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1. Introduction

A bond is a contract which pays its holder a known amount, the principal, at a known future
date, called the maturity of the contract. The bond may also pay periodically to its holder fixed cash
dividends, called the coupons. This type of bonds are known as coupon bonds (sometimes also called
coupon-paying or coupon-bearing bonds). If the bond pays no coupons, it is known as a zero-coupon
bond (or pure discount bond). Several bonds may contain special clauses or some embedded options.
There are also some derivative contracts whose underlying asset is a bond.
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This paper offers three contributions to the existent bond option pricing literature. First, we provide
closed-form solutions to efficiently and accurately compute sensitivity measures (commonly known as
Greeks) of pure discount and coupon-bearing bond options under the Cox et al. (1985) mean-reverting
square-root model (hereafter, CIR model), which, to the best of our knowledge, are new in the option
pricing literature.1 Following the insights of Larguinho et al. (2013) and Dias et al. (2020), the obtained
closed-form expressions for Greeks under the CIR model are expressed in terms of noncentral chi-
square distribution functions, which can be efficiently computed via Benton and Krishnamoorthy (2003,
Algorithm 7.3).2

These novel Greeks should be valuable to both academics and practitioners. For instance, a dealer
of the financial industry should be able not only to price a given option contract but also to hedge it.
Knowing and understanding such sensitivity measures is thus pivotal in the design of hedging strategies
for a given security or a portfolio of securities, when closing the position is not viable or desirable.
Greeks also enjoy many other multiple applications such as market risk measurement, profit and loss
attribution, model risk assessment and optimal contract design, and to determine parameter values
from market prices. Moreover, the availability of analytical solutions for Greeks reduces substantially
the computational burden when dealing with large portfolios of securities that have to be re-evaluated
frequently and allows them to be easily coded in any desired computer language.

Armed with these new analytical solutions for Greeks, we can now extend the literature in two other
directions.3 Hence, and as our second contribution, we are able to price (and hedge) American-style
option contracts on zero-coupon bonds under the CIR model via the static hedge portfolio (hereafter, SHP)
approach offered by Chung and Shih (2009) and Ruas et al. (2013) in the context of stock options. It is
well-know that the pricing (and hedging) of American-style contingent claims boils down to a boundary
value problem in a domain whose boundary is not fully known and, therefore, must be also determined.
In other words, the option price and the early exercise boundary must be determined simultaneously as
the solution of the same free boundary problem that has been set up by McKean (1965). As for the stock
options case, there are no closed-form solutions for pricing American-style options on bonds. Hence, these
contracts have been usually evaluated numerically using finite difference, finite volume, and finite element
methods—see, for instance, Hull and White (1990), Allegretto et al. (2003), Yang (2004), ShuJin and
ShengHong (2006), Zhou et al. (2011), and Thakoor et al. (2012)—, through a binomial or trinomial tree
approach—see, for example, Nelson and Ramaswamy (1990), Tian (1992), Tian (1994), and Nawalkha and
Beliaeva (2007)—, via the least-squares Monte Carlo scheme of Longstaff and Schwartz (2001), or with
the optimal stopping approach proposed by Chesney et al. (1993). More recently, Deng (2015) considers
the valuation of American-style put options on zero-coupon bonds in a jump-extended CIR model, Najafi
et al. (2018) evaluate the American-style put option on a zero-coupon bond assuming that the interest rate
model is governed by a fractional CIR process, whereas Peng and Schellhorn (2018) study the probability
distribution of the interest rate under an extended CIR model with time-varying dimension and propose a
pricing method for options on zero-coupon bonds.

1 To simplify the notation and better emphasize our exposition, we focus on the classical constant coefficient CIR model to derive Greeks,
but the same line of reasoning can be applied also under the time-varying coefficients version of the CIR model offered by Jamshidian
(1995) and Maghsoodi (1996), as well as under the CIR++ model of Brigo and Mercurio (2001).

2 This algorithm has been used in several option pricing applications involving such distribution, e.g., Ruas et al. (2013), Dias et al. (2015),
Nunes et al. (2015), Cruz and Dias (2017), Cruz and Dias (2020), and Dias et al. (2020).

3 Another possible research direction, outside the scope of the present article, is the comparison of alternative binomial approximation schemes
for computing the option hedge ratios in the spirit of Pelsser and Vorst (1994), Chung and Shackleton (2002), Chung and Shackleton (2005),
Chung et al. (2011), and Cruz and Dias (2017).
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Alternatively, we show how to tackle the valuation of American-style options on pure discount
bonds with a distinct approach that has proved to be extremely efficient and accurate in the case of
American-style stock options and under different assumptions for the dynamics of the underlying asset
price—see Chung and Shih (2009) and Ruas et al. (2013) for more details.4 Broadly speaking, we use
standard European-style zero-coupon bond options with multiple strikes and multiple maturities, because
the optimal exercise boundary of such American-style contracts are not known ex-ante. This approach
creates a static portfolio of European-style options whose values match the payoff of the American-style
option being hedged at expiration and along the boundary, by applying the value-matching and smooth-
pasting conditions on the early exercise boundary. As for the case of stock options, we show that the
SHP methodology is also robust and computationally efficient when dealing with bond options.5

As our final contribution, we revisit the Bacinello et al. (1996) work and provide analytic tractable
formulae for valuing and analyzing comparative statics of sinking-fund bonds in the CIR framework. We
shall note that while Bacinello et al. (1996) have been able to study such issues in closed-form under the
Vasicek (1977) model, they analyze numerically the comparative static properties of the sinking-fund bond
in the CIR model given the absence of closed-form expressions of Greeks under the CIR modeling setup.
Using our novel solutions, we show that the stochastic duration of the sinking-fund bond is between the
stochastic duration of the corresponding serial and coupon bonds. Although this issue has been shown
already by Bacinello et al. (1996) through numerical differentiation, we are able to establish this property
analytically using the proposed closed-form solutions for the CIR sensitivity measures.

The remainder of the paper is organized as follows. Section 2 outlines a brief summary of the
CIR interest rate dynamics and the analytical formulae for computing discount bonds, coupon-bearing
bonds, and European-style options on discount bonds and coupon-paying bonds in a CIR economy.
Section 3 derives analytical tractable solutions of the sensitivity measures of bond options under the
same interest rate dynamics setting and presents some numerical examples to enhance the efficiency of
our closed-form solutions. Section 4 implements the SHP approach for pricing and hedging American-
style options on zero-coupon bonds. Section 5 provides analytically tractable formulae to analyze the
comparative statics properties of a sinking-fund bond in the CIR framework. Section 6 presents the
concluding remarks. All accessory results are relegated to the Appendix.

2. Model setup and bond option valuation

This section presents a brief remainder of the analytical formulae for computing discount bonds,
coupon-bearing bonds, and European-style call and put options on zero-coupon bonds and coupon-
paying bonds in a CIR economy that will be required later. Even though these results are well known in
the literature they are needed to establish notations and the desire for self-consistency.

4 The SHP approach has been shown to be useful also for pricing and hedging barrier option contracts, as highlighted in Chung et al. (2010),
Chung et al. (2013), Dias et al. (2015), Nunes et al. (2015), Guo and Chang (2020), and Nunes et al. (2020).

5 Unfortunately, the existence of interim coupons prevents the implementation of the SHP approach for American-style options on
coupon-bearing bonds. Nevertheless, the SHP methodology should be useful both in theory and in practice since it provides a fast and
accurate method for pricing American-style options on zero-coupon bonds, thus being a viable alternative to the aforementioned schemes
available in the literature for these contracts. Moreover, this methodology can also be applied to any other single-factor interest rate model
offering closed-form solutions for option prices and hedge ratios.
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2.1. CIR interest rate dynamics

Hereafter, we consider a CIR economy in which EQt denotes the time-t expectation under the
martingale (or risk-neutral) probability measure Q, with respect to the risk-adjusted process for the
instantaneous interest rate rt

drt = κ∗ (θ∗ − rt) dt + σ
√

rtdWQ
t , (1)

where κ∗ := κ + λ is the risk-neutral parameter that determines the speed of adjustment (reversion rate
or reverting rate), θ∗ := κθ/ (κ + λ) is the risk-neutral long-run mean of the instantaneous interest rate
(asymptotic interest rate or reverting level), σ is the volatility of the process, λ is the market price of
risk parameter, and WQ

t is a standard Brownian motion under Q.6 It is well known that the κθ term plays
a key role under this diffusion and has important implications for capture of the interest rate process r at
a value of zero. The condition 2κθ ≥ σ2 ensures that the interest rate remains positive.7

2.2. Zero-coupon bonds under the CIR model

In a CIR economy, the time-t price of a zero-coupon bond maturing at time s (with s > t), Z(r, t, s),
is given by

Z(r, t, s) = EQt
[
e−

∫ s
t rudu

]
= A(t, s) e−B(t,s) r, (2)

with r = rt at the valuation date t, and where the constants A(t, s), B(t, s), and γ > 0 are given by

A(t, s) :=
[ 2γe[(κ+λ+γ)(s−t)]/2

(κ + λ + γ)(eγ(s−t) − 1) + 2γ

]2κθ/σ2

, (3)

B(t, s) :=
2(eγ(s−t) − 1)

(κ + λ + γ)(eγ(s−t) − 1) + 2γ
, (4)

and
γ :=

[
(κ + λ)2 + 2σ2]1/2

. (5)

2.3. Coupon-paying bonds under the CIR model

It is well established in the literature—see, for instance, Jamshidian (1989)—that, for all one-factor
term structure models, a coupon-paying bond can be decomposed into a portfolio of zero-coupon bonds
of different maturities. Hence, the time-t value of a coupon-bearing bond expiring at time s (with s > t),
P(r, t, s), can be simply expressed as a weighted sum of zero-coupon bond prices, that is

P(r, t, s) =

N∑
i=1

aiZ(r, t, si), (6)

with s1, s2, · · · , sN (and sN = s) representing the N dates on which payments are made, and each ai > 0
term denoting the amount of the payments made.8

6 We recall that, when λ = 0, we have κ∗ = κ and θ∗ = θ, which implies that the speed of adjustment and the asymptotic interest rate under
the physical and risk-neutral measures are the same.

