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ABSTRACT

Biodiversity conservation questions human practices towards biodiversity and, therefore,
largely conflicts with ordinary societal aspirations. Decisions on the location of protected areas,
one of the most convincing conservation tools, reflect such a competitive endeavor. Operations
Research (OR) brings a set of analytical models and tools capable of resolving the conflicting
interests between ecology and economy. Recent technological advances have boosted the size
and variety of data available to planners, thus challenging conventional approaches bounded on
optimized solutions. New models and methods are requested to use such a massive amount of
data in integrative schemes addressing a large variety of concerns. Here, we provide an
overview on the past, present and future challenges that characterize spatial conservation
models supported by OR. By enlarging the spatial, temporal, taxonomic and societal horizons of
biodiversity conservation planners navigate around multiple bio-socioeconomic equilibria and

are able to decide on cost-effective strategies to improve biodiversity persistence.
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ABSTRACT

Biodiversity conservation questions human practices towards biodiversity and, therefore,
largely conflicts with ordinary societal aspirations. Decisions on the location of protected areas,
one of the most convincing conservation tools, reflect such a competitive endeavor. Operations
Research (OR) brings a set of analytical models and tools capable of resolving the conflicting
interests between ecology and economy. Recent technological advances have boosted the size
and variety of data available to planners, thus challenging conventional approaches bounded on
optimized solutions. New models and methods are requested to use such a massive amount of
data in integrative schemes addressing a large variety of concerns. Here, we provide an
overview on the past, present and future challenges that characterize spatial conservation
models supported by OR. By enlarging the spatial, temporal, taxonomic and societal horizons of
biodiversity conservation planners navigate around multiple bio-socioeconomic equilibria and

are able to decide on cost-effective strategies to improve biodiversity persistence.
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1. INTRODUCTION

The world faces one of the most intractable problems: habitats and species are declining at
unprecedented rates (Barnosky et al., 2011; Urban, 2015). Habitat loss, overexploitation of
natural resources, biological invasions, pollution and global climate change are major drivers of
such declines (Maxwell et al., 2016). In recent decades, the incidence of these threats has been
expanding, and their synergistic effects add up to the already broad additive impacts (Barnosky
et al.,, 2011). Globally, multiple institutional instruments have been created to mobilize
governments to abate and revert those impacts (e.g., Convention on Biological Diversity, CBD;
Intergovernmental Panel on Climate Change, IPCC; Intergovernmental Panel on Biodiversity and
Ecosystem Services, IPBES, 2030 United Nations Agenda for Sustainable Development, SDGs).
However, the overdependence of modern societies on traditional socioeconomic activities
coupled with the unprecedented rates of current climate change makes biodiversity perspectives

bleak in the short-term (Seddon et al.,, 2016; Steffen et al., 2018).

Biodiversity conservation is deeply reliant on functional protected areas (PAs). They are
championed as refuges for native species, acting as filters against local threats. Since the

establishment of PAs restricts the free practice of socioeconomic activities, PAs are generally
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seen as competing instruments that limit the development of anthropocentric societies, largely
reliant on commercial and industrial financial revenues. Under the political sovereignty of short-
term economic gains, governments naturally support biodiversity-hazardous activities, but to
pursue the commitments made under global conservation treaties (e.g. Aichi Targets, CBD, 2011;
and SDGs, United Nations, 2015), they still need to set aside PAs. In many cases, PAs have been
used as figurative political instruments: their establishment is made in regions with low
socioeconomic appeal (Joppa and Pfaff, 2009). Consequently, the efforts put into the
establishment and management of those PAs are ineffective in accomplishing their ultimate goal
of preserving important ecological features (i.e., natural habitats, species’ populations and gene
pools) and processes (e.g., at the individual level: feeding, mating, resting; at the population
level: dispersal, colonization, survivorship and abiotic equilibria, and; at the community level:
interaction networks) in the long-term. Without a loss of generality, henceforth, for simplicity,
we refer to ecological features and processes as species, since species are the main taxonomic

units driving conservation plans.

Thirty years ago, a novel scientific body of research emerged to support transparent and rational
decision-making for the identification of ecologically valued areas to protect. Systematic
conservation planning (SCP) originated as a framework rendering the interests of researchers,
conservationists, policy-makers, managers, stakeholders and citizens in defining the means to
conserve not only local natural values, but scaling them up to larger areas and wider sets of
decision-makers to accrue the benefits of shared financial resources and complementary
conservation actions. This synthesis explores, either directly or indirectly, a small set of
questions that emerge from the spatial component of SCP (for comprehensive overviews of SCP
see for example McDonald, 2009; McIntosh et al., 2017; Pressey and Bottrill, 2008; Warman et
al,, 2004), specifically:

- Which species and ecological mechanisms require prioritized protective measures?

- Which processes threaten biodiversity? How can they be integrated in spatial
conservation models?

- How are the current and aspiring states of biodiversity quantified? Are there data
available or opportunities to gather them?

- How should the financial resources available be spent? (i.e., For which species? In which
areas? With what timing? Is it possible to still use the current established conservation
efforts?)

- Isit possible to upscale conservation planning towards larger areas and time-horizons,
protecting a wider set of species and combining the goals and resources of multiple

planners?
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- What are the most effective options for action in contexts characterized by a large risk of

failure derived by large amounts of analytical uncertainty and/or stochasticity?

Challenged by these questions, cutting-edge conservation planning uses analytical tools to
undertake planning designs that, consequently, are expected to retrieve the largest conservation
gains with the least financial resources, alongside a reduction of conflicts with competing
socioeconomic activities (Watson et al.,, 2011). At this stage, solving optimized conservation
problems is far from trivial. The need to cover wide sets of species, assessing large geographic
areas with detailed (high-resolute) information and the integration of multiple, sometimes
interacting, factors makes conservation plans extremely difficult to implement even when
supervised by expert knowledge (Langford et al., 2011; Poiani et al., 2000). In this context,
Operations Research (OR) gains relevancy as it delivers tools and techniques suited to assist

decisions around the spatial (and nonspatial) dimension(s) of conservation planning.

In the following sections, we debate problems concerning the spatial component of SCP, in
particular, the identification of adequate areas for the establishment of PAs managed uniquely
for biodiversity conservation or, similarly, areas where some level of ecologically sustainable
socioeconomic development is allowed. We start by describing two general problems in OR that
mimic two basic problems in PA selection. Then, we discuss more ambitious area-selection
problems that integrate several PA properties and more elaborate conservation concerns
(spatial design, connectivity, dynamic PAs prepared to mitigate the effects of climate change; use
of explicit socioeconomic data; integration of uncertainty and risk control). We confront custom
and ideal spatially explicit datasets informing distinct ecological, budgetary, socioeconomic and
vulnerability realities. We conclude, debating about new perspectives to analyze massive
amounts of data that, potentially, better represent the broad set of factors likely to determine

biodiversity conditions.

