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ABSTRACT 

Biodiversity conservation questions human practices towards biodiversity and, therefore, 

largely conflicts with ordinary societal aspirations. Decisions on the location of protected areas, 

one of the most convincing conservation tools, reflect such a competitive endeavor. Operations 

Research (OR) brings a set of analytical models and tools capable of resolving the conflicting 

interests between ecology and economy. Recent technological advances have boosted the size 

and variety of data available to planners, thus challenging conventional approaches bounded on 

optimized solutions. New models and methods are requested to use such a massive amount of 

data in integrative schemes addressing a large variety of concerns. Here, we provide an 

overview on the past, present and future challenges that characterize spatial conservation 

models supported by OR. By enlarging the spatial, temporal, taxonomic and societal horizons of 

biodiversity conservation planners navigate around multiple bio-socioeconomic equilibria and 

are able to decide on cost-effective strategies to improve biodiversity persistence. 
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ABSTRACT 

Biodiversity conservation questions human practices towards biodiversity and, therefore, 

largely conflicts with ordinary societal aspirations. Decisions on the location of protected areas, 

one of the most convincing conservation tools, reflect such a competitive endeavor. Operations 

Research (OR) brings a set of analytical models and tools capable of resolving the conflicting 

interests between ecology and economy. Recent technological advances have boosted the size 

and variety of data available to planners, thus challenging conventional approaches bounded on 

optimized solutions. New models and methods are requested to use such a massive amount of 

data in integrative schemes addressing a large variety of concerns. Here, we provide an 

overview on the past, present and future challenges that characterize spatial conservation 

models supported by OR. By enlarging the spatial, temporal, taxonomic and societal horizons of 

biodiversity conservation planners navigate around multiple bio-socioeconomic equilibria and 

are able to decide on cost-effective strategies to improve biodiversity persistence. 

 

Keywords: Climate change; Ecological dynamics; Mathematical programming; Optimization; 

Spatial analysis; Systematic Conservation Planning 

 

1. INTRODUCTION 

The world faces one of the most intractable problems: habitats and species are declining at 

unprecedented rates (Barnosky et al., 2011; Urban, 2015). Habitat loss, overexploitation of 

natural resources, biological invasions, pollution and global climate change are major drivers of 

such declines (Maxwell et al., 2016). In recent decades, the incidence of these threats has been 

expanding, and their synergistic effects add up to the already broad additive impacts (Barnosky 

et al., 2011). Globally, multiple institutional instruments have been created to mobilize 

governments to abate and revert those impacts (e.g., Convention on Biological Diversity, CBD; 

Intergovernmental Panel on Climate Change, IPCC; Intergovernmental Panel on Biodiversity and 

Ecosystem Services, IPBES, 2030 United Nations Agenda for Sustainable Development, SDGs). 

However, the overdependence of modern societies on traditional socioeconomic activities 

coupled with the unprecedented rates of current climate change makes biodiversity perspectives 

bleak in the short-term (Seddon et al., 2016; Steffen et al., 2018). 

Biodiversity conservation is deeply reliant on functional protected areas (PAs). They are 

championed as refuges for native species, acting as filters against local threats. Since the 

establishment of PAs restricts the free practice of socioeconomic activities, PAs are generally 
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seen as competing instruments that limit the development of anthropocentric societies, largely 

reliant on commercial and industrial financial revenues. Under the political sovereignty of short-

term economic gains, governments naturally support biodiversity-hazardous activities, but to 

pursue the commitments made under global conservation treaties (e.g. Aichi Targets, CBD, 2011; 

and SDGs, United Nations, 2015), they still need to set aside PAs. In many cases, PAs have been 

used as figurative political instruments: their establishment is made in regions with low 

socioeconomic appeal (Joppa and Pfaff, 2009). Consequently, the efforts put into the 

establishment and management of those PAs are ineffective in accomplishing their ultimate goal 

of preserving important ecological features (i.e., natural habitats, species’ populations and gene 

pools) and processes (e.g., at the individual level: feeding, mating, resting; at the population 

level: dispersal, colonization, survivorship and abiotic equilibria, and; at the community level: 

interaction networks) in the long-term. Without a loss of generality, henceforth, for simplicity, 

we refer to ecological features and processes as species, since species are the main taxonomic 

units driving conservation plans. 

Thirty years ago, a novel scientific body of research emerged to support transparent and rational 

decision-making for the identification of ecologically valued areas to protect. Systematic 

conservation planning (SCP) originated as a framework rendering the interests of researchers, 

conservationists, policy-makers, managers, stakeholders and citizens in defining the means to 

conserve not only local natural values, but scaling them up to larger areas and wider sets of 

decision-makers to accrue the benefits of shared financial resources and complementary 

conservation actions. This synthesis explores, either directly or indirectly, a small set of 

questions that emerge from the spatial component of SCP (for comprehensive overviews of SCP 

see for example  McDonald, 2009; McIntosh et al., 2017; Pressey and Bottrill, 2008; Warman et 

al., 2004), specifically: 

- Which species and ecological mechanisms require prioritized protective measures? 

- Which processes threaten biodiversity? How can they be integrated in spatial 

conservation models? 

- How are the current and aspiring states of biodiversity quantified? Are there data 

available or opportunities to gather them? 

- How should the financial resources available be spent? (i.e., For which species? In which 

areas? With what timing? Is it possible to still use the current established conservation 

efforts?) 

- Is it possible to upscale conservation planning towards larger areas and time-horizons, 

protecting a wider set of species and combining the goals and resources of multiple 

planners? 
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- What are the most effective options for action in contexts characterized by a large risk of 

failure derived by large amounts of analytical uncertainty and/or stochasticity? 

Challenged by these questions, cutting-edge conservation planning uses analytical tools to 

undertake planning designs that, consequently, are expected to retrieve the largest conservation 

gains with the least financial resources, alongside a reduction of conflicts with competing 

socioeconomic activities (Watson et al., 2011). At this stage, solving optimized conservation 

problems is far from trivial. The need to cover wide sets of species, assessing large geographic 

areas with detailed (high-resolute) information and the integration of multiple, sometimes 

interacting, factors makes conservation plans extremely difficult to implement even when 

supervised by expert knowledge (Langford et al., 2011; Poiani et al., 2000). In this context, 

Operations Research (OR) gains relevancy as it delivers tools and techniques suited to assist 

decisions around the spatial (and nonspatial) dimension(s) of conservation planning. 

