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Abstract: Usually, in ground-penetrating radar (GPR) datasets, the user defines the limits between
the useful signal and the noise through standard filtering to isolate the effective signal as much as
possible. However, there are true reflections that mask the coherent reflectors that can be considered
noise. In archaeological sites these clutter reflections are caused by scattering with origin in subsurface
elements (e.g., isolated masonry, ceramic objects, and archaeological collapses). Its elimination is
difficult because the wavelet parameters similar to coherent reflections and there is a risk of creating
artefacts. In this study, a procedure to filter the clutter reflection noise (CRN) from GPR datasets is
presented. The CRN filter is a singular value decomposition-based method (SVD), applied in the 2D
spectral domain. This CRN filtering was tested in a dataset obtained from a controlled laboratory
environment, to establish a mathematical control of this algorithm. Additionally, it has been applied
in a 3D-GPR dataset acquired in the Roman villa of Horta da Torre (Fronteira, Portugal), which is
an uncontrolled environment. The results show an increase in the quality of archaeological GPR
planimetry that was verified via archaeological excavation.

Keywords: applied geophysics; digital signal processing; enhancement of 3D-GPR datasets; clutter
noise removal; spectral filtering

1. Introduction
1.1. Ground-Penetrating Radar Surveys in Archaeologic Environment

The main feature in applied geophysics for subsurface exploration is the use of remote
sensing techniques. This feature becomes more important in archaeological environments
as a previous stage to excavations and can play an important role in site delimitation,
being able to make heritage protection endeavors more effective. The data processing
is usually performed by fully automatic routines that produce acceptable results when
the physical conditions of the terrain are favorable but fail under adverse conditions
creating doubt regarding the validity of the geophysical techniques used in archaeological
exploration arises.

Ground-penetrating radar (GPR) is one of the most common electromagnetic methods
used in Archaeology. It has become popular since 1970 [1] due to its advantages of quick
data acquisition and high resolution. The range and resolution are functions of the antenna
frequency used, which typically varies between 200 MHz and 1.6 GHz in archaeological
environment [2]. This method allows us to determine the spatial distribution of structures
buried in the ground, such as walls, ditches, floors, cavities, and even water levels. For
a high detection, two conditions should be given: a high dielectric contrast between
the buried structures and a lower background noise. Currently, the standard processing
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flow [3] operate well when the datasets have good-medium quality, but specific routines
are required for the datasets with low signal /noise ratio.

1.2. The Noise Problem in the GPR Datasets

This study focuses on those cases where the archaeological context allows us to infer
that there is a strong possibility that buried structures are present, but the acquired datasets
are not capable of detecting it. In these adverse conditions of low contrast, the elimination,
as far as possible, of the clutter background noise on radargrams (usually designated
B-scans) without significantly affecting the signal level is a crucial factor to increasing the
amplitude of the useful signal. Therefore, a filter approach operating in the spectral domain
using automatic data selection techniques is proposed.

Considering that the GPR signal contains two types of information: the useful signal
that arrives at the receiver antenna after being reflected by buried structures; and the noise
that arrives at the same time but is produced by undefined mechanisms and paths. The
coherent noise as a coupled air wave, ground surface fluctuations, diffractions, environ-
mental wave interferences, can be removed with standard filtering processes [3]. However,
the clutter-scattering reflections produced by non-target objects, e.g., soil heterogeneities,
stones and archaeological collapses [4] are difficult to remove without creating artefacts or
producing suppressions in the useful signal.

In archaeological sites this noise is very frequent and expressive. When it is in excess
in GPR signals, it is not possible to distinguish between it and the part corresponding
to the buried structures (the useful signal), because its amplitudes and frequencies are
similar to this useful signal components. For example, the presence of drops or corners can
produce as many reflections as those originating from structures that may exist, preventing
a good assessment of the subsurface content. The problem related to the identification
and selection of the useful signal in GPR datasets is the main target of this research. In
next sections we will present an effective algorithm that removes the clutter noise from the
3D-GPR datasets and increases the quality of the GPR images.