7 See Feller (1951) for a complete description of the boundary conditions.
8 For example, consider a 10-year 6% coupon bond with a par value of 100 and semiannual coupon payments. In this case, N = 20 since

the bond makes 19 semiannual coupon payments of 3 as well as a final payment of 103. Thus, ai = 100 × 6%/2 = 3 for i = 1, 2, · · · , 19,
a20 = 3 + 100 = 103, and s1 = 0.5, s2 = 1, · · · , s19 = 9.5, and s20 = 10.
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2.4. Zero-coupon bond options under the CIR model

Analytic solutions for pricing options on discount bonds have been proposed by Cox et al. (1985).
Denote v zc(r, t,T, s,K;α) as the time-t price of a European-style call option (if α = 1) or put option (if
α = −1) with strike price K, expiration date T , written on a zero-coupon bond with maturity date s
(with s > T > t), and with the instantaneous interest rate at time t given by r.9 The time-t price of a
zero-coupon bond option is given by

vzc(r, t,T, s,K;α) = αZ(r, t, s)Q [x1 (t,T, s,K) ; a, b1 (r, t,T, s) ;α]
−αK Z(r, t,T )Q [x2 (t,T, s,K) ; a, b2 (r, t,T ) ;α] , (7)

where Q(x; a, b;α) is the distribution function (for α = 1) and the complementary distribution function
(for α = −1) of the noncentral chi-square distribution with a degrees of freedom and non-centrality
parameter b,

x1 (t,T, s,K) := 2r∗ (T, s,K)
[
φ (t,T ) + ψ + B(T, s)

]
, (8)

x2 (t,T, s,K) := 2r∗ (T, s,K)
[
φ (t,T ) + ψ

]
, (9)

a :=
4κθ
σ2 , (10)

b1 (r, t,T, s) :=
2φ2 (t,T ) reγ(T−t)

φ (t,T ) + ψ + B(T, s)
, (11)

b2 (r, t,T ) :=
2φ2 (t,T ) reγ(T−t)

φ (t,T ) + ψ
, (12)

φ (t,T ) :=
2γ

σ2(eγ(T−t) − 1
) , (13)

ψ :=
κ + λ + γ

σ2 , (14)

and

r∗ (T, s,K) :=
1

B(T, s)
ln

(
A(T, s)

K

)
, (15)

with r∗ being the critical interest rate below which exercise will occur, i.e., K = Z(r∗,T, s).

2.5. Coupon-paying bond options under the CIR model

Following the argument of Jamshidian (1989) that an option on a portfolio of zero-coupon bonds
decomposes into a portfolio of options on the individual discount bonds in the portfolio, then the time-t
price of a European-style call option (if α = 1) or put option (if α = −1), with strike price K and maturity
date T , on a portfolio consisting of N zero-coupon bonds with different expiry dates si, is given by

vcb(r, t,T, s,K;α) =

N∑
i=1

aivzc(r, t,T, si,Ki;α), (16)

with T < s1 < s2 < · · · < sN = s, ai > 0, Ki = Z(r∗∗,T, si), and where r∗∗ is the solution to∑N
i=1 aiZ(r∗∗,T, si) = K.10

9 It is well-known that K is restricted to be less than A(T, s), the maximum possible bond price at time T , since otherwise the option would
never be exercised and would be worthless—see Cox et al. (1985, Page 396).

10 Alternatively, we may use the equivalent closed-form expressions offered by Longstaff (1993, Equations 7 and 9).
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Remark 1. Note that the underlying asset for coupon bond options is actually the portfolio of discount
bonds expiring after the option’s maturity date. However, the value of this portfolio is strictly less than
the current price of the coupon bond if the bond pays coupons before the expiry date of the option. As
argued by Longstaff (1993, Page 32), the value of the underlying asset for a 5-year option on a 10-year
bond is not the current price of a 15-year bond, but the price of a 15-year bond minus the present value
of coupon payments to be made during the next 5 years. In other words, the option’s payoff—and, hence,
the coupon bond option price—does not depend on the payments of the coupon bond to be made before
the expiry date of the option.

3. Greeks of bond options under the CIR model

This section derives closed-form solutions for Greeks under the CIR model, which, to the best of
our knowledge, are new in the literature.

3.1. Preliminaries

Let us begin with two important general relations, which will be used for deriving Greeks under
the CIR model. Following Johnson et al. (1995, pp. 442-443) or Larguinho et al. (2013, Equations A2a
and A2b), we know that

∂Q[x; a, b;α]
∂x

= α p(x; a, b), (17)

and
∂Q[x; a, b;α]

∂b
= −α p(x; a + 2, b), (18)

where p(x; a, b) is the probability density function of a noncentral chi-square distribution as given by
Johnson et al. (1995, Equation 29.4), that is

p(x; a, b) =
1
2

e−(b+x)/2
( x
b

)(a−2)/4

I(a−2)/2(
√

bx), x > 0, (19)

with Iq(·) being the modified Bessel function of the first kind of order q, as defined in Abramowitz
and Stegun (1972, Equation 9.6.10). We will also need to use the first derivative of the probability
density function (19) with respect to the non-centrality parameter b, which can be computed through
the following recurrence relation given by Cohen (1988):

∂p(x; a, b)
∂b

=
1
2

[−p(x; a, b) + p(x; a + 2, b)]. (20)

3.2. Greeks formulas

Next propositions and remarks offer the proposed novel closed-form solutions for computing
sensitivity measures of zero-coupon bond options under the CIR model, namely the rho (or interest rate
delta), interest rate gamma, theta, and eta (or strike delta).11 We notice that the corresponding rho,

11 Note that the so-called vega—which is the sensitivity of the bond option price with respect to the volatility parameter σ—depends on the
degrees of freedom parameter a of the noncentral chi-square distribution function, for which (to the authors knowledge) there is no simple
relationship as those given in equations (17) and (18). See Alvarez (2001) who discusses the conditions which determine the sign of the
effect of increased volatility on the price of a general interest rate claim under a broad class of interest rate models.
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interest rate gamma, and theta measures of coupon-bearing bond options arise immediately, because it
is possible to apply the decomposition technique of Jamshidian (1989) to these Greeks. For the case of
eta, however, it is necessary to combine the decomposition technique with the classic chain rule.

3.2.1. Interest rate delta

The rho or interest rate delta can be computed as:

Proposition 1. Consider the pricing solution of a zero-coupon bond option under the CIR model as
defined in equation (7). Then, the rho (or interest rate delta) of a zero-coupon bond call option (if α = 1)
or put option (if α = −1) is given by

ρzc
v (.) :=

∂v zc(.)
∂r

= Z(r, t, s)
[
− αB(t, s)Q[x1(.); a, b1(.);α] −

b1(.)
r

p(x1(.); a + 2, b1(.))
]

−KZ(r, t,T )
[
− αB(t,T )Q[x2(.); a, b2(.);α] −

b2(.)
r

p(x2(.); a + 2, b2(.))
]
. (21)

Proof. Please see Appendix A.�

Remark 2. The rho of a coupon bond call option (if α = 1) or put option (if α = −1) arises immediately
if one applies the decomposition technique of Jamshidian (1989), that is

ρcb
v (.) :=

∂vcb(.)
∂r

=

N∑
i=1

ai
∂vzc(r, t,T, si,Ki;α)

∂r
=

N∑
i=1

aiρ
zc
v (r, t,T, si,Ki;α). (22)

The previous remark shows that it is straightforward to compute call and put interest rate deltas in
closed-form for coupon-paying bond options under the CIR framework. This will allow us to compare
the results calculated by expression (22) with the rho values shown in Wei (1997, Table II), which have
been obtained through a numerical integration scheme.

3.2.2. Interest rate gamma

The interest rate gamma can be computed as:

Proposition 2. Consider the pricing solution of a zero-coupon bond option under the CIR model as
defined in equation (7). Then, the interest rate gamma of a zero-coupon bond call option (if α = 1) or
put option (if α = −1) is given by

Γzc
v,r(.) :=

∂2vzc(.)
∂r2

= Z(r, t, s)
[
αB2(t, s)Q[x1(.); a, b1(.);α] + 2B(t, s)

b1(.)
r

p(x1(.); a + 2, b1(.))

−
1
2

(
b1(.)

r

)2 (
− p(x1(.); a + 2, b1(.)) + p(x1(.); a + 4, b1(.))

)]
Quantitative Finance and Economics Volume 6, Issue 1, 1–34.



8

−KZ(r, t,T )
[
αB2(t,T )Q[x2(.); a, b2(.);α] + 2B(t,T )

b2(.)
r

p(x2(.); a + 2, b2(.))

−
1
2

(
b2(.)

r

)2 (
− p(x2(.); a + 2, b2(.)) + p(x2(.); a + 4, b2(.))

)]
. (23)

Proof. Please see Appendix B.�

Remark 3. The interest rate gamma of a coupon bond call option (if α = 1) or put option (if α = −1)
arises immediately if one applies the decomposition technique of Jamshidian (1989), that is

Γcb
v,r(.) :=

∂2vcb(.)
∂r2 =

N∑
i=1

ai
∂ρzc

v (r, t,T, si,Ki;α)
∂r

=

N∑
i=1

aiΓ
zc
v,r(r, t,T, si,Ki;α). (24)

3.2.3. Theta

The theta can be computed as:

Proposition 3. Consider the pricing solution of a zero-coupon bond option under the CIR model as
defined in equation (7). Then, the theta of a zero-coupon bond call option (if α = 1) or put option (if
α = −1) is given by

θzc
v (.) :=

∂vzc(.)
∂t

= Z(r, t, s)
[
αζsQ[x1(.); a, b1(.);α] + ξp(x1(.); a, b1(.)) − %1 p(x1(.); a + 2, b1(.))

]
−KZ(r, t,T )

[
αζTQ[x2(.); a, b2(.);α] + ξp(x2(.), a, b2(.)) − %2 p(x2(.); a + 2, b2(.))

]
, (25)

where

ζ j =
κθ

σ2

(κ + λ + γ)(eγ( j−t) − 1)(2γ − (κ + λ + γ))
(κ + λ + γ)(eγ( j−t) − 1) + 2γ

+
4rγ2eγ( j−t)[

(κ + λ + γ)(eγ( j−t) − 1) + 2γ
]2 , (26)

for j ∈ {T, s},

ξ =
4r∗γ2eγ(T−t)

σ2(eγ(T−t) − 1)2 , (27)

%1 = b1 (r, t,T, s) γ
(φ(t,T ) + ψ + B(T, s)) + (ψ + B(T, s))eγ(T−t)

(eγ(T−t) − 1)(φ(t,T ) + ψ + B(T, s))
, (28)

and

%2 = b2 (r, t,T ) γ
(φ(t,T ) + ψ) + ψeγ(T−t)

(eγ(T−t) − 1)(φ(t,T ) + ψ)
. (29)

Proof. Please see Appendix C.�

Remark 4. The theta of a coupon bond call option (if α = 1) or put option (if α = −1) arises
immediately if one applies the decomposition technique of Jamshidian (1989), that is

θcb
v (.) :=

∂vcb(.)
∂t

=

N∑
i=1

ai
∂vzc(r, t,T, si,Ki;α)

∂t
=

N∑
i=1

aiθ
zc
v (r, t,T, si,Ki;α). (30)

Quantitative Finance and Economics Volume 6, Issue 1, 1–34.
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3.2.4. Eta

The eta can be computed as:

Proposition 4. Consider the pricing solution of a zero-coupon bond option under the CIR model as
defined in equation (7). Then, the eta of a zero-coupon bond call option (if α = 1) or put option (if
α = −1) is given by

ηzc
v (.) :=

∂vzc(.)
∂K

= −2Z(r, t, s) p(x1(.); a, b1(.))
φ(t,T ) + ψ + B(T, s)

B(T, s) K

−Z(r, t,T )
[
αQ[(x2(.); a, b2(.);α] − 2p(x2(.); a, b2(.))