In the following sections, we debate problems concerning the spatial component of SCP, in 

particular, the identification of adequate areas for the establishment of PAs managed uniquely 

for biodiversity conservation or, similarly, areas where some level of ecologically sustainable 

socioeconomic development is allowed. We start by describing two general problems in OR that 

mimic two basic problems in PA selection. Then, we discuss more ambitious area-selection 

problems that integrate several PA properties and more elaborate conservation concerns 

(spatial design, connectivity, dynamic PAs prepared to mitigate the effects of climate change; use 

of explicit socioeconomic data; integration of uncertainty and risk control). We confront custom 

and ideal spatially explicit datasets informing distinct ecological, budgetary, socioeconomic and 

vulnerability realities. We conclude, debating about new perspectives to analyze massive 

amounts of data that, potentially, better represent the broad set of factors likely to determine 

biodiversity conditions. 

 

2. THE BASICS OF OR IN SPATIALLY-EXPLICIT BIODIVERSITY CONSERVATION 

Operations Research is a discipline that develops analytical models and methods to help 

decision-making. It has applications in many fields of science and management, including 

engineering, economics and logistics, where optimal decisions need to be taken in the presence 

of trade-offs between two or more conflicting goals (Ravindran, 2008). The cornerstone of OR is 

optimization, which, in its simplest form, consists of identifying a solution among a set of 

potential solutions that either maximizes or minimizes an objective function. An OR problem is 

characterized by a set of constraints that have to be satisfied, outlining if a candidate solution is 

feasible (when all constraints are fulfilled) or not (when at least one constraint is missed). A 
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feasible solution that maximizes (or minimizes) the objective function is called an optimal 

solution. A problem may have several optimal solutions. Depending on the specific nature of the 

objective function and constraints, optimization problems are approached by specific methods 

(e.g., linear, integer, mixed, nonlinear, network, robust, stochastic and dynamic programming 

procedures) (Hillier and Lieberman, 2015). 

In conservation planning, decisions often reflect the interplay of social, economic, political and 

scientific priorities. The multifactorial dimension of conservation results in contentions and 

conflicts at the heart of its reasoning. For example, activities that retrieve high financial 

outcomes may lead to significant ecological disturbance. On the other hand, a conservationist 

measure may lead to important reductions of agricultural or forestry net production. Once a 

given criteria of optimality is established (e.g., one that benefits the conservation side of a wide 

biosocioecological system), it is not possible to achieve it without conflicting with the aspirations 

of other socioecological players. The complex trade-offs among these factors led Smith and 

Theberge (1987) and Cocks and Baird (1989) to use OR for the first time in support of spatially 

based decision-making in conservation. Since then, the use of optimization models in biological 

conservation research is increasing, both in number and complexity (Figure 1). 

 

 

Figure 1 –Yearly number of publications in peer-reviewed journals on ecology and conservation 
explicitly formulating OR models since 1991 (total number, n=402). Search on Web of Science at 20 
September 2018 [TS = (conservation AND (species OR biodiversity OR habitat*) AND ("integer 
programming" OR "operations research" OR "mathematical))]. 

 

3. TWO BASIC MODELS AND SOME EXTENSIONS 

Two OR problems were initially proposed to guide spatial conservation decisions for both 

effectiveness (i.e., accomplishment of established goals) and efficiency (i.e., saving the resources 

available to undertake conservation decisions and actions). The minimum set cover (MSC) 

problem aims to choose a subset from the set of candidate selection units (e.g., grid cells in a map 
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or, in more general terminology, sites) to build a network of PAs that consume the fewest 

resources (i.e., number of sites, total surface area, financial resources, etc.), while guaranteeing 

that each of the species to conserve is adequately covered in those Pas; i.e., the presence of each 

species within PAs should equalize or exceed a given representation level (i.e., a target) that, 

ideally, certifies the persistence of a species in the long-term (Justus et al., 2008; Moilanen et al., 

2009b). In this problem, sites, as selection units, cannot be partially selected, thus making the 

problem combinatorial. When a large number of sites and species are analyzed (i.e., ten-to-

hundreds of thousands), the massive number of combinations to explore (i.e., potential solutions 

to certify) makes these problems hard to solve to full optimality (Pressey et al., 1996; Rodrigues 

et al., 2000). 

An alternative approach to conservation planning that expresses the context most often faced by 

conservationists (i.e., the impossibility of protecting all concerned species) assumes that the 

resources available for the selection of PAs are fixed and limited and conservationists look to 

maximize the number of species adequately covered by PAs in final solutions (the maximal 

coverage problem, MC) (Figure 2). 

 

 

Figure 2 – Formulations of the basic area selection problems. 

 

Originally, both models were built with the general assumption that the representation of a 

species in a single protected site would suffice to consider the species adequately represented in 
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PAs. More general conditions are, however, well accommodated by these problems. For example, 

the adequate representativeness may differ among species, and/or may require more than one 

protected site to provide a precautionary, redundant protection. While these generalizations are 

straightforward and integrated into the MSC, they are slightly less obvious to be accommodated 

in the MC (Figure 2). Likewise, both problems are flexible on the use of distinct types of data. 

The use of presence/absence data about each species in each site in the study region may be 

replaced by (and mixed with) other types of data (e.g., species abundance, local environmental 

suitability, local probability of occurrence, etc.) (Figure 3). Ultimately, decisions based on data to 

use and on the settled representation targets should approximate PAs to the leading goal of a 

conservation plan: to foster biodiversity persistence (Pressey et al., 2007). 

 

 

Figure 3 – Relevant data to be used in spatial conservation planning. 

 

Depending on data quality, availability and treatment, planners may consider complementing 

the representativeness of species in PAs, with PA spatial properties. This choice gains special 

relevancy when PAs are exposed to detrimental impacts from neighboring regions that may flow 

into PAs (i.e., edge-effects) or when environmental and/or threat gradients make PA location 

and design strategic for biodiversity protection. The shape and compactness of PAs (Billionnet, 

2015; Nalle et al., 2002; Williams, 2002), length of PA edges (Cerdeira et al., 2005; Fischer and 

Church, 2003; McDonnell et al., 2002; Önal and Briers, 2002), the number of PA isolates and their 

proximity (Alagador and Cerdeira, 2007; Cerdeira and Pinto, 2005; Nalle et al., 2002; Önal and 

Briers, 2002) are spatial attributes (i.e., constraints) that add up to the species’ 

representativeness in MSC and MC problems (see Baskent and Keles, 2005; Billionnet, 2013 for a 

review on other spatial design models; Williams et al., 2004). Other approaches combine the 
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constraints of PA placement and design with species-specific requirements or with the 

heterogeneity of the landscape. For example, Ciarleglio et al. (2009) and Cerdeira et al. (2010) 

introduced two unrelated problems in which the cost/area of PA networks is minimized, while 

cohesive subsets of PAs are identified for each species in which their representation targets are 

met. Hamaide et al. (2014) formulated the MSC and MC problems attending the risks of 

expanding threats (e.g., contagious diseases and fires), which are heterogeneously distributed 

across space. Under their formulations, final solutions are characterized by small PAs, where 

expanding threats are very likely to occur and large PAs (multiple cohesive protected sites) 

where these threats are unlikely. 