2. THE BASICS OF OR IN SPATIALLY-EXPLICIT BIODIVERSITY CONSERVATION

Operations Research is a discipline that develops analytical models and methods to help
decision-making. It has applications in many fields of science and management, including
engineering, economics and logistics, where optimal decisions need to be taken in the presence
of trade-offs between two or more conflicting goals (Ravindran, 2008). The cornerstone of OR is
optimization, which, in its simplest form, consists of identifying a solution among a set of
potential solutions that either maximizes or minimizes an objective function. An OR problem is
characterized by a set of constraints that have to be satisfied, outlining if a candidate solution is

feasible (when all constraints are fulfilled) or not (when at least one constraint is missed). A
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feasible solution that maximizes (or minimizes) the objective function is called an optimal
solution. A problem may have several optimal solutions. Depending on the specific nature of the
objective function and constraints, optimization problems are approached by specific methods
(e.g. linear, integer, mixed, nonlinear, network, robust, stochastic and dynamic programming

procedures) (Hillier and Lieberman, 2015).

In conservation planning, decisions often reflect the interplay of social, economic, political and
scientific priorities. The multifactorial dimension of conservation results in contentions and
conflicts at the heart of its reasoning. For example, activities that retrieve high financial
outcomes may lead to significant ecological disturbance. On the other hand, a conservationist
measure may lead to important reductions of agricultural or forestry net production. Once a
given criteria of optimality is established (e.g., one that benefits the conservation side of a wide
biosocioecological system), it is not possible to achieve it without conflicting with the aspirations
of other socioecological players. The complex trade-offs among these factors led Smith and
Theberge (1987) and Cocks and Baird (1989) to use OR for the first time in support of spatially
based decision-making in conservation. Since then, the use of optimization models in biological

conservation research is increasing, both in number and complexity (Figure 1).
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Figure 1 -Yearly number of publications in peer-reviewed journals on ecology and conservation
explicitly formulating OR models since 1991 (total number, n=402). Search on Web of Science at 20
September 2018 [TS = (conservation AND (species OR biodiversity OR habitat*) AND ("integer
programming” OR "operations research” OR "mathematical))].

3. TWO BASIC MODELS AND SOME EXTENSIONS

Two OR problems were initially proposed to guide spatial conservation decisions for both
effectiveness (i.e., accomplishment of established goals) and efficiency (i.e., saving the resources
available to undertake conservation decisions and actions). The minimum set cover (MSC)

problem aims to choose a subset from the set of candidate selection units (e.g., grid cells in a map
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or, in more general terminology, sites) to build a network of PAs that consume the fewest
resources (i.e., number of sites, total surface area, financial resources, etc.), while guaranteeing
that each of the species to conserve is adequately covered in those Pas; i.e., the presence of each
species within PAs should equalize or exceed a given representation level (i.e., a target) that,
ideally, certifies the persistence of a species in the long-term (Justus et al., 2008; Moilanen et al,,
2009b). In this problem, sites, as selection units, cannot be partially selected, thus making the
problem combinatorial. When a large number of sites and species are analyzed (i.e., ten-to-
hundreds of thousands), the massive number of combinations to explore (i.e., potential solutions
to certify) makes these problems hard to solve to full optimality (Pressey et al., 1996; Rodrigues
etal.,, 2000).

An alternative approach to conservation planning that expresses the context most often faced by
conservationists (i.e., the impossibility of protecting all concerned species) assumes that the
resources available for the selection of PAs are fixed and limited and conservationists look to
maximize the number of species adequately covered by PAs in final solutions (the maximal

coverage problem, MC) (Figure 2).
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Figure 2 - Formulations of the basic area selection problems.

Originally, both models were built with the general assumption that the representation of a

species in a single protected site would suffice to consider the species adequately represented in
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PAs. More general conditions are, however, well accommodated by these problems. For example,
the adequate representativeness may differ among species, and/or may require more than one
protected site to provide a precautionary, redundant protection. While these generalizations are
straightforward and integrated into the MSC, they are slightly less obvious to be accommodated
in the MC (Figure 2). Likewise, both problems are flexible on the use of distinct types of data.
The use of presence/absence data about each species in each site in the study region may be
replaced by (and mixed with) other types of data (e.g., species abundance, local environmental
suitability, local probability of occurrence, etc.) (Figure 3). Ultimately, decisions based on data to
use and on the settled representation targets should approximate PAs to the leading goal of a

conservation plan: to foster biodiversity persistence (Pressey etal., 2007).
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Figure 3 - Relevant data to be used in spatial conservation planning.

Depending on data quality, availability and treatment, planners may consider complementing
the representativeness of species in PAs, with PA spatial properties. This choice gains special
relevancy when PAs are exposed to detrimental impacts from neighboring regions that may flow
into PAs (i.e., edge-effects) or when environmental and/or threat gradients make PA location
and design strategic for biodiversity protection. The shape and compactness of PAs (Billionnet,
2015; Nalle et al., 2002; Williams, 2002), length of PA edges (Cerdeira et al., 2005; Fischer and
Church, 2003; McDonnell et al.,, 2002; Onal and Briers, 2002), the number of PA isolates and their
proximity (Alagador and Cerdeira, 2007; Cerdeira and Pinto, 2005; Nalle et al., 2002; Onal and
Briers, 2002) are spatial attributes (i.e., constraints) that add up to the species’
representativeness in MSC and MC problems (see Baskent and Keles, 2005; Billionnet, 2013 for a

review on other spatial design models; Williams et al., 2004). Other approaches combine the
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constraints of PA placement and design with species-specific requirements or with the
heterogeneity of the landscape. For example, Ciarleglio et al. (2009) and Cerdeira et al. (2010)
introduced two unrelated problems in which the cost/area of PA networks is minimized, while
cohesive subsets of PAs are identified for each species in which their representation targets are
met. Hamaide et al. (2014) formulated the MSC and MC problems attending the risks of
expanding threats (e.g., contagious diseases and fires), which are heterogeneously distributed
across space. Under their formulations, final solutions are characterized by small PAs, where
expanding threats are very likely to occur and large PAs (multiple cohesive protected sites)

where these threats are unlikely.

Given that most of the spatial attributes imply nonlinear relationships among sites, to make the
problems computationally tractable, when possible, nonlinearities in decision variables need to
be linearized (Billionnet, 2014). Linearization usually implies adding more variables and
constraints that, altogether, linearly replicate the original nonlinear relationships. Those
transformations make solutions harder to obtain when compared with solutions from models
that, originally, do not involve nonlinear relationships. However, there is a particular class of
nonlinear problems (i.e., their solution space defines a convex set) for which global optima are

also obtainable through nonlinear convex optimization methods (Bazaraa et al.,, 2013).