φ(t,T ) + ψ

B(T, s)

]
. (31)

Proof. Please see Appendix D.�

Proposition 5. The eta of a coupon bond call option (if α = 1) or put option (if α = −1) arises
immediately if one combines the decomposition technique of Jamshidian (1989) and the classic chain
rule, obtaining

ηcb
v (.) :=

∂vcb(.)
∂K

=

N∑
i=1

ai
∂vzc(r, t,T, si,Ki;α)

∂K
(32)

=

∑N
i=1 aiB(T, si)Z(r∗∗,T, si)ηzc

v (r, t,T, si,Ki;α)∑N
j=1 a jB(T, s j)Z(r∗∗,T, s j)

.

Proof. Please see Appendix E.�

3.3. Delta and gamma with respect to the underlying bond price

We recall that in a CIR economy it is the independent variable r that is assumed to be stochastic.
However, the underlying asset of a bond option contract is the bond price itself and not the interest rate.
Nevertheless, it is still possible to compute the delta (or hedge ratio) of the bond option with respect
to the underlying bond price. This is accomplished because we can apply the classic chain rule for
deriving the delta of a zero-coupon bond option. Moreover, and even though it is not possible to apply
the decomposition technique of Jamshidian (1989) when computing the delta of a coupon-paying bond
option, we can still determine its value by simply using, again, the classic chain rule.

Next remark shows the analytical solutions for computing the delta of zero-coupon and coupon-
paying bond options under the CIR model.12

Remark 5. The delta (with respect to the underlying bond price) for both zero-coupon and coupon-
paying bond options arise immediately if one uses the results obtained in Proposition 1 and Remark 2,
that is

∆zc
v (.) :=

∂vzc(r, t,T, s,K;α)
∂Z(r, t, s)

=
∂vzc(r, t,T, s,K;α)

∂r
∂r

∂Z(r, t, s)
= ρzc

v (r, t,T, s,K;α)
1

∂Z(r,t,s)
∂r

= −
ρzc

v (r, t,T, s,K;α)
B(t, s)Z(r, t, s)

, (33)

12 Additional details about the computation of the delta of a zero-coupon bond option will be discussed later in Remark 6.
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and

∆cb
v (.) :=

∂vcb(r, t,T, s,K;α)
∂P(r, t, s)

=
∂vcb(r, t,T, s,K;α)

∂r
∂r

∂P(r, t, s)
= ρcb

v (r, t,T, s,K;α)
1

∂P(r,t,s)
∂r

= −
ρcb

v (r, t,T, s,K;α)∑N
i=1 aiB(t, si)Z(r, t, si)

. (34)

Interestingly, the gamma (with respect to the underlying bond price) for both zero-coupon and
coupon-paying bond options can be expressed analytically in terms of others sensitivity measures, as
shown in the following two propositions.

Proposition 6. The gamma (with respect to the underlying bond price) of a zero-coupon call option (if
α = 1) or put option (if α = −1) can be computed as

Γzc
v,Z(.) :=

∂∆zc
v (.)

∂Z(r, t, s)
=

Γzc
v,r(.)

[B(t, s)Z(r, t, s)]2 −
∆zc

v (.)
Z(r, t, s)

. (35)

Proof. Please see Appendix F.�

Proposition 7. The gamma (with respect to the underlying bond price) of a coupon-paying call option
(if α = 1) or put option (if α = −1) can be computed as

Γcb
v,Z(.) :=

∂∆cb
v (.)

∂P(r, t, s)
=

Γcb
v,r(.) − ∆cb

v (.)
∑N

i=1 ai [B(t, si)]2 Z(r, t, si)[∑N
i=1 aiB(t, si)Z(r, t, si)

]2 . (36)

Proof. Please see Appendix G.�

3.4. Numerical examples

This subsection presents some numerical results of the novel closed-form solutions of Greeks
of bond options under the CIR model. For completeness, we note that our software programs were
implemented in Matlab R2021b and run on a personal computer with an Intel Core i9-10900 2.80 GHz
processor and 64 GB of ram memory.

3.4.1. Greeks of zero-coupon bond options

Table 1 values 4-year call option prices (if α = 1) and put option prices (if α = −1), as well as their
corresponding rho, interest rate gamma, theta, eta, delta, and gamma sensitivity measures, written on
a 10-year zero-coupon bond with face value equal to $1.0 for different levels of the interest rate (r),
strike price K = $0.6, and using the parameter values κ = 0.2339, θ = 0.0808, σ = 0.0854, and λ = 0,
borrowed from Chan et al. (1992, Table III). We should mention that the obtained zero-coupon bond
prices and the option prices are both expressed as percentages of the face value. For completeness, we
shall also mention that the required noncentral chi-square distribution function and the corresponding
probability density function have been computed using, respectively, the Benton and Krishnamoorthy
(2003) algorithm and the built-in function ncx2pdf available in Matlab.

A simple way to check the analytical formulas of our Greeks is to replace the solutions of the
price, rho, interest rate gamma, and theta into the CIR partial differential equation (hereafter, pde).
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Table 1. Prices and Greeks of European-style options on zero-coupon bonds under the CIR
model.

Call options
r Z(r, t, s) vzc(.; 1) ρzc

v (.; 1) Γzc
v,r(.; 1) θzc

v (.; 1) ηzc
v (.; 1) ∆zc

v (.; 1) Γzc
v,Z(.; 1) pde test

0.01 59.3183 7.2123 −0.7992 6.3552 0.0137 −0.8185 0.3624 0.6957 1.95E−17
0.02 57.1534 6.4447 −0.7364 6.1884 0.0113 −0.7765 0.3466 0.7642 3.92E−17
0.03 55.0675 5.7389 −0.6755 5.9827 0.0091 −0.7327 0.3299 0.8281 8.67E−18
0.04 53.0577 5.0929 −0.6169 5.7418 0.0071 −0.6878 0.3127 0.8861 9.11E−18
0.05 51.1213 4.5043 −0.5608 5.4707 0.0053 −0.6422 0.2951 0.9372 2.43E−17
0.06 49.2555 3.9703 −0.5075 5.1752 0.0037 −0.5965 0.2772 0.9805 9.97E−18
0.07 47.4578 3.4881 −0.4574 4.8617 0.0024 −0.5512 0.2592 1.0154 1.73E−17
0.08 45.7258 3.0546 −0.4104 4.5365 0.0012 −0.5067 0.2414 1.0417 −1.78E−17
0.09 44.0569 2.6663 −0.3666 4.2056 0.0002 −0.4634 0.2238 1.0594 −2.26E−17
0.10 42.4490 2.3202 −0.3262 3.8744 −0.0006 −0.4218 0.2067 1.0685 −3.04E−18
0.11 40.8997 2.0128 −0.2891 3.5480 −0.0012 −0.3821 0.1901 1.0695 −2.99E−17
0.12 39.4070 1.7408 −0.2553 3.2303 −0.0017 −0.3445 0.1742 1.0627 −5.55E−17
0.13 37.9688 1.5012 −0.2245 2.9249 −0.0020 −0.3093 0.1590 1.0489 −2.52E−17
0.14 36.5830 1.2909 −0.1967 2.6343 −0.0023 −0.2764 0.1446 1.0287 −3.27E−17
0.15 35.2479 1.1069 −0.1717 2.3607 −0.0024 −0.2460 0.1311 1.0027 2.08E−17

Put options
r Z(r, t, s) vzc(.;−1) ρzc

v (.;−1) Γzc
v,r(.;−1) θzc

v (.;−1) ηzc
v (.;−1) ∆zc

v (.;−1) Γzc
v,Z(.;−1) pde test

0.01 59.3183 0.1474 0.0652 1.5974 −0.0011 0.0524 −0.0295 0.3782 1.33E−17
0.02 57.1534 0.2207 0.0814 1.6427 −0.0012 0.0724 −0.0383 0.4308 2.81E−17
0.03 55.0675 0.3103 0.0979 1.6404 −0.0012 0.0946 −0.0478 0.4781 3.42E−18
0.04 53.0577 0.4163 0.1141 1.5944 −0.0012 0.1185 −0.0578 0.5187 −1.29E−17
0.05 51.1213 0.5382 0.1296 1.5102 −0.0009 0.1437 −0.0682 0.5515 2.04E−17
0.06 49.2555 0.6752 0.1442 1.3940 −0.0006 0.1695 −0.0787 0.5755 −4.55E−18
0.07 47.4578 0.8261 0.1574 1.2523 −0.0001 0.1954 −0.0892 0.5902 1.68E−17
0.08 45.7258 0.9896 0.1691 1.0917 0.0004 0.2210 −0.0995 0.5953 −3.66E−17
0.09 44.0569 1.1639 0.1792 0.9186 0.0011 0.2458 −0.1094 0.5907 −1.91E−17
0.10 42.4490 1.3474 0.1875 0.7387 0.0019 0.2695 −0.1188 0.5764 4.12E−18
0.11 40.8997 1.5383 0.1940 0.5571 0.0028 0.2917 −0.1276 0.5528 −2.91E−17
0.12 39.4070 1.7347 0.1986 0.3783 0.0037 0.3122 −0.1356 0.5203 −5.07E−17
0.13 37.9688 1.9350 0.2016 0.2060 0.0047 0.3308 −0.1428 0.4794 −1.65E−17
0.14 36.5830 2.1373 0.2028 0.0429 0.0058 0.3474 −0.1491 0.4308 −4.34E−17
0.15 35.2479 2.3400 0.2025 −0.1087 0.0068 0.3620 −0.1545 0.3750 9.97E−18

This table values 4-year call option prices (if α = 1) and put option prices (if α = −1), as well as their corresponding rho, interest rate
gamma, theta, eta, delta, and gamma sensitivity measures, written on a 10-year zero-coupon bond with face value equal to $1.0 for different
levels of the interest rate (r) and strike price K = $0.6, and assuming a CIR interest rate dynamics. Parameter values borrowed from Chan
et al. (1992, Table III): κ = 0.2339, θ = 0.0808, σ = 0.0854, and λ = 0. The zero-coupon bond prices and the option prices are both
expressed as percentages of the face value. The last column of the table tests the CIR pde 1

2σ
2rΓzc

v,r + [κθ − (κ + λ) r] ρzc
v + θzc

v − rvzc = 0
(the value on the left-hand-side is displayed to check how close it is to zero). The required noncentral chi-square distribution function and
the corresponding probability density function have been computed using, respectively, the Benton and Krishnamoorthy (2003) algorithm
and the built-in function ncx2pdf available in Matlab.
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This exercise allowed us to conclude that the pde is satisfied in all the tested cases. It is noteworthy
to recall that while symbolic algebra programs such as Mathematica or Maple can be used to derive
Greeks through elementary differentiation—see, for example, Shaw (1998) who derives Greeks for stock
options under the geometric Brownian motion assumption via Mathematica—, these novel analytical
solutions are important for several reasons. Firstly, as argued by Carr (2001), the derivation of Greeks
through symbolic algebra programs cannot replace an intuitive understanding of the role, genesis,
and relationships between Greek measures. Secondly, as highlighted in Larguinho et al. (2013), the
computation time needed for computing analytic Greeks is much smaller, which is of pivotal importance
when a trader needs to design hedging strategies in real time. For instance, it takes only about 0.29
seconds to perform all the computations shown in Table 1. Thirdly, the existence of Greeks in closed-
form allows its coding in any desired computer language, e.g., Matlab, Python, Fortran, R, or C.
Lastly, as it will be shown in Section 4, the delta sensitivity measure can be used to price (and hedge)
American-style options on zero-coupon bonds under the CIR model via the SHP pricing methodology
developed by Chung and Shih (2009) and Ruas et al. (2013) for stock options.