Given that most of the spatial attributes imply nonlinear relationships among sites, to make the 

problems computationally tractable, when possible, nonlinearities in decision variables need to 

be linearized (Billionnet, 2014). Linearization usually implies adding more variables and 

constraints that, altogether, linearly replicate the original nonlinear relationships. Those 

transformations make solutions harder to obtain when compared with solutions from models 

that, originally, do not involve nonlinear relationships. However, there is a particular class of 

nonlinear problems (i.e., their solution space defines a convex set) for which global optima are 

also obtainable through nonlinear convex optimization methods (Bazaraa et al., 2013). 

 

4. CONNECTIVITY 

In the previous problems, biodiversity persistence is based on the representativeness of species 

within PAs and on the effects of heterogeneity, redundancy, and modularity of PA networks for 

those species. However, those PA selection problems still miss critical factors promoting 

biodiversity persistence: the natural flows of genes, propagules, individuals, populations and 

energy across the landscape. A network of PAs that safeguards these processes and that, 

consequently, circumvents habitat fragmentation is said to be connected. The connectivity of PAs 

reinforces the dynamic processes and therefore the resiliency of natural (meta)populations to 

environmental changes (Cabeza et al., 2004; Keith et al., 2008; Minor and Lookingbill, 2010). 

Depending on the nature of connectivity and the final purpose of a conservation plan, 

connectivity may be grouped using two classification systems (Correa Ayram et al., 2015). In 

one, connectivity is said to be structural when it implies the spatial contiguity of sites and is 

functional when it defines a spatial arrangement of sites in which, being spatially contiguous or 

not, the flow processes are effectively assured (Calabrese and Fagan, 2004). Under the second 

classification system, when a conservation plan seeks to identify connected sites (structural or 

functional) between regions that have been previously targeted as ecologically significant (e.g., 
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discrete population units of a species, key habitat patches, PAs, among others), connectivity is 

said to be primary. Contrarily, when a plan combines connectivity requirements with species 

representativeness, connectivity is said to be secondary (e.g. Cerdeira et al., 2010; Wang and 

Önal, 2015). Regardless of the type of connectivity, graphs are adequate mathematical 

representations. Graphs are mathematical entities settled around a robust theoretical 

background, which allows solutions to be obtained efficiently (i.e., saving time and 

computational resources) (Bunn et al., 2000; Urban and Keitt, 2001). In a structural approach, a 

landscape is well characterized with a single graph describing the spatial arrangement of sites. 

The sites to be linked are represented by nodes and their topologic relationships (e.g., adjacency, 

distance, etc.) described by edges linking pairs of nodes. In a functional approach, the 

specificities associated with each species and flow process imply that a graph (or a set of 

synthetic graphs) uniquely characterizes a set of species and process with similar connectivity 

requirements. In these graphs, nodes represent areas of occupancy and/or passages for a species 

(or where processes flow through) and values associated with edges denote geographic or 

functional distances between nodes, as perceived by the respective species or characterizing a 

flow process (e.g., a resistance metric characterizing movement cost across the landscape that 

depends on habitat characteristics) (Bunn et al., 2000). 

Most of the connectivity concerns published in conservation planning literature have focused on 

primary connectivity using one of three OR problems in graphs (Rayfield et al., 2011): the 

shortest (or least cost) path (LCP), the minimum spanning tree (MST) and the minimum Steiner 

tree (MStT) problems. The LCP between a source and a target node (population, habitat, PAs, 

etc.) in a graph is a path (sequence of nodes and edges) that links the source and target nodes 

that presents the lowest cumulative cost (i.e., distance or a landscape resistance measure) 

among the edges that make up the path (Figure 4). One limitation of LCP is that it only predicts 

connectivity between a single source and a single target node (see Cushman et al., 2009 for an 

ecological application). Real-world approaches often require more comprehensive assessments 

of connectivity (Sawyer et al., 2011). For example, planners may require that (if possible) all 

targeted sites of the study region (special nodes in the graph) are connected together, so that 

flows exist between every pair of these special nodes (either directly or indirectly through other 

special nodes) (e.g. Cushman and Landguth, 2012; Fall et al., 2007; Landguth et al., 2012). The 

MST problem finds such a fully connected solution with the minimum cost. The MStT problem is 

a generalization of the MST when extra nodes (not necessary to represent important occupancy 

sites, the Steiner nodes) are defined in the original graph to reduce the cumulative cost of the 

MST over the original nodes (Sessions, 1992). This problem is more realistic than MST, given 

that connectivity paths are not limited to strict linkages between pairs of important nodes for 
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connecting (e.g. Alagador et al., 2012; Brás et al., 2013; Lai et al., 2011). Possibly, in large 

inhospitable landscapes, a single (or a set of) habitat center(s) may stay isolated, with no 

possibility of connecting to the remaining ones. In these cases, planners may consider using 

generalizations of the MST and MStT that search for the MST and MStT within each isolated set 

of important areas to link the minimum spanning forest and the Steiner forest problems, 

respectively (Alagador et al., 2012). 

 

 

Figure 4 – Formulations of connectivity problems. 

 

A challenge in modeling dispersal routes is that individuals rarely use a single optimum route 

(Driezen et al., 2007) and therefore the optimum routes obtained from OR problems miss such a 

variable use of landscape by propagules and individuals (Bélisle, 2005) (unless a minimum 

number of linkages are defined as a requisite for feasible solutions, Rayfield et al., 2010). For 

these specific cases, tools derived from the circuit (Dickson et al., 2019; McRae et al., 2008), 

diffusion (Ovaskainen, 2004) and percolation theories (With, 2002) are best suited to deriving 

the relative connectivity value of all sites in a map. 

 

5. MAKING SOCIOECONOMY EXPLICIT 

A central contribution of economists to the development of conservation plans involves the 

incorporation of financial costs into planning settings. The inclusion of these costs in PA 
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selection problems directs the efficiency assessment of plans to financial resources (i.e., budgets) 

rather than areal size or number of sites (Balmford et al., 2000). When compared to standard 

area-based procedures, considering financial costs more clearly captures the conservation 

benefits to be obtained from the investments made, and most likely generates distinct sets of 

optimal PAs (Ando et al., 1998). Socioeconomic costs associated with conservation plans may 

include the capital needed: 1) for the acquisition of PAs (i.e., within land markets); 2) to establish 

time-limited contracts with landowners; 3) to compensate landowners for foregone revenues 

from their local activities; and 4) to undertake conservation actions, which may depend, for 

example, on the distance to the established PAs or to operational headquarters of conservation 

agencies (Naidoo et al., 2006; Naidoo and Ricketts, 2006). 