4. CONNECTIVITY

In the previous problems, biodiversity persistence is based on the representativeness of species
within PAs and on the effects of heterogeneity, redundancy, and modularity of PA networks for
those species. However, those PA selection problems still miss critical factors promoting
biodiversity persistence: the natural flows of genes, propagules, individuals, populations and
energy across the landscape. A network of PAs that safeguards these processes and that,
consequently, circumvents habitat fragmentation is said to be connected. The connectivity of PAs
reinforces the dynamic processes and therefore the resiliency of natural (meta)populations to
environmental changes (Cabeza et al., 2004; Keith et al., 2008; Minor and Lookingbill, 2010).
Depending on the nature of connectivity and the final purpose of a conservation plan,
connectivity may be grouped using two classification systems (Correa Ayram et al., 2015). In
one, connectivity is said to be structural when it implies the spatial contiguity of sites and is
functional when it defines a spatial arrangement of sites in which, being spatially contiguous or
not, the flow processes are effectively assured (Calabrese and Fagan, 2004). Under the second
classification system, when a conservation plan seeks to identify connected sites (structural or

functional) between regions that have been previously targeted as ecologically significant (e.g.,



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 December 2021

discrete population units of a species, key habitat patches, PAs, among others), connectivity is
said to be primary. Contrarily, when a plan combines connectivity requirements with species
representativeness, connectivity is said to be secondary (e.g. Cerdeira et al., 2010; Wang and
Onal, 2015). Regardless of the type of connectivity, graphs are adequate mathematical
representations. Graphs are mathematical entities settled around a robust theoretical
background, which allows solutions to be obtained efficiently (i.e., saving time and
computational resources) (Bunn et al,, 2000; Urban and Keitt, 2001). In a structural approach, a
landscape is well characterized with a single graph describing the spatial arrangement of sites.
The sites to be linked are represented by nodes and their topologic relationships (e.g., adjacency,
distance, etc.) described by edges linking pairs of nodes. In a functional approach, the
specificities associated with each species and flow process imply that a graph (or a set of
synthetic graphs) uniquely characterizes a set of species and process with similar connectivity
requirements. In these graphs, nodes represent areas of occupancy and/or passages for a species
(or where processes flow through) and values associated with edges denote geographic or
functional distances between nodes, as perceived by the respective species or characterizing a
flow process (e.g., a resistance metric characterizing movement cost across the landscape that

depends on habitat characteristics) (Bunn et al., 2000).

Most of the connectivity concerns published in conservation planning literature have focused on
primary connectivity using one of three OR problems in graphs (Rayfield et al., 2011): the
shortest (or least cost) path (LCP), the minimum spanning tree (MST) and the minimum Steiner
tree (MStT) problems. The LCP between a source and a target node (population, habitat, PAs,
etc.) in a graph is a path (sequence of nodes and edges) that links the source and target nodes
that presents the lowest cumulative cost (i.e., distance or a landscape resistance measure)
among the edges that make up the path (Figure 4). One limitation of LCP is that it only predicts
connectivity between a single source and a single target node (see Cushman et al.,, 2009 for an
ecological application). Real-world approaches often require more comprehensive assessments
of connectivity (Sawyer et al.,, 2011). For example, planners may require that (if possible) all
targeted sites of the study region (special nodes in the graph) are connected together, so that
flows exist between every pair of these special nodes (either directly or indirectly through other
special nodes) (e.g. Cushman and Landguth, 2012; Fall et al.,, 2007; Landguth et al., 2012). The
MST problem finds such a fully connected solution with the minimum cost. The MStT problem is
a generalization of the MST when extra nodes (not necessary to represent important occupancy
sites, the Steiner nodes) are defined in the original graph to reduce the cumulative cost of the
MST over the original nodes (Sessions, 1992). This problem is more realistic than MST, given

that connectivity paths are not limited to strict linkages between pairs of important nodes for



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 December 2021

connecting (e.g. Alagador et al., 2012; Bras et al., 2013; Lai et al.,, 2011). Possibly, in large
inhospitable landscapes, a single (or a set of) habitat center(s) may stay isolated, with no
possibility of connecting to the remaining ones. In these cases, planners may consider using
generalizations of the MST and MStT that search for the MST and MStT within each isolated set
of important areas to link the minimum spanning forest and the Steiner forest problems,

respectively (Alagador et al.,, 2012).
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Figure 4 - Formulations of connectivity problems.

A challenge in modeling dispersal routes is that individuals rarely use a single optimum route
(Driezen et al., 2007) and therefore the optimum routes obtained from OR problems miss such a
variable use of landscape by propagules and individuals (Bélisle, 2005) (unless a minimum
number of linkages are defined as a requisite for feasible solutions, Rayfield et al., 2010). For
these specific cases, tools derived from the circuit (Dickson et al.,, 2019; McRae et al.,, 2008),
diffusion (Ovaskainen, 2004) and percolation theories (With, 2002) are best suited to deriving

the relative connectivity value of all sites in a map.

5. MAKING SOCIOECONOMY EXPLICIT

A central contribution of economists to the development of conservation plans involves the

incorporation of financial costs into planning settings. The inclusion of these costs in PA
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selection problems directs the efficiency assessment of plans to financial resources (i.e., budgets)
rather than areal size or number of sites (Balmford et al., 2000). When compared to standard
area-based procedures, considering financial costs more clearly captures the conservation
benefits to be obtained from the investments made, and most likely generates distinct sets of
optimal PAs (Ando et al., 1998). Socioeconomic costs associated with conservation plans may
include the capital needed: 1) for the acquisition of PAs (i.e., within land markets); 2) to establish
time-limited contracts with landowners; 3) to compensate landowners for foregone revenues
from their local activities; and 4) to undertake conservation actions, which may depend, for
example, on the distance to the established PAs or to operational headquarters of conservation

agencies (Naidoo et al., 2006; Naidoo and Ricketts, 2006).

With explicit socioeconomic data available, novel problems arise in which both the revenues
from socioeconomics and conservation benefits are optimized. In these multiobjective problems,
the maximization of ecological and socioeconomic revenues from PAs is undertaken using
distinct analytical designs. With MSC and MC problems, the ecological and financial components
of a plan are fixed while the other is maximized. However, when a planner aims to achieve a
compromise between the ecological and the socioeconomic goal, multiobjective efficiency
frontiers (i.e., Pareto solutions) enable the identification of balanced solutions, in which
improving one side of the (socioecological) system implies the reduction of revenues on the
other side (Polasky et al., 2008; Polasky et al., 2005). Therefore, they are important states to
focus attention on for the purpose of reconciling activity expectations. Conservation costs may
also represent nonmarket values that impair conservation effectiveness (Chan et al., 2011);
extinction risks associated with species occurring at each site (Game et al., 2008; Tulloch et al.,
2013); and measurable uncertainties on local occurrences of species (Kujala et al., 2013; Lemes

and Loyola, 2013) (more details below).