3.4.2. Greeks of coupon-paying bond options

Table 2 adopts the parameters configuration of Wei (1997, Table II) to value 5-year call option
prices (if α = 1) and put option prices (if α = −1), as well as their corresponding rho, interest rate
gamma, theta, eta, delta, and gamma sensitivity measures, written on a 15-year 10% coupon bond—with
annual payment of the ten coupons to be delivered after the expiry date of the option contract—with face
value equal to $100 for different levels of the interest rate (r), strike price K = $100, κ = 0.25, θ = 0.085,
σ = 0.05, and λ = 0. The required noncentral chi-square distribution function has been computed via
the Benton and Krishnamoorthy (2003) algorithm and the corresponding probability density function
has been computed using the built-in function ncx2pdf available in Matlab.

Wei (1997, Table II) reports only prices and rho values for calls. Column 3 of Table 2 reveals that
our call option prices are similar to the ones presented in the third and forth columns of Wei (1997,
Table II, Panel A).13 Our interest rate deltas shown in column 4 of Table 2—obtained via equation (22)
with α = 1—are also similar to the ones presented in the third and forth columns of Wei (1997, Table
II, Panel B), which have been computed through a numerical integration scheme, as mentioned in Wei
(1997, Footnote 9). For r ≥ 24%, however, it seems that there are some text typos in Wei (1997, Table
II), because the corresponding absolute values are approximately equal.14 We recall that Cox et al.
(1985) and Longstaff (1993) show that zero-coupon and coupon-paying bond call options are strictly
decreasing functions of the interest rate. Thus, the first derivative of bond call options with respect to
interest rates (i.e., interest rate deltas) illustrated in the third and fourth columns of Wei (1997, Table II,
Panel B) should always be negative, as shown in column 4 of our Table 2.

To further check the analytical formulas of our Greeks, we have replaced the solutions for the price,
rho, interest rate gamma, and theta into the pde of the problem, which is satisfied in all the tested cases.
As a final testing exercise, we reproduce, in Table 3 (resp., Table 4), the computation of call and put

13 If we use the Sankaran (1963) approximation for computing the noncentral chi-square distribution function we obtain exactly the same
bond option prices reported in his third column.

14 For example, when using his accurate method, Wei (1997, Table II, Panel A) reports positive values for rho of 9.5254, 6.6349, 4.5098, and
2.9933 for r equal to 0.24, 0.26, 0.28, and 0.30, respectively, whereas we obtain the correct negative sign with values equal to −9.4665,
−6.6099, −4.5109, and −3.0114, respectively. A similar pattern of wrong positive rho values is observed under his proposed approximate
method for r ≥ 0.24.
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Table 2. Prices and Greeks of European-style options on coupon-paying bonds under the CIR
model.

Call options
r P(r, t, s) vcb(.; 1) ρcb

v (.; 1) Γcb
v,r(.; 1) θcb

v (.; 1) ηcb
v (.; 1) ∆cb

v (.; 1) Γcb
v,Z(.; 1) pde test

0.04 126.1318 9.1833 −92.5420 586.0740 1.3791 −72.8855 30.2879 26.3717 4.38E−17
0.06 118.6380 7.4484 −81.0065 567.9602 0.9106 −67.1640 28.5330 33.5644 5.12E−17
0.08 111.6294 5.9407 −69.8268 549.3779 0.5076 −60.8831 26.4689 42.1126 3.90E−17
0.10 105.0732 4.6525 −59.0753 524.2961 0.1782 −54.0721 24.0988 51.1757 6.07E−18
0.12 98.9389 3.5737 −48.9233 489.0691 −0.0726 −46.9028 21.4769 59.6656 2.95E−17
0.14 93.1981 2.6902 −39.5845 443.1400 −0.2452 −39.6490 18.6999 66.4988 3.08E−17
0.16 87.8244 1.9836 −31.2550 388.6802 −0.3464 −32.6228 15.8884 70.8323 9.11E−18
0.18 82.7931 1.4323 −24.0685 329.5524 −0.3880 −26.1120 13.1658 72.2162 4.34E−19
0.20 78.0814 1.0129 −18.0749 270.1006 −0.3846 −20.3330 10.6390 70.6356 −2.17E−18
0.22 73.6678 0.7016 −13.2408 214.1606 −0.3514 −15.4096 8.3860 66.4531 9.97E−18
0.24 69.5326 0.4762 −9.4665 164.4774 −0.3019 −11.3740 6.4511 60.2875 6.94E−18
0.26 65.6572 0.3168 −6.6099 122.5353 −0.2466 −8.1836 4.8466 52.8721 8.57E−18
0.28 62.0243 0.2067 −4.5109 88.6897 −0.1931 −5.7450 3.5587 44.9264 −8.02E−18
0.30 58.6179 0.1324 −3.0114 62.4610 −0.1456 −3.9390 2.5561 37.0647 1.08E−17

Put options
r P(r, t, s) vcb(.;−1) ρcb

v (.;−1) Γcb
v,r(.;−1) θcb

v (.;−1) ηcb
v (.;−1) ∆cb

v (.;−1) Γcb
v,Z(.;−1) pde test

0.04 126.1318 0.0382 1.7847 63.3286 −0.0217 1.5388 −0.5841 7.4858 −1.29E−17
0.06 118.6380 0.0885 3.3390 91.9180 −0.0225 3.1537 −1.1761 12.9249 1.77E−17
0.08 111.6294 0.1754 5.4324 116.1725 −0.0044 5.5546 −2.0592 19.5579 2.66E−18
0.10 105.0732 0.3084 7.9183 130.3677 0.0442 8.6996 −3.2301 26.5295 −1.80E−17
0.12 98.9389 0.4932 10.5569 131.1408 0.1319 12.4052 −4.6344 32.7354 5.42E−19
0.14 93.1981 0.7299 13.0718 118.1960 0.2612 16.3866 −6.1752 37.0747 0.00E+00
0.16 87.8244 1.0135 15.2090 93.9454 0.4285 20.3208 −7.7314 38.6850 −1.71E−17
0.18 82.7931 1.3345 16.7814 62.4740 0.6247 23.9103 −9.1796 37.0957 −1.56E−17
0.20 78.0814 1.6803 17.6903 28.3308 0.8376 26.9291 −10.4126 32.2691 −2.78E−17
0.22 73.6678 2.0375 17.9239 −4.4597 1.0544 29.2446 −11.3520 24.5430 −2.60E−18
0.24 69.5326 2.3931 17.5407 −32.9780 1.2639 30.8162 −11.9534 14.5092 1.04E−17
0.26 65.6572 2.7357 16.6445 −55.5794 1.4576 31.6787 −12.2043 2.8713 2.60E−18
0.28 62.0243 3.0563 15.3605 −71.7604 1.6297 31.9177 −12.1181 −9.6831 −6.94E−18
0.30 58.6179 3.3484 13.8147 −81.8640 1.7778 31.6455 −11.7259 −22.5749 5.20E−18

This table values 5-year call option prices (if α = 1) and put option prices (if α = −1), as well as their corresponding rho, interest rate
gamma, theta, eta, delta, and gamma sensitivity measures, written on a 15-year 10% coupon bond—with the ten coupons being paid
annually—with face value equal to $100 for different levels of the interest rate (r) and strike price K = $100, and assuming a CIR interest
rate dynamics. Parameter values borrowed from Wei (1997, Table II): κ = 0.25, θ = 0.085, σ = 0.05, and λ = 0. We note that the obtained
coupon-paying bond prices and the option prices are both expressed as percentages of the face value. All the Greeks reported in this table
are 100 times the corresponding partial derivative of the option price, in order to be consistent with the rho values shown in Wei (1997,
Table II). The last column of the table tests the CIR pde 1

2σ
2rΓcb

v,r + [κθ − (κ + λ) r] ρcb
v + θcb

v − rvcb = 0 (the value on the left-hand-side is
displayed to check how close it is to zero). The required noncentral chi-square distribution function has been computed via the Benton
and Krishnamoorthy (2003) algorithm. The corresponding probability density function has been computed using the built-in function
ncx2pdf available in Matlab.
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deltas (resp., gammas) reported in Longstaff (1993, Tables 1 and 2). Again, our results are similar to
the ones shown in Longstaff (1993, Tables 1 and 2), which, to the best of our knowledge, have been
obtained via numerical methods or through standard symbolic derivation software since no analytical
solutions of Greeks have been provided or mentioned in the paper. The use of our closed-form solutions
provides accurate values for computing Greeks of coupon-paying bond options and with a very small
computational burden. For instance, it takes only about 4.35 seconds to perform all the computations
shown in Table 2.

4. SHP approach

The goal now is to show how to implement the SHP approach for valuing American-style options
on discount bonds under the CIR model. Even though the underlying asset is the bond, the independent
variable is the stochastic interest rate r and there exists an unknown optimal exercise interest rate for
which the exercise of the option becomes optimal. However, to provide a better understanding of
the SHP method it is preferable to consider the unknown early exercise boundary, E, in terms of the
underlying bond price Z. This requires the use of an alternative option pricing solution equivalent to
equation (7), but expressed as a function of the underlying bond price Z.

4.1. Alternative option pricing solution

Let us first make a change of variable to express equation (7) as a function of the underlying bond
price Z = Z(r, t, s).15 To accomplish this purpose, we note that

r(Z, t, s) =
1

B(t, s)
ln

(
A(t, s)

Z

)
. (37)

Substituting expression (37) into equations (7), (11), and (12), allows us to rewrite vzc(r, t,T, s,K;α) =

v̄zc(Z, t,T, s,K;α) as a function v̄zc of Z instead of r and, therefore, rewrite expression (7) as

v̄zc(Z, t,T, s,K;α) = αZQ
[
x1 (t,T, s,K) ; a, b̄1 (Z, t,T, s) ;α

]
−αKA(t,T )

(
Z

A(t, s)

) B(t,T )
B(t,s)

Q
[
x2 (t,T, s,K) ; a, b̄2 (Z, t,T, s) ;α

]
, (38)

with

b̄1 (Z, t,T, s) :=
2φ2 (t,T ) 1

B(t,s) ln A(t,s)
Z eγ(T−t)

φ (t,T ) + ψ + B(T, s)
, (39)

and

b̄2 (Z, t,T, s) :=
2φ2 (t,T ) 1

B(t,s) ln A(t,s)
Z eγ(T−t)

φ (t,T ) + ψ
. (40)

Armed with the alternative option pricing solution (38), we can now proceed with the derivation of
the corresponding hedge ratio, i.e., the delta with respect to the underlying bond price Z.

