Þ

where coefficient B is an empirical correction factor, which is proposed to be B = 1.75,40 yielding

Δp
L

¼ 1:75
1� εð Þ
ε3

ρv2s
Dp

ð24Þ

Equation 24 is known as the Burke-Plummer equation, and takes into account the inertial effects.
The Ergun equation is obtained by addition of Blake-Kozeny and Burke-Plummer equations, hence the viscous and

the inertial terms, and is given by

Δp
L

¼ A
1� εð Þ2
ε3

μvs
D2
p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Viscous Blake-Kozenyð Þ

þ B
1� εð Þ
ε3

ρv2s
Dp|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Inertial Burke-Plummerð Þ

ð25Þ

By re-casting Equation 25 based on dimensionless numbers we obtain

Δp
L

ρv2s
Dp

1�εð Þ
ε3

¼A
μ

ρvsDp

1�ε

þB ð26Þ

which can be expressed as

f b ¼
A
Reb

þB ð27Þ
where fb is the packed-bed friction factor, and Reb the packed bed Reynolds number is defined as

Reb ¼ ρvsDp

μ

1
1� ε

ð28Þ

The constants A and B are found by plotting fb against Reb for experimental data.42,44

2.3.1 | Governing equations for fluid mechanics

To model the fluid flow in a porous medium, one could solve the flow equations within the microscopic void structures;
however this is impractical for large problems. A practical approach is to average the microscopic transport equations
over a control volume whose size is much larger than the characteristic length of pore structures but much smaller than
the problem domain, the so-called representative elementary volume (REV).45 This homogenisation procedure is well
documented in the literature,45–51 and we report only the main results to assist our presentation.

The equations for conservation of mass and linear momentum for a fluid flow are given by the continuity and
Navier–Stokes equations, as

∂ρ

∂t
þr� ρuf

� �¼ 0 ð29Þ

∂ ρuf
� �
∂t

þr� ρufuf
� �¼�rpf þr� Tf

� �þF ð30Þ
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where uf is the microscopic fluid velocity, pf is the pressure, Tf is the stress tensor, and F is the body force. By applying
averaging theorems45,49,52 and adopting the finite volume approach, one can obtain the following equations for momen-
tum and continuity equations

∂

∂t V

Z
ρε

� �
dV þ

þ
A
ρvs �ds¼ 0 ð31Þ

∂

∂t

Z
V
ρvs

� �
dV þ

þ
A
ρvs
O

vs �ds¼�
þ
A
pI �dsþ

þ
A
T �dsþ

Z
V
f bdV þ

Z
V
fpdV ð32Þ

where V represents the control volume, s is the surface area vector, fb encapsulates all the body forces acting on the
fluid except the porous resistance, I is the identity matrix, and fp is the porous medium resistance force.53 The equations
may be further simplified by considering the fluid to be incompressible and Newtonian. The porous medium resistance
force fp is defined as

fp ¼�P � vs ð33Þ

where P is the porous medium resistance tensor consisting of two components

P¼PvþPi j vs j ð34Þ

where Pv and Pi are viscous and inertial resistance tensors, respectively. Comparing Equations 33, 34, and 6, the viscous
and inertial resistance for the Forchheimer equation can be written as

Pv ¼ μ

kp
ð35Þ

Pi ¼ bρvs ð36Þ

The Ergun equation (Equation 25) is one example of Forchheimer equation (Equation 6) for a particular class of
flow, that is packed beds42 where Pv and Pi are defined by

Pv ¼ 150
1� εð Þ2
ε3

μ

D2
p

ð37Þ

Pi ¼ 1:75
1� εð Þ
ε3

ρvs
Dp

ð38Þ

When it comes to finding the similarity between a voxel and a granular porous medium, two approaches,
namely a packed bed voxel or a shrunken voxel model, can be considered. In the packed bed voxel model, a voxel is
assumed to contain granular spherical particles while in the shrunken voxel model, a voxel is divided into two
opposing regions for the solid and fluid. In both models, the voxel is converted to a porous medium based on its
intensity. The main challenge to obtain the velocity field is predicting the extra pressure drop, and consequently
the resistance terms, arising from porosity, namely Pv and Pi. This can be achieved by following the same approach
used to derive the Ergun equation and finding the equivalent Forchheimer equation (Equation 6) for the two
voxel-based models.
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2.3.2 | Packed bed voxel model

In this approach, we assume the voxel to contain some spherical particles, as shown in Figure 4. The hydraulic
radius is a key component in the Ergun equation, which needs to be specified according to the modelling assump-
tions. In the packed bed voxel model, the volume of tissue in the voxel equals the volume of spherical particles,
hence

Volume of the spherical particles¼Volume of the solid part within the voxel ð39Þ

or mathematically

N
4
3
πr3p ¼ 1� εð Þd2da ð40Þ

which can be rearranged to yield

rp ¼ 0:62N�1
3 1� εð Þd2da
� �1

3 ð41Þ

where rp is the radius of small particles in the voxel similar to the radius used in deriving the Ergun equation (see
Figure 3), d is the length and width of the voxel (taken to be the same for simplicity, but is also the case here since the
two-dimensional image pixel dimensions is square), da is the depth of the voxel, and N is the number of particles in the
voxel. Using Equation 11 and 41, the ratio Vs/As can be obtained as