Overall, socioeconomic data contribute to making conservation decisions cost-effective in ways
that reflect how the nonbiophysical aspects of a conservation plan influence the optimal PA
location. These advances do, however, rely on well-functioning institutions, with structured
mappings of property rights and comprehensive spatially explicit land-market datasets. The
scarcity of these data at workable resolutions limits the applicability of socioeconomic settings in
conservation plans, blurring the accuracy of cost-effectiveness metrics in conservation decisions

(Armsworth, 2014; Sutton and Armsworth, 2014).

6. ANTICIPATING FUTURE THREATS
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The PA selection models discussed above are static in the sense that area-selection decisions are
exclusively based on information from a single period of time that is implicitly assumed to be
stable in the future. However, the pervasive, wide-scaled nature of current threats makes
anticipative policies critical for the accomplishment of conservation goals cost-effectively. In
these strategies, upfront predictions and inferences concerning the plausible responses of
socioecological systems over time put planners one step ahead of possible negative effects, thus
causing conservation decisions to be more effective in promoting biodiversity persistence
(Hannah et al.,, 2007). Predictive ecological models that expand empirical data to wide
geographic spaces and distant temporal horizons (e.g. species distribution models, Elith and
Leathwick, 2009) give planners plausible overviews on future conditions of their working
systems (see time dimension in Figure 3). Thus, these tools enable conservation planners to
anticipate the management of financial investments over time and to decide which, where and
when a conservation action should be undertaken (Mouquet et al., 2015). Proactive approaches
resulting from anticipated information are especially relevant when conservation-concerned
species are continuously pressed, so that their persistence depends both on the success of their
recurrent adaptive responses and the timely adoption of conservation actions (Naujokaitis-
Lewis et al.,, 2018). Importantly, the way PAs are realized needs to shift from a static, perpetual
set of areas, in which species are set aside from local threats, to a network of PAs that, altogether,
cover the adaptive movements of species and flow processes with time, favoring their
persistence even under global-scale stressors (i.e., dynamic equilibrium) (Hannah, 2008; Hannah
et al.,, 2002a; Hannah et al., 2002b). The unprecedented rate of current and future-predicted
climate change and the impacts on biodiversity need to be explicitly accommodated in

anticipative conservation planning (Bonebrake et al., in press).

In contrast to local threats that commonly impact local communities as a whole, climate change
influences species idiosyncratically, as their genetic, physiological or behavioral adaptive
apparatuses lead to specific adaptive responses to the climatic stressors. Climate change-
concerned conservation planners need, therefore, to focus their efforts on these species-specific
responses. Under climate change, many species are forced out of PAs (Araujo et al., 2004; Halpin,
1997; Hannah, 2008). Projections indicate that important networks of PAs will lose suitable
climates for species of high conservation concern to subsist therein (Aradjo et al.,, 2011; Beale et
al.,, 2013; D'Amen et al,, 2011; Hole et al,, 2009; Lemes et al., 2014; Prieto-Torres et al., 2016;
Regos et al., 2016; Wise et al., 2012). To address this challenge, new PAs need to be planned into
the future and their effectiveness re-evaluated through time. The problem is that conservation
resources are limited and classifying new PAs to buffer against the negative effects of climate

change can be extremely expensive (Hannah et al., 2007; Shaw et al., 2012; Wise et al., 2012).
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Thus, the question is whether efficient strategies can be devised so that long-term conservation

targets (e.g., representation targets) are continually met while keeping budgets under control.

Williams et al. (2005) developed a multistage framework (i.e., enabling decisions to be made
among several time-steps into the future) with the goal of identifying the sets of areas of
minimum cost that cover the adaptive movements of species in a number of unitary dispersal
corridors, which define likely trajectories of the species over time within the study region. Later,
Phillips et al. (2008) formulated this same problem using classical OR tools from network flow
theory. These authors explored special properties in the structure of the modeling networks to
make solvable problems dealing with massive datasets. For the same study system, the optimal
solution obtained was 30% less costly than the solution obtained by Williams et al. (2005) using
a greedy heuristic approach. Recently, Alagador et al. (2014) and Alagador et al. (2016)
proposed several related problems that, instead of a network-like formulation, represent the
selection of dispersal corridors as OR-covering problems (line MSC and MC) (Alagador and
Cerdeira, under review). In these new problems, representation targets are replaced by
persistence targets that rely on the persistence scores of species within dispersal corridors (i.e.,
the selection units). Although other data may be used to make such scores more accurate, the
basic version of persistence scoring uses data reflecting two ecological processes that, depending
on availability or planning requirements, are able to be modeled within a gradient of detail: 1)
the probabilities of a species to occur in a given site in a given time period, and 2) the
probabilities of a species to successfully disperse between sites. In a precautionary perspective,
the (overall) persistence expectancy of a species in the final solution is obtained through the
maximum accumulated persistence in nonconverging dispersal corridors (i.e., a set in which two
corridors cannot use the same site in the same period of time). This property of structural
independence among dispersal corridors to be used by a species mitigates possible negative
contagious effects (e.g., epidemics and fires). Importantly, in these models, area selection is not
obligatorily additive, in the sense that, in each time-period, sites that have been previously
targeted for protection may be removed from the solution for later periods of time (Fuller et al.,
2010). The resources saved from area deselection are then redirected to other areas expected to
retrieve the largest gains (considered overall within the objective function). Similar to the
original MSC and MC problems, the objective functions of these two equivalent problems are the
minimization of total solution cost and the maximization of the number of species “fully covered”
(i.e., in these models, representation targets are replaced by persistence targets). Alagador and
Cerdeira (2017) introduced a third model in which solution effectiveness is measured using a
continuous benefit function. The goal is to minimize the shortfalls to the persistence targets that

are minimized over all the focal species. With this objective function, the investments made for
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the protection of a species that miss their persistence targets still profit and, consequently,
contribute to the overall solution effectiveness. Importantly, the three problems formulated
therein assume that costs on sites vary over time, making them close to real-world dynamic land

markets.

