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NATURAL SU(2)-STRUCTURES ON TANGENT SPHERE BUNDLES∗

R. ALBUQUERQUE†

Abstract. We define and study natural SU(2)-structures, in the sense of Conti-Salamon, on
the total space S of the tangent sphere bundle of any given oriented Riemannian 3-manifold M . We
recur to a fundamental exterior differential system of Riemannian geometry. Essentially, two types
of structures arise: the contact-hypo and the non-contact and, for each, we study the conditions
for being hypo, nearly-hypo or double-hypo. We discover new double-hypo structures on S3 × S2,
of which the well-known Sasaki-Einstein are a particular case. Hyperbolic geometry examples also
appear. In the search of the associated metrics, we find a theorem, useful for explicitly determining
the metric, which applies to all SU(2)-structures in general. Within our application to tangent sphere
bundles, we discover a whole new class of metrics specific to 3d-geometry. The evolution equations of
Conti-Salamon are considered, leading us to a new integrable SU(3)-structure on S ×R+ associated
to any flat M .

Key words. tangent bundle, SU(n)-structure, hypo structure, nearly-hypo structure, evolution
equations.
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1. The fundamental exterior differential system.

1.1. Introduction. The notion of SU(2)-structure was introduced by Conti and
Salamon in [16] and plays an important role in the theory of generalized Killing
spinors. It consists of the geometrical data induced on any hypersurface of a
real 6-dimensional manifold endowed with an integrable special-Hermitian or SU(3)-
structure. For the latter we refer for instance to [1].

SU(2)-structures become an independent notion on real 5-manifolds N . They are
given by three 2-forms ω1, ω2, ω3 and a contact 1-form θ satisfying certain relations
between them. These forms induce a Riemannian metric on N and a canonical SU(2)-
structure on ker θ. The present article discovers a very useful result concerning the
deduction of such metric. Theorem 1.2 gives the following identity for the metric
g
SU(2)

on ker θ, where v is the volume form (v = 1
2ωi ∧ ωi, ∀i), which indeed seems to

be new:

x�ω1 ∧ y�ω2 ∧ ω3 = g
SU(2)

(x, y) v, ∀x, y ∈ ker θ. (1)

For hypersurfaces N , the induced SU(2)-structure is hypo, i.e. satisfies the equa-
tions

dω1 = 0, d(θ ∧ ω2) = 0, d(θ ∧ ω3) = 0. (2)

Conti and Salamon prove the ‘embeding property’, which is almost a reciprocal: an
analytic SU(2)-structure satisfying the hypo system admits an embedding into an
integrable special Hermitian manifold. This may eventually be compact, hence a
Calabi-Yau 3-fold.
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The hypo, the nearly-hypo, and other particular differential systems, imply inter-
esting geometry on N . For instance, one easily meets with Sasaki-Einstein manifolds.

This article studies the question raised in [8] regarding a certain SU(2)-structure
defined on the total space S of the tangent sphere bundle of a given oriented Rieman-
nian 3-manifold M . This shall be referred as the main example. We generalise the
construction with what we call the natural structures, supported by the fundamen-
tal exterior differential system of Riemannian geometry introduced in [4] and [8]. A
classification of SU(2)-structures according to first derivatives, which we then follow,
was developed in [10] and [19], two references well acquainted with the foundational
article of Conti and Salamon.

The exterior differential system discovered in [4] depends only on the orientation
and the metric on M . It consists, in general, of a natural contact 1-form θ and set
of natural differential n-forms α0, . . . , αn existing always on the total space S of the
(unit) tangent sphere bundle SM −→ M of any given oriented Riemannian n + 1-
manifold M . Of course, S inherits the induced metric from the well-known canonical
or Sasaki metric on TM (not to be confused with Sasakian or Sasaki-Einstein metrics
below). The metric plays a central role in defining the α0, . . . , αn. The compatible
contact structure θ is due to Tashiro. Applications of the natural differential system
are discussed in [4].

Here we shall consider just the case n = 2, so that S is a 5-dimensional mani-
fold. The fundamental differential system brings up four pairwise-orthogonal 2-forms
α0, α1, α2, dθ, satisfying:

dα1 = 2 θ ∧ α2 − r θ ∧ α0,

∗θ = α0 ∧ α2 = −1

2
α1 ∧ α1 = −1

2
dθ ∧ dθ,

dα0 = θ ∧ α1, dα2 = RUα2.

(3)

The function r = r(u) = Ric (u, u), u ∈ S, and the 3-form RUα2 are curvature
dependent tensors. For constant sectional curvature K we have r = 2K and RUα2 =
−K θ ∧ α1.

In dimension 3 we have the nice coincidence that the αi are 2-forms like dθ, and
then an SU(2)-structure naturally takes place. The main example is

ω1 = dθ, ω2 = α2 − α0, ω3 = α1 (4)

but many other linear combinations give interesting structures as well. Two distinct
types appear with different properties. The distinction seems to be chiefly between
those for which dθ is in the linear span of the ω1, ω2, ω3, and those for which it is out.
Our further results here concentrate more on the first type.

In [19], we see that Fernández, Ivanov, Muñoz and Ugarte also discovered SU(2)-
structures on S for M = S3, which is the Stiefel-manifold V4,2. Our coordinate-
free tools lead us to generalise mildly one of those results and also to rediscover
the Sasaki-Einstein well-known metrics. More important, [19] introduces the nearly-
hypo and double-hypo structures, which have very deep relations with nearly-Kähler
manifolds and half-flat SU(3)-structures. As it is well-known, the latter yield true
G2-manifolds. Since we have found below new families of double-hypo structures
associated to hyperbolic base M , they should lead to interesting results inspired by
[19]. New developments from our construction and technique shall be continued in
the near future.
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Finally, we recall the evolution equations, again due to Conti and Salamon, and
solve them in one particular family of hypo manifolds. This leads us to a new in-
tegrable SU(3)-structure, associated to any given flat base M , defined on the space
S × R+. Which is not a trivial analytic manifold.

1.2. The differential system. We briefly recall the theory from [4]. Let M
denote any oriented n + 1-dimensional Riemannian manifold. Then the space TM ,
i.e. the total space of the vector bundle π : TM −→ M , is well-known to be a
smooth manifold of dimension 2n+ 2. In natural coordinates, we may identify V :=
ker dπ with π�TM , the tangent to the fibres. Taking the Levi-Civita connection
∇ : Γ(M ;TM) −→ Γ(M ;T ∗M⊗TM), we get the canonical decomposition of TTM =
H ⊕ V 
 π∗TM ⊕ π�TM . The connection dependent horizontal distribution H
identifies again with π∗TM via dπ. Hence there exists a vector bundle endomorphism
B : TTM −→ TTM which sends horizontals to verticals and verticals to 0; it is called
the mirror map. Most important is that B is parallel for the pull-back connection ∇∗

by construction. We let Bt denote the adjoint of B.
There are two canonical vector fields on TM . The first is the tautological vertical

vector field U , defined by Uu = u, ∀u ∈ TM ; it is the independent mirror of the
second, the geodesic spray, defined on the horizontal distribution and hence connection
dependent. Any given frame in H, followed by its mirror in V , clearly determines a
unique orientation on the manifold TM .

We recall the map J = B − Bt gives the well-known canonical or Sasaki almost
complex structure on TM .

Next we consider the well-known canonical or Sasaki metric on the 2n+2-manifold
TM . The mirror map becomes an isometry. Any frame at point u arising from an
orthonormal frame in H with the first vector equal to BtU/‖U‖, together with the
mirror frame in V , in fixed order ‘first H, then V ’, is said to be an adapted frame of
TM .

We hence find that TM\(zero section) has structure group the Lie group SO(n), cf.
[8, Theorem 1.1]. A representation of SO(n), acting diagonally, occurs on the common
orthogonal distribution to the geodesic spray and to U . On these two directions, the
action is of course trivial.

Now we consider the constant radius s tangent sphere bundle of M

SsM = {u ∈ TM : ‖u‖ = s}. (5)

We let S = Ss,M denote the total space of SsM . We have TS = U⊥ ⊂ TTM , because
ker∇∗

· U = H and ∇∗
vU = v, ∀v ∈ V . In particular, this manifold is orientable.

The Riemannian submanifold S inherits the SO(n)-structure, which however is never
parallel because U is not parallel.

From the above remarks we have that any orthonormal frame u, e1, . . . , en on M
induces by horizontal and vertical lifts an adapted frame e0, e1, . . . , en, en+1, . . . , e2n ∈
TuS at point u ∈ S, where e0 = 1

sB
tUu ∈ Hu.

We denote by θ the 1-form on S defined as

θ = 〈U,B · 〉 = s e0. (6)

It is well-known that θ and J define a metric contact structure on S. We also recall
the result dθ = e(1+n)1 + · · · + e(2n)n (from our usual notation: eij = ei ∧ ej and
this has norm 1). This is reminiscent of the Liouville form on T ∗M , and one sees the
amazing fact that dθ no longer depends on s.
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The SO(n)-structure induces the following natural fundamental differential sys-
tem discovered in [4] of global n-forms α0, α1, . . . , αn on S.

We first write π�vol
M

for the vertical lift of the volume form of M (always a π�

denotes a vertical lift). Then

αn =
1

s
U�(π�vol

M
) (7)

and for each 0 ≤ i ≤ n we define, ∀v1, . . . , vn ∈ TS,

αi(v1, . . . , vn) =
1

i!(n− i)!