Vs

As
¼ rs

3
¼ 0:62

3
N�1

3 1� εð Þd2 da
� �1

3 ¼ 0:206N�1
3 1� εð Þd2 da
� �1

3 ð42Þ

Next, Equation 9 yields the hydraulic radius as follows

Rh ¼Vs

As

ε

1� εð Þ¼ 0:206N�1
3 1� εð Þd2 da
� �1

3
ε

1� ε
¼ 0:206N�1

3
ε d2 da
� �1

3

1� εð Þ23
ð43Þ

and consequently

FIGURE 4 Schematic of a voxel with particles inside (left), and shrunken voxel with tissue (right). The notation is as follows: d) height

and width of the voxel, da) depth of the voxel, df) height of the fluid region, ds) height of the solid region, Vf) volume of the fluid region, Vs)

volume of the solid region, As) wetted surface
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R2
h ¼ 0:206N�1

3

� �2 ε d2 da
� �
1� εð Þ23

 !2

¼ 0:206N�1
3

� �2 ε2

1� εð Þ43
d2 da
� �2

3 ð44Þ

Substituting Equation 44 into Equation 7 and then merging the constants, for the pressure drop we find

ΔP
L

¼A
1� εð Þ43
ε2

μ v

d2 da
� �2

3
ð45Þ

where A is a constant that needs to be determined. Using the hydraulic radius in Equation 43 and the friction factor
equation (i.e., Equation 21), the inertial part of Ergun equation is defined by

Δp
L

¼ f 12ρv
2

Rh
¼ f 12ρv

2

0:206N�1
3
ε d2dað Þ13
1�εð Þ23

¼
1
2 f

0:206N�1
3

1� εð Þ23
ε

ρv2

d2da
� �1

3

¼B
1� εð Þ23
ε

ρv2

d2da
� �1

3

ð46Þ

The complete equation for the pressure drop again is found by superposition of Equations 45 and 46 as follows

ΔP
L

¼A
1� εð Þ43
ε2

μv

d2da
� �2

3

þB
1� εð Þ23
ε

ρv2

d2da
� �1

3

ð47Þ

The friction factor, bed Reynolds number, and their relation are then respectively given by

f b ¼
Δp
L ε2 d2da

� �1
3

ρv2 1� εð Þ23
¼ A

Reb
1�εð Þ23

þBε ð48Þ

Reb ¼
ρv d2da
� �1

3

μ
ð49Þ

2.3.3 | Shrunken voxel model

In this model, each voxel is considered to be partially occupied by the solid (tissue) while the rest is occupied by the
fluid, as shown schematically in Figure 4. This model is appealing due to its similarity to the partial volume effect for
medical image data in which voxels located on the boundary between two objects are partitioned in a similar fashion.
In this model the hydraulic radius can be defined as

Rh ¼Vf

As
¼ εd2da

dda
¼ εd ð50Þ

Using this hydraulic radius in Equation 7, the viscous part of the Ergun equation for the shrunken voxel approach
is given by

Δp
L

¼A
μ

ε2d2
v ð51Þ

The pressure drop for the inertial part is obtained by again using the hydraulic radius (Equation 50) in Equa-
tion 21 as

Δp
L

¼B
ρ

εd
v2 ð52Þ

The pressure drop is obtained by the addition of Equation 51 and 52 as
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Δp
L

¼A
μ

ε2d2
vþB

ρ

εd
v2 ð53Þ

Therefore, the friction factor and the bed Reynolds number are given by

f b ¼
Δp
L

ρv2
εd¼ A

εReb
þB ð54Þ

Reb ¼ ε
ρvd
μ

ð55Þ

2.4 | Verification of porous voxel models

The Ergun equation is semi-empirical since the coefficients appearing in the equations, namely A and B, require fitting
to experimental data. The procedure to find constants of the Ergun Equation40 involves conducting an extensive num-
ber of experiments where the pressure drop is measured across packed columns for wide ranges of flow rate. In order to
set the constants, the friction factor (fb) is plotted versus bed Reynolds number (Reb), and the constants are then deter-
mined using the least square fit approach. We follow the same steps to find the constants A and B in Equations 48 and
54, resorting to high resolution numerical solutions of flow in a single voxel as the test set-up instead of running experi-
ments on packed beds.

Let us consider a voxel located on the edge of two objects, like the shrunken voxel shown in Figure 4. Let us denote
the height of an empty voxel by d, the height of the tissue region, hence the solid region by ds, and the height of the
fluid region by df, such that

d¼ df þds ð56Þ

According to the definition of porosity (Equation 10), the height of the fluid and the solid region for a voxel can be
expressed by

df ¼ εd ð57Þ

ds ¼ 1� εð Þd ð58Þ

To verify the relation between the friction factor and the bed Reynolds number, several numerical simulations were
performed on a series of two-dimensional voxel geometries with four main height diameters, d = 0.25, 0.5, 0.8, 1.0 mm.
The inlet and outlet boundaries were set to be periodic, and a two-dimensional fully developed half parabolic profile for
velocity was prescribed at the inlet section. The bottom and the top boundaries of the voxel were considered to be no-
slip and symmetric, respectively. All the simulations were carried out for 15 inlet velocities between 0.0005 m/s and
4 m/s. The flow regime was considered to be laminar. A structured grid with a finer spatial resolution toward the no-
slip wall was generated for each geometry. The height of the first mesh layer was 10�4 mm, and the average cell area
was 3.5 � 10�5 mm2. The finite volume solver STAR-CCM+ 13.04.010-r8 (Siemens) was used to perform the simula-
tions. The effect of porosity on the pressure drop was captured by conducting 10 sets (varying porosity) of 15 simulations
(varying inlet velocity) each for 4 different fluid region heights defined in Equation 57. The pressure drops obtained
from simulations are used to compute the friction factor.