1.3. GPR Filtering Approaches

Regarding clutter noise removal techniques in GPR datasets, there are several ap-
proaches to perform it, which can be grouped into three main categories [5].

The first category corresponds to the classical filtering methods used to eliminate most
of the coherent noise. E.g., average trace or moving average subtraction [6], time-gating
with zero padding [7], entropy-based [8], Kalman filtering [9], F-K filtering [10], mul-
tiresolution wavelet analysis [11,12], wavelet filtering [13] and directional total variation
minimization filter [14].

The second category comprises filters based on parametric or statistical-based methods
that require reference datasets, making them dependent on the assumptions used to
estimate the clutter parameters and their statistical features [15-17].

The third category is classified as subspace technique [15] that explores the statistical
properties of the data decomposing it into different subspaces, such as the useful infor-
mation and the noise. Examples of this type of approach are eigen image filtering [18],
independent component analysis [19], principal component analysis (PCA) [20], singular
value decomposition (SVD) [20] and robust principal component analysis [21,22].

1.4. Proposed CRN Filter

The proposed method, framed in SVD-based filtering approach [5], intends to establish
a new methodology to eliminate clutter reflection noise present in the B-scans as effectively
as possible without modifying the useful GPR signal and as automatic.

The method considers the 2D spectral domain to perform the selection using SVD. This
approach is intended to complement the common processing operations of GPR datasets.
As a complementary operation to others, it is assumed that the data must be filtered out of
random noise, migrated, and deconvolved.
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To develop and configure this method, a laboratory experiment was prepared. The
procedure consists of the identification of clutter reflection noise under controlled condi-
tions using data obtained in a laboratory model. Then, the extraction of clutter signal was
performed through the study of the signal in the 2D spectral domain and using the SVD

factorization technique. The methodology was also applied to field data (uncontrolled
conditions) in 3D-GPR datasets.

2. Implementation of the CRN Filter in GPR Datasets
2.1. General Overview

This research began with some laboratory experiments to study the influence of
geophysical parameters on the direct problem, for the calculation of synthetic B-scans [23].
In the laboratory, a model (Figure 1a) was built to recreate a field scenario on a small
scale [24]. In this, a B-scan was acquired for use in processing operations (Figure 1b), using
a 1.6 GHz antenna. In parallel, a synthetic model was created in a numerical environment
(Figure 1c) for later calculation of the synthetic B-scan (Figure 1d). These steps were
implemented in MATLAB using the matGPR package (release 2) [25].

Laboratory model Synthetic model
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Figure 1. (a) Model created in the laboratory using soil from an archaeological site in which objects were buried are: 1—
cement slopes and base; 2—soil, layer 1; 3—soil, layer 2; 4—hollow plastic cylinder; 5—solid aluminum prism. (b) Synthetic

model. (¢) Acquired B-scan. (d) Synthetic B-scan. The B-scans are similar in terms of the object reflections. The differences
lie in the background noise present in the acquired data.

Comparing both datasets, in the acquired B-scan there is an amount of background
noise while in synthetic one this is absent. Evidently, the difference is because the synthetic
model a homogeneous medium has been considered (a limitation of the model parametriza-
tion). From which we can deduce that the soil embedded of the laboratory model produces
clutter reflections when it is scanned by a 1.6 MHz GPR antenna. The attempt to filter the
acquired data to bring them closer to the synthetic ones was not possible with conventional
operations to process GPR data (Figure 2). This standard flow mainly consists of the correc-
tion of the surface position, deconvolution and infinite impulse response (IRR) filters [3].
This limitation motivated the study of new and more effective data filtering methodology.
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Figure 2. (a) Acquired B-scan (raw data) obtained in the laboratory model. (b) Processed B-scan
using conventional flow (correction of the surface position, deconvolution and IRR filters). The

standard processing does not remove the clutter reflections corresponding to the disperse elements
of the lab soil.