∑

σ∈Sym(n)

sg(σ)αn(Bvσ1 , . . . , Bvσn−i , vσn−i+1 , . . . , vσn). (8)

For convenience one also writes α−1 = αn+1 = 0; we use the notation

Rlkij = 〈R∇(ei, ej)ek, el〉 = 〈∇ei∇ejek −∇ej∇eiek −∇[ei,ej ]ek, el〉. (9)

Theorem 1.1 (1st-order structure equations, [4]). We have

dαi =
1

s2
(i+ 1) θ ∧ αi+1 +RUαi (10)

where

RUαi =
∑

0≤j<q≤n

n∑
p=1

sRp0jq e
jq ∧ ep+n�αi. (11)

Defining r = 1
s2π

�Ric (U,U) =
∑n

j=1 Rj0j0, a smooth function on S determined

by the Ricci curvature of M , we find that RUα0 = 0 and RUα1 = −r θ ∧ α0. This is

dα0 =
1

s2
θ ∧ α1, dα1 =

2

s2
θ ∧ α2 − sr vol. (12)

Moreover, the differential forms θ, αn and αn−1 are always coclosed. In every degree
we have

αi ∧ dθ = 0. (13)

No further assumptions are required, besides orientation and a metric, in order to find
the fundamental exterior differential system {θ, α0, . . . , αn}Ω∗

S associated to a given
oriented Riemannian manifold.

1.3. The 3d differential system. We now consider a 3-dimensionalM together
with the total space S of the tangent 2-sphere bundle of radius s equipped with
canonical metric and orientation. We have the contact 1-form, θ = s e0, clearly
invariant for the action of SO(2) on R

1+2+2, i.e. the trivial action on the 1-dimensional
summand and the diagonal action on R

2+2.
The global invariant 2-forms, independent of the choice of adapted frame, are

α0 = e12, α1 = e14 − e23, α2 = e34, dθ = e31 + e42. (14)

We also have

α0 ∧ α1 = α2 ∧ α1 = αi ∧ dθ = 0, ∀i = 0, 1, 2, (15)
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and

1

s
∗ θ = α0 ∧ α2 = −1

2
α1 ∧ α1 = −1

2
dθ ∧ dθ. (16)

Proposition 1.1 ([8]). The representation under SO(2) above, induced on the
vector bundle Λ2T ∗S, corresponds with the decomposition

Λ2
R

5 = 4R1 ⊕W1 ⊕W2 ⊕W3 (17)

where we have the four 1-dimensional invariants from (14) and three irreducible or-
thogonal subspaces Wi defined by

W1 = �e01, e02�, W2 = �e03, e04�, W3 = �ψ1, ψ2� (18)

where

ψ1 := e14 + e23, ψ2 := e31 − e42. (19)

Other ΛpT ∗S are easily decomposed. Since the canonical map Λ1
R

5 ⊗Λ2
R

5 −→
Λ3

R
5 has a kernel of dimension 40, there are many equivalent representations in the

space of 3-forms.
The scalar function r = 1

s2π
�Ric (U,U) = R1010 + R2020 (recall 0 stands for the

point u ∈ S) may be written using scalar and sectional curvatures as r = 1
2 scal −

K({e1, e2}) = 1
2 scal −R1212. If M is Einstein, this is Ric = λ〈·, ·〉 for some constant

λ, then clearly M has constant sectional curvature λ/2.
Now recall we have the Sasaki almost complex structure J on H0 ⊕ V0, where

H0 = H ∩ e⊥0 = �e1, e2� and V0 = V ∩ U⊥ = �e3, e4� are sub-vector bundles of TS.
We may further define I+ and I−, according to ±, to be the unique map defined on
any adapted frame as

e0 �→ 0, e1 �→ e2 �→ −e1, e3 �→ ±e4 �→ −e3. (20)

I+, I− are commuting endomorphisms of TS. On one hand, JI+J
t = JI+J

−1 = I+.
On the other, we have that J and I− anti-commute, giving an Sp(1) = SU(2)-structure
in the sense of Conti-Salamon, as noticed in [8]. It is to these and other similar
structures that this article is devoted.

The following 1-form is an important irreducible tensor:

ρ =
1

s
U�π�Ric = R1012e

4 −R2012e
3. (21)

As complex line bundles, H0 and V0 are very particular to dimension 3. V0 is the
holomorphic tangent bundle when restricted to each fibre, S2, with α2 restricting to
the Kähler class. We have global 1-forms defined by

ρ = R1012e
4 −R2012e

3,

ρ1 = ρB = R1012e
2 −R2012e

1,

ρ2 = ρI+B = R1012e
1 +R2012e

2,

ρ3 = ρI+ = R1012e
3 +R2012e

4.

(22)
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Now, regarding exterior derivatives, from the general formulae in (12) and recall-
ing r = R1010 +R2020, we have

dα0 =
1

s2
θ ∧ α1, (23)

dα1 =
2

s2
θ ∧ α2 − r θ ∧ α0. (24)

These are already decomposed into irreducibles. From [8, Theorem 2.2] we have

dα2 = θ ∧ γ − r

2
θ ∧ α1 + s α0 ∧ ρ ∈ ∗W3 ⊕ �∗α1� ⊕ ∗W2 (25)

where, by (19), the 2-form γ is defined as

γ := R1002ψ2 +
1

2
(R1001 −R2002)ψ1 ∈ W3. (26)

The following result shall play a relevant role later on.

Proposition 1.2 ([8]). The following assertions are equivalent on a connected
3-manifold: M has constant sectional curvature; r is constant; ρ = 0; γ = 0; dα2 =
− r

2 θ ∧ α1.

1.4. Conti-Salamon structures and hypo and nearly-hypo 5-manifolds.
SU(2)-structures on 5 dimensions are understood as the induced metric structures on
real hypersurfaces of SU(3) manifolds.

Let S denote any 5-dimensional manifold. It is said that S is endowed with an
SU(2)-structure if its frame bundle admits a reduction to SU(2) = Sp(1) via the
canonical plus trivial representation in C

2 ⊕R. Then there exists on S an orientation
and a metric such that TS = L ⊕ L⊥, where L ⊂ TS is a real line bundle and L⊥

is endowed with a metric compatible quaternionic structure. The concept was first
introduced by D. Conti and S. Salamon in [16]. Due to a canonical inclusion of SU(2)
in SO(5) and lift into Spin(5), the manifold S must be orientable and spin. SU(2)-
structures on S are in one-to-one correspondence with pairs of spin structures and
unit spinors.

Still following [16], an SU(2)-structure is defined by a 1-form θ, such that L⊥ =
ker θ, and three 2-forms ω1, ω2, ω3 on S such that

θ ∧ ω1 ∧ ω1 �= 0,

ωi ∧ ωj = 0, ∀i �= j,

2v
def.
= ω1 ∧ ω1 = ω2 ∧ ω2 = ω3 ∧ ω3 �= 0

(27)

and

x�ω1 = y�ω2 =⇒ ω3(x, y) ≥ 0, ∀x, y ∈ TS. (28)

We remark the system is verified under multiplication by any exp (t
√
−1), t ∈ R,

either on ω1 +
√
−1ω2 or on ω2 +

√
−1ω3.

One finds three almost complex structures Φi on L⊥ compatible and positively
tame by the respective ωi, yet inducing a unique positive definite metric

g
SU(2)

(x, y) = ωi(x,Φiy), ∀x, y ∈ L⊥. (29)
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Now we have a linear algebra result, which gives a formula for the induced metric
without finding any Φi.

Theorem 1.2. A system (θ, ω1, ω2, ω3) defines an SU(2)-structure on S if and
only if it satisfies (27) and the bilinear map g

SU(2)
on L⊥ = ker θ given by

x�ω1 ∧ y�ω2 ∧ ω3 = g
SU(2)

(x, y) v, ∀x, y ∈ L⊥, (30)

is positive definite.

Proof. We first prove the condition is necessary. By [16, Corollary 1.3] we see
the triplet of the ωi forms a frame of self-dual 2-forms of the pair L⊥, v, i.e. there
exists an orthonormal frame such that ω1 = e12+ e34, ω2 = e13+ e42, ω3 = e14+ e23.
Writing x =

∑
i xiei and y =

∑
i yiei, we have x�ω1 = x1e

2 − x2e
1 + x3e

4 − x4e
3 and

y�ω2 = y1e
3 − y3e

1 + y4e
2 − y2e

4 and hence

x�ω1 ∧ y�ω2 = x1y1e
23 + x1y3e

12 − x1y2e
24 − x2y1e

13 − x2y4e
12 + x2y2e

14

−x3y1e
34 + x3y3e

14 − x3y4e
24 − x4y3e

13 + x4y4e
23 + x4y2e

34.

The identity of the given bilinear map with the metric follows:

x�ω1 ∧ y�ω2 ∧ ω3 = (x1y1 + x2y2 + x3y3 + x4y4)e
1234.

Now let us prove the condition is sufficient. Given the 1- and 2-forms satisfying
(27), we see there exists a four dimensional sub-vector bundle, say L⊥ ⊂ TS, on
which v is non-degenerate. By hypothesis, after symmetrizing, we have a positive
definite metric on L⊥, so it is a matter of counting dimensions to see this is uniquely
determined. Since we have a volume 4-form, we know a priori that the reduction is
in 12 dimensions, from the structure group SL(4) to SU(2). Now the three 2-forms
are written ωi =

∑
1≤j<k≤4 ωijke

jk. With (27) we find the 18 − 6 = 12 dimensions.
On the other hand, in order to find an orthonormal frame e1, . . . , e4, with which one
proves the 2-forms to be self-dual for the metric in (30), we solve 4 + 3 + 2 + 1 = 10
equations. So it is possible to solve these equations, leaving 2 dimensions free due to
the remark above.