With explicit socioeconomic data available, novel problems arise in which both the revenues 

from socioeconomics and conservation benefits are optimized. In these multiobjective problems, 

the maximization of ecological and socioeconomic revenues from PAs is undertaken using 

distinct analytical designs. With MSC and MC problems, the ecological and financial components 

of a plan are fixed while the other is maximized. However, when a planner aims to achieve a 

compromise between the ecological and the socioeconomic goal, multiobjective efficiency 

frontiers (i.e., Pareto solutions) enable the identification of balanced solutions, in which 

improving one side of the (socioecological) system implies the reduction of revenues on the 

other side (Polasky et al., 2008; Polasky et al., 2005). Therefore, they are important states to 

focus attention on for the purpose of reconciling activity expectations. Conservation costs may 

also represent nonmarket values that impair conservation effectiveness (Chan et al., 2011); 

extinction risks associated with species occurring at each site (Game et al., 2008; Tulloch et al., 

2013); and measurable uncertainties on local occurrences of species (Kujala et al., 2013; Lemes 

and Loyola, 2013) (more details below). 

Overall, socioeconomic data contribute to making conservation decisions cost-effective in ways 

that reflect how the nonbiophysical aspects of a conservation plan influence the optimal PA 

location. These advances do, however, rely on well-functioning institutions, with structured 

mappings of property rights and comprehensive spatially explicit land-market datasets. The 

scarcity of these data at workable resolutions limits the applicability of socioeconomic settings in 

conservation plans, blurring the accuracy of cost-effectiveness metrics in conservation decisions 

(Armsworth, 2014; Sutton and Armsworth, 2014). 

 

6. ANTICIPATING FUTURE THREATS 
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The PA selection models discussed above are static in the sense that area-selection decisions are 

exclusively based on information from a single period of time that is implicitly assumed to be 

stable in the future. However, the pervasive, wide-scaled nature of current threats makes 

anticipative policies critical for the accomplishment of conservation goals cost-effectively. In 

these strategies, upfront predictions and inferences concerning the plausible responses of 

socioecological systems over time put planners one step ahead of possible negative effects, thus 

causing conservation decisions to be more effective in promoting biodiversity persistence 

(Hannah et al., 2007). Predictive ecological models that expand empirical data to wide 

geographic spaces and distant temporal horizons (e.g. species distribution models, Elith and 

Leathwick, 2009) give planners plausible overviews on future conditions of their working 

systems (see time dimension in Figure 3). Thus, these tools enable conservation planners to 

anticipate the management of financial investments over time and to decide which, where and 

when a conservation action should be undertaken (Mouquet et al., 2015). Proactive approaches 

resulting from anticipated information are especially relevant when conservation-concerned 

species are continuously pressed, so that their persistence depends both on the success of their 

recurrent adaptive responses and the timely adoption of conservation actions (Naujokaitis-

Lewis et al., 2018). Importantly, the way PAs are realized needs to shift from a static, perpetual 

set of areas, in which species are set aside from local threats, to a network of PAs that, altogether, 

cover the adaptive movements of species and flow processes with time, favoring their 

persistence even under global-scale stressors (i.e., dynamic equilibrium) (Hannah, 2008; Hannah 

et al., 2002a; Hannah et al., 2002b). The unprecedented rate of current and future-predicted 

climate change and the impacts on biodiversity need to be explicitly accommodated in 

anticipative conservation planning (Bonebrake et al., in press). 

In contrast to local threats that commonly impact local communities as a whole, climate change 

influences species idiosyncratically, as their genetic, physiological or behavioral adaptive 

apparatuses lead to specific adaptive responses to the climatic stressors. Climate change-

concerned conservation planners need, therefore, to focus their efforts on these species-specific 

responses. Under climate change, many species are forced out of PAs (Araújo et al., 2004; Halpin, 

1997; Hannah, 2008). Projections indicate that important networks of PAs will lose suitable 

climates for species of high conservation concern to subsist therein (Araújo et al., 2011; Beale et 

al., 2013; D'Amen et al., 2011; Hole et al., 2009; Lemes et al., 2014; Prieto-Torres et al., 2016; 

Regos et al., 2016; Wise et al., 2012). To address this challenge, new PAs need to be planned into 

the future and their effectiveness re-evaluated through time. The problem is that conservation 

resources are limited and classifying new PAs to buffer against the negative effects of climate 

change can be extremely expensive (Hannah et al., 2007; Shaw et al., 2012; Wise et al., 2012). 
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Thus, the question is whether efficient strategies can be devised so that long-term conservation 

targets (e.g., representation targets) are continually met while keeping budgets under control. 

Williams et al. (2005) developed a multistage framework (i.e., enabling decisions to be made 

among several time-steps into the future) with the goal of identifying the sets of areas of 

minimum cost that cover the adaptive movements of species in a number of unitary dispersal 

corridors, which define likely trajectories of the species over time within the study region. Later, 

Phillips et al. (2008) formulated this same problem using classical OR tools from network flow 

theory. These authors explored special properties in the structure of the modeling networks to 

make solvable problems dealing with massive datasets. For the same study system, the optimal 

solution obtained was 30% less costly than the solution obtained by Williams et al. (2005) using 

a greedy heuristic approach. Recently, Alagador et al. (2014) and Alagador et al. (2016) 

proposed several related problems that, instead of a network-like formulation, represent the 

selection of dispersal corridors as OR-covering problems (line MSC and MC) (Alagador and 

Cerdeira, under review). In these new problems, representation targets are replaced by 

persistence targets that rely on the persistence scores of species within dispersal corridors (i.e., 

the selection units). Although other data may be used to make such scores more accurate, the 

basic version of persistence scoring uses data reflecting two ecological processes that, depending 

on availability or planning requirements, are able to be modeled within a gradient of detail: 1) 

the probabilities of a species to occur in a given site in a given time period, and 2) the 

probabilities of a species to successfully disperse between sites. In a precautionary perspective, 

the (overall) persistence expectancy of a species in the final solution is obtained through the 

maximum accumulated persistence in nonconverging dispersal corridors (i.e., a set in which two 

corridors cannot use the same site in the same period of time). This property of structural 

independence among dispersal corridors to be used by a species mitigates possible negative 

contagious effects (e.g., epidemics and fires). Importantly, in these models, area selection is not 

obligatorily additive, in the sense that, in each time-period, sites that have been previously 

targeted for protection may be removed from the solution for later periods of time (Fuller et al., 

2010). The resources saved from area deselection are then redirected to other areas expected to 

retrieve the largest gains (considered overall within the objective function). Similar to the 

original MSC and MC problems, the objective functions of these two equivalent problems are the 

minimization of total solution cost and the maximization of the number of species “fully covered” 

(i.e., in these models, representation targets are replaced by persistence targets). Alagador and 

Cerdeira (2017) introduced a third model in which solution effectiveness is measured using a 

continuous benefit function. The goal is to minimize the shortfalls to the persistence targets that 

are minimized over all the focal species. With this objective function, the investments made for 
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the protection of a species that miss their persistence targets still profit and, consequently, 

contribute to the overall solution effectiveness. Importantly, the three problems formulated 

therein assume that costs on sites vary over time, making them close to real-world dynamic land 

markets. 