The main goal rises to distinguish between useful and clutter reflections. Related
literature suggests several approaches applied to images with noise using spatial filtering.
These methods can be applied pixel by pixel in the raster image [26,27] that allow only a
local control of the input and does not require any information about the general structure
of the image, or in the spectral domain of the data using the Fourier transform [27,28]
which allows to consider the structure of the image.

The CRN filter operates in the spectral domain. In the next subsections we describe
the main steps taken to design it to apply to GPR datasets.

2.2. Bidimensional Spectral Analysis of a GPR Dataset

From a B-scan, which consists a set of GPR traces as a function of the position, x
(x-axis), and the travel time, t (y-axis), after applying the 2D Fourier transform, the position
is converted into wavenumber, k, and the time is converted into frequency, f. Figure 3a,b
shows the 2D Fourier transform of the acquired B-scan (Figure 2a). In both the magnitude
and phase spectra it is possible to verify that the useful signal is in the internal area
delimited by the red lines. To better identify the area of interest, a 3D representation of
the magnitude spectrum was generated (Figure 3c). This allows the classification of the
spectrum in larger amplitudes corresponding to the coherent reflections, and the smaller
ones to the clutter reflections. The outlier observed in the center of the magnitude spectrum
corresponds to the wavenumber values near zero.

3D Log FFT Magnitude - initial data

(b) (c)

Figure 3. (a) Magnitude and (b) phase spectra of the acquired B-scan. (c¢) 3D magnitude spectrum of the same B-scan. The
area inside the red lines indicates the location of useful signal in the spectra. In the 3D view, an outlier value is observed in
the center of the spectrum, which corresponds to the k values near zero.
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2.3. Parametrization and Application of the Filter Matrix

To assess how the removal of a given spectra sector impacts on the original signal, an
elliptical shape (Figure 4a) was created covering the entire light-colored band observed
in the magnitude spectrum. To remove the anomalous values around k = 0, a small
circular area had to be created around the center of the spectrum. Thus, the total area that
parameterizes the filter corresponds to the interior of the elliptical shape, except the central
part defined by the circular shape. The filter to remove clutter signals will be applied as a
bandpass filter, which maintains the unit values and eliminates the null values in the area
(Figure 4b).
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Figure 4. (a) Magnitude spectrum with the elliptical red lines corresponding to the filter design.
(b) Filter design of this dataset. This bandpass filter has unit value in the area to be maintained and
null value in the area to be eliminated.

This filter (Figure 4b) can be considered to be a matrix where the parameters are
the frequency range limits and the 2D finite impulse response (FIR) of the filter. To
determine the matrix coefficients a dedicated MATLAB code has been made using the
Image Processing Toolbox routines [29], where the outputs are the filter-matrix coefficients.
The next step is the application of the 2D Fourier transform to the matrix that contains
the filter coefficients and its multiplication by the transformed GPR data. Therefore, the
inverse of Fourier transform is applied to restore the initial space-time domain. The results
can be observed in Figure 5.
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Figure 5. Results from the spectral filtering approach. (a) Input data in the space-time domain.
(b) Magnitude spectrum of the filtered data. (c) Phase spectrum of the filtered data. (d) Filtered data
in the space-time domain. The applied filter was effective to erase the CRN. However, this is highly
dependent on the user parametrization.
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The proposed approach is very effective, but in this case the matrix parameterization
process was made by trial-and-error. This was easily implemented under controlled
conditions due to the knowledge of the location of the buried objects and the corresponding
reflections in the B-scan. However, in a scenario more complex or with larger amounts
of clutter reflections, this task may be compromised due to the high dependence of the
parameterization on the user. For this reason, the possibility of applying mathematical
techniques for the automatic classification of the GPR data to reduce the user dependence
on this filtering approach was investigated.