In Figure 5, the friction factor and bed Reynolds number for d = 0.25 mm are plotted. A comparison between
Figure 5 and the result reported in40,42,44 reveals that the effect of inertial term is negligible, as the horizontal asymptote
related to the Bruke-Plummer equation does not appear in the plot.

Results for the packed bed voxel, using different porosities results in different relations between fb and Reb, as seen
by the different lines in Figure 5A. This implies that the packed bed voxel model is not suitable to correlate a general
equation for estimating the pressure drop in the voxel subjected to partial volume effects. Conversely, Figure 5B shows
that the results of the shrunken voxel model lie on the same line for different porosities. Performing a curve fit on the
results in Figure 5B, the constants in Equation 53 are determined to be A = 3, while the constant B is negligible as was
expected, hence B = 0.
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Let us now consider the pressure drop in a voxel without solid (tissue) as a reference voxel, in which there is no
pressure drop due to porosity. We can assume that the pressure drop caused by porosity in a porous voxel, partially
filled with tissue, is equal to the difference between the pressure drop in the shrunken voxel and the reference voxel. Given
the fact that ε = 1 for the reference (entirely filled by fluid) voxel, we can rewrite Equation 51 (viscous part) as follows

Δp
L

¼A
μ

ε2d2
v�A

μ

d2
v

¼A
1� ε2ð Þ
ε2d2

μv
ð59Þ

Similarly, Equation 52 (inertial part) can be rewritten as

Δp
L

¼B
ρ

εd
v2�B

ρ

d
v2

¼B
1� εð Þ
εd

ρv2
ð60Þ

Adding Equations 59 and 60, the pressure drop caused by porosity in a porous voxel can be defined by

Δp
L

¼A
1� ε2ð Þ
ε2d2

μvþB
1� εð Þ
εd

ρv2 ð61Þ

Equation 61 applies for a single voxel. To generalise this estimate, the physical velocity is replaced by the superficial
velocity, using Equation 14 (i.e., v = vs/ε) as follows

Δp
L

¼A
1� ε2ð Þ
ε3d2

μvsþB
1� εð Þ
ε3d

ρv2s ð62Þ

As the constant for inertial resistance part in Figure 5 was negligible, we only consider viscous resistance term
which is given by

FIGURE 5 Friction factor vs bed Reynolds number for two approaches. (A) packed bed voxel approach; fb and Reb are described in

Equations 48 and 49. (B) shrunken voxel approach; fb and Reb are mentioned in Equations 54, and 55
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Pv ¼ 3
1� ε2ð Þ
ε3d2

μ ð63Þ

This equation is then substituted into Equation 34 for subsequent simulations of fluid flow in a porous medium rep-
resentation of the medical images.

Finally we remark that the equation for the porous viscous forces given by Equation 63 is singular for small poros-
ity. Indeed, the viscous resistance tends to infinity when porosity tends to zero, which is equivalent of a voxel filled
completely with tissue. Numerically it is difficult to consider values tending to infinity, and this requires setting a mini-
mum limit for porosity, for which we would expect negligible flow within the voxel. For simplicity, we consider this
limit to be 0.1, meaning a voxel with porosity ε ≤ 0.1 is assumed to be entirely solid with no flow inside. Such voxels
are removed from the computational domain since they contain no fluid fraction. Conversely if ε = 1, the voxel is
entirely occupied by fluid and there is no viscous resistance from the porosity term.

2.5 | Velocity thresholding and the model spherical object

At this stage, the numerical simulation is performed and the velocity field inside the domain is obtained. The computational
domain here is the converted medical image to the porous material model. In the medical images of computed tomography
angiography (CTA), the boundary between vessels and the surrounding tissue is marked by a difference in the image
greyscale intensity. This is translated to the porous resistance model, and hence we can expect the computed velocity to vary
considerably across such boundaries, and it is our goal now to identify a velocity iso-surface threshold which lies on this
boundary. A common approach to identify an edge is to consider the spatial gradients of image intensity, as commonly
adopted in PDE-based anisotropic diffusion filters to specify the diffusion coefficients54 or the diffusion time.55–57

The numerical simulations of fluid flow in the porous medium analogy of the medical images will provide a high
resolution velocity field, and we are now in a position to select a velocity magnitude iso-surface which represents the
object of interest. At this point several options would be available if we consider the computed velocity magnitude as
equivalent scalar to an image greyscale intensity. Here, for simplicity, we look to select a velocity magnitude iso-surface
to define the object boundary. The proposed approach is to observe the changes in geometry (such as volume, surface
area or diameter) as different velocity magnitude threshold values are chosen to extract the iso-surface, and by observ-
ing these trends we may identify different behaviours.55 Let us explain the method through example, considering the
CA as test cases, though it may be applied to any object in the image.