Thus the open condition (28) stands for some choice of ordering of ω1, ω2, ω3.

Well understood, we assume ‖θ‖SU(2) = 1 and, on the other hand, that any
non-vanishing multiple of θ will define another SU(2)-structure.

The first property of such a metric is the relation with SU(3) real submanifold
geometry described in the founding article. The above notion is again equivalent to
a real, oriented 5-manifold S, endowed with a 1-form θ, a 2-form ω1 and a complex
2-form φ, corresponding to ω2+

√
−1ω3, which is type (2, 0) for ω1, cf. [16], and which

satisfies

θ ∧ ω1 ∧ ω1 �= 0, ω1 ∧ φ = 0, φ ∧ φ = 0, 2ω1 ∧ ω1 = φ ∧ φ. (31)

Reciprocally, since S is oriented, the corresponding SU(3)-structure on S ×R follows
as the pair of a real symplectic 2-form ω1 + θ ∧ dt and a complex volume 3-form
φ ∧ (θ +

√
−1dt).

Let us now recall some further developments from [10, 15, 16, 17, 19] on the theory
of SU(2)-structures. Conserved tensors may appear, leading to the characterization of
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some special Riemannian geometries. Such is the case of hypo structures, considered
first in [16]:

dω1 = 0, d(θ ∧ ω2) = 0, d(θ ∧ ω3) = 0. (32)

There it is proved that hypo structures are precisely the SU(2)-structures which are
induced on a real analytic hypersurface from a complex 3-manifold endowed with an
integrable SU(3)-structure; ‘precisely’ meaning that any real analytic SU(2)-structure
satisfying (32) arises from such a 3-fold.

Another type of SU(2)-structure is considered in [19]. The nearly-hypo structures
on a 5-manifold S are defined by

dω2 = 3θ ∧ ω3, d(θ ∧ ω1) = −2ω1 ∧ ω1. (33)

Nearly-hypo structures give rise to a general construction of nearly-Kähler structures
on S×R, cf. [19]. Structures which are both hypo and nearly-hypo are called double-
hypo:

dω1 = 0, dω2 = 3θ ∧ ω3, d(θ ∧ ω1) = −2ω1 ∧ ω1, d(θ ∧ ω2) = 0. (34)

They contain a smaller subset given by the Sasaki-Einstein 5-manifolds, i.e.

dθ = −2ω1, dω2 = 3θ ∧ ω3, dω3 = −3θ ∧ ω2. (35)

In this case the respective SU(3)-fold is a Kähler-Einstein manifold. Many non-trivial
examples of the above special geometries are given on products of spheres and Lie
groups in [19]. Examples on nilmanifolds are already constructed in [16].

A fifth special geometry is considered and studied in [10, 17]: the contact-hypo
structures are defined by

dθ = −2ω1, d(θ ∧ ω2) = 0, d(θ ∧ ω3) = 0. (36)

Clearly, contact-hypo are hypo and contain the Sasaki-Einstein structures.
We would also consider the contact-nearly-hypo structures as those which satisfy

merely dθ = −2ω1 and dω2 = 3θ ∧ ω3. However, these consist of the intersection of
double-hypo and contact-hypo structures. For instance we see

d(θ ∧ ω2) = dθ ∧ ω2 − θ ∧ dω2

= −1

2
ω1 ∧ ω2 − θ ∧ θ ∧ ω3 = 0.

Last but not least, the invariance of equations under multiplication of φ by
exp (t

√
−1), t ∈ R, is verified in the cases of hypo, contact-hypo and Sasaki-Einstein

structures.
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2. On the tangent sphere bundles of 3-manifolds.

2.1. The natural structures. We consider again the setting from Section 1.3,
where it is given an oriented Riemannian 3-manifold (M, g). We may then recall
the fundamental exterior differential system defined on the associated Riemannian
manifold S = Ss,M . The canonical or Sasaki metric on S, also denoted by g, is
required by the differential system, and so it shall keep its main role in the following
and be referred as the canonical Sasaki metric. We remark the natural transformations
below shall lead to truly non-trivial variations of the canonical metric, cf. Section 2.4.

Since we are interested in the contact and, in particular, the Sasakian geometry of
S, we shall give the name canonical Tashiro metric or structure to the almost contact
metric and contact structure defined on S by

ǧ =
1

4s2
g, η = − 1

2s2
θ, Φ = Bt −B +

1

s2
U ⊗ θ, ξ = −2BtU. (37)

Of course, θ comes from (6). This structure (ǧ, η,Φ, ξ) is not quite the so-called stan-
dard structure, cf. [11, Section 9] or [14], but is also convenient, for many reasons. We
refer the reader to [3, 18] and the references therein for other important constructions
of natural almost contact structures on tangent sphere bundles.

We have the canonical orientation

e01234 
 η ∧ (dη)2, (38)

η(ξ) = 1, η = ξ�ǧ, Φ2 = −1TS + ξ ⊗ η, (39)

ǧ =
1

2
dη(Φ , ), ǧ(Φ ,Φ ) = ǧ − η ⊗ η (40)

and a reciprocal curious result.

Proposition 2.1. If η = −pθ for some p �= 0 and we are to have (38–40), then
p = 1/2s2 and the almost contact metric structure is given by (37).

Proof. Indeed the conditions are the required for an almost contact structure, cf.
[12, 13]. Recalling the non-linear property of the geodesic 1-form θ, which, for every
radius s, satisfies dθ = g((Bt −B)⊗ 1), the result follows by simple computations.

Notice the previous results are valid in any dimension. A classical result of Tashiro
proves ǧ is Sasakian if and only if M has constant sectional curvature 1

s2 .
We may also deform the almost contact metric structure along ξ, i.e. taking for

Reeb vector field a multiple λ of ξ different of that for g in ξ⊥ = H0 ⊕ V0. It is
known that for certain values of λ this metric is Sasaki-Einstein. This phenomena
shall appear below.

Finally we are in the right moment to recall the main purpose of this article. That
is, to study the SU(2)-structures on S induced by the differential system θ, α0, α1, α2.

First of all we are led to define the 1-form θ̃ from (27) as a multiple of the
canonical contact 1-form θ; secondly we define the three 2-forms ω1, ω2, ω3 as the
linear combinations

ω1 = a0α0 + a1α1 + a2α2 + a3dθ

ω2 = b0α0 + b1α1 + b2α2 + b3dθ

ω3 = c0α0 + c1α1 + c2α2 + c3dθ

(41)
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where a0, . . . , a3, b0, . . . , b3, c0, . . . , c3 are constant coefficients.
Notice we have ‖θ‖ = s, but always ‖θ̃‖SU(2) = 1. Also, due to (16), we have

ω1 ∧ ω1 = (a21 + a23 − a0a2) dθ ∧ dθ, (42)

ω1 ∧ ω2 = (a1b1 + a3b3 −
1

2
a0b2 −

1

2
a2b0) dθ ∧ dθ (43)

and similar identities with the a, b, c’s. Therefore, by (27), we must have

a21 + a23 − a0a2 = b21 + b23 − b0b2 = c21 + c23 − c0c2 �= 0 (44)

and

a0b2 + a2b0 − 2a1b1 − 2a3b3 = b0c2 + b2c0 − 2b1c1 − 2b3c3 =

= c0a2 + c2a0 − 2c1a1 − 2c3a3 = 0.
(45)

Definition 2.1. A set of differential forms θ̃, ω1, ω2, ω3 as the above defined,
with constant coefficients and satisfying (27,28), is called a natural SU(2)-structure
on S.

The natural SU(2)-structures are natural variations of the Sasaki metric on tan-
gent sphere bundles. They induce ‘g-natural’ metrics in the sense of well-known
references, such as [2, 3], but they also give a new class of natural metrics in these
5-dimensional manifolds. Our metrics are indeed of a more general kind as we shall
see in Proposition 2.8.

Main example.

• This main example was first devised in [8]. The orientation on Ss,M is in-
duced by the ordering of any adapted coframe e0, e1, . . . , e4; but that on ker θ,
corresponding to v, is −e1234. The SU(2)-structure is given by (dθ̃ = −2ω1)

θ̃ = −2θ = −2s e0, ω1 = dθ, ω2 = α2 − α0, ω3 = α1. (46)

Indeed, recalling the theory of the intrinsic geometry of Riemannian 3-
manifolds, we see that −2α0 ∧ α2 = α1 ∧ α1 = dθ ∧ dθ = −2e1234. Below
we shall prove the SU(2)-metric is Sasaki-Einstein if and only if M has con-
stant sectional curvature K = 3 and s =

√
3/3 =

√
1/K. Also we shall

see the induced metric coincides with the canonical metric on S if and only
if s = 1

2 (just because of θ̃). Hence it is not the Sasakian, Tashiro metric
ǧ on Ss,S3(s) which is an Einstein metric. Finally we remark the choice of

θ̃ = θ, ω1 = − 1
2dθ, etc., seems equally keen in the search for hypo equations,

but then we would miss the canonical Sasaki metric.