15 We note that the presence of interim coupons prevents the use of a similar approach to equation (16) and, therefore, it is not possible to
apply the SHP pricing methodology in the case of options on coupon-paying bonds.
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Table 3. Deltas of European-style options on coupon-paying bonds under the CIR model.

Panel A: 8% coupon bond in Longstaff (1993, Table 1)
Call deltas Put deltas

r K = 960 K = 980 K = 1000 K = 960 K = 980 K = 1,000
0.01 0.0456 0.0269 0.0120 −0.0015 −0.0004 0.0046
0.02 0.0454 0.0267 0.0119 −0.0015 −0.0004 0.0047
0.03 0.0452 0.0265 0.0118 −0.0015 −0.0003 0.0049
0.04 0.0449 0.0263 0.0117 −0.0015 −0.0002 0.0050
0.05 0.0447 0.0261 0.0116 −0.0014 −0.0001 0.0052
0.06 0.0445 0.0259 0.0115 −0.0014 −0.0001 0.0053
0.07 0.0442 0.0257 0.0113 −0.0014 0.0000 0.0055
0.08 0.0440 0.0256 0.0112 −0.0014 0.0001 0.0056
0.09 0.0438 0.0254 0.0111 −0.0013 0.0002 0.0058
0.10 0.0435 0.0252 0.0110 −0.0013 0.0002 0.0060
0.11 0.0433 0.0250 0.0109 −0.0013 0.0003 0.0061
0.12 0.0431 0.0248 0.0108 −0.0013 0.0004 0.0063
0.13 0.0428 0.0247 0.0107 −0.0012 0.0004 0.0065
0.14 0.0426 0.0245 0.0106 −0.0012 0.0006 0.0066
0.15 0.0424 0.0243 0.0105 −0.0012 0.0007 0.0068

Panel B: 14% coupon bond in Longstaff (1993, Table 2)
Call deltas Put deltas

r K = 1, 340 K = 1, 360 K = 1, 380 K = 1, 340 K = 1, 360 K = 1, 380
0.01 0.0513 0.0373 0.0244 −0.0014 −0.0014 −0.0001
0.02 0.0511 0.0370 0.0242 −0.0014 −0.0013 0.0000
0.03 0.0508 0.0368 0.0240 −0.0014 −0.0013 0.0001
0.04 0.0506 0.0366 0.0239 −0.0014 −0.0013 0.0001
0.05 0.0504 0.0364 0.0237 −0.0014 −0.0012 0.0002
0.06 0.0501 0.0362 0.0235 −0.0014 −0.0012 0.0003
0.07 0.0499 0.0360 0.0233 −0.0014 −0.0011 0.0004
0.08 0.0496 0.0357 0.0232 −0.0014 −0.0011 0.0005
0.09 0.0494 0.0355 0.0230 −0.0014 −0.0011 0.0006
0.10 0.0492 0.0353 0.0228 −0.0013 −0.0010 0.0007
0.11 0.0489 0.0351 0.0226 −0.0013 −0.0010 0.0007
0.12 0.0487 0.0349 0.0225 −0.0013 −0.0009 0.0008
0.13 0.0485 0.0347 0.0223 −0.0013 −0.0009 0.0009
0.14 0.0482 0.0345 0.0221 −0.0013 −0.0008 0.0010
0.15 0.0480 0.0343 0.0220 −0.0013 −0.0008 0.0011

This table values 5-year call and put deltas on a 10-year 8% coupon bond (in Panel A) and 14% coupon bond (in Panel B)—with the ten
coupons being paid annually—with par value 1,000 for different levels of the riskless interest rate (r) and strike price (K) assuming a CIR
model. Parameter values borrowed from Longstaff (1993, Tables 1 and 2): κ = 0.75, θ = 0.08, σ2 = 0.014, and λ = 0. The required
noncentral chi-square distribution function has been computed via the Benton and Krishnamoorthy (2003) algorithm. The corresponding
probability density function has been computed using the built-in function ncx2pdf available in Matlab.
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Table 4. Gammas of European-style options on coupon-paying bonds under the CIR model.

Panel A: 8% coupon bond in Longstaff (1993, Table 1)
Call gammas Put gammas

r K = 960 K = 980 K = 1000 K = 960 K = 980 K = 1,000
0.01 0.2482 0.1990 0.1195 −0.0196 −0.0743 −0.1594
0.02 0.2509 0.2007 0.1201 −0.0206 −0.0764 −0.1626
0.03 0.2535 0.2023 0.1207 −0.0216 −0.0785 −0.1658
0.04 0.2562 0.2039 0.1213 −0.0226 −0.0807 −0.1691
0.05 0.2589 0.2056 0.1219 −0.0236 −0.0829 −0.1724
0.06 0.2617 0.2072 0.1225 −0.0247 −0.0851 −0.1758
0.07 0.2644 0.2089 0.1231 −0.0258 −0.0874 −0.1792
0.08 0.2672 0.2106 0.1237 −0.0270 −0.0897 −0.1827
0.09 0.2700 0.2123 0.1244 −0.0281 −0.0921 −0.1862
0.10 0.2728 0.2140 0.1250 −0.0293 −0.0945 −0.1898
0.11 0.2757 0.2157 0.1256 −0.0306 −0.0970 −0.1935
0.12 0.2786 0.2174 0.1262 −0.0318 −0.0995 −0.1972
0.13 0.2815 0.2191 0.1268 −0.0331 −0.1021 −0.2009
0.14 0.2844 0.2208 0.1274 −0.0345 −0.1047 −0.2047
0.15 0.2873 0.2225 0.1280 −0.0358 −0.1073 −0.2086

Panel B: 14% coupon bond in Longstaff (1993, Table 2)
Call gammas Put gammas

r K = 1, 340 K = 1, 360 K = 1, 380 K = 1, 340 K = 1, 360 K = 1, 380
0.01 0.1800 0.1635 0.1336 −0.0066 −0.0259 −0.0586
0.02 0.1820 0.1650 0.1347 −0.0071 −0.0269 −0.0601
0.03 0.1841 0.1667 0.1357 −0.0076 −0.0279 −0.0617
0.04 0.1861 0.1683 0.1368 −0.0081 −0.0289 −0.0633
0.05 0.1882 0.1699 0.1378 −0.0087 −0.0299 −0.0649
0.06 0.1903 0.1715 0.1389 −0.0092 −0.0310 −0.0666
0.07 0.1925 0.1732 0.1400 −0.0098 −0.0321 −0.0683
0.08 0.1946 0.1748 0.1410 −0.0104 −0.0332 −0.0701
0.09 0.1968 0.1765 0.1421 −0.0110 −0.0343 −0.0718
0.10 0.1990 0.1782 0.1432 −0.0116 −0.0355 −0.0737
0.11 0.2012 0.1799 0.1443 −0.0122 −0.0367 −0.0755
0.12 0.2034 0.1816 0.1454 −0.0129 −0.0379 −0.0774
0.13 0.2056 0.1833 0.1465 −0.0135 −0.0391 −0.0793
0.14 0.2079 0.1851 0.1476 −0.0142 −0.0404 −0.0812
0.15 0.2102 0.1868 0.1487 −0.0149 −0.0417 −0.0832

This table values 5-year call and put gammas on a 10-year 8% coupon bond (in Panel A) and 14% coupon bond (in Panel B)—with the ten
coupons being paid annually—with par value 1,000 for different levels of the riskless interest rate (r) and strike price (K) assuming a CIR
model. Parameter values borrowed from Longstaff (1993, Tables 1 and 2): κ = 0.75, θ = 0.08, σ2 = 0.014, and λ = 0. The required
noncentral chi-square distribution function has been computed via the Benton and Krishnamoorthy (2003) algorithm. The corresponding
probability density function has been computed using the built-in function ncx2pdf available in Matlab.
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Proposition 8. Consider the pricing solution of a zero-coupon bond option under the CIR model as
defined in equation (38). Then, the delta (with respect to the underlying bond price Z) of a zero-coupon
bond call option (if α = 1) or put option (if α = −1) is given by

∆zc
v̄ (.) :=

∂v̄zc(Z, t,T, s,K;α)
∂Z

= αQ[x1(.); a, b̄1(.);α] + 2p(x1(.); a + 2, b̄1(.))
φ2 (t,T ) eγ(T−t)

B(t, s)
[
φ (t,T ) + ψ + B(T, s)

]
−αK

A(t,T )B(t,T )
ZB(t, s)

(
Z

A(t, s)

) B(t,T )
B(t,s)

Q[x2(.); a, b̄2(.);α]

−2K
A(t,T )
ZB(t, s)

(
Z

A(t, s)

) B(t,T )
B(t,s)

p(x2(.); a + 2, b̄2(.))
φ2 (t,T ) eγ(T−t)

φ (t,T ) + ψ
. (41)

Proof. Please see Appendix H.�

Remark 6. As expected,
v̄zc(Z, t,T, s,K;α) = vzc(r, t,T, s,K;α), (42)

and
∆zc

v̄ (Z, t,T, s,K;α) = ∆zc
v (r, t,T, s,K;α), (43)

due to the relation between r and Z given by equation (2) or, equivalently, by equation (37). Note that
this relation depends on t and s, but not on T and K. Hence, if we fix the values of t and s, the relation
between r and Z is bijective and, therefore, working with one or the other to determine the price and
the delta of the zero-coupon bond option is simply a (non-linear) scale change issue.16 Note also that
r and Z are both random variables having exactly the same information, i.e., the same σ-algebra Ft.
Therefore, by fixing t and s, Z is only a function of r (and, vice-versa, r is only a function of Z) so that
we are able to use the classic chain rule for univariate functions in Remark 5. These arguments explain
why we obtain the same values for prices and deltas of zero-coupon bond options using different (but
equivalent) formulas.

4.2. SHP scheme

Let us define by V̄zc(Z, t,T, s,K;α) the time-t price of an American-style call (if α = 1) or put (if
α = −1) on the asset price Z (i.e., the underlying zero-coupon bond), with strike K, and maturity at
time T (≥ t).17 Let us denote the first passage time of the underlying asset price to its time-dependent
exercise boundary {Eu, t ≤ u ≤ T } by

τ∗ := inf {u > t : Zu = Eu} . (44)

Note that the critical asset price Zτ∗ implies the existence of a critical interest rate rτ∗ .
Following Chung and Shih (2009) and Ruas et al. (2013), we use two well-known conditions on the

early exercise boundary of the American option to solve this pricing problem: the value-matching and
16 For the SHP approach, however, it is convenient to choose Z as the variable characterizing the underlying asset of the option.
17 Notice that the valuation of American-style call options on discount bonds can be performed via expressions (7) and (38), since such

contracts, given the absence of interim coupons, will never be exercised before maturity—see Cox et al. (1985, Footnote 12). Nevertheless,
for completeness, we will describe the SHP methodology for the general case.
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smooth-pasting conditions. At the maturity date T , if the American-style option has not been exercised
earlier, its terminal condition is exactly the same as the corresponding European-style option. Therefore,
we start at the maturity date of the American-style zero-coupon option and proceed backwards until
the valuation date t ≡ t0. More specifically, at time T , we start our static hedge portfolio with one
unit of the European-style zero-coupon bond option (38) with strike K, and expiry date at time T .
In addition, we divide the time to maturity of the option contract into n evenly-spaced time points
such that ∆t := (T − t0) /n. At each time ti := t0 + i∆t (for i = n − 1, . . . , 1, 0), the unknown early
exercise boundary Ei is matched by adding wi units of a standard European-style option with strike
equal to Ei, and maturity at time ti+1. For each time step, the unknowns Ei and wi are found by solving
simultaneously the following two value-matching and smooth-pasting recurrence conditions:

αEn−i − αK = v̄zc (En−i, tn−i,T, s,K;α) +

i∑
j=1

wn− j v̄zc
(
En−i, tn−i, tn− j+1, s, En− j;α

)
, (45)

and

α = ∆zc
v̄ (En−i, tn−i,T, s,K;α) +

i∑
j=1

wn− j ∆zc
v̄

(
En−i, tn−i, tn− j+1, s, En− j;α

)
, (46)

for i = 1, 2, ..., n, and with v̄zc (.) and ∆zc
v̄ (.) being given by expressions (38) and (41), respectively.