2.4. Using Singular Value Decomposition (SVD) in the CRN Filtering

There is a great diversity of multivariate statistical techniques that allow the classifica-
tion of a dataset into their principal components, where each one receives a weight. Princi-
pal component analysis (PCA) is a technique that allows us to estimate the number of prin-
cipal components present for a given dataset by calculating its dominant vectors [30-32].
In the PCA, the covariance matrix of the data contains the values related to the spectral
decomposition. It is a square matrix (X), which in the case of being symmetric, then they
the singular values are the absolute values of the eigenvalues of X. Taking this into account,
after applying the 2D Fourier transform to the GPR data, it become symmetrical (Figure 3a),
so that the PCA can be applied to classify these types of datasets.

The numerical implementation of PCA to matrix-based image data is carried out using
SVD algorithms, which can be applied to matrices of real numbers and complex numbers.
SVD is a very effective and stable factorization technique to diagonalizing matrices [30-32],
because the system can be decomposed into a set of linearly independent components, each
with an associated weight. This technique is generally used in data compression [33-36]
and is very useful for filtering out noise [35,37].

According to [32], when SVD is applied to a dataset defined by a X matrix (M X N;
M > N), the reconstruction can be performed through the linear combination of the calculated
parameters after the selection of the principal components to be used in reconstruction (1).

X =UusvT 1)

U is an M x N orthogonal matrix, where the columns represent the left singular
vectors that are eigenvectors of XXT.Visan N x N orthogonal matrix, where the columns
represent the right singular vectors that are eigenvectors of X' X. S is an M x N matrix,
where the diagonal values represent the singular values of X, which are different from zero;
these values are sorted ordered in descending order and sum to 1.

The reconstruction of a system decomposed by SVD is carried out through the linear
combination of the principal components, and some noise can be excluded without com-
promising the structural integrity of the image itself [32,38]. For example, in the SVD of an
image, the singular values specify the luminance of the layers image and the respective
pairs of singular vectors specify the geometry of each layer [30,31]. The principal com-
ponents of an image with largest amplitudes usually are associated with larger singular
values [32].

For a GPR dataset, the numerical environment corresponds to an amplitude matrix
defined by real numbers. When the 2D Fourier transform is applied, the matrix becomes
defined by complex numbers, and its spectra have symmetry. These two characteristics are
compatible with the theoretical assumptions behind the SVD technique [32]. Therefore, we
have the expectation that it will be effective in this type of data.

A test was carried out in MATLAB using the svd function. The input data are the 2D
Fourier transform acquired B-scan. When applying SVD, the singular values and vectors
of the matrix are calculated and stored in the variables U, S, and V. From S (the singular
values), the weights of each principal component are calculated.

The graphical projection of the weights of each principal component will allow us
to determine which ones will have greater expression in the dataset and to decide which
components should be considered in the reconstruction of the data, to the detriment of
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the exclusion of the other components. In Figure 6, it is possible to verify that the first
component has a much larger weight (approximately 65%) than the other components
(<10% each). To determine which components should be considered in the reconstruction
of the initial matrix, while maintaining only the useful signal of the B-scan and excluding
the clutter noise, it is necessary to perform some tests by trial-and-error to ascertain the
effect of removing components from the initial dataset.

Principal components - SVD
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Figure 6. Principal components of a B-scan obtained by SVD after the application of the 2D Fourier
transform. The first principal component is dominant (65%). The remaining components have a
weight less than 10% each.

The first test consists of the reconstruction of the initial data matrix considering only
the first principal component to ascertain whether this component, since it has a much
larger weight than the other components, corresponds to the useful signal. To verify
the effect of excluding a set of principal components, the data must be restored in the
space-time domain. The magnitude spectrum (3D view) will also be represented.

Keeping only the first principal component (Figure 7a,b), the filtered data shows an
amplitude distribution that does not resemble the initial B-scan (Figure 2a). The magnitude
spectrum reveals that most of the information has been eliminated; only remains the part
corresponding to the center frequency. This result suggests that the hypothesis of the
correspondence of the first principal component to the useful signal of the B-scan can be
ruled out.