Notice the canonical Tashiro structure cannot be transformed homothetically into
the structure of the main example, as Proposition 2.1 shows, except for s = 1

2 .
We remark the general SU(2)-structure remains invariant under isometries of M

lifted to isometries of the radius s tangent sphere bundle total space S with the
canonical metric. Indeed, an adapted frame is transformed into an adapted frame.
In particular, the new structures descend to a quotient space S/Γ −→ M/Γ for any
discrete subgroup Γ ⊂ Isom+(M).
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Let us now analyse one of the structural equations.

Lemma 2.1. Suppose dω1 = 0. Then:
(i) ω1 = a3dθ or
(ii) ω1 = a0α0 + a2α2 + a3dθ, with a2 �= 0, and M has constant sectional curvature
K = a0

a2s2
.

Proof. Since dα0 = 1
s2 θ ∧ α1, dα1 = 2

s2 θ ∧ α2 − r θ ∧ α0 and dα2 = θ ∧ γ − r
2 θ ∧

α1 + s α0 ∧ ρ, it follows immediately from the hypothesis that either a2 = 0 or ρ = 0.
Also we find a0

s2 α1 +
2a1

s2 α2 − ra1α0 + a2γ − ra2

2 α1 = 0. Knowing the representation
subspaces, this implies a1 = 0, 2a0 − ra2s

2 = 0 and a2γ = 0. Now if a2 = 0, then
a0 = a1 = 0 and we are in case i. If a2 �= 0, then γ = 0 and by Proposition 1.2 we
have constant sectional curvature K given by a0 −Ka2s

2 = 0.

Now let us study a second main equation, common to all five special SU(2)-
structures recalled in Section 1.4. Indeed, θ ∧ ω3 must always be closed. Let us
consider real constants c0, . . . , c3 and

ω3 = c0α0 + c1α1 + c2α2 + c3dθ. (47)

Lemma 2.2. Suppose d(θ ∧ ω3) = 0. Then:
(i) ω3 = c0α0 + c1α1 + c2α2, if M has constant sectional curvature,
(ii) ω3 = c0α0 + c1α1, if M has non-constant sectional curvature.

Proof. We have d(θ ∧ ω3) = dθ ∧ ω3 − θ ∧ (
∑

cjdαj). From the first summand
and the fundamental equations (16) it follows that c3 = 0; the remaining summand
gives the equivalent condition that ρ = 0 or c2 = 0. Applying again Proposition 1.2,
we have the result.

Constant coefficients restrict the curvature on the base manifold.

Proposition 2.2. Suppose M has non-constant sectional curvature. Then there
do not exist natural hypo nor natural nearly-hypo structures on S.

Proof. Regarding the case hypo, by definition and part ii of the above Lemma,
we would need two 2-forms ω2 = b0α0 + b1α1, ω3 = c0α0 + c1α1 satisfying the
orthogonality relations b21 = c21 �= 0 and b1c1 = 0. For the case nearly-hypo, it is
not possible also to have three natural 2-forms giving a nearly-hypo sphere bundle,
because, in searching for ω2 = b0α0 + b1α1 + b2α2 + b3dθ satisfying (33) and in
particular dω2 = 3θ∧ω3 for the necessarily ω3 = c0α0+ c1α1 found above, we deduce
ω2 = b0α0, which has vanishing square.

2.2. Structures of type I. Following the above conclusions, we assume M has
constant sectional curvature. A first candidate for ω1 is that which is found in case i
of Lemma 2.1. We thus consider SU(2)-structures with

ω1 = dθ. (48)

Remark. For a generalization, if we take ω1 = dθ and find a hypo structure, then
the structure can be adjusted accordingly (simply multiplying ω2, ω3 by the same a3).
Notwithstanding, for the nearly-hypo equations it is different. Assuming we have
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found (33) for the pair θ̃, ω1 = dθ, then the referred variation of ω1 together with
˜̃
θ = λθ̃, λ ∈ R, yields by (33)

a3 = λa3 and λa3 = a23 (49)

implying a3 = 1. Therefore the solutions are 1-1 dependent on a3. The study then
continues in the next section.

We shall have a hypo structure and, preferably, a contact-hypo structure, if we
let θ̃ = −2θ and take any two 2-forms, deduced from case i of Lemma 2.2, satisfying
(27) and (30)

ω2 = b0α0 + b1α1 + b2α2, ω3 = c0α0 + c1α1 + c2α2. (50)

These shall be called the SU(2)-structures of type I. In sum, as in (44,45), we find the
system ⎧⎪⎨

⎪⎩
b21 − b0b2 = 1

c21 − c0c2 = 1

b0c2 + b2c0 − 2b1c1 = 0.

(51)

A last condition is to be fulfilled by the bi, ci ∈ R: that φ = ω2 +
√
−1ω3 is (2, 0) for

ω1, cf. (28). As expected, notice the symmetry φ � exp(
√
−1t)φ leaves the system

(51) invariant.

Proposition 2.3 (SU(2)-structures of type I). The natural SU(2)-structures on
S given by the canonical contact 1-form θ̃ and by the 2-forms ω1, ω2, ω3 in (48),(50)
and (51) are in one-to-one correspondence with points of the real hypersurface{

(X,Y,A,B) ∈ R
4 : B2(1 +A2)2(X2 + Y 2) = 1, B > 0

}
, (52)

via the transformation⎧⎪⎨
⎪⎩
b0 = (1−A2)B2X + 2AB2Y

b1 = (1 +A2)B(Y −AX)

b2 = −(1 +A2)2X

⎧⎪⎨
⎪⎩
c0 = (1−A2)B2Y − 2AB2X

c1 = −(1 +A2)B(X +AY )

c2 = −(1 +A2)2Y

. (53)

Proof. Let e0, e1, e2, e3, e4 be an adapted frame orthonormal for the canonical
metric. Since e0 is in the annihilator of all ωi, it follows the new metric on S will have
e0 orthogonal to the remaining ej . Since the structure is invariant, the compatible
almost complex structures Φi on ker θ will be invariant (by isometries of M lifted
to S). For Φ1 compatible with ω1 = dθ and respecting formula (29), we may hence
write Φ1x

h = Axh −Bxv with some constants A,B and B > 0, where x is any vector
on Tπ(u)M orthogonal to u ∈ S and xh, xv are the canonical lifts. The space of Φ1

is indeed determined completely by A and B (it agrees with the symmetric space
Sp(2,R)/U(1), the Siegel domain or Poincaré half-plane, as studied e.g. in [9]). Thus
a basis {β1, β2} of (1, 0)-forms is determined up to factors by

β1 = e1 +
√
−1(λe3 + μe1) mod R,

such that

β1(e1 +
√
−1Φ1e1) = 0,
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and similarly for β2 recurring to the mirror pair e2, e4. Solving for λ, μ and removing
denominators, we obtain explicit solutions:{

β1 = −Be1 +
√
−1(ABe1 + (1 +A2)e3)

β2 = −Be2 +
√
−1(ABe2 + (1 +A2)e4)

.

The (2, 0)-form β1 ∧ β2 is independent of the adapted frame, as expected:

β1 ∧ β2 = (B2 −A2B2)e12 −AB(1 +A2)(e32 + e14)− (1 +A2)2e34 +

+
√
−1

(
−AB2e12 −B(1 +A2)e14 −AB2e12 −B(1 +A2)e32

)
= B2(1−A2)α0 −AB(1 +A2)α1 − (1 +A2)2α2 +

+
√
−1

(
−2AB2α0 −B(1 +A2)α1

)
.

The last condition required by an SU(2)-structure is that ω2 +
√
−1ω3 is a form of

type (2, 0)-for Φ1. In other words, we must have ω2 +
√
−1ω3 = (X +

√
−1Y )β1 ∧ β2

for some X,Y ∈ R. Equivalently,

b0α0 + b1α1 + b2α2 +
√−1(c0α0 + c1α1 + c2α2) =

= XB2(1−A2)α0 −XAB(1 +A2)α1 −X(1 +A2)2α2 + 2Y AB2α0 + Y B(1 +A2)α1+√−1(−2XAB2α0 −XB(1 +A2)α1 + Y B2(1−A2)α0 − Y AB(1 +A2)α1 − Y (1 +A2)2α2

)
.

This yields formulae (53) for the coefficients b0, . . . , b2, c0, . . . , c2. Recalling (51), then
two short computations on the first rows, b21 − b0b2 = 1 and c21 − c0c2 = 1, yield the
very same condition which is that defining the set (52). Finally, the last equation is
automatically satisfied, as we care to show next. Indeed, we have b2c0− c1b1 = A and
b0c2 − b1c1 = −A. Let us see this last identity:

b0c2 − b1c1 = (1 +A2)2B2
(
−(1−A2)XY − 2AY 2 + (Y −XA)(X + Y A)

)
= (1 +A2)2B2

(
−XY +A2XY − 2AY 2 +XY +AY 2 −AX2 −A2XY

)
= (1 +A2)2AB2(−Y 2 −X2)

= −A.

Hence b0c2 + b2c0 − 2b1c1 = 0.

The above Proposition characterizes completely the 3-dimensional family of nat-
ural SU(2)-structures of type I. Later we shall see that condition (28) is assured by

b1c0 − b0c1 > 0. (54)

The next result shall also be duely proved in Section 3.1.

Proposition 2.4. The SU(2)-structures of type I which are compatible with the
canonical metric are given by A = 0, B = 1, X2 + Y 2 = 1.

Recall the set of three 2-forms on the radius s tangent manifold S determines the
Riemannian structure up to the fixed ‖θ̃‖SU(2) = 1 (whereas ‖θ‖ = s). Hence the
meaning of the word compatible in the last Proposition: the precisely same metric on
ker θ.