Traditional representational targets (i.e., number of sites or total selected area) as settled in the 

initial PA selection problems have a geographic nature but are established as proxies of species 

persistence (i.e., the higher the number of sites or the larger their total area, the more likely a 

species will be maintained). The link between area and persistence is ideally made under the 

concept of minimum viable population (Clements et al., 2018; Di Marco et al., 2016; Flather et al., 

2011; Wiersma and Nudds, 2006), which requires detailed information on population (meta-) 

dynamics. With these data unavailable, a proximal metric on persistence may be derived using 

probabilistic or probabilistic-like information on species to define targets using a minimum 

required persistence threshold for each species (Alagador et al., 2016). However, similar to the 

probabilistic versions of the MSC and MC problems (see Figure 2), explicit persistence targets do 

not have an intuitive geographic transposition, making it difficult for a planner to acknowledge 

aprioristically if a given target is (or is not) achievable by a species within a given conservation 

setting. This difficultly may result in unfeasible spatial conservation problems, either because at 

least one persistence target was too inflated given the species condition in the working-system 

or because a target that, although achievable by a species individually, is not achievable in 

conjunction with the targets defined for the remaining ones, given the financial resources 

available for area selection (Alagador and Cerdeira, 2017). To overcome such a drawback, 

Alagador and Cerdeira (under review) introduced a parameter that enables a planner to relax to 

K the number of species with their persistence targets fulfilled in final solutions. 

 

7. DYNAMICS, STOCHASTICITY AND ANTICIPATIVE APPROACHES 

Although imbedding a dynamic selection of PAs over time, the anticipative approaches 

mentioned above assume a deterministic overview of the future, so that a decision made to 

protect an area does not change its predicted ecological and socioeconomic states for the time 

ahead (nor the states of its neighboring areas) (Costello and Polasky, 2004; Polasky, 2006). 

Similarly, those problems do not assume irreplaceable losses of species occurring in a site when 

it is left unprotected over time and is fully exposed to local threats (i.e., these sites will contain 

less conservation value than originally assumed). This conservation template is valid, for 

example, where protective measures can be applied extensively and rapidly, where the planning 

domain is public and the loss of native vegetation is unlikely, and when climate change is the 
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main factor guiding the establishment of a PA network (in this case, any local conservation 

action hardly changes the climatic pattern of an area). However, when financial resources are 

collected incrementally, possibly extending over decades, and where this gradual resource-

acquisition is accompanied by a progressive, selective loss of species, then the interplays 

between the timing of decisions and local land condition and socioeconomic value are best 

modeled using stochastic dynamic programming (SDP) (Costello and Polasky, 2004; Meir et al., 

2004; Strange et al., 2006; Westphal et al., 2003; Wilson et al., 2006). The optimal solution from 

SDP defines the optimal sequence of decisions when the future status of the sites inside and 

outside PAs is uncertain and dependent on previous decisions; when these actions present a 

geographic and/or temporal window of influence; and when stochastic processes prevail 

(Figure 5). 

 

 

Figure 5 – Formulations of the stochastic dynamic problems (see Costello & Polasky 2004, for 
full explanation). 

 

A key advantage of SDP is its ability to produce a feedback policy specifying optimal decisions for 

possible future system states rather than expected future states (Williams and Johnson, 2013). 

Depending on the spatial grain, a decision to protect a given site may also influence the condition 

of sites and species in the neighboring regions. Replicated among the whole landscape, these 

interdependencies among sites make the problem of selecting Pas, which in the long-term 

deliver the largest benefits, enormously complex because the computational burden to obtain an 

optimal solution increases exponentially with the number of sites and system states considered, 
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constituting the Bellman’s curse of dimensionality (Bellman, 2010). The use of SDP for realistic 

instances made of hundreds to thousands of sites, several time-periods and several system states 

is therefore impracticable. To circumvent this drawback, several heuristic approaches have been 

developed to retrieve suboptimal solutions of good quality (for an overview of such methods in 

ecology and conservation see Chadès et al., 2014; Nicol and Chadès, 2011; Nicol et al., 2010). 

The nature of SDP makes it suitable to explicitly accommodate interrelationships between 

conservation decisions and land prices. Extensive market feedback determines the effectiveness 

of conservation investments. First, land prices rise when conservation groups invest significantly 

in local land markets, making future investments more difficult (Armsworth et al., 2007; Tóth et 

al., 2011). For example, Armsworth et al. (2006) show how conservation acquisitions alter 

nearby land values in ways that can accelerate development near PAs. The acquisition of land for 

additional PAs may increase land prices, making them too expensive for conservation purposes. 

The assumption of constant marginal land costs neglects land market feedback and 

underestimates the actual land costs leading to suboptimal solutions (Jantke and Schneider, 

2011). In competitive land markets, rental values reflect the supply and demand equilibrium 

price at a given time and location. When PAs expand over agricultural or forested areas, the 

equilibrium between supply and demand in regional land markets is distorted and a new 

equilibrium is obtained with the readjustments of land rental rates. This feedback from land 

markets affects the economic feasibility of conservation, as along with the costs of future 

conservation efforts (Polasky, 2006). The more land that is allocated to PAs, the higher are their 

opportunity costs (e.g., costs of forgone agricultural, forestry production) because of price 

adjustments in several commodity markets (e.g., agriculture, forest) (Butsic et al., 2013; 

Dissanayake and Önal, 2011). Commonplace, nonfinancial approaches to PA selection should 

perform satisfactorily in places where land outside PAs is biodiversity poor. These approaches 

will fail where, alongside PAs, the countryside surrounding PAs is critical for the species’ 

persistence. In this case, the net gains from conservation investments may be negative, thus 

making them counterproductive, condemning more species than they save (Armsworth et al., 

2006). 

Second, conservation investments may displace development pressure locally, and the net 

biodiversity improvement in the area protected (through full acquisition or rental contracts) 

may be less than the one expected from the full area purchased. Development pressure can 

potentially be displaced onto properties of large conservation value that would otherwise have 

gone unthreatened, meaning that conservation efforts may sometimes do more harm than good 

(i.e., leakage) (Bode et al., 2014; Moilanen and Laitila, 2016; Renwick et al., 2015). 
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Finally, the establishment of PAs can change the overall attractiveness of an area to developers 

seeking to capitalize on conservation amenities (i.e., amenity values). When acknowledging the 

ecological value of unprotected land, the effectiveness of conservation efforts is improved by 

accounting for land market dynamics through reliable data on land rents, land price elasticities 

and other land market forces (Jantke and Schneider, 2011). 