Having a model generally simplifies the analysis and in order to derive an automatic approach, we equate the vol-
ume and area of the segmented aneurysm to those of a sphere (as an idealised aneurysm) as follows

4
3
π R0þdRð Þ3 ¼V aneurysm ð64Þ

2π r0þdrð Þ2 ¼Aaneurysm ð65Þ

where the volume and area of the aneurysm from velocity thresholding are denoted by Vaneurysm and Aaneurysm. Here R0

and r0 are initial radii of the model spherical aneurysm, whose volume and area are equal to those of the iso-surface of
juj = 10�5 m/s (one order of magnitude less than the inlet velocity). For the initial iso-surface value for some objects
with complex shapes, such as the NC, it is better to use a velocity iso-surface value of the inlet velocity to find the initial
radii. dR and dr are respectively the changes in the radius of the model spherical aneurysm, when matching the volume
and area of the velocity iso-surface segmentation. These changes are obtained by varying the velocity iso-surface values
from juj = 10�14 m/s to juj = 10�6 m/s in Equations 64 and 65. One should note that in general R0 ≠ r0 and dR≠dr
since these are found through equating either volume or area to the spherical model.

In practice we observe the trends of how dR and dr vary with decreasing velocity iso-surface value, aiming to iden-
tify possible turning points and rapid changes in slope in the plot of dr and dR versus iso-surface value. The reason for
this is analogous to the adaptive filtering proposed in,55 namely as the iso-surface value is gradually changed, the
corresponding change in volume and surface area of the segmented object will vary at two rates due to: (i) the removal
of noise, and (ii) the reduction of effective vessel diameter. Since noise in medical images occurs at a smaller spatial
scale than the object, it will be responsible for higher gradients of volume and area change with varying dR and dr.
Once the noise is effectively excluded, the further gradual changes observed are related to a reduction of effective vessel
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diameter. Identifying changes in the gradients, hence observing changes in a trend (i.e. second order derivatives and
points of inflexion), will determine the iso-value most appropriate for the segmentation.

3 | RESULTS AND DISCUSSION

Numerical simulations for steady-state flow in the porous medium model were carried out on a regular grid, which cor-
responds to the upsampled medical image voxels. A uniform and constant velocity magnitude of 10�4 m/s was imposed
at the inlets, such that the Reynolds numbers at the inlet section are less than 1 and are detailed in Table 2. Low Reyn-
olds number flow was chosen to ensure we would have creeping flow, with no flow separation nor secondary flow
structures (e.g. vortices), allowing the flow to fill the domain based on the porosity and without influence of flow iner-
tia. The outlet boundary condition was set to be zero pressure, and the walls were set to no-slip boundaries. The inlet
and outlet boundaries and their relation to the viscous resistance distribution on the wall for the original (not
upsampled) data of CA 5 are presented in Figure 6.

3.1 | Resistance and velocity distribution

An example of the results at different stages of the proposed methodology (see Figure 1) are presented in Figure 7,
showing a cross-section of the computed tomography medical images, the model porosity and viscous resistance. The

FIGURE 6 Computational domain for the original (prior to upsampling) image of CA 5. Top row: the blue surface is the result of the

velocity segmentation, while the red and orange boundaries are the inflow and outflow sections, respectively. The transparent (grey) cells in

this figure are part of the computational domain, which results from the initial user choice of coarse intensity thresholding. Bottom row:

map of viscous resistance (kg/m 3s) on the surface of the computational domain. The black closed contours delineate the inflow and outflow

sections from the remaining no-slip wall boundary
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small blue box in Figure 7A identifies a saccular aneurysm as the region of interest, and consequently the image is
cropped accordingly. The target aneurysm is magnified in Figure 7B, presenting the image intensity distribution after
linear interpolation upsampling. The further small blue box identifies a region of the vessel-tissue interface which is
shown in detail in Figure 7C together with the corresponding modelled viscous resistance in Figure 7D. A smooth tran-
sition of viscous resistance from a fully solid to fully fluid region is observed, which depends on the greyscale intensity
distribution arising from imaging partial volume effects. The porosity and the resulting viscous resistance for the
cropped region are shown in Figure 7E and F. It is evident that there is an inverse relationship between porosity and
viscous resistance distribution, given by Equation 63. The transparent (grey) cells seen around the object are voxels con-
sidered as entirely solid, and were removed from the computational domain.

The contour of velocity magnitude and the velocity profile along a line are plotted in Figure 8 (cross-section loca-
tions as in Figure 2 as an example CFD solution for flow in CA 5. Creeping flow is observed in the aneurysm, and the
velocity profile shows a gradual and smooth change from the core flow region to the near-wall region.