We now state the result which follows from various remarks above.

Theorem 2.1 (Hypo). A natural SU(2)-structure on S with ω1 = dθ is hypo if
and only if M has constant sectional curvature and it is of type I. Defining θ̃ = −2θ
we obtain a contact-hypo structure, i.e. satisfying also dθ̃ = −2ω1.
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Moreover, for any X,Y ∈ R such that X2+Y 2 = 1, the SU(2)-structure given by

ω2 = Xα0 + Y α1 −Xα2, ω3 = Y α0 −Xα1 − Y α2 (55)

is hypo and compatible with the canonical metric.

Corollary 2.1. For any oriented Riemannian 3-manifold M , the main ex-
ample, (46), defines a contact SU(2)-structure compatible with the canonical metric;
which is hypo if and only if M has constant sectional curvature.

Thus, for each pair K, s, there exists a 3 dimensional family of contact-hypo
structures. However, notice that, as it happens with the main example, the induced
metric is the same under symmetry φ � exp(

√
−1t)φ.

Let us now find the natural nearly-hypo structures, still with the obvious ω1. Let
us stress that we exclude non-constant sectional curvature due to Proposition 2.2.

Theorem 2.2 (Nearly-hypo). Suppose M has constant sectional curvature K.
Then the natural SU(2)-structures on the radius s tangent sphere bundle total space
S, with θ̃ = −2θ and ω1 = dθ, are nearly-hypo if and only if they are of the kind given
in Proposition 2.3 and, moreover, of the kind given by

ω2 = b0α0 + b1α1 + b2α2, ω3 =
Kb1
3

α0 +
s2Kb2 − b0

6s2
α1 −

b1
3s2

α2 (56)

for any b0, b1, b2 ∈ R such that b21 − b0b2 = 1 and

(b0 + s2Kb2)
2 + 4s2K = 36s4 (57)

and

K > − b20
s2(1 + b21)

. (58)

Moreover, such nearly-hypo structures are always contact-hypo.
The structures are compatible with the canonical metric if and only if (i) b2 = −b0,

b1 �= 0, b20 + b21 = 1, K = 3 = s−2, or (ii) b2 = −b0 = ±1, b1 = 0, s2K + 1 = 6s2.

Proof. By condition ω1 ∧ ω2 = 0, we must have ω2 = b0α0 + b1α1 + b2α2, and by
the same reason or from Lemma 2.2, we must have ω3 = c0α0 + c1α1 + c2α2. Hence
such nearly-hypo structures exist if and only if they are of the referred kind, this is,
type I or (51). Next, we see that we just have to study dω2 = 3θ̃ ∧ ω3. Knowing that
the Ricci curvature of M satisfies r = 2K, we obtain the formula for ω3:

dω2 = b0dα0 + b1dα1 + b2dα2

= θ ∧ (
b0
s2

α1 +
2b1
s2

α2 − rb1α0 −
r

2
b2α1)

= θ ∧
(
−2Kb1α0 +

b0 − s2Kb2
s2

α1 +
2b1
s2

α2

)
= 3θ̃ ∧

(Kb1
3

α0 +
s2Kb2 − b0

6s2
α1 −

b1
3s2

α2

)
.

A computation on c21 − c0c2 = 1 yields (b0 + s2Kb2)
2 + 4s2K = 36s4, and these

conditions together with (54) are sufficient. Indeed, a very surprising result, the
remaining equation is immediately satisfied:

b0c2 + b2c0 − 2b1c1 = −b0b1
3s2

+
Kb2b1

3
− 2Kb1b2

6
+

2b0b1
6s2

= 0.



NATURAL SU(2)-STRUCTURES ON TANGENT SPHERE BUNDLES 471

It is trivial to prove that d(θ̃ ∧ ω2) = 0. Indirectly, we note the structure is contact-
nearly-hypo, cf. ending of Section 1.4. Hence it is double-hypo.

Compatibility with the canonical metric is easily seen to be equivalent to cases i
or ii. Only c21 − c0c2 = 1 needs verification: in case i we have

(b0 + s2Kb2)
2 + 4s2K = (b0 + b2)

2 + 4 = 36/9 = 36s4

while case ii is

(b0 + s2Kb2)
2 + 4s2K = (2− 6s2)2 + 4(6s2 − 1) = 4− 24s2 + 36s4 + 24s2 − 4 = 36s4

as we wished.

Some examples.

• It seems there should exist a (c0, c1, c3) conjugate to the class of solutions
(b0, b1, b2) = (b0, b0 + 1, b0 + 2), for any b0 ∈ R, of b21 − b0b2 = 1. Looking at
ω3 above, then the best answer might always depend on K. Also notice this
example and case ii above both contain the main example, b0 = −1.

• Let us see the flat case, K = 0. The product manifold R
3 × S2(s0) for

s0 =
√

1/6 admits two, the author believes non-isometric, SU(2)-structures
both contact-hypo and double-hypo and not Sasaki-Einstein. The first is the
main example. The second is the above, necessarily with b20 = 36s40 = 1.
We chose s0 on purpose, because we may then have b0 = −1, which indeed
returns to the main example. But also we may have b0 = 1 and then find a
structure given by θ̃ = −2θ, ω1 = dθ,

ω2 = α0 + 2α1 + 3α2, ω3 = −α1 − 4α2. (59)

• For M a hyperbolic space we may also consider the main example, case ii, to
find another interesting double-hypo structure. For example, letting K = −3
and s = 1

3 , the required inequality holds. We remark that in this case dω3 =

dα1 = −3θ̃ ∧ (3α2 + α0).
Thus, for each pair K, s, there exists a 1-dimensional family of nearly-hypo struc-

tures. Now let us see the conditions for the Sasaki-Einstein structures.

Corollary 2.2. The double-hypo structures in Theorem 2.2 are Sasaki-Einstein
if and only if M has positive constant sectional curvature

K = 9s2. (60)

In particular, of the double-hypo structures compatible with the canonical metric, case
i is always Sasaki-Einstein, while case ii implies K = 3 = s−2 — which is i again.

Proof. The condition to be verified is just dω3 = −3θ̃∧ω2 = 6θ∧ω2 where ω2, ω3

are given by the Theorem. On the left hand side we have

dω3 =
Kb1
3s2

θ ∧ α1 +
s2Kb2 − b0

6s2
( 2

s2
θ ∧ α2 − 2Kθ ∧ α0

)
+

b1
3s2

Kθ ∧ α1

= 6θ ∧
(Kb0 − s2K2b2

18s2
α0 +

Kb1
9s2

α1 +
s2Kb2 − b0

18s4
α2

)
and so

Kb0 − s2K2b2 = 18s2b0, Kb1 = 9s2b1, s2Kb2 − b0 = 18s4b2.



472 R. ALBUQUERQUE

For b1 �= 0,

9s2b0 − 81s6b2 = 18s2b0, K = 9s2, 9s4b2 − b0 = 18s4b2.

The first and the last equations are, respectively, −9s4b2 = b0, −b0 = 9s4b2. But these
are both equivalent to b0 + s2Kb2 = 0, precisely the condition in (57). For b1 = 0, we
have b0b2 = −1, and then we see the remaining two equations yieldK+s2K2b22 = 18s2

and s2Kb22 + 1 = 18s4b22 (multiplying by b0 gives equivalent conditions). These two
imply K = 9s2 and so we may proceed as before.

Finally, case i in the Theorem clearly satisfies K = 3 = 9s2. Case ii yields the

very same condition, because the solution to K = 6s2−1
s2 = 9s2 is precisely s2 = 1

3 and
K = 3.

We describe all natural Sasaki-Einstein structures on S with

θ̃ = −2θ and ω1 = dθ. (61)

Since K = 9s2, b21 = 1 + b0b2 and b0 + s2Kb2 = 0, we define Q = Q(s, b2) =
±
√
1− 9s4b22. Then the two remaining 2-forms satisfying (35) are

ω2 = −9s4b2α0 +Qα1 + b2α2,

ω3 = 3s2Qα0 + 3s2b2α1 −
Q

3s2
α2.

(62)

Below we shall find more information on the metric: it is the same for all b2. Actually
this symmetry is the natural invariance on exp(t

√
−1)(ω2 +

√
−1ω3).

Some examples.

• Assuming Q = 0 (one can also follow b2 = 0 for this case), equivalently,
b2 = ± 1

3s2 , we have

ω2 = ∓3s2α0 ±
1

3s2
α2, ω3 = ±α1. (63)

In particular, for Ss,M with ray s =
√
3/3 we obtain the main example, (46).

• By an exact sequence of homotopy groups, the simply connected Sasaki-
Einstein structures compatible with the canonical metric are given over a
unique simply connected base of sectional curvature K = 3 and tangent
sphere bundle with radius s =

√
3/3. This is, precisely the sphere M = S3(s)

since K = 1/s2. The condition of equal radius on both base and tangent
spheres, in the quest for a Sasakian manifold, was first found by Tashiro, cf.
[4, 8]. The present metric is different.

Our invariant theory, as mentioned earlier, is suitable for any quotient manifold
M/Γ where Γ is a discrete group of isometries. New Sasaki-Einstein metrics on the
product of S2 with a lens space may hence be described. We recall that such metrics
on such products were found in [20], with a particular interest on 3-dimensional lens
spaces; a coincidence with the metrics above is therefore not to be excluded.