 

8. HANDLING UNCERTAINTY AND RISK WITHIN ON LAND DECISIONS 

Economic theory integrates strategies to deal with uncertainty in commercial and financial 

markets. Conservationists may use some of these strategies to increase the probability of 

achieving their objectives in contexts wherein distinct types of uncertainty exist (Ando and 

Hannah, 2011; Langford et al., 2009; Regan et al., 2009). These strategies may be typified as: 1) 

operational-based: when unmeasurable, uncertainty is handled using spatial-based rules-of-

thumb likely to absorb high levels of variability, leading to robust-perceived solutions, or; 2) 

analytical-based: when uncertainty is measurable (thus referred to as risk), it is typically 

represented by probabilistic data analyzed statistically. Operational management of uncertainty 

in PA selection is undertaken, e.g., when conservationists engage in temporary contracts, instead 

of acquiring areas in perpetuity to keep future conservation options open until uncertainty is 

resolved (i.e., option value) (Araújo, 2009; Armsworth et al., 2011; Lennox et al., 2017; Newburn 

et al., 2005; Rissman et al., 2015). Albers et al. (2016) show that a less agglomerated pattern of 

PAs delivers more insurance against spreading hazards such as fire, invasive species, or pests. 

Instead of applying investments in neighboring areas with similar characteristics, a 

precautionary conservationist spreads his (her) investment in mosaics of areas (sets of 

heterogeneous areas) that, as a whole, are more robust against risk than areas of similar biotic 

and abiotic characteristics (Anderson and Ferree, 2010; Araújo, 2004; Beier and Brost, 2010; 

Beier and de Albuquerque, 2015; Lawler et al., 2015). 

In terms of risk analysis, modern portfolio theory allows planners to exploit quantitative data 

about likely correlations between the ecological changes in different areas to choose the 

collection of lands that, for a given ecological projection, minimizes the uncertainty in the 

achievement of their goals, e.g., when models retrieve divergent predictions based on several 

future scenarios (Alvarez et al., 2017; Ando and Mallory, 2012; Doremus, 2003; Hoekstra, 2012; 

Lahtinen et al., 2017; Liang et al., 2018).  

In addition to considering expected returns and standard deviations (risk) of individual 

investment options, portfolio theory analyzes the covariance structure of investments to limit 

the aggregated risk of a collection of decisions. A portfolio of investments that covary positively 
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would be riskier than one made of decisions whose results covary negatively. Portfolio theory 

looks to maximize benefits from a given level of risk to minimize risk for a given level of benefit 

or, through an efficient frontier, to balance benefit and risk in conjunction (Hoekstra, 2012). 

An info-gap decision model is a meaningful analytical approach to uncertainty when it is so 

extreme and pernicious that it cannot be dealt with using common probabilistic methods (Ben-

Haim, 2001). This often happens when data are so limited that the associated uncertainty is 

unmeasurable, so that the parameterization of the study system with a probability distribution is 

unattainable. An info-gap uncertainty model specifies the levels of uncertainty around each of 

the model parameters characterizing the system (Figure 6). The parameters are settled as 

nominal points and, after defining a domain of uncertainty, a window or ‘‘horizon’’ of uncertainty 

is specified around each nominal point. These levels of (decision) uncertainty are therefore 

assessed relative to a performance criterion (i.e., the minimum acceptable state of the system). 

Decisions that cause the system to attain or exceed the performance criterion over a wide range 

of uncertainty are said to be ‘‘robust’’ or ‘‘immune to failure’’. The other type of immunity deals 

with decisions that shift the nominal points of the system below the performance criterion. 

These decisions are not desirable in general, but because a decision spans several possible 

outcomes, there is always the possibility that the product of the decision is wrong. A question 

thus remains: what is the smallest level of uncertainty that one needs to assume so that a 

desirable outcome is possible (but not guaranteed)? Decisions that do not require large amounts 

of uncertainty to meet this possibility are said to be ‘‘opportune’’ or ‘‘less immune to success’’. 

There is often a trade-off between decisions that are optimal (i.e., maximize the criterion) and 

those that are robust to uncertainty (Moilanen et al., 2006; Moilanen and Wintle, 2006). Thus, 

Regan et al. (2005) and McDonald-Madden et al. (2008) have shown that decisions in 

endangered species management could change as uncertainty increases or when management 

criteria change. 
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Figure 6 - Formulations of info-gap problems (see Moilanen et al 2006, for full explanation). 

 

Robust optimization is the main method used to address data uncertainty in mathematical 

programming formulations. This method has been successfully applied to solve many problems 

(under uncertainty) when the exact probability distribution for the uncertain data is unknown or 

difficult to determine or otherwise when stochastic optimization techniques are computationally 

impractical (Gorissen et al., 2015) (Figure 7). Robust optimization problems are 

computationally tractable, provided the underlying uncertainty sets satisfy mild convexity and 

computability assumptions (e.g., are given by explicit systems of efficiently computable convex 

inequalities) (Ben-Tal et al., 2009). Robust optimization is a conservative approach that seeks to 

protect the decision-maker against the worst realizations of outcomes (Haider et al., 2018). The 

approach has several appealing features. First, it is explicitly tied to the data available to the 

decision-maker and captures the idea of robustness with standard likelihood bounds, making the 

approach both familiar and intuitively appealing. Second, since the approach is numerically 

tractable, it is applicable to a wide range of problems. Finally, because the framework allows 

policy-makers to choose the degree of precaution desired and map this level of precaution into a 

dynamically optimal policy, it has direct relevance and a clear structure for managers 

(Woodward and Tomberlin, 2014). 
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Figure 7 - Formulations of general robust-optimization problems. 

 

Classical (frequentist) and Bayesian statistical analyses dedicated to the integration of 

uncertainty in decision-making problems use probabilistic distributions to define a controlled 

spectra of possible outputs from decisions through confidence intervals (Burgman et al., 2005; 

Gelman and Hill, 2006; Lin et al., 2018) or to identify conditions that ensure, with a given 

probability, a certain ideal output is obtained (Carroll et al., 2010; Schapaugh and Tyre, 2012). 

Both approaches enter an optimization protocol with the incorporation of uncertainty functions 

on parameter values (probabilistic and belief models, for the frequentist and Bayesian 

paradigms, respectively), which are integrated into the objective function. The Bayesian 

approaches present the advantage of providing sequential updates of belief functions (specified 

in terms of model parameters) as new information is acquired through time (e.g., adaptive 

decisions) (McDonald-Madden et al., 2010; Sanderlin et al., 2014; Wade, 2000). 