Traditional representational targets (i.e., number of sites or total selected area) as settled in the
initial PA selection problems have a geographic nature but are established as proxies of species
persistence (i.e., the higher the number of sites or the larger their total area, the more likely a
species will be maintained). The link between area and persistence is ideally made under the
concept of minimum viable population (Clements et al.,, 2018; Di Marco et al,, 2016; Flather et al,,
2011; Wiersma and Nudds, 2006), which requires detailed information on population (meta-)
dynamics. With these data unavailable, a proximal metric on persistence may be derived using
probabilistic or probabilistic-like information on species to define targets using a minimum
required persistence threshold for each species (Alagador et al., 2016). However, similar to the
probabilistic versions of the MSC and MC problems (see Figure 2), explicit persistence targets do
not have an intuitive geographic transposition, making it difficult for a planner to acknowledge
aprioristically if a given target is (or is not) achievable by a species within a given conservation
setting. This difficultly may result in unfeasible spatial conservation problems, either because at
least one persistence target was too inflated given the species condition in the working-system
or because a target that, although achievable by a species individually, is not achievable in
conjunction with the targets defined for the remaining ones, given the financial resources
available for area selection (Alagador and Cerdeira, 2017). To overcome such a drawback,
Alagador and Cerdeira (under review) introduced a parameter that enables a planner to relax to

K the number of species with their persistence targets fulfilled in final solutions.

7. DYNAMICS, STOCHASTICITY AND ANTICIPATIVE APPROACHES

Although imbedding a dynamic selection of PAs over time, the anticipative approaches
mentioned above assume a deterministic overview of the future, so that a decision made to
protect an area does not change its predicted ecological and socioeconomic states for the time
ahead (nor the states of its neighboring areas) (Costello and Polasky, 2004; Polasky, 2006).
Similarly, those problems do not assume irreplaceable losses of species occurring in a site when
it is left unprotected over time and is fully exposed to local threats (i.e., these sites will contain
less conservation value than originally assumed). This conservation template is valid, for
example, where protective measures can be applied extensively and rapidly, where the planning

domain is public and the loss of native vegetation is unlikely, and when climate change is the
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main factor guiding the establishment of a PA network (in this case, any local conservation
action hardly changes the climatic pattern of an area). However, when financial resources are
collected incrementally, possibly extending over decades, and where this gradual resource-
acquisition is accompanied by a progressive, selective loss of species, then the interplays
between the timing of decisions and local land condition and socioeconomic value are best
modeled using stochastic dynamic programming (SDP) (Costello and Polasky, 2004; Meir et al,,
2004; Strange et al., 2006; Westphal et al., 2003; Wilson et al., 2006). The optimal solution from
SDP defines the optimal sequence of decisions when the future status of the sites inside and
outside PAs is uncertain and dependent on previous decisions; when these actions present a
geographic and/or temporal window of influence; and when stochastic processes prevail

(Figure 5).
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Figure 5 - Formulations of the stochastic dynamic problems (see Costello & Polasky 2004, for
full explanation).

A key advantage of SDP is its ability to produce a feedback policy specifying optimal decisions for
possible future system states rather than expected future states (Williams and Johnson, 2013).
Depending on the spatial grain, a decision to protect a given site may also influence the condition
of sites and species in the neighboring regions. Replicated among the whole landscape, these
interdependencies among sites make the problem of selecting Pas, which in the long-term
deliver the largest benefits, enormously complex because the computational burden to obtain an

optimal solution increases exponentially with the number of sites and system states considered,
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constituting the Bellman’s curse of dimensionality (Bellman, 2010). The use of SDP for realistic
instances made of hundreds to thousands of sites, several time-periods and several system states
is therefore impracticable. To circumvent this drawback, several heuristic approaches have been
developed to retrieve suboptimal solutions of good quality (for an overview of such methods in

ecology and conservation see Chadeés et al., 2014; Nicol and Chades, 2011; Nicol et al., 2010).

The nature of SDP makes it suitable to explicitly accommodate interrelationships between
conservation decisions and land prices. Extensive market feedback determines the effectiveness
of conservation investments. First, land prices rise when conservation groups invest significantly
in local land markets, making future investments more difficult (Armsworth et al., 2007; Téth et
al,, 2011). For example, Armsworth et al. (2006) show how conservation acquisitions alter
nearby land values in ways that can accelerate development near PAs. The acquisition of land for
additional PAs may increase land prices, making them too expensive for conservation purposes.
The assumption of constant marginal land costs neglects land market feedback and
underestimates the actual land costs leading to suboptimal solutions (Jantke and Schneider,
2011). In competitive land markets, rental values reflect the supply and demand equilibrium
price at a given time and location. When PAs expand over agricultural or forested areas, the
equilibrium between supply and demand in regional land markets is distorted and a new
equilibrium is obtained with the readjustments of land rental rates. This feedback from land
markets affects the economic feasibility of conservation, as along with the costs of future
conservation efforts (Polasky, 2006). The more land that is allocated to PAs, the higher are their
opportunity costs (e.g., costs of forgone agricultural, forestry production) because of price
adjustments in several commodity markets (e.g., agriculture, forest) (Butsic et al., 2013;
Dissanayake and Onal, 2011). Commonplace, nonfinancial approaches to PA selection should
perform satisfactorily in places where land outside PAs is biodiversity poor. These approaches
will fail where, alongside PAs, the countryside surrounding PAs is critical for the species’
persistence. In this case, the net gains from conservation investments may be negative, thus
making them counterproductive, condemning more species than they save (Armsworth et al.,

2006).

Second, conservation investments may displace development pressure locally, and the net
biodiversity improvement in the area protected (through full acquisition or rental contracts)
may be less than the one expected from the full area purchased. Development pressure can
potentially be displaced onto properties of large conservation value that would otherwise have
gone unthreatened, meaning that conservation efforts may sometimes do more harm than good

(i.e., leakage) (Bode et al.,, 2014; Moilanen and Laitila, 2016; Renwick et al.,, 2015).
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Finally, the establishment of PAs can change the overall attractiveness of an area to developers
seeking to capitalize on conservation amenities (i.e., amenity values). When acknowledging the
ecological value of unprotected land, the effectiveness of conservation efforts is improved by

accounting for land market dynamics through reliable data on land rents, land price elasticities

and other land market forces (Jantke and Schneider, 2011).