2.3. Other hypo and nearly-hypo structures and case ii of Lemma 2.1.
Let us return to the general construction in Section 2.1. We may search for natural
nearly-hypo structures with θ̃ = −2pθ, p �= 0, and generic ω1 different from the above.
Easy enough, equation d(θ̃ ∧ ω1) = −2ω1 ∧ ω1 is equivalent to constant sectional
curvature of M and

a3p = a21 + a23 − a0a2. (64)
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The SU(2)-structure requires a3 �= 0. Now, given a pair of generic 2-forms ω2, ω3

such that dω2 = 3θ̃ ∧ ω3 = −6pθ ∧ ω3, then, recalling the computation in the proof
of Theorem 2.2, we see immediately how to write ω3 in terms of the coefficients of
ω2 = b0α0 + b1α1 + b2α2 + b3dθ:

ω3 =
Kb1
3p

α0 +
s2Kb2 − b0

6s2p
α1 −

b1
3s2p

α2. (65)

In particular, as found much earlier, we must have c3 = 0. The solutions for a nearly-
hypo structure are thus found within the following system, cf. (27):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a21 + a23 − a0a2 = a3p

b21 + b23 − b0b2 = a3p

b20 − 2s2Kb0b2 + s4K2b22 + 4s2Kb21 = 36s4a3p
3

a0b2 + a2b0 − 2a1b1 − 2a3b3 = 0

a0b1 − s2Ka2b1 + s2Ka1b2 − a1b0 = 0.

(66)

A sixth equation would come from ω2 ∧ ω3 = 0, but one sees this is automatically
satisfied — ‘a very surprising’ result already seen above.

Clearly, even the case a0 = a1 = a2 = 0 is difficult to study.
Now let us look again for hypo structures, just satisfying dω1 = 0. We are led

to case ii of Lemma 2.1, necessarily on a base M of constant sectional curvature
K = a0

a2s2
, where a2 �= 0, and a closed 2-form, necessarily with a1 = 0,

ω1 = a0α0 + a2α2 + a3dθ. (67)

It follows by Lemma 2.2 that only

ω2 = b0α0 + b1α1 + b2α2, ω3 = c0α0 + c1α1 + c2α2 (68)

may participate in a hypo structure (θ, ω1, ω2, ω2). The coefficients of these hypo
structures of type II must further solve the structural equations⎧⎪⎨

⎪⎩
b21 − b0b2 = c21 − c0c2 = a23 − a0a2 �= 0

b0a2 + b2a0 = c0a2 + c2a0 = 0

b0c2 + b2c0 − 2b1c1 = 0.

(69)

It follows easily that case K = 0 does not admit hypo solutions of type II.
Let us also search for nearly-hypo structures with ω1 closed, of the type of well-

known case ii, i.e. of the previous type. Therefore, over the same base manifold. We
have system (66) and in particular ω3 determined by ω2. We have a1 = 0 and we
know the curvature, K = a0

a2s2
, which merely solves automatically the last equation

in the system.
Double-hypo structures are the next interesting case. They are given by an extra

condition, d(θ ∧ ω2) = 0, which implies b3 = 0. The two systems above are then
reduced to a2, a3, p �= 0 and⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K = a0

a2s2

a23 − a0a2 = a3p

b21 − b0b2 = a3p

a0b2 + a2b0 = 0

b20 − 2s2Kb0b2 + s4K2b22 + 4s2Kb21 = 36s4a3p
3.

(70)
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We call these structures the natural SU(2)-structures on S of type II.

Theorem 2.3 (Double-hypo of type II). The natural SU(2)-structures with 1-
form θ̃ = −2pθ and closed 2-form ω1 from case ii of Lemma 2.1 are double-hypo if
and only if they are given by (67,65,70) and a0a2, a3p > 0. Moreover, in this case M
has positive sectional curvature

K = 9s2p2. (71)

Proof. On the lhs of the last equation in the system, we have

(b0 − s2Kb2)
2 + 4s2Kb21 = (b0 −

a0b2
a2

)2 + 4
a0
a2

(a3p+ b0b2)

=
1

a22

(
(b0a2 − a0b2)

2 + 4a0a2a3p+ 4a0a2b0b2
)

=
4a0a3p

a2
.

The rhs yields the identity a0

a2
= 9s4p2 and the result follows. The condition

a0a2, a3p > 0 is required by (30) and can only be proved later (Proposition 3.5).

Thus we are bound to positive sectional curvature.
Notice that dθ̃ �= −2ω1, so these double-hypo structures are not contact hypo.

Yet we have the following result, which contrasts, for instance, with the double-hypo
in (59).

Proposition 2.5. All double-hypo structures of type II satisfy

dω3 = −3θ̃ ∧ ω2. (72)

Proof. First we notice that b0 + s2Kb2 = (b0a2 + b2a0)/a2 = 0. Then we wish to
check dω3 = 6pθ ∧ ω2, this is,

Kb1
3ps2

θ ∧ α1 +
s2Kb2 − b0

6s2p
(
2

s2
θ ∧ α2 − 2Kθ ∧ α0)+

+
b1

3ps2
Kθ ∧ α1 = 6pθ ∧ (b0α0 + b1α1 + b2α2).

This is equivalent to the system

−2s2K2b2 + 2Kb0 = 36s2p2b0,
2Kb1
3s2p

= 6pb1, 2s2Kb2 − 2b0 = 36s4p2b2

or

−s2Kb2 + b0 = 2b0, Kb1 = 9s2p2b1, s2Kb2 − b0 = 2s2Kb2.

Since these three equations are satisfied, the result follows.

In this case it seems there is a real SU(2) rather than SO(2) irreducibility, for in
this hypothesis the last result is quite easy to prove from the structure equations and
letting dω3 be a linear combination of the θ ∧ ωi.

Examples. The following give two double-hypo structures, not contact-hypo.
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• With b0 = b2 = 0, a3p = 1 and radius s = 1, we have θ̃ = −2θ, b21 = 1, K =
9p2 and still an interval of solutions; one example is with K = 5

ω1 = 2α0 +
2

5
α2 +

3
√
5

5
dθ,

ω2 = α1, ω3 = 3α0 −
√
5

5
α2.

(73)

• With a0 = 2, a2 = 1, a3 = 2, p = 1 and s2K = 2. This implies s = 4
√
2/9 and

K = 3
√
2. For such arbitrary choices, there remains an interval of solutions;

one example is

ω1 = 2α0 + α2 + 2dθ,

ω2 = −
√
2α0 ± α1 +

√
2

2
α2, ω3 = ±

√
2α0 + α1 ∓

√
2

2
α2.

(74)

Theorem 2.3 generalizes the SU(2)-structure results found in [19, Proposition 6.3],
which are computed directly on S3 × S2. Our family of double-hypo structures on
S3 × S2 is one dimension higher. We remark that in [19] an auxiliary global parallel
frame field on S3 is used in order to deal with the differential geometry of the unit
tangent sphere bundle of the 3-sphere.

2.4. The metric explicit. We provide some further information on the SU(2)
metrics on Ss,M with the most generic ωi, linear combination of α0, α1, α2, dθ. Given
a set of coefficients a0, . . . , c3, recall the metric induced on S is denoted by g

SU(2)
.

The tautological horizontal or Reeb vector field − 1
2ps e0 on S is dual to θ̃ =

−2ps e0. We then must have ‖e0‖SU(2) = 2s|p| and ker θ = ker e0 = ker g
SU(2)

(e0, ).
Now we need to define the following functions:

g11 = g22 = (a1b0 − a0b1)c3 + (a0b3 − a3b0)c1 + (a3b1 − a1b3)c0

g33 = g44 = (a2b1 − a1b2)c3 + (a1b3 − a3b1)c2 + (a3b2 − a2b3)c1

g12 = g34 = 0

g13 = g24 = 1
2 (a3(b2c0 − b0c2) + b3(a0c2 − a2c0) + c3(a2b0 − a0b2))

g14 = −g23 = 1
2 (a1(b0c2 − b2c0) + b1(a2c0 − a0c2) + c1(a0b2 − a2b0)).

(75)

Proposition 2.6. Let e0, e1, . . . , e4 be an adapted frame on S, hence orthonormal
for the canonical metric. Then the symmetric matrix G := [g

SU(2)
(ei, ej)]1≤i,j≤4 equals

[gij ]1≤i,j≤4, this is

G =

⎡
⎢⎢⎣

g11 0 g13 −g23
0 g11 g23 g13
g13 g23 g33 0
−g23 g13 0 g33

⎤
⎥⎥⎦ . (76)

Proof. A direct application of Theorem 1.2.

We note that G is indeed invariant of the choice of adapted frame, because that
is the case of the fundamental exterior differential system. Or, more plainly, because
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C is abelian. Further on, of course we must have condition (28), which is equivalent
to the metric being positive definite due to Theorem 1.2. A computation first gives

detG = (g11g33 − g213 − g223)
2. (77)

Computing the minors of G yields the following result.

Proposition 2.7. A natural SU(2) metric on S being positive definite is equiv-
alent to

g11 > 0, g11g33 − g213 − g223 > 0. (78)

The metric matrix G announces a new class of natural metric on tangent sphere
bundles of 3-manifolds, which to the best of our knowledge was never considered
before. The structure yields the ‘g-natural’ metrics known in the literature, as well
as that new class. Recall the ‘g-natural’ metrics, e.g. from [2, 3, 18], refer to a
metric like the above but only involving a constant linear combination of θ ⊗ θ and
g(xh, yh), g(xh, yv), g(xv, yv) for the lifts of any x, y ∈ TM . Hence the importance by
the negative of the next result.