FIGURE 7 Different stages of the image preprocessing and porous medium setup, for a section of the CA 5 dataset. (A) coronal slice of

CT image to identify the aneurysm, (B) cropped and upsampled image, (C) and (D) detailed view of lumen-tissue interface voxels with

intensity and corresponding porous viscous resistance (kg/m 3s), (E) and (F) porosity and porous viscous resistance computed for the cropped

image shown in (b)
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3.2 | Volume change and iso-suface value

A comparison of the volume of segmented aneurysms obtained from: (i) thresholding a velocity iso-surface computed
from the numerical simulation of the porous medium, and (ii) thresholding a constant image greyscale intensity, for a
range of values, are shown in Figure 9. The different rates of volume change with the varying velocity or intensity
thresholding value can be clearly appreciated. We also observe that the changes in these curves occur at approximately,
though not precisely, at the same values of the segmented object volume irrespective if segmentation is effected by the
velocity or intensity thresholding. This result indicates that the object segmentation on the whole is consistently obtained,
though the level of noise and its treatment is different, resulting in different object representation upon segmentation.

FIGURE 8 Example CFD result of flow in the model porous medium, here for CA 5 with corresponding section to that shown in

Figure 2. Left: map of velocity magnitude. Right: velocity profile along the line indicated

FIGURE 9 Volume of aneurysm obtained from velocity thresholding and image greyscale thresholding approaches. The top and bottom

axes show the velocity iso-values and minimum limit of segmentations, respectively. See Table 2 for the final threshold values identified
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FIGURE 10 Solution of dR and dr for CAs 1–5. The initial area and volume were extracted for the iso-value = 1e-5 m/s. See Table 2 for

the final threshold values identified
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The simplified model spherical aneurysm representation, presented in Section 2.5, provides an additional means of
identifying a possible range of iso-values for the segmentation. The roots of Equations 64 and 65 for CAs 1–5 are plotted
in Figure 10. We observe identifiable segmentation points in the plots where there is plateau followed by rapid change

FIGURE 11 Results of segmentation for CAs 1–5. The first, second, and third column is the outcome of velocity thresholding, image

greyscale thresholding, and manual segmentation. The iso-values used in velocity thresholding and the threshold limits are presented in

Table 2. The fourth column is the profile comparison at an arbitrary section: black-manual segmentation; blue-velocity thresholding

segmentation; red-constant threshold segmentation
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in the slopes. The plateau regions are inflexion points in these curves, and are indications that the segmented surface
definition is on average insensitive to a local variation in threshold value, as is the case when delineating distinct
objects with uniform intensities. Consequently these inflexion points identify good candidate velocity thresholding
values. In some cases, including CAs 1, 4, and 5, an inflexion in the curves is readily observed, and the values for veloc-
ity thresholding are clearly identifiable at this inflexion. In CAs 2 and 3, we do not observe inflexions in the curves, and
the reason for this is that the coarse thresholding, as part of the image pre-processing stage, removed much of the image
background and hence no increase in dR or dr is observed at extreme low velocity thresholding values. In such cases
the values for velocity thresholding are clearly identifiable at the start of the plateau region, as if there were an
inflexion.

The final selected iso-surface values for the segmentation are reported in Table 2, and are marked in Figure 10. It is
important to note that the iso-surface value indicator is introduced to guide the appropriate velocity thresholding selec-
tion, based on the behaviour we observe in the model spherical object. Therefore, even though it is able to specify a
point or range of the iso-surface values for the segmentation, the result should be verified and adjusted if required. In
the present work no adjustment was carried out.

3.3 | Shape comparison

The results of velocity thresholding, image greyscale thresholding and manual segmentation, along with cross-section
comparisons, are shown in Figure 11. The first column in this figure presents the velocity iso-surfaces embedded in the
computational domains, which are transparent (grey) in the figure. From both visual inspection and comparison of
cross-sections, we observe that the velocity thresholding method is effective at extracting the aneurysm surfaces and
provides a close comparison to the manual segmentation results. The surface of the aneurysms are smooth and the
arteries preserve more details, which is not the case for the intensity thresholding.

A comparison of the segmented surfaces can be effectively carried out by measuring the cloud-to-mesh (C2M) dis-
tance, taking the manual segmentation as reference. C2M results are computed by CloudCompare Open-Source

TABLE 3 Statistical shape comparison of extracted aneurysms from velocity thresholding against the manual segmentation results. The

values are normalised based on pixel size (hence the scanning section resolution) reported in Table 1

Mean distance Max distance Standard deviation

CA 1 0.03 1.28 0.29

CA 2 0.33 1.41 0.25

CA 3 0.02 1.84 0.37

CA 4 0.15 2.15 0.39

CA 5 0.41 1.63 0.59

FIGURE 12 Results of segmentation for the original image (no upsampling) of CA 5. The cross-section profiles obtained from velocity

thresholding and greyscale thresholding are also compared. The results with upsampling and the location of the cross-section is shown in

Figure 11
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Software (version 2.11.1).58 Table 3 presents the normalised (based on pixel size) mean, maximum, and standard devia-
tion of C2M distance. The mean and standard deviation C2M results are less than one for all the aneurysm datasets
investigated, hence below the voxel resolution. However, local regions where C2M distance is greater than one may be
present, though these are focal spots and may be related to imprecise manual segmentation. A comparison with widely
used segmentation approaches such as active contour, fast marching, Canny edge detection, watershed, region growing
and the proposed method is provided in the Appendix.