After solving for all the unknowns Ei and wi (for i = n − 1, . . . , 1, 0), the time-t0 SHP price of the
American-style zero-coupon bond option, under the CIR model, is finally given by

V̄zc(Z0, t0,T, s,K;α) := v̄zc (Z0, t0,T, s,K;α) +

n∑
j=1

wn− j v̄zc
(
Z0, t0, tn− j+1, s, En− j;α

)
. (47)

4.3. Numerical examples

Table 5 adopts the constellation of parameters used in Thakoor et al. (2012, Table 7), that is we
consider a 5-year American-style put option on a 10-year zero-coupon bond with face value $100 for
different levels of the interest rate (r) and an exercise price of $60. The CIR parameters are: κ = 0.50,
θ = 0.08, σ = 0.10, and λ = 0. The third and fourth columns of the table report the European-style put
prices computed via equations (7) and (38), respectively. Similarly, the sixth and seventh columns of
the table show the results of put deltas obtained through equations (33) and (41), respectively. Columns
5 and 8 compute the corresponding differences and validate (numerically) the analytical equivalence
demonstrated in Remark 6.
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Table 6. American-style put options on zero-coupon bonds under the CIR model.

American puts
κ θ σ T − t s − t K Z(r, t, s) n = 2 n = 100

0.4 0.08 0.10 5.00 10.00 60 49.0169 10.9831 10.9831
0.5 0.08 0.10 5.00 10.00 60 48.1647 11.8353 11.8353
0.6 0.08 0.10 5.00 10.00 60 47.5871 12.4129 12.4129
0.5 0.06 0.10 5.00 10.00 60 56.4233 3.5767 3.5767
0.5 0.07 0.10 5.00 10.00 60 52.1307 7.8693 7.8693
0.5 0.09 0.10 5.00 10.00 60 44.5005 15.4995 15.4995
0.5 0.08 0.15 5.00 10.00 60 48.7285 11.2715 11.2715
0.5 0.08 0.20 5.00 10.00 60 49.4724 10.5276 10.5276
0.5 0.08 0.25 5.00 10.00 60 50.3605 9.6395 9.6395
0.5 0.08 0.10 4.75 9.75 60 49.1168 10.8832 10.8832
0.5 0.08 0.10 4.50 9.50 60 50.0874 9.9126 9.9126
0.5 0.08 0.10 4.25 9.25 60 51.0768 8.9232 8.9232
0.5 0.08 0.10 5.00 10.00 70 48.1647 21.8353 21.8353
0.5 0.08 0.10 5.00 10.00 80 48.1647 31.8353 31.8353
0.5 0.08 0.10 5.00 10.00 90 48.1647 41.8353 41.8353

This table adopts the base case parameters considered in Table 5 and with rt = 0.05. The CIR parameters κ, θ, and σ, the time to
maturity of the put option (T − t), the time to maturity of the underlying bond (s − t), and the strike price of the put (K) are changed as
shown in columns 1-6, respectivelly. The required noncentral chi-square distribution function has been computed via the Benton and
Krishnamoorthy (2003) algorithm. The corresponding probability density function has been computed using the built-in function ncx2pdf
available in Matlab.

Regarding the American-style puts, we observe that the use of only two time-steps (i.e., n = 2 in
the SHP scheme) allow us to obtain the same price that is determined when using n = 100. This implies
that the static hedge portfolio replicating the American-style put requires only two European-style put
options—at least for this combination of parameters—to hedge the American-style put. Finally, we note
that, when rt = 0.08, we are able to reproduce exactly the same put price (14.5727) reported in Thakoor
et al. (2012, Table 7) when using both the Crank-Nicolson and the Jain’s high-order compact schemes.
In summary, the SHP approach can be viewed as a viable alternative to accurately and efficiently price
American-style zero-coupon bond options under the CIR model.

To further test the robustness of the proposed SHP scheme, Table 6 reports some additional
numerical results by changing the parameters considered in Table 5. We observe, again, that the
use of only two time-steps (i.e., n = 2 in the SHP scheme) allow us to obtain the same price that is
determined when using n = 100. As already discussed in Cox et al. (1985) and Longstaff (1993), most
of the comparative statics are indeterminate since changes in the interest rate parameters have complex
effects on the relative values of bonds and options with different maturities. We note, however, that the
observation that bond put prices can be decreasing functions of volatility is consistent with the counter
effects arguments explained in Longstaff (1993, Pages 37–38).

As expected, there might be some configurations of parameters where more time-steps are required.
For instance, in Figure 1 we use the SHP method with n = 8 and the following base case parameters
borrowed from Yang (2004): a 1-year American-style put option on a 5-year zero-coupon bond with face
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value $100 for different levels of the interest rate (r) and an exercise price of $70. The CIR parameters are:
κ = 0.40, θ = 0.08, σ = 0.20, and λ = 0. Then, we perform some numerical experiments by changing σ, t,
κ, and θ. The graphs displayed in Figure 1 reveal the patterns that are expected under the CIR interest rate
model and that are similar to the ones reported in Yang (2004, Figures 1 and 2). Hence, these additional
results reported in Table 6 and Figure 1 corroborate the previous conclusion that the SHP approach is
suitable for valuing American-style zero-coupon bond options under the CIR model and that a small number
of time-steps in the SHP scheme is generally sufficient to obtain accurate values.
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Figure 1. This figure plots 1-year American-style put options on a 5-year zero-coupon bond
with face value $100 for different levels of the interest rate (r) and an exercise price of $70
borrowed from Yang (2004), using the proposed SHP method with n = 8. CIR base case
parameters: κ = 0.40, θ = 0.08, σ = 0.20, and λ = 0.

5. Valuation and comparative statics of sinking-fund bonds

Bonds are said to have embedded sinking-fund provisions when the issuer is required to retire portions
of the bond issue before maturity, according to a pre-specified amortization schedule. The delivery option
associated to this clause allows the issuer to retire the portions of the issue either by (i) calling the bonds by
lottery at a pre-determinate value, usually at par, or (ii) buying back the bonds at the prevailing market value.
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Bacinello et al. (1996) provide an elegant framework for analyzing the delivery option embedded
in the sinking-fund bond provision (with only one sinking-fund date before maturity) under the one-
dimensional stochastic term structure interest rate models of Vasicek (1977) and Cox et al. (1985).
Bacinello et al. (1996) were able to analyze the comparative statics properties of the sinking-fund bond
in the Vasicek (1977) framework analytically, but they use a numerical approach for the Cox et al.
(1985) model. Thus, the main purpose of this section is to extend the Bacinello et al. (1996) approach
by analyzing, in closed-form, the comparative statics properties of a default-free sinking-fund bond in
the CIR framework.

Following Bacinello et al. (1996), a sinking-fund bond is characterized by a coupon rate ic and
an amortization schedule {(t j,C j)}, where C j > 0 is the principal that the issuer is required to retire at
time t j. We also assume that j = 1, 2 and, without loss of generality, C1 + C2 = 1, i.e., the sinking-fund
bond is issued with a normalized principal, retired in two dates only. Letting t0 denote the time of
issuance of the bond, its coupon payments, I j, are then assumed to be given by I1 = (1 + ic)(t1−t0) − 1,
and I2 = C2

[
(1 + ic)(t2−t1) − 1

]
. At time t1 the issuer has the (delivery) option to retire the fraction C1 of

the principal either by calling it by lottery at par value, or by buying it back at the market value.
Bacinello et al. (1996, Proposition 2.1) show that the time-t price of the sinking-fund bond, Bs f (r, t),

can be expressed either in terms of the corresponding serial bond and a bond put option, or in terms of
the corresponding coupon bond and a bond call option, that is

Bs f (r, t) = Bs(r, t) −C1(1 + ic)(t2−t1)vzc
(
r, t, t1, t2, (1 + ic)−(t2−t1);−1

)
, (48)

or
Bs f (r, t) = Bcb(r, t) −C1(1 + ic)(t2−t1)vzc

(
r, t, t1, t2, (1 + ic)−(t2−t1); 1

)
, (49)

where Bs(r, t) and Bcb(r, t) represent, respectively, the time-t price of the corresponding serial and coupon
bonds as given by Bacinello et al. (1996, Expressions 2.2 and 2.3).

Let us now assume that t2 − t1 = t1 − t0 = 1. Following the same line of reasoning applied by
Bacinello et al. (1996) for the Vasicek (1977) framework, we substitute the relations given by Bacinello
et al. (1996, Expressions 2.1 and 2.3) and the bond option pricing formula (7), with α = 1, in expression
(49). We then obtain, for t < t1,

Bs f (r, t) = Z(r, t, t1) [ic + C1Q[x2(.); a, b2(.); 1]] + (1 + ic)Z(r, t, t2) [1 −C1Q[x1(.); a, b1(.); 1]] , (50)

with x1(.) and x2(.) defined as in equations (8) and (9), but with K = (1 + ic)−1 in expression (15). Thus,
the sinking-fund bond is shown to depend explicitly on the fraction C1 of outstanding capital to be
retired at t1, the coupon rate ic, the spot rate r prevailing on the market, and the CIR parameters κ, θ, σ,
and λ. We are now able to extend the analytical results provided by Bacinello et al. (1996) under the
Vasicek (1977) framework for the CIR model case.