The second test has been the reconstruction of the initial matrix keeping only the
first two principal components. The filtered data (Figure 7c,d) shows that there is also no
similarity with the initial data, and the range of amplitudes also shows that most of the
information it contains has been eliminated.

Following the tests, keeping the first three principal components, the filtered data
already begin to show similarities with the initial data (Figure 7e,f), and the magnitude
spectrum also begins to show similarities with the initial magnitude spectrum.

The next test consists of restoring the initial matrix while keeping all the principal
components, excluding only the first one. The results show that the filtered data do not
have the CRN that was observed in the initial data (Figure 8a), and the magnitude spectrum
(Figure 8b) maintains the morphology of the initial spectrum (Figure 3c).

The result shown in Figure 8 reveals that all the principal components except the first
one, with about 35% weight (less than the first) are sufficiently to represent the data. Thus,
the removal of the first principal component does not compromise the structural integrity
of the dataset. It can be verified that the erased component corresponds to the clutter
reflections noise contained in B-scan and the remain principal components corresponds to
useful reflections signal.
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Figure 7. Results of the performed tests to verify the effect of the data restoration and its magnitude spectra considering
only some principal components. (a,b) Filtered data keeping only the first principal component. (c,d) Filtered data keeping
the first two principal components. (e,f) Filtered data keeping the first three principal components.
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Figure 8. Results of the test to verify the effect of the initial data restoration considering all the
principal components except the first one. (a) Filtered data. (b) 3D magnitudes of the filtered data.
By removing the first principal component, which corresponds to the CRN, the restored signal
corresponds to the useful information contained in the B-scan.

The next step will be to eliminate the amplitudes around k = 0. These amplitudes,
which are generated by low frequencies (i.e., located at the center of the spectra), are not
included in the noise since they are part of the data themselves. Their elimination must be
carried out by trial-and-error until it can be seen that their removal has been successful.
The numerical implementation consists of the creation of a unitary matrix, in which the
center value is null (a binary filter), in the space-time domain. This implementation occurs
in the application of the 2D Fourier transform, so that the filter is applied in the spectral
domain through the multiplication of the filter by the data filtered by SVD.

To visualize the results of the whole CRN filter approach, it is necessary to restore the
data into space-time domain. Figure 9 allows us to verify that this CRN filter has been
successful. Only the reflections corresponding to the objects buried in the laboratory model
were maintained.
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Figure 9. Results from the application of the filter in the spectral domain. (a) Input data in the
space-time domain. (b) Magnitude spectrum of the filtered data. (c) Phase spectrum of the filtered
data. (d) Resulting data CRN filtered in the space-time domain.
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3. Application of the CRN Filter to a 3D-GPR Dataset (Uncontrolled Environment)

A definitive test of this approach will be carried out with a 3D-GPR dataset. This test
intends to verify whether the methodology improves the GPR planimetry of the buried
structures. The considered 3D-GPR dataset was acquired in the Roman villa of Horta da
Torre (Fronteira, Portugal), obtained with a 400 MHz antenna. Before the implementation,
the profiles were partially processed with a standard flow [3] where the applied operations
mainly consisted of background and vertical filtering, deconvolution, and gain adjustments.
Then, the data were prepared to be processed in MATLAB, to apply the CRN proposed
filtering iteratively. After that, the processed data were exported again to the commercial
GPR-software to generate the 3D-GPR images (time depth-slices).

To evaluate the effectiveness of CRN filtering approach, two datasets were compared
at the same depth-slices. The first one is the 3D-GPR dataset processed with the better
standard flow (labelled as Standard in Figure 10), and the other is the same processed
3D-GPR dataset where the CRN filtering has been added (labelled as CRNF in Figure 10).