8. HANDLING UNCERTAINTY AND RISK WITHIN ON LAND DECISIONS

Economic theory integrates strategies to deal with uncertainty in commercial and financial
markets. Conservationists may use some of these strategies to increase the probability of
achieving their objectives in contexts wherein distinct types of uncertainty exist (Ando and
Hannah, 2011; Langford et al., 2009; Regan et al., 2009). These strategies may be typified as: 1)
operational-based: when unmeasurable, uncertainty is handled using spatial-based rules-of-
thumb likely to absorb high levels of variability, leading to robust-perceived solutions, or; 2)
analytical-based: when uncertainty is measurable (thus referred to as risk), it is typically
represented by probabilistic data analyzed statistically. Operational management of uncertainty
in PA selection is undertaken, e.g., when conservationists engage in temporary contracts, instead
of acquiring areas in perpetuity to keep future conservation options open until uncertainty is
resolved (i.e., option value) (Aradjo, 2009; Armsworth et al.,, 2011; Lennox et al., 2017; Newburn
et al.,, 2005; Rissman et al., 2015). Albers et al. (2016) show that a less agglomerated pattern of
PAs delivers more insurance against spreading hazards such as fire, invasive species, or pests.
Instead of applying investments in neighboring areas with similar characteristics, a
precautionary conservationist spreads his (her) investment in mosaics of areas (sets of
heterogeneous areas) that, as a whole, are more robust against risk than areas of similar biotic
and abiotic characteristics (Anderson and Ferree, 2010; Araujo, 2004; Beier and Brost, 2010;

Beier and de Albuquerque, 2015; Lawler et al., 2015).

In terms of risk analysis, modern portfolio theory allows planners to exploit quantitative data
about likely correlations between the ecological changes in different areas to choose the
collection of lands that, for a given ecological projection, minimizes the uncertainty in the
achievement of their goals, e.g.,, when models retrieve divergent predictions based on several
future scenarios (Alvarez et al,, 2017; Ando and Mallory, 2012; Doremus, 2003; Hoekstra, 2012;
Lahtinen et al,, 2017; Liang et al., 2018).

In addition to considering expected returns and standard deviations (risk) of individual
investment options, portfolio theory analyzes the covariance structure of investments to limit

the aggregated risk of a collection of decisions. A portfolio of investments that covary positively
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would be riskier than one made of decisions whose results covary negatively. Portfolio theory
looks to maximize benefits from a given level of risk to minimize risk for a given level of benefit

or, through an efficient frontier, to balance benefit and risk in conjunction (Hoekstra, 2012).

An info-gap decision model is a meaningful analytical approach to uncertainty when it is so
extreme and pernicious that it cannot be dealt with using common probabilistic methods (Ben-
Haim, 2001). This often happens when data are so limited that the associated uncertainty is
unmeasurable, so that the parameterization of the study system with a probability distribution is
unattainable. An info-gap uncertainty model specifies the levels of uncertainty around each of
the model parameters characterizing the system (Figure 6). The parameters are settled as
nominal points and, after defining a domain of uncertainty, a window or “horizon” of uncertainty
is specified around each nominal point. These levels of (decision) uncertainty are therefore
assessed relative to a performance criterion (i.e., the minimum acceptable state of the system).
Decisions that cause the system to attain or exceed the performance criterion over a wide range
of uncertainty are said to be “robust” or “immune to failure”. The other type of immunity deals
with decisions that shift the nominal points of the system below the performance criterion.
These decisions are not desirable in general, but because a decision spans several possible
outcomes, there is always the possibility that the product of the decision is wrong. A question
thus remains: what is the smallest level of uncertainty that one needs to assume so that a
desirable outcome is possible (but not guaranteed)? Decisions that do not require large amounts
of uncertainty to meet this possibility are said to be “opportune” or “less immune to success”.
There is often a trade-off between decisions that are optimal (i.e., maximize the criterion) and
those that are robust to uncertainty (Moilanen et al., 2006; Moilanen and Wintle, 2006). Thus,
Regan et al. (2005) and McDonald-Madden et al. (2008) have shown that decisions in
endangered species management could change as uncertainty increases or when management

criteria change.
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Figure 6 - Formulations of info-gap problems (see Moilanen et al 2006, for full explanation).

Robust optimization is the main method used to address data uncertainty in mathematical
programming formulations. This method has been successfully applied to solve many problems
(under uncertainty) when the exact probability distribution for the uncertain data is unknown or
difficult to determine or otherwise when stochastic optimization techniques are computationally
impractical (Gorissen et al.,, 2015) (Figure 7). Robust optimization problems are
computationally tractable, provided the underlying uncertainty sets satisfy mild convexity and
computability assumptions (e.g., are given by explicit systems of efficiently computable convex
inequalities) (Ben-Tal et al., 2009). Robust optimization is a conservative approach that seeks to
protect the decision-maker against the worst realizations of outcomes (Haider et al., 2018). The
approach has several appealing features. First, it is explicitly tied to the data available to the
decision-maker and captures the idea of robustness with standard likelihood bounds, making the
approach both familiar and intuitively appealing. Second, since the approach is numerically
tractable, it is applicable to a wide range of problems. Finally, because the framework allows
policy-makers to choose the degree of precaution desired and map this level of precaution into a
dynamically optimal policy, it has direct relevance and a clear structure for managers

(Woodward and Tomberlin, 2014).
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In the genersc optimization problem (Le. Hinear programming, L) min{c’x:Ax € b)
x

The data comprise the numerical values of the entries in (¢ A; b)
In Robust Optimization, an wicertnin LP problem is defined as a collection of LP programs of a common
structure with the data (¢ A; b) varying in a glven uncertainty set U

min{c”x: Ax < b) 1 (c, A, b) € u} (E1)
-

Conceptually, the most Important guestion is what does it mean to solve an uncertain LP problen The
answer to this question rests on the definition of a “immune to uncertainty” solution, Indeed, this solution
should be a fixed vector x that make the solution feasible for the constraints, whatever the realtzation of
the data within U, Such a solution ks called robust feasible. Among other possibilities in the decision-making
enviranment (Greenberg & Mormison 2008) meaningful robust solutions, x, to an uncertain problem may
be orlented by the "worst-case” viewpoing, that Ls, that guarontees that the worst-volue [i.e supreme) of E.1
iy minimized. Thus, the best possible robust feasible solution is the one that solves the optimization
problem

min} max [¢"xAx s b): (e, A b)E 'll)- (E.2)
z (e ADWY )

That is, "robust solutions” remain feasible and near-optimal regardless of how the data changes: However,
robustness comes with a price, as robust solutlons can be costly compared to an expected value approach
- solutions are too conservative in the sense that much of optimality is gave up for the nominal problem to
be robust. An extension of worst-case optimization involves specifying a different bevel of risk of violation
for each constraint (Bertsimas and Sim, 2004), which is beneficial as it allows the decision-maker to
assume greater risk with some constraints, thereby reducing the cost of the robust solution

Figure 7 - Formulations of general robust-optimization problems.