3.4 | Sensitivity analysis

The proposed velocity thresholding has been tested on a range of medical image datasets, however some algorithmic
steps and user-defined parameters may lead to alternative segmentations. A sensitivity study is therefore necessary, and
this may provide further insight on the workings of the method. Firstly, the method was tested on the original image

FIGURE 13 Greyscale thresholding segmentation for CA 4. Various minimum limits from T = 100–130 are selected

FIGURE 14 Sensitivity analysis of CA 3. (A) slice of the image with contours of aneurysms boundary for different minimum limits:

blue, yellow, pink, and green lines represent the profiles for 90, 80,70, and 60 as minimum limits, respectively. The location of the cross-

section is also presented. (B) and (C) are greyscale thresholding segmentation. (D), (E), and (F) are the result of velocity thresholding

segmentation
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(no upsampling) of CA 5 as shown in Figure 12. While the velocity segmentation for the original and upsampled
domains compare well, we observe some details present in the upsampled segmentation are missing or appear accentu-
ated in the original image segmentation. The reason for this is that the coarser resolution is unable to resolve features
fully, and approximates them in this fashion.

As part of the image pre-processing stage, after the user identifies the region of interest, a coarse intensity
thresholding is performed. This thresholding reduces the computational cost and importantly sets the range for the
translation from intensity to porosity. Since this is a user parameter it requires further investigation and explanation.
Example segmentations obtained from simple image greyscale thresholding for CA 4 is presented in Figure 13. We
observe that the lower threshold value of intensity I = 100 is prone to noise artefacts, while the value of intensity
I = 200 is identified as the largest value in the region of interest. One can then conclude that the true aneurysm bound-
ary for this image dataset is a subset of the voxels in the range 100 ≤ I ≤ 200. We observe from Figure 13 that the qual-
ity of segmented geometry, in terms of noise exclusion, significantly depends on the minimum limit of intensity. The
coarse intensity thresholding for CA 4 was chosen as 100 ≤ I ≤ 200 (see Table 2, hence with a comfortable margin to
ensure the object lies within intensity range. We can conclude that a finer resolution is therefore advisable, though the
final segmented object surface will nonetheless be very good even at the lower resolution.

A sensitivity analysis of the coarse thresholding interval selection during the image preprocessing stage is detailed
for CA 3, in which lower thresholding values of I = 70, 80 and 90 are considered. Figure 14A compares the cross-section
profiles of the aneurysm for these different values and the surface of the aneurysms are shown in Figure 14B, C. The
results of velocity iso-surfaces segmentations for these computational domains are presented in Figure 14D–14F, from
which we note that there are negligible differences in the segmentations. An additional surface detail is observed in the
arteries when the computational domain is defined by the I = 70 minimum limit, which is due to the presence of more
voxels in the computational domain. The identified velocity iso-surface value starts from 10�9 m/s for the I = 70 bound,
10�10 m/s for I = 80 bound, and 5 � 10�11 m/s for I = 90 bound. This gradual increase again arises from Equation 4
that computes porosity from image intensity. Reducing the minimum limit introduces more resistance and undesired
voxels to the domain, which is relative to minimum and maximum of intensity. We can conclude that the user choice
of coarse intensity thresholding is insensitive to the final segmented object surface.

A sensitivity study investigating the working fluid properties and subsequent velocity segmentation results was also
carried out. The strength of viscous and inertial losses in a porous medium can be quantified by the Blake number,
which is a modified Reynolds number for a porous materials and is defined by

FIGURE 15 Map of Blake number on cross-section B for NA 1 for different working fluids (air and blood). The location of cross-section

B is shown in Figure 16
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FIGURE 16 Result of velocity thresholding segmentation of two patient-specific nasal cavity anatomies. Top row: the velocity iso-

surface of juj = 5 � 10�6 m/s and the solution of dR and dr, respectively. The initial area and volume were extracted for the iso-value

juj = 10�4 m/s. Bottom row: Segmentation of the image on three different cross-sections where light blue is the border of the computational

domain and pink is the profile of the iso-surface considered as the result of the segmentation. The location of the cross-sections is presented
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Bl¼ ρuDh

μ 1� εð Þ ð66Þ

Using the hydraulic radius for a shrunken voxel (Equation 50), we get

Bl¼ ρud
μ

ε

1� εð Þ ð67Þ

Each voxel, considered as a channel, has its porosity and fluid velocity. As such, the Blake number can be computed
for each voxel, and in Figure 15 the Blake number for NC 1 and two working fluids, including air and blood
(ρblood = 1030 kg m�3, ρair = 1.18415 kg m�3, μblood = 0.004 N s m�2, μair = 1.85508e � 5 N s m�2), is plotted on cross-
section B (see Figure 16) as an example. We observe that for both working fluids the Blake number is of the order of
Bl = 10�7 for near-wall voxels, indicating that the viscous resistance is dominant in this region. Therefore, the segmen-
tation outcomes are not sensitive to the working fluid properties. Consequently the working fluid is used merely to fill
the domain, obtain sub-voxel resolution and extract the region of interest by velocity iso-surface thresholding. As such,
the proposed approach can also be employed for other objects of interest, irrespective if a fluid-tissue interface would
exist in reality. We can conclude that the final segmented object is not sensitive to the fluid properties in the porous
medium, as long as the Reynolds number remains low to avoid inertial effects.