 

9. CHALLENGES AHEAD – THE WAY FORWARD 

With thirty years of growth, the spatial dimension of SCP is now facing challenging times, in 

which large problems need quick responses. Although the protection of biodiversity is not 

commonly driven by societal requirements (i.e. the no-value land paradigm, Joppa and Pfaff, 

2009; Venter et al., 2018), human aspirations still need to be integrated into its machinery so 

that achievable win/win scenarios are identified, making conservation goals better supported 
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(Fahrenkamp-Uppenbrink, 2014; Howe et al., 2014; Reyers et al., 2012). These requirements 

give conservation planning the need to be more realistic by: 1) gathering more and better data; 

2) building flexible decision support models able to characterize a wide array of realities; and 3) 

promoting stakeholder engagement across the full SCP process, to: 3.1) find consensual and 

explicit goals; 3.2) use proper models to fulfil those goals in each particular study system, and 

3.3) evaluate and reformulate provisional solutions. In this multiplayer framework, we perform 

an overview of some challenges that the quantitative module of conservation planning already 

faces or will face in the short-term. 

 

9.1. Building more realistic assumptions 

The multidimensional complexity of biodiversity conservation demands access to a wide set of 

accurate data for planning designs to be effective in maximizing biodiversity persistence. 

Information on the distribution, abundance and dynamics of genes, populations, species and 

biotic communities; plausible changes in environmental, physical, social and economic drivers; 

and the impacts of global environmental changes should be collected at the spatial and temporal 

scales matching the relevancy of the phenomena and the established goals (Figure 3). 

Importantly: 

 Good quality data with high-resolute spatial grain allow a large number of decisions to be 

evaluated and therefore to enlarge the analytical space to look for the most informative 

solutions; 

 The increase of geographic windows allows the expansion of political, jurisdictional and 

institutional scopes of biodiversity conservation to profit not only from the individual 

potential of each player but, mainly, from collaborations and shared goals. In wide 

geographic contexts, detailed data of local ecological and socioeconomic processes 

approximate conservation plans to the real scales in which key biodiversity processes 

operate, especially when environments are heterogeneous and dynamic (e.g., the 

“geography of species’ adaptations” to climate change); 

 High-resolute temporal data allow planners to strengthen the control of their 

conservation systems, making them capable of opening up opportunities for quicker 

readjustments of conservation actions. With the tendency for a massive array of-

ecological data to be available, the monitoring of conservation systems may operate 

similarly to the (quasi-) continuous scanning performed within meteorological and 

climate assessments (Kissling et al., 2018; Proença et al., 2017). Precautionary 

approaches demand that actions today are made for plausible scenarios ahead. Thus, 
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expanding the time horizon of conservation plans allows a plausible future to be 

anticipated, leading to informed-proactive preparation of the expected outcomes and 

therefore more robust PA mappings. The extension of future temporal data implies large 

predictive capabilities for the environmental, the ecological and the socioeconomic 

systems. The farthest in the future they are, the more uncertain the predictions (Northrop 

and Chandler, 2014). This temporal gradient of uncertainty needs to also be 

accommodated in conservation planning models (see time-varying costs, interest rates, 

SDP and robust optimization, above); 

 Biodiversity refers to structural elements (i.e., genes, populations, species, communities 

and ecosystems) that have coevolved over thousands of years and the complex 

multiscaled processes (e.g., physiological, genetic, behavioral, ecological, evolutionary, 

abiotic) that generate and link them together and sustain the whole. Expanded data on 

the evolutionary, genetic, taxonomic and functional components of biodiversity permit 

planners to control the countless aspects that act at multiple scales and allow ecosystems 

to be, by definition, dynamic and complex. The realization of these kind of data demand 

the emergence of hierarchical nonlinear decision-support models and powerful 

algorithms to be developed and/or accessed. 

In the age of big data (Farley et al., 2018), raising the quantity and quality standards of data; 

identifying interrelationships among data types and making a wide set of analytical tools 

available offers planners the flexibility in tailoring a conservation plan to the idiosyncrasies of 

their contextual working systems. These datasets may establish seedlings for the advance of 

conservation plans under different viewpoints, different solution philosophies and goals 

(Bayraktarov et al., 2019). With this flexibility comes the burden of choice and, fortunately, with 

OR, the set from which to make that choice grows (Figure 3 & Figure 8). 
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Figure 8 –Classes of OR area selection models, their hardness in finding full-optimal solutions 
(size of circles) and their potential inter-relationships (arrows). Predictive uncertainty, with 
varied nature and magnitude, is combinable among all model types. 

 

9.2. Placement and management decisions 

With its multiscaled structure, conservation plans need to be comprehensive and to incorporate 

important components of SCP. For example, conservation models need not only support 

decisions about the timing and location of PAs but also quantify which/where/when 

conservation actions (e.g., threat prevention, monitoring, and effective management actions) 

should be taken and distributed. Given the feedback characterizing these systems, models of this 

type require an improved biosocioeconomic realism and a continuous supply of data (Williams 

and Johnson, 2013; Wilson et al., 2011). 

Future research should analyze operational decisions, such as the allocation of personnel 

resources, equipment and other assets among different treatment sites, and the routing of crews 

between selected sites for management (Sewell et al., 2012; Yokomizo et al., 2004). Deployment 

of multiple resources such as funding and labor among different management options, over 

multiple areas and time periods, is also another possible future direction (i.e., logistical 

problems). Paralleling area selection, the scheduling of management actions and the allocation of 

tasks among personnel are other relevant issues for future investigation (Adams and Setterfield, 

2015; Baker and Bode, 2016; Moore and McCarthy, 2016; Watts et al., 2009; Wilson et al., 2011). 

Another interesting research line is the coordination of capacity (e.g., personnel and equipment) 

and governance (e.g., local, regional, national responsibilities) among stakeholders. In particular, 

cooperation among independent but related parties to share their resources, capacities, and 

information could improve the efficiency of PAs (Frank and Sarkar, 2010). Operations Research 

models have been widely used to supply chain coordination among stakeholders in production 
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and manufacturing, disaster management and bioterrorism response (Altay and Green, 2006; 

Ravindran, 2008). Future studies should incorporate the risks of invasive species related to 

transportation in an optimization model in which the routes, through which manufactures (e.g., 

wood, food) are transferred, are optimally selected while minimizing the distances that potential 

invaders are transported (Büyüktahtakın and Haight, 2017). Network optimization models, such 

as LCP and minimum cost network flow problems (Ahuja et al., 1993) can be used to formulate 

the transportation of goods that pose an invasion risk (see Connectivity section and Figure 4). 