Classical (frequentist) and Bayesian statistical analyses dedicated to the integration of
uncertainty in decision-making problems use probabilistic distributions to define a controlled
spectra of possible outputs from decisions through confidence intervals (Burgman et al., 2005;
Gelman and Hill, 2006; Lin et al., 2018) or to identify conditions that ensure, with a given
probability, a certain ideal output is obtained (Carroll et al., 2010; Schapaugh and Tyre, 2012).
Both approaches enter an optimization protocol with the incorporation of uncertainty functions
on parameter values (probabilistic and belief models, for the frequentist and Bayesian
paradigms, respectively), which are integrated into the objective function. The Bayesian
approaches present the advantage of providing sequential updates of belief functions (specified
in terms of model parameters) as new information is acquired through time (e.g., adaptive

decisions) (McDonald-Madden et al., 2010; Sanderlin et al., 2014; Wade, 2000).

9. CHALLENGES AHEAD - THE WAY FORWARD

With thirty years of growth, the spatial dimension of SCP is now facing challenging times, in
which large problems need quick responses. Although the protection of biodiversity is not
commonly driven by societal requirements (i.e. the no-value land paradigm, Joppa and Pfaff,
2009; Venter et al,, 2018), human aspirations still need to be integrated into its machinery so

that achievable win/win scenarios are identified, making conservation goals better supported
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(Fahrenkamp-Uppenbrink, 2014; Howe et al., 2014; Reyers et al., 2012). These requirements
give conservation planning the need to be more realistic by: 1) gathering more and better data;
2) building flexible decision support models able to characterize a wide array of realities; and 3)
promoting stakeholder engagement across the full SCP process, to: 3.1) find consensual and
explicit goals; 3.2) use proper models to fulfil those goals in each particular study system, and
3.3) evaluate and reformulate provisional solutions. In this multiplayer framework, we perform
an overview of some challenges that the quantitative module of conservation planning already

faces or will face in the short-term.

9.1. Building more realistic assumptions

The multidimensional complexity of biodiversity conservation demands access to a wide set of
accurate data for planning designs to be effective in maximizing biodiversity persistence.
Information on the distribution, abundance and dynamics of genes, populations, species and
biotic communities; plausible changes in environmental, physical, social and economic drivers;
and the impacts of global environmental changes should be collected at the spatial and temporal
scales matching the relevancy of the phenomena and the established goals (Figure 3).

Importantly:

¢ Good quality data with high-resolute spatial grain allow a large number of decisions to be
evaluated and therefore to enlarge the analytical space to look for the most informative
solutions;

e The increase of geographic windows allows the expansion of political, jurisdictional and
institutional scopes of biodiversity conservation to profit not only from the individual
potential of each player but, mainly, from collaborations and shared goals. In wide
geographic contexts, detailed data of local ecological and socioeconomic processes
approximate conservation plans to the real scales in which key biodiversity processes
operate, especially when environments are heterogeneous and dynamic (e.g., the
“geography of species’ adaptations” to climate change);

e High-resolute temporal data allow planners to strengthen the control of their
conservation systems, making them capable of opening up opportunities for quicker
readjustments of conservation actions. With the tendency for a massive array of-
ecological data to be available, the monitoring of conservation systems may operate
similarly to the (quasi-) continuous scanning performed within meteorological and
climate assessments (Kissling et al.,, 2018; Proenca et al., 2017). Precautionary

approaches demand that actions today are made for plausible scenarios ahead. Thus,
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expanding the time horizon of conservation plans allows a plausible future to be
anticipated, leading to informed-proactive preparation of the expected outcomes and
therefore more robust PA mappings. The extension of future temporal data implies large
predictive capabilities for the environmental, the ecological and the socioeconomic
systems. The farthest in the future they are, the more uncertain the predictions (Northrop
and Chandler, 2014). This temporal gradient of uncertainty needs to also be
accommodated in conservation planning models (see time-varying costs, interest rates,
SDP and robust optimization, above);

e Biodiversity refers to structural elements (i.e., genes, populations, species, communities
and ecosystems) that have coevolved over thousands of years and the complex
multiscaled processes (e.g., physiological, genetic, behavioral, ecological, evolutionary,
abiotic) that generate and link them together and sustain the whole. Expanded data on
the evolutionary, genetic, taxonomic and functional components of biodiversity permit
planners to control the countless aspects that act at multiple scales and allow ecosystems
to be, by definition, dynamic and complex. The realization of these kind of data demand
the emergence of hierarchical nonlinear decision-support models and powerful

algorithms to be developed and/or accessed.

In the age of big data (Farley et al., 2018), raising the quantity and quality standards of data;
identifying interrelationships among data types and making a wide set of analytical tools
available offers planners the flexibility in tailoring a conservation plan to the idiosyncrasies of
their contextual working systems. These datasets may establish seedlings for the advance of
conservation plans under different viewpoints, different solution philosophies and goals
(Bayraktarov et al., 2019). With this flexibility comes the burden of choice and, fortunately, with
OR, the set from which to make that choice grows (Figure 3 & Figure 8).
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Figure 8 -Classes of OR area selection models, their hardness in finding full-optimal solutions
(size of circles) and their potential inter-relationships (arrows). Predictive uncertainty, with
varied nature and magnitude, is combinable among all model types.

9.2. Placement and management decisions

With its multiscaled structure, conservation plans need to be comprehensive and to incorporate
important components of SCP. For example, conservation models need not only support
decisions about the timing and location of PAs but also quantify which/where/when
conservation actions (e.g., threat prevention, monitoring, and effective management actions)
should be taken and distributed. Given the feedback characterizing these systems, models of this
type require an improved biosocioeconomic realism and a continuous supply of data (Williams

and Johnson, 2013; Wilson et al., 2011).

Future research should analyze operational decisions, such as the allocation of personnel
resources, equipment and other assets among different treatment sites, and the routing of crews
between selected sites for management (Sewell et al.,, 2012; Yokomizo et al., 2004). Deployment
of multiple resources such as funding and labor among different management options, over
multiple areas and time periods, is also another possible future direction (i.e., logistical
problems). Paralleling area selection, the scheduling of management actions and the allocation of
tasks among personnel are other relevant issues for future investigation (Adams and Setterfield,
2015; Baker and Bode, 2016; Moore and McCarthy, 2016; Watts et al., 2009; Wilson et al., 2011).
Another interesting research line is the coordination of capacity (e.g., personnel and equipment)
and governance (e.g., local, regional, national responsibilities) among stakeholders. In particular,
cooperation among independent but related parties to share their resources, capacities, and
information could improve the efficiency of PAs (Frank and Sarkar, 2010). Operations Research

models have been widely used to supply chain coordination among stakeholders in production



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 December 2021

and manufacturing, disaster management and bioterrorism response (Altay and Green, 2006;
Ravindran, 2008). Future studies should incorporate the risks of invasive species related to
transportation in an optimization model in which the routes, through which manufactures (e.g.,
wood, food) are transferred, are optimally selected while minimizing the distances that potential
invaders are transported (Blytiktahtakin and Haight, 2017). Network optimization models, such
as LCP and minimum cost network flow problems (Ahuja et al., 1993) can be used to formulate
the transportation of goods that pose an invasion risk (see Connectivity section and Figure 4).
Future research may consider the optimization of the transportation network and the selection
of appropriate means for transportation and distribution activities while minimizing the risk of
introduction and the establishment of new invaders (Courtois et al.,, 2018; Yemshanov et al,,

2017).