3.5 | Model performance on more challenging datasets

Having evaluated in detail the performance of the proposed method for the CA datasets, we turn our attention to
segmenting other more complex datasets. Specifically, we consider CT images corresponding to two NC and one
AA. The image dimensions are reported in Table 1. These anatomies are of interest here particularly since they exhibit
a high degree of morphological variability. Some regions, such as meatuses and septal passage in the upper airways
require fine spatial resolution for numerical simulations, making it necessary to upsample the image to have several
computational cells across each passage. As such, in the NC cases, the voxel size was refined to have (0.25)3 mm,
resulting in approximately 4 and 4.5 million cells, for NC 1 and NC 2 respectively. The AA case has wider passages
when compared to the nasal cavity, making it possible to perform the segmentation without upsampling. As a result
the AA 1 case has approximately 2 million computational cells. The inlet velocity was set to juj = 10�4 m/s, and the
Reynolds number and threshold limits are again reported in Table 2. The outcome of the velocity segmentation, the
solution of dr and dR and three cross-sections through each test case, are presented in Figures 16, 17.

We observe that the method properly extracts the shape of nasal cavity and preserves important features such as
meatuses, even in the presence of connections with surrounding cavities in the computational domain. This is where
the porous viscous resistance effectively comes into play. However, the method struggles to separate upper parts of the
septal passage in NC 1 (see cross-sections B and C in Figure 16), which is due to narrow anatomy (hence inherently

TABLE 4 Number of computational cells and the run time (wall time) for the serial and parallel simulations. Parallel processing was

performed using 16 Intel Xeon 2.1 GHz (E5-2620 v4) processors

Computational cells (million)

Run time (min)

Serial Parallel

CA 1 0.2 3.5 1

CA 2 1.1 10 2

CA 3 0.53 8 1.5

CA 4 0.44 2.5 0.8

CA 5 3.4 15 5

NC 1 4.5 20 4

NC 2 4 18 3

AA 1 2 5 1
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slow flow) and evidence of a physical obstruction. In such drastic cases, the velocity segmentation needs to be subse-
quently adjusted. The solution of dr and dR suggest juj = 5 � 10�6 m/s as target iso-surface value for the segmentation,
with dr as a slightly better indicator for detecting the segmentation value. The reason is that in such complex and
scroll-like geometries the object area is more sensitive to the thresholding values compared to the volume.

In the AA case, we clearly observe the excessive presence of noise and unwanted voxels in the computational
domain, however the velocity threshold segmentation works well and the shape of the aorta is successfully extracted.
Importantly, the method is seen to handle branching objects in a straightforward manner. The velocity iso-surface value
is identified from the plots of dr and dR clearly as juj = 10�8 m/s, which appears reasonable from visual inspection.

3.6 | Computational cost

The computational cost is an important aspect of any segmentation approach. The steps of cropping and thresholding,
discussed in section 2.1, aim to address this concern by reducing the number of numerical cells and thereby reducing
the computational cost. Also, as mentioned above, the flow is considered to be steady-state and is in the creeping
regime, helping to maintain simplicity and effectiveness. Table 4 shows the convergence time for series and parallel
simulations. The parallel processing significantly reduces the run time. The required time for the solver to obtain proper
velocity iso-surface varies for anatomies with different levels of morphological complexity. In fact, the computational
cost not only depends on the number of computational cells but is also related to the geometry in which the working
fluid flows. This arises from the physical nature of the approach. A general purpose Finite Volume solver may not be
the best suited for such grid configuration in terms of computational efficiency, and we note that specialised grid-based
methods such as the LBM or finite difference method (FDM) typically boast higher computational efficiency.

FIGURE 17 Result of velocity thresholding segmentation of aorta. Top row: the velocity iso-surface of juj = 10�5 m/s and the solution

of dR and dr, respectively. The initial area and volume were extracted for the iso-value juj = 10�4 m/s. Bottom row: Segmentation of the

image on three different cross-sections where light blue is the border of the computational domain and pink is the profile of the iso-surface

considered as the result of the segmentation. The location of the cross-sections is presented
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3.7 | CFD application: A case study

Having obtained encouraging segmentation results, both visually and by comparison to manual segmentation, it is
worth investigating the subsequent use of the virtual models. As an example, we undertake computational
haemodynamic simulations selecting CA 3 for this test as it has one of the most complex shapes among the CA datasets.
We adopted the technique introduced in35 to study the flow in aneurysms and follow the setup detailed therein. The
output of the segmentation was smoothed using the bi-Laplacian method in order to remove the small irregularities
arising from the marching cubes iso-surface tessellation and the linear upsampling of the medical image,2,59 and the
inlets and the outlet were extruded in the coaxial direction. In previous work35 we analysed near-wall flow structure
and wall shear stress critical points for the same CA datasets and in Figure 18 a time snapshot of these results is pres-
ented. The near-wall fluid mechanics measures are especially sensitive to the morphology of the no-slip boundary, and
we encouragingly find good agreement with the results discussed in,35 indicating that the proposed velocity
thresholding segmentation is sufficiently accurate and reproducible for these studies.