Future research may consider the optimization of the transportation network and the selection 

of appropriate means for transportation and distribution activities while minimizing the risk of 

introduction and the establishment of new invaders (Courtois et al., 2018; Yemshanov et al., 

2017). 

 

9.3. Coordination among multiple stakeholders  

Biodiversity conservation crosses jurisdictional boundaries since it constitutes a platform to 

respond to the adaptive spatial responses of biodiversity to expanding, globalized threats. The 

fitness of populations and the way they spread depend on the choices made by several decision-

makers in organized or less structured bodies of governance. Each conservation agency typically 

decides on where, when and how to undertake formal decisions on conservation based on local 

damage and management costs, without considering the benefits of protection generated by 

actions already made in neighboring regions by other conservation players. Therefore, 

independent agents are likely to underinvest in conservation from a societal perspective. The 

cooperative or centralized control of conservation planning across jurisdictions delivers 

superior performances when compared with independent decision-making (Albers et al., 2008; 

Kroetz and Sanchirico, 2015). A mechanism of transfer payments in which one jurisdiction pays 

another to increase their level of decision (Bhat and Huffaker, 2007) is one method of 

cooperation. In other situations, jurisdictions may simply agree to coordinate their efforts in a 

beneficial way to minimize spillover effects (Epanchin-Niell and Wilen, 2015). Cooperative game 

theory (Curiel, 2013), a branch of OR specifically devoted to explicit or implicit strategy 

coordination, may be used to determine compensation efforts and optimal cooperation among 

multiple stakeholders (Alvarado-Quesada and Weikard, 2017b; Epanchin-Niell and Wilen, 2012, 

2015; Frank and Sarkar, 2010; Iacona et al., 2016). Few studies have compared the distribution 

of PAs derived from coarse-scale (regional) and fine-scale (local) data, but these have 

demonstrated significant cost-effective differences (Kukkala et al., 2016; Moilanen and Arponen, 

2011; Pouzols et al., 2014). At many spatial scales, decisions are likely to be under the purview of 

groups rather than individuals, and the size, composition and organization of groups are likely to 
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vary with the geographical scale (Alvarado-Quesada and Weikard, 2017a; Frank and Sarkar, 

2010). Different types of uncertainty and risk prevail at (and percolate between) different scales 

in ways that are difficult to quantify. The design of market-based and regulatory policies to 

enhance cooperation across jurisdictions is a primary area of further research. 

 

9.4. Computational infrastructures 

The computational burden of dealing with realistic spatial conservation planning have remained 

the greatest challenge to implement OR models and to obtain optimal or good quality suboptimal 

solutions (Beyer et al., 2016; Song et al., 2018). The growing number of powerful computational 

facilities has provided the background for the establishment of consortia in which computational 

scientists collaborate with conservation planners (La Salle et al., 2016). Under these 

partnerships, while data analysts and managers are challenged by real-world problems inspiring 

them to develop and test new models and techniques, conservation planners are offered access 

to state-of-the-art computational tools allowing “good quality solutions” to be obtained. The field 

of computational sustainability (Lässig et al., 2016) has paved the way for interdisciplinary calls 

for the development of techniques from computer and information science and related 

disciplines (e.g., OR, applied mathematics and statistics) to trade-off environmental, economic 

and societal needs and aspirations so that sustainable development is accomplished (Gomes, 

2011). Logistically, these consortia enable ecological data-intensive problems to be solved in 

high performance computing infrastructures (e.g., cluster and grid computing), thus allowing 

researchers to make use of tens of thousands of dedicated servers to execute coordinated solving 

tasks (Abreu et al., 2014). Fast and cheap local cluster computing is now possible through off-

the-shelf computational nodes and software, allowing the easy construction and maintenance of 

supercomputers. For example, while LIFEWatch-ERIC (https://www.lifewatch.eu), ELIXIR 

(https://www.elixir-europe.org) and EUBrazilOpenBio (http://www.eubrazilopenbio.eu) are 

key initiatives already in place, they still lack spatial conservation planning modules that may 

provide the crucial link from ecological sciences to policy-making. We envisage a wide range of 

opportunities for interdisciplinary expansion in the short-term. 

In addition to the full use of available computing infrastructures, the work undertaken by 

operations researchers should not be neglected. They formulate problems and conceive 

dedicated algorithms for solving very particular questions (i.e., large analytical resolution). Until 

now, the use of Marxan (Ball et al., 2009), Zonation (Moilanen et al., 2009a) and other easy to use 

software (for a list see http://conservationcorridor.org/corridor-toolbox/programs-and-tools/ 

and https://applcc.org/plan-design/gis-planning/conservation-planning/conservation-
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planning-software) has been commonplace in many published studies, but these tools were not 

always properly developed to deal with very particular contingencies and requirements. 

Possibly, many researchers have chosen to simplistically adapt their studies to the principles of 

such general models. “Wasting” time in mathematical clarification (i.e., formulation) of a 

conservation problem may retrieve fruitful results later on, by either, maximizing the utility of 

the proposed solutions, minimizing their associated costs or, ideally, both. 

In summary, emerging tools, technologies, infrastructures and information technology 

partnerships in the age of big data may boost state-of-the-art approaches for better research and 

management, and may alter how conservation planning is looked at even from inside, opening 

opportunity-windows for fundamental advances and applied research, thus making biodiversity 

conservation effective and acute over time. 

 

10. CONCLUSIONS 

1. Biodiversity conservation considers several problems wherein conservation interests compete 

with the socioeconomic expectations that govern modern societies. In this context, the scarce 

resources available for planning, acquisition and management of PAs need to be optimally 

distributed. 

2. Given that the current biodiversity crisis impacts a wide set of biological features and 

processes, spans large regions and is likely to subsist in time, the combinatorial nature of 

conservation decisions makes real-world conservation problems hardly solvable by intuition 

alone. 

3. Operations Research (with particular emphasis on optimization) offers powerful tools and 

methods for planners and policy-makers make the “best” decisions. Under the OR framework, 

decision problems need to be defined, analyzed and solved using a rational, systematic and 

scientific design, based on data, facts, information and logic, and not on mere guesswork or 

rules-of-thumb. 

4. The dynamic and complex nature of conservation systems and the increasing availability of 

ecological, socioeconomic and institutional data still challenge the way OR delivers good-quality 

solutions. More elaborated models able to deal with a large array of factors need to be developed 

and critically discussed and upgraded with stakeholder involvement. 

5. Fusing together the spatial, temporal and management dimensions of conservation plans; 

dealing with multiscaled agents and budgets within coordinated schemes; and promoting 
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collaborative consortia with shared interests provide the modern ingredients to achieve a 

paramount societal goal: to preserve biodiversity under grand challenging scenarios. 
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