9.3. Coordination among multiple stakeholders

Biodiversity conservation crosses jurisdictional boundaries since it constitutes a platform to
respond to the adaptive spatial responses of biodiversity to expanding, globalized threats. The
fitness of populations and the way they spread depend on the choices made by several decision-
makers in organized or less structured bodies of governance. Each conservation agency typically
decides on where, when and how to undertake formal decisions on conservation based on local
damage and management costs, without considering the benefits of protection generated by
actions already made in neighboring regions by other conservation players. Therefore,
independent agents are likely to underinvest in conservation from a societal perspective. The
cooperative or centralized control of conservation planning across jurisdictions delivers
superior performances when compared with independent decision-making (Albers et al., 2008;
Kroetz and Sanchirico, 2015). A mechanism of transfer payments in which one jurisdiction pays
another to increase their level of decision (Bhat and Huffaker, 2007) is one method of
cooperation. In other situations, jurisdictions may simply agree to coordinate their efforts in a
beneficial way to minimize spillover effects (Epanchin-Niell and Wilen, 2015). Cooperative game
theory (Curiel, 2013), a branch of OR specifically devoted to explicit or implicit strategy
coordination, may be used to determine compensation efforts and optimal cooperation among
multiple stakeholders (Alvarado-Quesada and Weikard, 2017b; Epanchin-Niell and Wilen, 2012,
2015; Frank and Sarkar, 2010; Iacona et al., 2016). Few studies have compared the distribution
of PAs derived from coarse-scale (regional) and fine-scale (local) data, but these have
demonstrated significant cost-effective differences (Kukkala et al., 2016; Moilanen and Arponen,
2011; Pouzols et al,, 2014). At many spatial scales, decisions are likely to be under the purview of

groups rather than individuals, and the size, composition and organization of groups are likely to
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vary with the geographical scale (Alvarado-Quesada and Weikard, 2017a; Frank and Sarkar,
2010). Different types of uncertainty and risk prevail at (and percolate between) different scales
in ways that are difficult to quantify. The design of market-based and regulatory policies to

enhance cooperation across jurisdictions is a primary area of further research.

9.4. Computational infrastructures

The computational burden of dealing with realistic spatial conservation planning have remained
the greatest challenge to implement OR models and to obtain optimal or good quality suboptimal
solutions (Beyer et al., 2016; Song et al., 2018). The growing number of powerful computational
facilities has provided the background for the establishment of consortia in which computational
scientists collaborate with conservation planners (La Salle et al., 2016). Under these
partnerships, while data analysts and managers are challenged by real-world problems inspiring
them to develop and test new models and techniques, conservation planners are offered access
to state-of-the-art computational tools allowing “good quality solutions” to be obtained. The field
of computational sustainability (Lassig et al., 2016) has paved the way for interdisciplinary calls
for the development of techniques from computer and information science and related
disciplines (e.g., OR, applied mathematics and statistics) to trade-off environmental, economic
and societal needs and aspirations so that sustainable development is accomplished (Gomes,
2011). Logistically, these consortia enable ecological data-intensive problems to be solved in
high performance computing infrastructures (e.g., cluster and grid computing), thus allowing
researchers to make use of tens of thousands of dedicated servers to execute coordinated solving
tasks (Abreu et al., 2014). Fast and cheap local cluster computing is now possible through off-
the-shelf computational nodes and software, allowing the easy construction and maintenance of
supercomputers. For example, while LIFEWatch-ERIC (https://www.lifewatch.eu), ELIXIR
(https://www.elixir-europe.org) and EUBrazilOpenBio (http://www.eubrazilopenbio.eu) are
key initiatives already in place, they still lack spatial conservation planning modules that may
provide the crucial link from ecological sciences to policy-making. We envisage a wide range of

opportunities for interdisciplinary expansion in the short-term.

In addition to the full use of available computing infrastructures, the work undertaken by
operations researchers should not be neglected. They formulate problems and conceive
dedicated algorithms for solving very particular questions (i.e., large analytical resolution). Until
now, the use of Marxan (Ball et al., 2009), Zonation (Moilanen et al., 2009a) and other easy to use

software (for a list see http://conservationcorridor.org/corridor-toolbox/programs-and-tools/

and https://applcc.org/plan-design /gis-planning/conservation-planning/conservation-
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planning-software) has been commonplace in many published studies, but these tools were not

always properly developed to deal with very particular contingencies and requirements.
Possibly, many researchers have chosen to simplistically adapt their studies to the principles of
such general models. “Wasting” time in mathematical clarification (i.e., formulation) of a
conservation problem may retrieve fruitful results later on, by either, maximizing the utility of

the proposed solutions, minimizing their associated costs or, ideally, both.

In summary, emerging tools, technologies, infrastructures and information technology
partnerships in the age of big data may boost state-of-the-art approaches for better research and
management, and may alter how conservation planning is looked at even from inside, opening
opportunity-windows for fundamental advances and applied research, thus making biodiversity

conservation effective and acute over time.

10. CONCLUSIONS

1. Biodiversity conservation considers several problems wherein conservation interests compete
with the socioeconomic expectations that govern modern societies. In this context, the scarce
resources available for planning, acquisition and management of PAs need to be optimally

distributed.

2. Given that the current biodiversity crisis impacts a wide set of biological features and
processes, spans large regions and is likely to subsist in time, the combinatorial nature of
conservation decisions makes real-world conservation problems hardly solvable by intuition

alone.

3. Operations Research (with particular emphasis on optimization) offers powerful tools and
methods for planners and policy-makers make the “best” decisions. Under the OR framework,
decision problems need to be defined, analyzed and solved using a rational, systematic and
scientific design, based on data, facts, information and logic, and not on mere guesswork or

rules-of-thumb.

4. The dynamic and complex nature of conservation systems and the increasing availability of
ecological, socioeconomic and institutional data still challenge the way OR delivers good-quality
solutions. More elaborated models able to deal with a large array of factors need to be developed

and critically discussed and upgraded with stakeholder involvement.

5. Fusing together the spatial, temporal and management dimensions of conservation plans;

dealing with multiscaled agents and budgets within coordinated schemes; and promoting
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collaborative consortia with shared interests provide the modern ingredients to achieve a

paramount societal goal: to preserve biodiversity under grand challenging scenarios.
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