The sinking-fund bond under the CIR model is an increasing function of the coupon rate. To
establish this fact, take the derivative of (50) with respect to ic, and observe that the relation

Z(r, t, t2)p(x1(.); a, b1(.))(φ(t, t1) + ψ + B(t1, t2))
= Z(r, t, t1)p(x2(.); a, b2(.))(φ(t, t1) + ψ)(1 + ic)−1 (51)

holds as an identity, so that, after some algebraic manipulations, we have

∂Bs f (.)
∂ic

= Z(r, t, t1) + Z(r, t, t2) (1 −C1Q[x1(.); a, b1(.); 1]) > 0, (52)
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where the strict positivity follows from the fact that, by assumption, 0 < C1 < 1. Considering now
the premiums Bcb(.) − Bs f (.) and Bs(.) − Bs f (.) of the corresponding coupon and serial bonds over the
sinking-fund bond, and using respectively expressions (49) and (48), coupled with t2 − t1 = t1 − t0 = 1,
we obtain

∂(Bcb(.) − Bs f (.))
∂ic

= −

(
K

vzc(.; 1)
∂vzc(.; 1)
∂K

− 1
)
C1vzc(.; 1) = C1Z(r, t, t2)Q[x1(.); a, b1(.); 1] > 0, (53)

and

∂(Bs(.) − Bs f (.))
∂ic

(54)

= −

(
K

v zc(.;−1)
∂vzc(.;−1)

∂K
− 1

)
C1vzc(.;−1) = −C1Z(r, t, t2)Q[x1(.); a, b1(.);−1] < 0,

so that the higher the coupon rate, the larger is the premium demanded by the corresponding coupon
bond over the sinking-fund bond, and the smaller is the premium determined by the corresponding serial
bond over the sinking-fund bond. Note that the sign of the above derivatives depends entirely on the
elasticity of the option prices to the strike price, in particular on the fact that such elasticity is negative
for the call and exceeds 1 for the put.

We can also explicitly analyze the comparative statics properties of the sinking-fund bond with
respect to the spot rate r (rho) and time t (theta). The first sensitivity measure is given by

ρ
s f
B :=

∂Bs f (.)
∂r

=
∂Z(r, t, t1)

∂r
(ic + C1Q[x2(.); a, b2(.); 1]) +

∂Z(r, t, t2)
∂r

(1 + ic) (1 −C1Q[x1(.); a, b1(.); 1])

+C1(1 + ic)Z(r, t, t2)p(x1(.); a + 2, b1(.))
2φ2(t, t1)eγ(t−t1)

φ(t, t1) + ψ + B(t1, t2)

−C1Z(r, t, t1)p(x2(.); a + 2, b2(.))
2φ2(t, t1)eγ(t−t1)

φ(t, t1) + ψ
, (55)

with ∂Z(r, t, ti)/∂r, for i = t1, t2, given by equation (A.1). The effect on the premiums Bcb(.) − Bs f (.) and
Bs(.) − Bs f (.) of an infinitesimal change in the spot interest rate r can be stated as

∂(Bcb(.) − Bs f (.))
∂r

= C1(1 + ic)
∂v zc(r, t, t1, t2, (1 + ic)−1; 1)

∂r
, (56)

∂(Bs(.) − Bs f (.))
∂r

= C1(1 + ic)
∂v zc(r, t, t1, t2, (1 + ic)−1;−1)

∂r
, (57)

where ∂vzc(r, t, t1, t2, (1 + ic)−1;α)/∂r is given by expression (21), with K = (1 + ic)−1.
The effect on Bs f (.) of an infinitesimal change in t can be obtained explicitly as

θ
s f
B :=

∂Bs f (.)
∂t
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=
∂Z(r, t, t1)

∂t

(
ic + C1Q[x2(.); a, b2(.); 1]

)
+
∂Z(r, t, t2)

∂t
(1 + ic)

(
1 −C1Q[x1(.); a, b1(.); 1]

)
−C1(1 + ic)Z(r, t, t2)

(
p(x1(.); a, b1(.))ξ − p(x1(.); a + 2, b1(.))%1

)
+C1Z(r, t, t1)

(
p(x2(.); a, b2(.))ξ − p(x2(.); a + 2, b2(.))%2

)
, (58)

where ∂Z(r, t, ti)/∂t, with i = t1, t2, is given by equation (C.3). As for the influence of the parameter t on
the premiums Bcb(.) − Bs f (.) and Bs(.) − Bs f (.), we have

∂(Bcb(.) − Bs f (.))
∂t

= C1(1 + ic)
∂v zc(r, t, t1, t2, (1 + ic)−1; 1)

∂t
, (59)

∂(Bs(.) − Bs f (.))
∂t

= C1(1 + ic)
∂v zc(r, t, t1, t2, (1 + ic)−1;−1)

∂t
, (60)

where ∂vzc(r, t, t1, t2, (1 + ic)−1;α)/∂t is given by (25), with K = (1 + ic)−1.
Now we want to prove a result that compares the stochastic durations of the sinking-fund bond

with those of the corresponding serial and coupon bonds in the CIR model. Following Cox et al.
(1979), the relative basis risk of a zero-coupon bond (under the CIR model), with maturity τ := s − t,
is given by g(τ) = 2(eγτ − 1)/

(
(κ + λ + γ)(eγτ − 1) + 2γ

)
= B(t, s) = B(τ), a function that is strictly

increasing (∂B(τ)/∂τ > 0) and continuous on all positive reals, with the inverse function given by
g−1(τ) = (1/γ) ln(1 − 2γτ/((κ + λ + γ)τ − 2)), and defined on the interval ]0, 2/(κ + λ + τ)[. Moreover,
the stochastic duration of any interest rate sensitive instrument with price f (r, t) is given by

D f = g−1(x), (61)

where x = −(∂ f (r, t)/∂r)/ f (r, t) is the basis risk of f . Next proposition explicitly relates the stochastic
durations of the sinking-fund, corresponding coupon and corresponding serial bonds under the CIR
framework, thus extending the analytical results provided by Bacinello et al. (1996, Proposition 4.1),
but for the Vasicek (1977) model.

Proposition 9. For any set of parameters, the stochastic durations Ds f (r, t), Dcb(r, t), and Ds(r, t) of the
sinking-fund, corresponding coupon and corresponding serial bonds under the CIR model satisfy the
relation

Ds(r, t) < Ds f (r, t) < Dcb(r, t). (62)

Proof. Please see Appendix I.�
Using the same set of parameters as in Bacinello et al. (1996), Figure 2 highlights that the stochastic

duration of the sinking-fund bond is between the stochastic duration of the corresponding serial and
coupon bonds. While this issue has been shown already by Bacinello et al. (1996, Figure 13) through
numerical differentiation, we have now established this property analytically via Proposition 9 using the
aforementioned novel closed-form solutions for the CIR Greeks.

6. Conclusions

In this paper, we derive closed-form expressions for determining sensitivity measures of pure
discount and coupon-paying bond options under the CIR framework, which are shown to be accurate,
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Figure 2. Stochastic duration of a sinking-fund bond under the CIR framework, for the same
set of parameters as in Bacinello et al. (1996).

easy to implement, and computationally very efficient. The proposed hedge ratio allow us to evaluate
American-style options on zero-coupon bonds through the static hedging approach. Moreover, we offer
closed-form tractable expressions to analyze the comparative statics properties of a sinking-fund bond
under the same interest rate dynamics setting.
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supported by FCT (Fundação para a Ciência e a Tecnologia, Portugal), project UID/04674/2020. José
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A. Proof of Proposition 1

Let us first note that:
∂Z(r, t, j)

∂r
= −B(t, j)Z(r, t, j), j ∈ {T, s}, (A.1)

∂x1 (t,T, s,K)
∂r

=
∂x2 (t,T, s,K)

∂r
= 0, (A.2)

∂b1 (r, t,T, s)
∂r

=
b1 (r, t,T, s)

r
, (A.3)

and
∂b2 (r, t,T )

∂r
=

b2 (r, t,T )
r

. (A.4)

The rho for a zero-coupon bond option is given by

ρzc
v (.) :=

∂vzc(.)
∂r

= α
∂Z(r, t, s)

∂r
Q[x1(.); a, b1(.);α] + αZ(r, t, s)

∂Q[x1(.); a, b1(.);α]
∂r

(A.5)

−αK
[
∂Z(r, t,T )

∂r
Q[x2(.); a, b2(.);α] + Z(r, t,T )

∂Q[x2(.); a, b2(.);α]
∂r

]
.

Using expressions (17), (18), (A.2), (A.3), and (A.4) we are able to obtain the following partial
derivatives:

∂Q[x1(.); a, b1(.);α]
∂r

=
∂Q[x1(.); a, b1(.);α]

∂b1(.)
∂b1(.)
∂r

= −α
b1(.)

r
p(x1(.); a + 2, b1(.)), (A.6)

and

∂Q[x2(.); a, b2(.);α]
∂r

=
∂Q[x2(.); a, b2(.);α]

∂b2(.)
∂b2(.)
∂r

= −α
b2(.)

r
p(x2(.); a + 2, b2(.)). (A.7)

Finally, substituting expressions (A.1), (A.6), and (A.7) into (A.5) yields expression (21).�

B. Proof of Proposition 2

We first recall that Γzc
v,r(.) = ∂ρzc

v (.)/∂r. Hence, differentiating (21) w.r.t. r and using (20), (A.1),
(A.2), (A.3), (A.4), (A.6), and (A.7), expression (23) is finally obtained after straightforward
calculations.�

C. Proof of Proposition 3

Let us first note that:

∂A(t,T )
∂t

=
κθ

σ2

(κ + λ + γ)(eγ(T−t) − 1)(2γ − (κ + λ + γ))
(κ + λ + γ)(eγ(T−t) − 1) + 2γ

A(t,T ), (C.1)

∂B(t,T )
∂t

= −
4γ2eγ(T−t)[

(κ + λ + γ)(eγ(T−t) − 1) + 2γ
]2 , (C.2)
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and
∂Z(r, t, j)

∂t
= Z(r, t, j)

[
1

A(t, j)
∂A(t, j)
∂t

− r
∂B(t, j)
∂t

]
= Z(r, t, j) ζ j, (C.3)

with
ζ j =

1
A(t, j)

∂A(t, j)
∂t

− r
∂B(t, j)
∂t

, (C.4)

for j ∈ {T, s}.
Let us also consider the following auxiliary functions:

ξ =
∂x1 (t,T, s,K)

∂t
=
∂x2 (t,T, s,K)

∂t
=

4r∗γ2eγ(T−t)

σ2(eγ(T−t) − 1)2 , (C.5)

%1 =
∂b1 (r, t,T, s)

∂t
= b1 (r, t,T, s) γ

(φ(t,T ) + ψ + B(T, s)) + (ψ + B(T, s))eγ(T−t)

(eγ(T−t) − 1)(φ(t,T ) + ψ + B(T, s))
, (C.6)

and

%2 =
∂b2 (r, t,T )

∂t
= b2 (r, t,T ) γ

(φ(t,T ) + ψ) + ψeγ(T−t)

(eγ(T−t) − 1)(φ(t,T ) + ψ)
. (C.7)

The theta for a zero-coupon bond option is given by

θzc
v (.) :=

∂vzc(.)
∂t

= α
∂Z(r, t, s)

∂t
Q[x1(.); a, b1(.);α] + αZ(r, t, s)

∂Q[x1(.); a, b1(.);α]
∂t

(C.8)

−αK
[
∂Z(r, t,T )

∂t
Q[x2(.); a, b2(.);α] + Z(r, t,T )

∂Q[x2(.); a, b2(.);α]
∂t

]
.