4 | CONCLUSION

A novel, physics-based approach for medical image segmentation is presented, which is overall robust and can be read-
ily generalised to various segmentation tasks. The method works by translating the medical image dataset to a computa-
tional domain, where the greyscale intensity at each voxel is interpreted as a porous resistance. The resistance is based
on the shrunken voxel model which depends on constants A and B, and these are respectively given unambiguously by
Equations 4 and 63. Indeed the value of these constants depends solely on the value of porosity, which in turn is not a
free parameter for the user to set. The user inputs are solely the choice of the lower and upper bounds of intensity for
the object of interest, which may be obtained in a straightforward fashion (or indeed automatically) after cropping the
image to isolate the region of interest. CFD simulations through this porous medium provides a velocity field, and a
velocity magnitude iso-surface then provides the object surface definition. We obtain sub-voxel resolution on segmenta-
tion, since the fluid velocity distribution in a porous medium varies smoothly, and the surface definition obtained is of
high quality.

The method was first verified on five patient-specific CA, and the results were compared with both manual (gold
standard) and greyscale thresholding segmentation. A sensitivity analysis on all user-defined choices with respect to the
segmentation quality indicated the method is robust and repeatable. Results of a computational haemodynamics simu-
lation on a segmented cerebral aneurysm geometry was compared to previous work, and indicated faithful comparison
to the near-wall fluid mechanics parameters which are known to be sensitive to the surface definition. Consequently,
the results of the segmentation are suitable for use in numerical simulations and other post-segmentation evaluation.

The method was then used to segment two NC and one AA as more challenging objects of interest, with no change
to the methodology and hence a generalisation of the target objects. Encouraging results were obtained, showing some
limitations when medical image resolution is locally extremely poor, but otherwise the method is resilient to the pres-
ence of noise. It is worth noting that the developed approach is not only applicable for segmenting regions of the

FIGURE 18 Solution of pressure, WSSdiv and WSS for CA 3. Plots of surface shear lines and WSS critical points. The results are

presented and compared with the previous work reported in35
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cardiovascular or respiratory systems. Indeed the porous model can be adopted for segmenting other objects of interest,
hence further generalisations are possible.

The computational cost is modest, since steady-state CFD solutions for flow in the porous medium is required. We
envisage that employing solvers well suited to such grid-based discretisations, such as the LBM or FDM, together with
parallelisation using GPGPUs, the method will be practical and versatile.

Finally, we note that the conceptual working on the method holds parallels with the VoF or immersed boundary
methods, and instead of a porous medium one could consider a secondary fluid to regulate the viscous resistance, such
that fluid properties in each voxel are calculated by a volume fraction average of all fluids. While the authors have not
investigated this further, we foresee similar successful segmentation results once the voxel partial volume consider-
ations are correctly translated to the computational models. Additionally, it would be interesting to explore alternative
wall boundary conditions for the CFD simulations of flow in the porous model, namely a slip-flow tangent to the medi-
cal image intensity iso-surface. This could be achieved by adopting a Beavers-Joseph interface condition and would
avoid development of the Brinkman layer,60 consequently facilitating the choice of the velocity magnitude for iso-
surface segmentation.
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APPENDIX A

A.1 | A Methods comparison
In this section, a comparison is made between the proposed method and other well-developed techniques, including
active contour, fast marching, Canny edge detection, watershed, and region growing. The segmentations were carried
out using 3D-Slicer22 and ITK-SNAP,19 and considerable care with trial and error adjustments to parameters were
required to provide the best possible segmentation with these well-developed methods. Dataset CA 5 was chosen for
the comparison due to its robustness compared to more challenging ones like CA 3, for which some of the methods
listed above failed to produce reasonable results. No post-processing was performed after the segmentations in order to
provide a fair and direct comparison. The cloud-to-mesh (C2M) distance computed by CloudCompare Open-Source Soft-
ware (version 2.11.1)58 was used as the comparison metric for three-dimensional segmented shapes. Contours of C2M
distance are presented in Figure A1 where the manual segmentation is considered as the reference (gold standard). The
maximum, mean and standard deviation of C2M distance are reported in Figure A2 together with the cross-section pro-
file comparison.

As observed, the results are satisfactory for all methods tested, and are in good agreement with the reference sur-
face. The outcome of velocity thresholding has the smoothest surface morphology among the shapes, without resorting
to further post-processing. However, we observe that the parent arteries are wider, which is caused here by the proxim-
ity of the inlet and outlet boundaries to the aneurysm (see Figure 6).

This comparison shows the capability of the proposed method in medical image segmentation. It ensures reasonable
segmentation even for the most drastic cases without the need for careful parameter selection. Indeed the method
appears robust in the numerical tests carried out. It is a physical-based technique, which may be readily developed fur-
ther and relies on little user intervention.

30 of 32 GOODARZI ARDAKANI ET AL.

http://www.cloudcompare.org/
info:doi/10.1002/cnm.3580


(A) (B) (C)

(D) (E) (F)

FIGURE A1 Contour of C2M distance with manual segmentation as reference for (a) velocity thresholding model, (b) active contour

(snakes), (c) Canny edge detection, (d) region growing, (e) watershed, and (f) fast marching methods. Maximum distance, mean distance,

and standard deviation is reported
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FIGURE A2 Cross-section profile comparison of CA 5 for the velocity thresholding model, active contour (snakes), Canny edge

detection, region growing, watershed, and fast marching methods. The location of the cross-section is presented
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