Proposition 2.8. A natural SU(2) metric on S is a g-natural metric if and only
if g23 = 0.

We remark there do exist structures with g13 = 0 and g23 �= 0, cf. Proposition
3.5.

Next we give a formula for the unique endomorphisms Φi ∈ EndTS, for i = 1, 2, 3,
orthogonal for the SU(2) metric and such that

Φi
∗ωi = ωi, Φ2

i = −1TS + e0 ⊗ e0. (79)

Taking any adapted frame and denoting the matrices of Φi, ωi restricted to ker θ by
the same letters, we have

ω1 =

[
a0J1 A13

−AT
13 a2J1

]
(80)

where (k ∈ N)

Jk =

[
0 1k

−1k 0

]
and A13 =

[
−a3 a1
−a1 −a3

]
. (81)

Equivalent notations follow for ω2, ω3, with B13, C13, respectively, in place of A13.
Recall there exists a unique ν ∈ R, ∀i, such that a21 + a23 − a0a2 = ν, etc. So we have
A13A

T
13 = (a0a2 + ν)12. Since A13J1 = J1A13, we have ω1ω̂1 = ν14 with

ω̂1 =

[
a2J1 −A13

AT
13 a0J1

]
. (82)

The SU(2)-structure translates into ωiΦi = G for all i = 1, 2, 3. This proves the
formulae

Φi =
1

ν
ω̂iG. (83)

Next we deduce when an endomorphism, say Φ1, does preserve the vertical tangent
bundle V0, in which case we say simply Φ1 preserves the fibres or preserves V0.
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Proposition 2.9. Φ1 preserves the fibres if and only if{
a2g23 + a3g33 = 0

a2g13 − a1g33 = 0
. (84)

In particular, if the SU(2) metric is compatible with the canonical metric and Φ1

preserves the fibres, then a1 = a3 = 0, a0 = −a2, b0 = −b2, c0 = −c2.

Proof. Combining (83) with (76), condition Φ1(V0) ⊂ V0 is equivalent to the
vanishing of the top right corner of Φ1. This is

a2J1

[
g13 −g23
g23 g13

]
−A13g33 = 0,

and hence the system.
If, furthermore, we have G = 14, then clearly a1 = a3 = 0. And from g11 = g33 =

1, we get −a0b1c3 + a0b3c1 = 1, a2b1c3 − a2b3c1 = 1 which yields a0 = −a2 �= 0
and the determinant b1c3 − b3c1 �= 0. Now from the formulae for g13, g14, we find
b3(a0c2 − a2c0) + c3(a2b0 − a0b2) = 0 and b1(a2c0 − a0c2) + c1(a0b2 − a2b0) = 0. In
other words, b3(c2 + c0)− c3(b0 + b2) = 0 and b1(c0 + c2)− c1(b2 + b0) = 0.

Recall ker θ = H0 ⊕ V0, so it is only fair to consider the same question for hori-
zontals: we say Φ1 preserves H0 if Φ1(H0) ⊂ H0. Equivalently,{

a0g23 + a3g11 = 0

a0g13 − a1g11 = 0
. (85)

A last remark applies only to diagonal metrics, i.e. g13 = g23 = 0. We recall
the studies in [5, 6] and specially [7] regarding a conformal change on the base metric
on M , a radius s of Ss,M , a conformal change on H and V0 and, moreover, how
the previous three must relate, in order to build a homothety with the obvious map
between tangent sphere bundles with different radius. Certainly noteworthy results
in respect to classifying some of the SU(2) metrics above.

3. The two distinguished types and evolution equations.

3.1. The type I metrics. We resume with the natural SU(2)-structures of type
I, determined in Proposition 2.3, Theorems 2.1 and 2.2. We have a0 = a1 = a2 =
b3 = c3 = 0, a3 = 1, b21 − b0b2 = c21 − c0c2 = 1, b0c2 + b2c0 − 2b1c1 = 0, and therefore,
reading from Proposition (2.6), we prove the next result.

Proposition 3.1. The natural SU(2) metrics of type I satisfy

g11 = g22 = b1c0 − b0c1

g33 = g44 = b2c1 − b1c2

g12 = g34 = 0

g13 = g24 = 1
2 (b2c0 − b0c2)

g14 = −g23 = 0.

(86)

Recall “g00”= 4s2 completes the information on this metric. The nearly-hypo
structures of type I satisfy g13 �= 0 in general. For the particular case of the structure
in (59), over a flat base and radius s with square 1/6, we see

g11 = 1, g33 = 5, g13 = 2. (87)
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Regarding the Sasaki-Einstein metrics found in (62), we have

g11 = 3s2, g33 =
1

3s2
, g13 = 0. (88)

Proposition 3.2. For structures of type I, we have detG = 1. Moreover, the
metric defined by the matrix G is positive definite if and only if b1c0 − b0c1 > 0.

Proof. The detailed computation, requiring (51) together with the above results
applied on (77), can be obviated if we notice that dθ = ω1 induces the same volume-
form as the canonical metric. However, there is more; the computation yields g11g33−
g213 − g223 = 1. The second assertion then follows by Proposition 2.7.

The following is a restatement of Proposition 2.4, finally with a proof.

Proposition 3.3. The SU(2) metric of type I coincides on ker θ with the canon-
ical metric if and only if b0 = −b2 = −c1, b1 = c0 = −c2 and b20 + b21 = 1.

Proof. Conditions (51) and G = 14 lead to the equivalent relations.

Immediately we see that Φ1 arising from ω1 = dθ does not preserve the fibres. As
matrices, we have ω1 = −J2, thus

Φ1 = J2G =

[
g1312 g3312
−g1112 −g1312

]
. (89)

In particular we verify that Φ1
2 = −14.

Now let us see Φ2 for general SU(2)-structures of type I.

Proposition 3.4. Φ2 preserves the fibres if and only if c2 = 0. If moreover
the metric is compatible with the canonical metric, then the case is that of the main
example.

Proof. By (84) the condition is equivalent to b3g33 = 0 and b2g13 − b1g33 = 0.
Recalling (51), we have b3 = 0. On the other hand,

b2g13 − b1g33 =
1

2
b22c0 −

1

2
b0b2c2 − b1b2c1 + b21c2

=
1

2
b22c0 −

1

2
b0b2c2 −

1

2
b0b2c2 −

1

2
b22c0 + c2 + b0b2c2

= c2.

The result now follows easily.

One may verify as above that

Φ2 preserves H0 ⇐⇒ c0 = 0. (90)

Corollary 3.1. Φ2 preserves H0 and V0 if and only if ±b2 > 0 and

ω1 = dθ, ω2 = b2α2 −
1

b2
α0, ω3 = ±α1. (91)
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3.2. The double-hypo structures of type II. We return to the natural non
contact double-hypo structures (θ̃, ω1, ω2, ω3) of type II, found in Theorem 2.3, in
order to study the induced metric. However, our conclusion will be that this class of
metrics on S deserves a dedicated study.

Proposition 3.5. Double-hypo structures of type II satisfy

g11 =
a0a

2
3

3a2s2
, g33 =

a23
3s2

, g13 = 0, g23 = −a0a3
3s2

. (92)

The positive definite condition on the metric corresponds to a0a2 > 0, a3p > 0.

Proof. Besides a1 = b3 = c3 = 0 and a2, p �= 0, we have system (70) and

c0 =
Kb1
3p

, c1 = − b0
3s2p

, c2 = − b1
3s2p

.

Therefore b0 + b2Ks2 = (b0a2 + b2a0)/a2 = 0 and hence b2c0 − b0c2 = 0. On the
other hand, by (75), we find immediately g11 = a3(b1c0− b0c1), g33 = a3(b2c1− b1c2),
g13 = 1

2a3(b2c0 − b0c2) and g23 = 1
2 (b1(a0c2 − a2c0) + c1(a2b0 − a0b2)) and then

the desired identities are trivial to deduce. Regarding the positive definite condition
required by Proposition 2.7 we definitely must have a0a2 > 0. Since

g11g33 − g213 − g223 =
a0a

4
3

9a2s4
− a20a

2
3

9s4
=

a0a
2
3

9a2s4
(a23 − a0a2) =

a0a
2
3

9a2s4
a3p,

the result follows.

Using (84) and (85) the following is trivial to check.

Proposition 3.6. For natural double-hypo structures of type II, neither Φ1,Φ2

or Φ3 preserve the horizontal or the vertical distributions.

3.3. Evolution equations from hypo structures. Let us recall a question
raised in [16] regarding an SU(2) structure on a 5-dimensional manifold N and the
associated SU(3) metric defined on N × R, cf. (31).

The fundamental article on the generalized Killing spinors in dimension 5, which
introduces hypo structures, establishes when a smooth 1-parameter family of hypo
structures (θ̃, ω1, ω2, ω3)t on N , time t dependent, induces an integrable SU(3)
(Calabi-Yau) metric on the product manifold via (φ = ω2 +

√
−1ω3)

F = ω1 + θ̃ ∧ dt, Ψ = Ψ+ +
√
−1Ψ− = φ ∧ (θ̃ +

√
−1dt). (93)

If ω1, θ̃ ∧ ω2, θ̃ ∧ ω3 are closed, then the evolution equations⎧⎪⎨
⎪⎩
∂tω1 = −dθ̃

∂t(ω2 ∧ θ̃) = −dω3

∂t(ω3 ∧ θ̃) = dω2

(94)

are easily deduced as the integrability equations dF = dΨ = 0, cf. [16, Proposition
4.1]. Reciprocally, an integrable product structure arising from a family of SU(2)-
structures implies the hypo equations (32) for all t.