Using expressions (17), (18), (C.5), (C.6), and (C.7) we are able to compute the following partial
derivatives:

∂Q[x1(.); a, b1(.);α]
∂t

=
∂Q[x1(.); a, b1(.);α)

∂x1(.)
∂x1(.)
∂t

+
∂Q[x1(.); a, b1(.);α]

∂b1(.)
∂b1(.)
∂t

= αp(x1(.); a, b1(.))ξ − αp(x1(.); a + 2, b1(.))%1, (C.9)

and

∂Q[x2(.); a, b2(.);α]
∂t

=
∂Q[x2(.); a, b2(.);α]

∂x2(.)
∂x2(.)
∂t

+
∂Q[x2(.); a, b2(.);α]

∂b2(.)
∂b2(.)
∂t

= αp(x2(.); a, b2(.))ξ − αp(x2(.); a + 2, b2(.))%2. (C.10)

Finally, substituting expressions (C.3), (C.9), and (C.10) into (C.8) yields expression (25).�

D. Proof of Proposition 4

Let us first note that:

∂x1 (t,T, s,K)
∂K

= −
2(φ(t,T ) + ψ + B(T, s))

B(T, s)K
, (D.1)

∂x2 (t,T, s,K)
∂K

= −
2(φ(t,T ) + ψ)

B(T, s)K
, (D.2)
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and
∂b1 (r, t,T, s)

∂K
=
∂b2 (r, t,T )

∂K
= 0. (D.3)

The eta for a zero-coupon bond option is given by

ηzc
v (.) :=

∂vzc(.)
∂K

= αZ(r, t, s)
∂Q[x1(.); a, b1(.);α]

∂K

−αZ(r, t,T )
[
Q[x2(.); a, b2(.);α] + K

∂Q[x2(.); a, b2(.);α]
∂K

]
. (D.4)

Using expressions (17), (18), (D.1), (D.2), and (D.3) we are able to compute the following partial
derivatives:

∂Q[(x1(.); a, b1(.);α]
∂K

=
∂Q[x1(.); a, b1(.);α]

∂x1(.)
∂x1(.)
∂K

= −2α p(x1(.); a, b1(.))
(φ(t,T ) + ψ + B(T, s))

B(T, s) K
, (D.5)

and

∂Q[x2(.); a, b2(.);α]
∂K

=
∂Q[x2(.); a, b2(.);α]

∂x2(.)
∂x2(.)
∂K

= −2α p(x2(.); a, b2(.))
(φ(t,T ) + ψ)

B(T, s) K
. (D.6)

Finally, substituting expressions (D.5) and (D.6) into (D.4) yields expression (31).�

E. Proof of Proposition 5

Let us first apply the decomposition technique of Jamshidian (1989) to obtain:

ηcb
v (.) :=

∂vcb(.)
∂K

=

N∑
i=1

ai
∂vzc(r, t,T, si,Ki;α)

∂K
. (E.1)

Let us also compute, for an arbitrary fixed i, the expression for ∂vzc(r,t,T,si,Ki;α)
∂K = ∂zi

∂K , where zi =

vzc(r, t,T, si,Ki;α). Note that the change of variable from K to r∗∗ (keeping the remaining variables r, t,
and T unchanged) is obtained as the implicit solution of K =

∑N
j=1 a jZ(r∗∗,T, s j) and so, applying the

classical chain rule, one obtains

∂vzc(r, t,T, si,Ki;α)
∂K

(E.2)

=
∂zi

∂K
=

∂zi

∂r∗∗
∂r∗∗

∂K
=

∂zi

∂r∗∗
1
∂K
∂r∗∗

=
∂zi

∂r∗∗
1∑N

j=1 a j
∂Z(r∗∗,T,s j)

∂r∗∗

=
∂zi

∂r∗∗
1∑N

j=1 a j

[
−B(T, s j)Z(r∗∗,T, s j)

] .
Moreover, with a new change of variable from r∗∗ to Ki = Z(r∗∗,T, si) (keeping the remaining

variables r, t, and T unchanged) and the application of the chain rule, leads to

∂zi

∂r∗∗
=
∂zi

∂Ki

∂Ki

∂r∗∗
. (E.3)
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Since
∂Ki

∂r∗∗
=
∂Z(r∗∗,T, si)

∂r∗∗
= −B(T, si)Z(r∗∗,T, si), (E.4)

we obtain from (E.3) and (E.4),

∂zi

∂r∗∗
=

∂zi

∂Ki
[−B(T, si)Z(r∗∗,T, si)] =

∂vzc(r, t,T, si,Ki;α)
∂Ki

[−B(T, si)Z(r∗∗,T, si)]

= ηzc
v (r, t,T, si,Ki;α) [−B(T, si)Z(r∗∗,T, si)] . (E.5)

Therefore, using (E.2) and (E.5),

∂vzc(r, t,T, si,Ki;α)
∂K

= ηzc
v (r, t,T, si,Ki;α) [−B(T, si)Z(r∗∗,T, si)]

1∑N
j=1 a j

[
−B(T, s j)Z(r∗∗,T, s j)

] (E.6)

and so, using (E.1) and (E.6), we obtain expression (32).

F. Proof of Proposition 6

Let us first note that:
Γzc

v,Z(.) :=
∂∆zc

v (.)
∂Z(r, t, s)

=
∂∆zc

v (.)
∂r

∂r
∂Z(r, t, s)

. (F.1)

Using Remark 5, we conclude that

∂r
∂Z(r, t, s)

= −
1

B(t, s)Z(r, t, s)
. (F.2)

Moreover,

∂∆zc
v (.)
∂r

= −
1

B(t, s)
∂

∂r

[
ρzc

v (.)
Z(r, t, s)

]
= −

1
B(t, s)

 ∂ρ
zc
v (.)
∂r Z(r, t, s) − ρzc

v (.) ∂Z(r,t,s)
∂r

[Z(r, t, s)]2

 . (F.3)

Noting that ∂ρzc
v (.)/∂r = Γzc

v,r(.), then expression (F.3) can be rewritten as

∂∆zc
v (.)
∂r

= −
1

B(t, s)

[
Γzc

v,r(.) Z(r, t, s) + ρzc
v (.) B(t, s)Z(r, t, s)

[Z(r, t, s)]2

]
= −

Γzc
v,r(.) + ρzc

v (.) B(t, s)
B(t, s)Z(r, t, s)

. (F.4)

Substituting expressions (F.2) and (F.4) into expression (F.1), we obtain

Γzc
v,Z(.) =

Γzc
v,r(.) + ρzc

v (.) B(t, s)

[B(t, s)Z(r, t, s)]2 . (F.5)

Finally, using expression (33) in equation (F.5) yields equation (35).
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G. Proof of Proposition 7

Let us first note that:

Γcb
v,Z(.) :=

∂∆cb
v (.)

∂P(r, t, s)
=
∂∆cb

v (.)
∂r

∂r
∂P(r, t, s)

. (G.1)

Using Remark 5, we conclude that

∂r
∂P(r, t, s)

= −
1∑N

i=1 aiB(t, si)Z(r, t, si)
. (G.2)

Moreover,

∂∆cb
v (.)
∂r

= −
∂

∂r

[
ρcb

v (.)∑N
i=1 aiB(t, si)Z(r, t, si)

]

= −


∂ρcb

v (.)
∂r

∑N
i=1 aiB(t, si)Z(r, t, si) − ρcb

v (.)
∑N

i=1 aiB(t, si)Z(r, t, si)(−B(t, si))[∑N
i=1 aiB(t, si)Z(r, t, si)

]2

 . (G.3)

Noting that ∂ρcb
v (.)/∂r = Γcb

v,r(.), then expression (G.3) can be rewritten as

∂∆cb
v (.)
∂r

= −

Γcb
v,r(.)

∑N
i=1 aiB(t, si)Z(r, t, si) + ρcb

v (.)
∑N

i=1 ai [B(t, si)]2 Z(r, t, si)[∑N
i=1 aiB(t, si)Z(r, t, si)

]2

 . (G.4)

Substituting expressions (G.2) and (G.4) into expression (G.1), we obtain

Γcb
v,Z(.) =

Γcb
v,r(.)

∑N
i=1 aiB(t, si)Z(r, t, si) + ρcb

v (.)
∑N

i=1 ai [B(t, si)]2 Z(r, t, si)[∑N
i=1 aiB(t, si)Z(r, t, si)

]3 . (G.5)

Finally, using expression (34) in equation (G.5) yields equation (36).

H. Proof of Proposition 8

Let us first note that:
∂x1 (t,T, s,K)

∂Z
=
∂x2 (t,T, s,K)

∂Z
= 0, (H.1)

∂b̄1 (Z, t,T, s)
∂Z

= −
2φ2 (t,T ) eγ(T−t)

ZB(t, s)
[
φ (t,T ) + ψ + B(T, s)

] , (H.2)

and
∂b̄2 (Z, t,T, s)

∂Z
= −

2φ2 (t,T ) eγ(T−t)

ZB(t, s)
[
φ (t,T ) + ψ

] . (H.3)

The delta for a zero-coupon bond option is computed as

∆zc
v̄ (.) :=

∂v̄zc(.)
∂Z

= αQ[x1(.); a, b̄1(.);α] + αZ
∂Q[x1(.); a, b̄1(.);α]

∂Z
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−αK
A(t,T )
A(t, s)

B(t,T )
B(t, s)

(
Z

A(t, s)

) B(t,T )
B(t,s) −1

Q[x2(.); a, b̄2(.);α]

−αKA(t,T )
(

Z
A(t, s)

) B(t,T )
B(t,s) ∂Q[x2(.); a, b̄2(.);α]

∂Z
. (H.4)

Using expressions (17), (18), (H.1), (H.2), and (H.3) we are able to obtain the following partial
derivatives:

∂Q[x1(.); a, b̄1(.);α]
∂Z

=
∂Q[x1(.); a, b̄1(.);α]

∂b̄1(.)
∂b̄1(.)
∂Z

= 2αp(x1(.); a + 2, b̄1(.))
φ2 (t,T ) eγ(T−t)

ZB(t, s)
[
φ (t,T ) + ψ + B(T, s)

] , (H.5)

and

∂Q[x2(.); a, b̄2(.);α]
∂Z

=
∂Q[x2(.); a, b̄2(.);α]

∂b̄2(.)
∂b̄2(.)
∂Z

= 2αp(x2(.); a + 2, b̄2(.))
φ2 (t,T ) eγ(T−t)

ZB(t, s)
[
φ (t,T ) + ψ

] . (H.6)

Finally, substituting expressions (H.5) and (H.6) into (H.4) yields expression (41).�

I. Proof of Proposition 9

To verify the first inequality, we use expressions (48) and (55), along with the fact that g−1(x) is
(positive and) increasing, to observe that this inequality becomes

1
γ

ln
(
1 −

2γρs
B

(κ + λ + γ)ρs
B + 2Bs(.)

)
<

1
γ

ln
(
1 −

2γρs f
B

(κ + λ + γ)ρs f
B + 2Bs f (.)

)
,

which is equivalent to vzc(r, t, t1, t2, (1 + ic)−1;−1)ρs f
B − Bs(r, t)ρzc

p < 0. To check the second inequality,
we use now expression (49) and then follow the same reasoning to obtain Bcb(r, t)ρzc

c − vzc(r, t, t1, t2, (1 +

ic)−1; 1)ρs f
B < 0, which concludes the proof.�
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