Standard CRNF | Standard

0.28m

CRNF

0.28m

0.33m

X (m) X (m) X(m) X (m)

Standard

Standard

038 m 043 m

5 10 5 0 5 1
X (m) X (m) X (m)

Standard Standard

0.48 m 0.53 m
«

5 5
X (m) X (m) X (m)

I |Reflection amplitudes (normalized scale)

Figure 10. Comparison between the same GPR depth-slices without (Standard) and with spectral
filtering (CRNF). The CRN filtered results allow us to observe that there was an increase in the
contrast between the background and the coherent reflections of buried structures.

The analysis of the depth-slices of both datasets allows us to verify that the CRN
filtering highlights reflection alignments that correspond to buried wall-type structures,
and the visible alignments in both datasets were also verified as a better definition in the
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dataset. These observations allow us to conclude that the proposed filtering approach
increases the detection of the buried structures.

To enhance the effectiveness of the CRN filter, cover surfaces [39] were generated from
both datasets, considering all reflections between the depths 0.28 and 0.63 m (Figure 11a).
In this 2D and 3D cover views, an improvement of the planimetry for the CRNF dataset
can be verified again. In Figure 11b, the CRNF dataset was overlaid to an aerial image
of the site, which allowed us to point out the excavated structures (yellow lines) and the
alignments that can be seen in CRNF dataset (blue lines, unexcavated). The planimetry
overlay obtained by the CRNF dataset with the archaeological excavation shows that in
addition to increasing the geometric sharpness, the CRN filtering has not produced any
artefacts or suppression of important reflections.

Standard filtering CRN filtering

_ Cover surface depth (m)

-0.63 -0.28
(a)

i ' Sector with insfrastructures
< and razed structures

D Excavated structures ‘ Suggested structures

(b)

Figure 11. (a) Cover surfaces from Standard and CRNF datasets (2D and 3D views). (b) Cover surface
from CRNF dataset superimposed on an aerial image obtained by a drone (provided by Geodrone).
A schematic representation of the visible structures (yellow lines) and the alignments obtained by
the geophysical prospection (blue lines, unexcavated) is included. The CRNF results show that the
structures visible in the Standard dataset become more defined and better individualized.
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4. Discussion of the Results

The results obtained from the laboratory and field datasets show that the proposed
approach is effective for filtering CRN in GPR datasets. The selection of the noise next
to the signal, using the SVD technique applied in the 2D spectral domain, allowed the
implementation in a customized and automated way.

In the laboratory test, a GPR profile was obtained with a 1.6 GHz antenna. The
considered model was created in controlled conditions. In this study, there is a prior
knowledge about the buried structures as well as their locations.

The first test carried out consisted of a manual filter parametrization by trial-and-error.
Despite the good results, this scheme is highly dependent on the user decision, which
prevents a possible automation of this procedure. Therefore, the next step was to study
an automatic way to filter the clutter noise, to produce results similar to the obtained
in the manual approach. SVD applied in the 2D spectral domain allowed to perform it
effectively. However, the isolated use of SVD did not solve the noise problem completely.
It is necessary to filter the amplitudes around k = 0, located in the center of the spectra, to
reduce the banded graphical effect due to the high wavelength reflections. In this step, the
user must use a trial-and-error approach that consists of the parametrization of the size of
the filter and the cut off value until its successful removal. This is the weakest part of the
approach, because it does not allow for a complete automation.

The application of the proposed filtering methodology to the laboratory dataset
allowed us to isolate the reflections corresponding to the buried structures and exclude
the remaining reflections corresponding to the CRN. The filtered B-scan shows that this
processing considerably increased the contrast between the reflections that corresponds
to buried structures and the remaining reflections; only the latter remained with values
tending towards zero. The increase of the contrast allows us to enhance the perception
about the existence of buried structures in the subsurface.

The approach was also applied to a 3D-GPR field data, obtained with a 400 MHz
antenna in an archaeological site. This was later excavated exposing walls and floors,
which was crucial to confirm the correspondence with the reflections alignments visi-
ble in the GPR results and to verify that the applied filtering approach is effective in
removing the background noise while maintaining only the information corresponding to
those structures.