In the analytic category, by Cartan-Kähler theory, [16, Theorem 4.4] establishes
the existence of solution to (94). The question remains open within the smooth
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category, quite puzzling due to the existence of non-analytic hypersurfaces in Calabi-
Yau manifolds.

An explicit solution is immediately provided for Sasaki-Einstein manifolds, on
N × R+; it is known as the conical SU(3)-structure:

F = t2ω1 + tθ̃ ∧ dt, Ψ = t2φ ∧ (tθ̃ +
√
−1dt). (95)

Finally, one may consider the evolution equations on natural SU(2)-structures
on the total space Ss,M of tangent sphere bundles and try to solve them within
the same natural category. It is a quite demanding problem, also because there
are other developments of the theory, namely in [19], which involve the nearly-hypo
structures and their own evolution equations now lifted to nearly-Kähler complex
3-folds. Interesting findings on double-hypo SU(2)-structures and half-flat SU(3)-
structures lead to constructions of manifolds with G2-holonomy. They all lead to
further substantial questions applying on our context, so we leave the subject for the
moment and point the reader to a future work.

Nevertheless, we shall give a new solution to the evolution equations of Conti-
Salamon for one case on S with a natural hypo structure of type I. Given a hypo struc-
ture of type I by the usual constant values p in θ̃ = −2pθ and a3, b0, b1, b2, c0, c1, c2 in
ω1, ω2, ω3 over a constant sectional curvature K oriented 3-manifold, we wish to solve
the evolution equations within the type I natural hypo structures. In other words, we
wish to find P,A3, B0, B1, B2, C0, C1, C2 functions of t, such that

θ̃ = −2Pθ, ω1 = A3dθ, ω2 = B0α0 +B1α1 +B2α2, ω3 = C0α0 + C1α1 + C2α2,

B2
1 −B0B2 = C2

1 − C0C2 = A2
3, B0C2 +B2C0 − 2B1C1 = 0,

A3 > 0, B1C0 −B0C1 > 0,

(96)

is a 1-parameter family of SU(2)-structures solving (94) and containing the initial
structure. Recall from Theorem 2.1 that all these structures are automatically hypo.

Proposition 3.7. The natural type I evolution equations are equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tA3 = 2P

∂t(PC0) = KB1

∂t(PC1) =
s2KB2−B0

2s2

∂t(PC2) = −B1

s2

⎧⎪⎨
⎪⎩
∂t(PB0) = −KC1

∂t(PB1) = − s2KC2−C0

2s2

∂t(PB2) =
C1

s2 .

(97)

The proof is immediate applying the usual formulae. In particular, if P = p is
constant, then both B1 and C1 satisfy

∂2
ttX − K

p2s2
X = 0 (98)

and so all Bi, Ci are in general of the elliptic kind. However, the assumption proves
not to be so fruitful, because then A3 = 2pt+ a4 and since the solutions must satisfy
B2

1 − B0B2 = C2
1 − C0C2 = A2

3 = 4p2t2 + 4pa4t+ a24, ∀t, cf. (51), we easily run into
contradiction. Clearly an exception occurs with the flat case, K = 0, a we shall see
below.

Another assumption to make would be P = p1t + p2 with p1, p2 constant. This
leads to quadratic solutions, but only for K > 0 although not necessarily the Sasaki-
Einsten conical solution (95).
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3.4. An integrable special-Hermitian structure. Following the above dis-
cussion, we now solve the evolution equations for an oriented Riemannian flat 3-
manifold M and a natural hypo structure of type I on Ss,M .

We keep considering any radius s tangent sphere bundle. Indeed, the variable
s may enter into the solution as a function of t, over the fixed smooth manifold S.
The same is true for the curvature K, as long as a conformal change on M carries
along conveniently with any changes in s. These relations are well established in [7],
in particular for space forms.

In the present setting, we have K = 0 and the initial data of (θ̃, ω1, ω2, ω3) of
type I are the usual constants p, a3, b0, . . . , c2.

Then we have the following solution of system (97) with P = p > 0:

A3 = 2pt+ a4, B0 = b0, C0 = c0,

B1 =
c0

2ps2
t+ b4, C1 = − b0

2ps2
t+ c4,

B2 = − b0
4p2s4

t2 +
c4
ps2

t+ b5, C2 = − c0
4p2s4

t2 − b4
ps2

t+ c5,

(99)

with a4, b4, c4, b5, c5 real constants.
The conditions required by SU(2)-structures follow:

2pt+ a4 > 0,

b20 + c20 = 16p4s4, b4c0 − b0c4 = 4p2s2a4,

b24 − b0b5 = c24 − c0c5 = a24, b0c5 + b5c0 − 2b4c4 = 0.

(100)

These equations come from the second line of (96). For instance, we have C2
1−C0C2 =

A2
3 if and only if

b20
4p2s4 t

2− b0c4
ps2 t+ c24+

c20
4p2s4 t

2+ c0b4
ps2 t− c0c5 = 4p2t2+4pta4+ a24, and

thus three of the five equations follow. Notice B1C0 −B0C1 > 0 holds trivially.
Also, notice the substitution a4 = a3, b4 = b1, c4 = c1, b5 = b2, c5 = c2 solves

the third line and yields the initial structure at time t = 0.
Regarding the general solution of system (97), notice the Bs and the Cs determine

each other and, in the end, they determine A3 and so finally A3 determines P . Hence
the solution is not very far from the above.

Finally we consider the main example over an oriented flat 3-manifold M . Letting
2ps = 1 and a4 = b4 = c4 = b5 = c5 = 0 and, moreover, changing t/s for t, then
we may just as well let p = 1

2 , s = 1. We have the following solution of the natural
evolution equations:

θ̃ = −θ, ω1 = tdθ, ω2 = t2α2 − α0, ω3 = tα1. (101)

And so we obtain a new integrable SU(3)-structure on Z = S1,M × R+:

F = tdθ − θ ∧ dt, φ = ω2 +
√
−1ω3, (102)

Ψ = φ ∧ (−θ +
√
−1dt) =

= θ ∧ α0 − t2θ ∧ α2 − tα1 ∧ dt−
√
−1(tθ ∧ α1 − t2α2 ∧ dt+ α0 ∧ dt).

(103)

Indeed, in no trivial way becomes Z an open subset of C3. Nor for any flat trivializing-
neighborhood of M . We also recall

dα0 = θ ∧ α1, dα1 = 2θ ∧ α2, dα2 = 0, (104)
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in order to prove dF = dΨ = 0.

Remark. To give a direct proof of the fundamental differential system formulae
(3), deduced twice in general in [4, 8], now defined over the Euclidean space, one may
use coordinates (x1, x2, x3, u1, u2, u3) on R

3 × S2 with
∑

(ui)2 = 1 and the notation
dijk, = dxi ∧ dxj ∧ dxk, dij,k = dxi ∧ dxj ∧ duk. Then

θ =
∑

uidxi, α0 = +�
123

u1d23,, α1 = +�
123

u1(d2,3 − d3,2), α2 = +�
123

u1d,23. (105)
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[1] I. Agricola, The Srńı lectures on non-integrable geometries with torsion, Arch. Math. (Brno),
42 (2006), Suppl., pp. 5–84.

[2] M. T. K. Abbassi, Note on the classification theorems of g-natural metrics on the tangent
bundle of a Riemannian manifold (M, g), Comment. Math. Univ. Carolinae, 45:4 (2004),
pp. 591–596.

[3] M. T. K. Abbassi and O. Kowalski, On Einstein Riemannian g-natural metrics on unit
tangent sphere bundles, Ann. Global Anal. Geom., 38:1 (2010), pp. 11–20.

[4] R. Albuquerque, A fundamental differential system of Riemannian geometry, Rev. Mat.
Iberoam., 35:7 (2019), pp. 2221–2250.

[5] ——, Curvatures of weighted metrics on tangent sphere bundles, Riv. Mat. Univ. Parma, 2:2
(2011), pp. 299–313.

[6] ——, Weighted metrics on tangent sphere bundles, Quart. J. Math., 63:2 (2012), pp. 259–273.
[7] ——, Homotheties and topology of tangent sphere bundles, J. Geom., 105:2 (2014), pp. 327–342.
[8] ——, A fundamental differential system of 3-dimensional Riemannian geometry, Bull. des Sci.

Math., 143 (2018), pp. 82–107.
[9] R. Albuquerque and J. Rawnsley, Twistor Theory of Symplectic Manifolds, J. Geom. Phys.,

56 (2006), pp. 214–246.
[10] L. Bedulli and L. Vezzoni, Torsion of SU(2)-structures and Ricci curvature in dimension 5,

Differential Geom. Appl., 27 (2009), pp. 85–99.
[11] D. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math., vol. 203,

Birkhaüser Boston Inc., Boston, MA, 2002.
[12] Ch. P. Boyer, K. Galicki and S. Simanca, Canonical Sasakian Metrics, Comm. Math. Phys.,

279 (2008), pp. 705–733.
[13] Ch. P. Boyer, Maximal Tori in Contactomorphism Groups, Differential Geom. Appl., 31

(2013), pp. 190–216.
[14] G. Calvaruso, Contact Metric Geometry of the Unit Tangent Sphere Bundle, in “Complex,

Contact and Symmetric Manifolds”, 2005, O. Kowalski, E. Musso and D. Perrone editors,
Progr. Math., Volume 234, Birkhäuser Boston.
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