The produced results were compared with the standard processing results, after the
production of depth-slices at same depths of the 3D reflectivity model and the cover surfaces
of each dataset. The graphical representation of both allows us to observe that the proposed
approach can provide more useful information, with an automatic parametrization, than
the obtained by classical processing. In the data obtained by the CRNF approach, the
reflections corresponding to buried structures are visible at all the considered depths,
showing high contrast between the background and the alignments of the reflections that
correspond to buried structures that seem to have better definition. In the data obtained by
standard processing, it is possible to interpret the alignments of the reflections as buried
structures. However, the contrast and graphical resolution are not as clear as in the case of
the proposed methodology. This comparison may seem unfair; the standard processing
depends on the user experience; thus, another filter configuration can produce better
results than the obtained with the standard parametrization used. Thus, we highlight
that the great advantage of the proposed approach is the automation that SVD allows the
introduction of the CRNF, i.e., a user with less experience in data processing can obtain a
more accurate result.

Despite the effectiveness of the approach, there are some limitations that have been
noted. It is necessary to remove the amplitude values around k = 0 manually, as described
to the laboratory case. The good results are not so evident when we analyze the individual
processed B-scans. The improve is verified after considering the depth-slices extracted
from 3D reflectivity model (Figures 10 and 11).
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As mentioned before, this approach is complementary to the conventional processing
operations used for GPR datasets. It cannot be used without first applying the common
procedures. Several tests were provided to study at what stage of processing this approach
works best. If it is applied before, although the amplitude values of the useful signal have
not been modified, as the noise values no longer exist, then the GPR signal is anatomically
different, which corrupts the application of the remaining processing operations.

The main advantage of this technique compared to others that already exist is the
way in which useful information is identified in a dataset with high amount of CRN. The
use of a filtering procedure combining the SVD technique with the advantages of the
2D Fourier transform has a better adaptation than the classic filtering methods that fail
if the requirements for its implementation are not verified [6-14]. Nor do they depend
on prior knowledge of the structure or standard information as with statistical-based
filtering methods [15-17]. The proposed method depends on the data itself [15] and its
application is in a two-dimensional way, unlike the most common approaches that usually
consider the 1D Fourier transform, which results in a not complete effectiveness in the data
selection. Using the 2D Fourier transform will improve de data selection. This approach
is based on the one applied to improve noisy images by transform it into the 2D spectral
domain and the selection of the useful information using parametrization based on the
symmetry characteristics of the transformed dataset. Selecting the data of interest using the
SVD technique turns this operation more automated from the user. The user only needs
to choose the principal component that corresponds to the noise to be eliminated. This
knowledge is achieved after the spectral study of the GPR data and the effect of principal
components removal in the data. This procedure does not modify the structural integrity
of the data.

The continuation of this study should focus on the complete automation of this GPR
data filtering approach, namely the removal of the amplitudes around k = 0.

5. Conclusions

This study proposes a new methodology to perform clutter reflection noise (CRN)
filtering present in ground-penetrating radar (GPR) datasets, which the standard processing
flows usually cannot mitigate effectively. This approach has the advantage of the use
of the 2D spectral domain, through the 2D Fourier transform, to turns easier the filter
parametrization, due to its symmetry characteristics and the constant computational effort
whatever the amount of data.

The high dependency of the user to parametrize the spectral filtering decreased using
singular value decomposition factorization technique. This study allowed to conclude that
the CRN corresponds to the first principal component of the GPR dataset. It is dominant,
about 60-65% of the transformed data. Their exclusion, i.e., restoring the initial matrix
considering all the principal components except the first one, eliminates most of the CRN
of the B-scans considered.

The approach was effectively tested in a laboratory GPR dataset, with controlled
conditions. The tests have peaked with the application to 3D-GPR dataset obtained in
the Roman villa of Horta da Torre (Fronteira—Portugal, an uncontrolled environment)
which produced better results with the CRN filtering methodology than using the standard
processing flow. This allowed to increase the geometric sharpness of the GPR planimetry
and has not produced any numerical artefacts.
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